| //===-- Verifier.cpp - Implement the Module Verifier -----------------------==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the function verifier interface, that can be used for some |
| // basic correctness checking of input to the system. |
| // |
| // Note that this does not provide full `Java style' security and verifications, |
| // instead it just tries to ensure that code is well-formed. |
| // |
| // * Both of a binary operator's parameters are of the same type |
| // * Verify that the indices of mem access instructions match other operands |
| // * Verify that arithmetic and other things are only performed on first-class |
| // types. Verify that shifts & logicals only happen on integrals f.e. |
| // * All of the constants in a switch statement are of the correct type |
| // * The code is in valid SSA form |
| // * It should be illegal to put a label into any other type (like a structure) |
| // or to return one. [except constant arrays!] |
| // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad |
| // * PHI nodes must have an entry for each predecessor, with no extras. |
| // * PHI nodes must be the first thing in a basic block, all grouped together |
| // * All basic blocks should only end with terminator insts, not contain them |
| // * The entry node to a function must not have predecessors |
| // * All Instructions must be embedded into a basic block |
| // * Functions cannot take a void-typed parameter |
| // * Verify that a function's argument list agrees with it's declared type. |
| // * It is illegal to specify a name for a void value. |
| // * It is illegal to have a internal global value with no initializer |
| // * It is illegal to have a ret instruction that returns a value that does not |
| // agree with the function return value type. |
| // * Function call argument types match the function prototype |
| // * A landing pad is defined by a landingpad instruction, and can be jumped to |
| // only by the unwind edge of an invoke instruction. |
| // * A landingpad instruction must be the first non-PHI instruction in the |
| // block. |
| // * Landingpad instructions must be in a function with a personality function. |
| // * All other things that are tested by asserts spread about the code... |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GCStrategy.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsAArch64.h" |
| #include "llvm/IR/IntrinsicsARM.h" |
| #include "llvm/IR/IntrinsicsWebAssembly.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/ModuleSlotTracker.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <memory> |
| #include <optional> |
| #include <string> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> VerifyNoAliasScopeDomination( |
| "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false), |
| cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical " |
| "scopes are not dominating")); |
| |
| namespace llvm { |
| |
| struct VerifierSupport { |
| raw_ostream *OS; |
| const Module &M; |
| ModuleSlotTracker MST; |
| Triple TT; |
| const DataLayout &DL; |
| LLVMContext &Context; |
| |
| /// Track the brokenness of the module while recursively visiting. |
| bool Broken = false; |
| /// Broken debug info can be "recovered" from by stripping the debug info. |
| bool BrokenDebugInfo = false; |
| /// Whether to treat broken debug info as an error. |
| bool TreatBrokenDebugInfoAsError = true; |
| |
| explicit VerifierSupport(raw_ostream *OS, const Module &M) |
| : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()), |
| Context(M.getContext()) {} |
| |
| private: |
| void Write(const Module *M) { |
| *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n"; |
| } |
| |
| void Write(const Value *V) { |
| if (V) |
| Write(*V); |
| } |
| |
| void Write(const Value &V) { |
| if (isa<Instruction>(V)) { |
| V.print(*OS, MST); |
| *OS << '\n'; |
| } else { |
| V.printAsOperand(*OS, true, MST); |
| *OS << '\n'; |
| } |
| } |
| |
| void Write(const Metadata *MD) { |
| if (!MD) |
| return; |
| MD->print(*OS, MST, &M); |
| *OS << '\n'; |
| } |
| |
| template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) { |
| Write(MD.get()); |
| } |
| |
| void Write(const NamedMDNode *NMD) { |
| if (!NMD) |
| return; |
| NMD->print(*OS, MST); |
| *OS << '\n'; |
| } |
| |
| void Write(Type *T) { |
| if (!T) |
| return; |
| *OS << ' ' << *T; |
| } |
| |
| void Write(const Comdat *C) { |
| if (!C) |
| return; |
| *OS << *C; |
| } |
| |
| void Write(const APInt *AI) { |
| if (!AI) |
| return; |
| *OS << *AI << '\n'; |
| } |
| |
| void Write(const unsigned i) { *OS << i << '\n'; } |
| |
| // NOLINTNEXTLINE(readability-identifier-naming) |
| void Write(const Attribute *A) { |
| if (!A) |
| return; |
| *OS << A->getAsString() << '\n'; |
| } |
| |
| // NOLINTNEXTLINE(readability-identifier-naming) |
| void Write(const AttributeSet *AS) { |
| if (!AS) |
| return; |
| *OS << AS->getAsString() << '\n'; |
| } |
| |
| // NOLINTNEXTLINE(readability-identifier-naming) |
| void Write(const AttributeList *AL) { |
| if (!AL) |
| return; |
| AL->print(*OS); |
| } |
| |
| template <typename T> void Write(ArrayRef<T> Vs) { |
| for (const T &V : Vs) |
| Write(V); |
| } |
| |
| template <typename T1, typename... Ts> |
| void WriteTs(const T1 &V1, const Ts &... Vs) { |
| Write(V1); |
| WriteTs(Vs...); |
| } |
| |
| template <typename... Ts> void WriteTs() {} |
| |
| public: |
| /// A check failed, so printout out the condition and the message. |
| /// |
| /// This provides a nice place to put a breakpoint if you want to see why |
| /// something is not correct. |
| void CheckFailed(const Twine &Message) { |
| if (OS) |
| *OS << Message << '\n'; |
| Broken = true; |
| } |
| |
| /// A check failed (with values to print). |
| /// |
| /// This calls the Message-only version so that the above is easier to set a |
| /// breakpoint on. |
| template <typename T1, typename... Ts> |
| void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { |
| CheckFailed(Message); |
| if (OS) |
| WriteTs(V1, Vs...); |
| } |
| |
| /// A debug info check failed. |
| void DebugInfoCheckFailed(const Twine &Message) { |
| if (OS) |
| *OS << Message << '\n'; |
| Broken |= TreatBrokenDebugInfoAsError; |
| BrokenDebugInfo = true; |
| } |
| |
| /// A debug info check failed (with values to print). |
| template <typename T1, typename... Ts> |
| void DebugInfoCheckFailed(const Twine &Message, const T1 &V1, |
| const Ts &... Vs) { |
| DebugInfoCheckFailed(Message); |
| if (OS) |
| WriteTs(V1, Vs...); |
| } |
| }; |
| |
| } // namespace llvm |
| |
| namespace { |
| |
| class Verifier : public InstVisitor<Verifier>, VerifierSupport { |
| friend class InstVisitor<Verifier>; |
| |
| // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so |
| // the alignment size should not exceed 2^15. Since encode(Align) |
| // would plus the shift value by 1, the alignment size should |
| // not exceed 2^14, otherwise it can NOT be properly lowered |
| // in backend. |
| static constexpr unsigned ParamMaxAlignment = 1 << 14; |
| DominatorTree DT; |
| |
| /// When verifying a basic block, keep track of all of the |
| /// instructions we have seen so far. |
| /// |
| /// This allows us to do efficient dominance checks for the case when an |
| /// instruction has an operand that is an instruction in the same block. |
| SmallPtrSet<Instruction *, 16> InstsInThisBlock; |
| |
| /// Keep track of the metadata nodes that have been checked already. |
| SmallPtrSet<const Metadata *, 32> MDNodes; |
| |
| /// Keep track which DISubprogram is attached to which function. |
| DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments; |
| |
| /// Track all DICompileUnits visited. |
| SmallPtrSet<const Metadata *, 2> CUVisited; |
| |
| /// The result type for a landingpad. |
| Type *LandingPadResultTy; |
| |
| /// Whether we've seen a call to @llvm.localescape in this function |
| /// already. |
| bool SawFrameEscape; |
| |
| /// Whether the current function has a DISubprogram attached to it. |
| bool HasDebugInfo = false; |
| |
| /// The current source language. |
| dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user; |
| |
| /// Whether source was present on the first DIFile encountered in each CU. |
| DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo; |
| |
| /// Stores the count of how many objects were passed to llvm.localescape for a |
| /// given function and the largest index passed to llvm.localrecover. |
| DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo; |
| |
| // Maps catchswitches and cleanuppads that unwind to siblings to the |
| // terminators that indicate the unwind, used to detect cycles therein. |
| MapVector<Instruction *, Instruction *> SiblingFuncletInfo; |
| |
| /// Cache of constants visited in search of ConstantExprs. |
| SmallPtrSet<const Constant *, 32> ConstantExprVisited; |
| |
| /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic. |
| SmallVector<const Function *, 4> DeoptimizeDeclarations; |
| |
| /// Cache of attribute lists verified. |
| SmallPtrSet<const void *, 32> AttributeListsVisited; |
| |
| // Verify that this GlobalValue is only used in this module. |
| // This map is used to avoid visiting uses twice. We can arrive at a user |
| // twice, if they have multiple operands. In particular for very large |
| // constant expressions, we can arrive at a particular user many times. |
| SmallPtrSet<const Value *, 32> GlobalValueVisited; |
| |
| // Keeps track of duplicate function argument debug info. |
| SmallVector<const DILocalVariable *, 16> DebugFnArgs; |
| |
| TBAAVerifier TBAAVerifyHelper; |
| |
| SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls; |
| |
| void checkAtomicMemAccessSize(Type *Ty, const Instruction *I); |
| |
| public: |
| explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError, |
| const Module &M) |
| : VerifierSupport(OS, M), LandingPadResultTy(nullptr), |
| SawFrameEscape(false), TBAAVerifyHelper(this) { |
| TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError; |
| } |
| |
| bool hasBrokenDebugInfo() const { return BrokenDebugInfo; } |
| |
| bool verify(const Function &F) { |
| assert(F.getParent() == &M && |
| "An instance of this class only works with a specific module!"); |
| |
| // First ensure the function is well-enough formed to compute dominance |
| // information, and directly compute a dominance tree. We don't rely on the |
| // pass manager to provide this as it isolates us from a potentially |
| // out-of-date dominator tree and makes it significantly more complex to run |
| // this code outside of a pass manager. |
| // FIXME: It's really gross that we have to cast away constness here. |
| if (!F.empty()) |
| DT.recalculate(const_cast<Function &>(F)); |
| |
| for (const BasicBlock &BB : F) { |
| if (!BB.empty() && BB.back().isTerminator()) |
| continue; |
| |
| if (OS) { |
| *OS << "Basic Block in function '" << F.getName() |
| << "' does not have terminator!\n"; |
| BB.printAsOperand(*OS, true, MST); |
| *OS << "\n"; |
| } |
| return false; |
| } |
| |
| Broken = false; |
| // FIXME: We strip const here because the inst visitor strips const. |
| visit(const_cast<Function &>(F)); |
| verifySiblingFuncletUnwinds(); |
| InstsInThisBlock.clear(); |
| DebugFnArgs.clear(); |
| LandingPadResultTy = nullptr; |
| SawFrameEscape = false; |
| SiblingFuncletInfo.clear(); |
| verifyNoAliasScopeDecl(); |
| NoAliasScopeDecls.clear(); |
| |
| return !Broken; |
| } |
| |
| /// Verify the module that this instance of \c Verifier was initialized with. |
| bool verify() { |
| Broken = false; |
| |
| // Collect all declarations of the llvm.experimental.deoptimize intrinsic. |
| for (const Function &F : M) |
| if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize) |
| DeoptimizeDeclarations.push_back(&F); |
| |
| // Now that we've visited every function, verify that we never asked to |
| // recover a frame index that wasn't escaped. |
| verifyFrameRecoverIndices(); |
| for (const GlobalVariable &GV : M.globals()) |
| visitGlobalVariable(GV); |
| |
| for (const GlobalAlias &GA : M.aliases()) |
| visitGlobalAlias(GA); |
| |
| for (const GlobalIFunc &GI : M.ifuncs()) |
| visitGlobalIFunc(GI); |
| |
| for (const NamedMDNode &NMD : M.named_metadata()) |
| visitNamedMDNode(NMD); |
| |
| for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable()) |
| visitComdat(SMEC.getValue()); |
| |
| visitModuleFlags(); |
| visitModuleIdents(); |
| visitModuleCommandLines(); |
| |
| verifyCompileUnits(); |
| |
| verifyDeoptimizeCallingConvs(); |
| DISubprogramAttachments.clear(); |
| return !Broken; |
| } |
| |
| private: |
| /// Whether a metadata node is allowed to be, or contain, a DILocation. |
| enum class AreDebugLocsAllowed { No, Yes }; |
| |
| // Verification methods... |
| void visitGlobalValue(const GlobalValue &GV); |
| void visitGlobalVariable(const GlobalVariable &GV); |
| void visitGlobalAlias(const GlobalAlias &GA); |
| void visitGlobalIFunc(const GlobalIFunc &GI); |
| void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C); |
| void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited, |
| const GlobalAlias &A, const Constant &C); |
| void visitNamedMDNode(const NamedMDNode &NMD); |
| void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs); |
| void visitMetadataAsValue(const MetadataAsValue &MD, Function *F); |
| void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F); |
| void visitComdat(const Comdat &C); |
| void visitModuleIdents(); |
| void visitModuleCommandLines(); |
| void visitModuleFlags(); |
| void visitModuleFlag(const MDNode *Op, |
| DenseMap<const MDString *, const MDNode *> &SeenIDs, |
| SmallVectorImpl<const MDNode *> &Requirements); |
| void visitModuleFlagCGProfileEntry(const MDOperand &MDO); |
| void visitFunction(const Function &F); |
| void visitBasicBlock(BasicBlock &BB); |
| void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty); |
| void visitDereferenceableMetadata(Instruction &I, MDNode *MD); |
| void visitProfMetadata(Instruction &I, MDNode *MD); |
| void visitCallStackMetadata(MDNode *MD); |
| void visitMemProfMetadata(Instruction &I, MDNode *MD); |
| void visitCallsiteMetadata(Instruction &I, MDNode *MD); |
| void visitDIAssignIDMetadata(Instruction &I, MDNode *MD); |
| void visitAnnotationMetadata(MDNode *Annotation); |
| void visitAliasScopeMetadata(const MDNode *MD); |
| void visitAliasScopeListMetadata(const MDNode *MD); |
| void visitAccessGroupMetadata(const MDNode *MD); |
| |
| template <class Ty> bool isValidMetadataArray(const MDTuple &N); |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N); |
| #include "llvm/IR/Metadata.def" |
| void visitDIScope(const DIScope &N); |
| void visitDIVariable(const DIVariable &N); |
| void visitDILexicalBlockBase(const DILexicalBlockBase &N); |
| void visitDITemplateParameter(const DITemplateParameter &N); |
| |
| void visitTemplateParams(const MDNode &N, const Metadata &RawParams); |
| |
| // InstVisitor overrides... |
| using InstVisitor<Verifier>::visit; |
| void visit(Instruction &I); |
| |
| void visitTruncInst(TruncInst &I); |
| void visitZExtInst(ZExtInst &I); |
| void visitSExtInst(SExtInst &I); |
| void visitFPTruncInst(FPTruncInst &I); |
| void visitFPExtInst(FPExtInst &I); |
| void visitFPToUIInst(FPToUIInst &I); |
| void visitFPToSIInst(FPToSIInst &I); |
| void visitUIToFPInst(UIToFPInst &I); |
| void visitSIToFPInst(SIToFPInst &I); |
| void visitIntToPtrInst(IntToPtrInst &I); |
| void visitPtrToIntInst(PtrToIntInst &I); |
| void visitBitCastInst(BitCastInst &I); |
| void visitAddrSpaceCastInst(AddrSpaceCastInst &I); |
| void visitPHINode(PHINode &PN); |
| void visitCallBase(CallBase &Call); |
| void visitUnaryOperator(UnaryOperator &U); |
| void visitBinaryOperator(BinaryOperator &B); |
| void visitICmpInst(ICmpInst &IC); |
| void visitFCmpInst(FCmpInst &FC); |
| void visitExtractElementInst(ExtractElementInst &EI); |
| void visitInsertElementInst(InsertElementInst &EI); |
| void visitShuffleVectorInst(ShuffleVectorInst &EI); |
| void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); } |
| void visitCallInst(CallInst &CI); |
| void visitInvokeInst(InvokeInst &II); |
| void visitGetElementPtrInst(GetElementPtrInst &GEP); |
| void visitLoadInst(LoadInst &LI); |
| void visitStoreInst(StoreInst &SI); |
| void verifyDominatesUse(Instruction &I, unsigned i); |
| void visitInstruction(Instruction &I); |
| void visitTerminator(Instruction &I); |
| void visitBranchInst(BranchInst &BI); |
| void visitReturnInst(ReturnInst &RI); |
| void visitSwitchInst(SwitchInst &SI); |
| void visitIndirectBrInst(IndirectBrInst &BI); |
| void visitCallBrInst(CallBrInst &CBI); |
| void visitSelectInst(SelectInst &SI); |
| void visitUserOp1(Instruction &I); |
| void visitUserOp2(Instruction &I) { visitUserOp1(I); } |
| void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call); |
| void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI); |
| void visitVPIntrinsic(VPIntrinsic &VPI); |
| void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII); |
| void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI); |
| void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI); |
| void visitAtomicRMWInst(AtomicRMWInst &RMWI); |
| void visitFenceInst(FenceInst &FI); |
| void visitAllocaInst(AllocaInst &AI); |
| void visitExtractValueInst(ExtractValueInst &EVI); |
| void visitInsertValueInst(InsertValueInst &IVI); |
| void visitEHPadPredecessors(Instruction &I); |
| void visitLandingPadInst(LandingPadInst &LPI); |
| void visitResumeInst(ResumeInst &RI); |
| void visitCatchPadInst(CatchPadInst &CPI); |
| void visitCatchReturnInst(CatchReturnInst &CatchReturn); |
| void visitCleanupPadInst(CleanupPadInst &CPI); |
| void visitFuncletPadInst(FuncletPadInst &FPI); |
| void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch); |
| void visitCleanupReturnInst(CleanupReturnInst &CRI); |
| |
| void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal); |
| void verifySwiftErrorValue(const Value *SwiftErrorVal); |
| void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context); |
| void verifyMustTailCall(CallInst &CI); |
| bool verifyAttributeCount(AttributeList Attrs, unsigned Params); |
| void verifyAttributeTypes(AttributeSet Attrs, const Value *V); |
| void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V); |
| void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, |
| const Value *V); |
| void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, |
| const Value *V, bool IsIntrinsic, bool IsInlineAsm); |
| void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs); |
| |
| void visitConstantExprsRecursively(const Constant *EntryC); |
| void visitConstantExpr(const ConstantExpr *CE); |
| void verifyInlineAsmCall(const CallBase &Call); |
| void verifyStatepoint(const CallBase &Call); |
| void verifyFrameRecoverIndices(); |
| void verifySiblingFuncletUnwinds(); |
| |
| void verifyFragmentExpression(const DbgVariableIntrinsic &I); |
| template <typename ValueOrMetadata> |
| void verifyFragmentExpression(const DIVariable &V, |
| DIExpression::FragmentInfo Fragment, |
| ValueOrMetadata *Desc); |
| void verifyFnArgs(const DbgVariableIntrinsic &I); |
| void verifyNotEntryValue(const DbgVariableIntrinsic &I); |
| |
| /// Module-level debug info verification... |
| void verifyCompileUnits(); |
| |
| /// Module-level verification that all @llvm.experimental.deoptimize |
| /// declarations share the same calling convention. |
| void verifyDeoptimizeCallingConvs(); |
| |
| void verifyAttachedCallBundle(const CallBase &Call, |
| const OperandBundleUse &BU); |
| |
| /// Verify all-or-nothing property of DIFile source attribute within a CU. |
| void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F); |
| |
| /// Verify the llvm.experimental.noalias.scope.decl declarations |
| void verifyNoAliasScopeDecl(); |
| }; |
| |
| } // end anonymous namespace |
| |
| /// We know that cond should be true, if not print an error message. |
| #define Check(C, ...) \ |
| do { \ |
| if (!(C)) { \ |
| CheckFailed(__VA_ARGS__); \ |
| return; \ |
| } \ |
| } while (false) |
| |
| /// We know that a debug info condition should be true, if not print |
| /// an error message. |
| #define CheckDI(C, ...) \ |
| do { \ |
| if (!(C)) { \ |
| DebugInfoCheckFailed(__VA_ARGS__); \ |
| return; \ |
| } \ |
| } while (false) |
| |
| void Verifier::visit(Instruction &I) { |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| Check(I.getOperand(i) != nullptr, "Operand is null", &I); |
| InstVisitor<Verifier>::visit(I); |
| } |
| |
| // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further. |
| static void forEachUser(const Value *User, |
| SmallPtrSet<const Value *, 32> &Visited, |
| llvm::function_ref<bool(const Value *)> Callback) { |
| if (!Visited.insert(User).second) |
| return; |
| |
| SmallVector<const Value *> WorkList; |
| append_range(WorkList, User->materialized_users()); |
| while (!WorkList.empty()) { |
| const Value *Cur = WorkList.pop_back_val(); |
| if (!Visited.insert(Cur).second) |
| continue; |
| if (Callback(Cur)) |
| append_range(WorkList, Cur->materialized_users()); |
| } |
| } |
| |
| void Verifier::visitGlobalValue(const GlobalValue &GV) { |
| Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(), |
| "Global is external, but doesn't have external or weak linkage!", &GV); |
| |
| if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) { |
| |
| if (MaybeAlign A = GO->getAlign()) { |
| Check(A->value() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", GO); |
| } |
| } |
| Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV), |
| "Only global variables can have appending linkage!", &GV); |
| |
| if (GV.hasAppendingLinkage()) { |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV); |
| Check(GVar && GVar->getValueType()->isArrayTy(), |
| "Only global arrays can have appending linkage!", GVar); |
| } |
| |
| if (GV.isDeclarationForLinker()) |
| Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV); |
| |
| if (GV.hasDLLExportStorageClass()) { |
| Check(!GV.hasHiddenVisibility(), |
| "dllexport GlobalValue must have default or protected visibility", |
| &GV); |
| } |
| if (GV.hasDLLImportStorageClass()) { |
| Check(GV.hasDefaultVisibility(), |
| "dllimport GlobalValue must have default visibility", &GV); |
| Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!", |
| &GV); |
| |
| Check((GV.isDeclaration() && |
| (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) || |
| GV.hasAvailableExternallyLinkage(), |
| "Global is marked as dllimport, but not external", &GV); |
| } |
| |
| if (GV.isImplicitDSOLocal()) |
| Check(GV.isDSOLocal(), |
| "GlobalValue with local linkage or non-default " |
| "visibility must be dso_local!", |
| &GV); |
| |
| forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) { |
| if (!I->getParent() || !I->getParent()->getParent()) |
| CheckFailed("Global is referenced by parentless instruction!", &GV, &M, |
| I); |
| else if (I->getParent()->getParent()->getParent() != &M) |
| CheckFailed("Global is referenced in a different module!", &GV, &M, I, |
| I->getParent()->getParent(), |
| I->getParent()->getParent()->getParent()); |
| return false; |
| } else if (const Function *F = dyn_cast<Function>(V)) { |
| if (F->getParent() != &M) |
| CheckFailed("Global is used by function in a different module", &GV, &M, |
| F, F->getParent()); |
| return false; |
| } |
| return true; |
| }); |
| } |
| |
| void Verifier::visitGlobalVariable(const GlobalVariable &GV) { |
| if (GV.hasInitializer()) { |
| Check(GV.getInitializer()->getType() == GV.getValueType(), |
| "Global variable initializer type does not match global " |
| "variable type!", |
| &GV); |
| // If the global has common linkage, it must have a zero initializer and |
| // cannot be constant. |
| if (GV.hasCommonLinkage()) { |
| Check(GV.getInitializer()->isNullValue(), |
| "'common' global must have a zero initializer!", &GV); |
| Check(!GV.isConstant(), "'common' global may not be marked constant!", |
| &GV); |
| Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV); |
| } |
| } |
| |
| if (GV.hasName() && (GV.getName() == "llvm.global_ctors" || |
| GV.getName() == "llvm.global_dtors")) { |
| Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), |
| "invalid linkage for intrinsic global variable", &GV); |
| // Don't worry about emitting an error for it not being an array, |
| // visitGlobalValue will complain on appending non-array. |
| if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) { |
| StructType *STy = dyn_cast<StructType>(ATy->getElementType()); |
| PointerType *FuncPtrTy = |
| FunctionType::get(Type::getVoidTy(Context), false)-> |
| getPointerTo(DL.getProgramAddressSpace()); |
| Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) && |
| STy->getTypeAtIndex(0u)->isIntegerTy(32) && |
| STy->getTypeAtIndex(1) == FuncPtrTy, |
| "wrong type for intrinsic global variable", &GV); |
| Check(STy->getNumElements() == 3, |
| "the third field of the element type is mandatory, " |
| "specify ptr null to migrate from the obsoleted 2-field form"); |
| Type *ETy = STy->getTypeAtIndex(2); |
| Type *Int8Ty = Type::getInt8Ty(ETy->getContext()); |
| Check(ETy->isPointerTy() && |
| cast<PointerType>(ETy)->isOpaqueOrPointeeTypeMatches(Int8Ty), |
| "wrong type for intrinsic global variable", &GV); |
| } |
| } |
| |
| if (GV.hasName() && (GV.getName() == "llvm.used" || |
| GV.getName() == "llvm.compiler.used")) { |
| Check(!GV.hasInitializer() || GV.hasAppendingLinkage(), |
| "invalid linkage for intrinsic global variable", &GV); |
| Type *GVType = GV.getValueType(); |
| if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) { |
| PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType()); |
| Check(PTy, "wrong type for intrinsic global variable", &GV); |
| if (GV.hasInitializer()) { |
| const Constant *Init = GV.getInitializer(); |
| const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init); |
| Check(InitArray, "wrong initalizer for intrinsic global variable", |
| Init); |
| for (Value *Op : InitArray->operands()) { |
| Value *V = Op->stripPointerCasts(); |
| Check(isa<GlobalVariable>(V) || isa<Function>(V) || |
| isa<GlobalAlias>(V), |
| Twine("invalid ") + GV.getName() + " member", V); |
| Check(V->hasName(), |
| Twine("members of ") + GV.getName() + " must be named", V); |
| } |
| } |
| } |
| } |
| |
| // Visit any debug info attachments. |
| SmallVector<MDNode *, 1> MDs; |
| GV.getMetadata(LLVMContext::MD_dbg, MDs); |
| for (auto *MD : MDs) { |
| if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD)) |
| visitDIGlobalVariableExpression(*GVE); |
| else |
| CheckDI(false, "!dbg attachment of global variable must be a " |
| "DIGlobalVariableExpression"); |
| } |
| |
| // Scalable vectors cannot be global variables, since we don't know |
| // the runtime size. If the global is an array containing scalable vectors, |
| // that will be caught by the isValidElementType methods in StructType or |
| // ArrayType instead. |
| Check(!isa<ScalableVectorType>(GV.getValueType()), |
| "Globals cannot contain scalable vectors", &GV); |
| |
| if (auto *STy = dyn_cast<StructType>(GV.getValueType())) |
| Check(!STy->containsScalableVectorType(), |
| "Globals cannot contain scalable vectors", &GV); |
| |
| // Check if it's a target extension type that disallows being used as a |
| // global. |
| if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType())) |
| Check(TTy->hasProperty(TargetExtType::CanBeGlobal), |
| "Global @" + GV.getName() + " has illegal target extension type", |
| TTy); |
| |
| if (!GV.hasInitializer()) { |
| visitGlobalValue(GV); |
| return; |
| } |
| |
| // Walk any aggregate initializers looking for bitcasts between address spaces |
| visitConstantExprsRecursively(GV.getInitializer()); |
| |
| visitGlobalValue(GV); |
| } |
| |
| void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) { |
| SmallPtrSet<const GlobalAlias*, 4> Visited; |
| Visited.insert(&GA); |
| visitAliaseeSubExpr(Visited, GA, C); |
| } |
| |
| void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited, |
| const GlobalAlias &GA, const Constant &C) { |
| if (GA.hasAvailableExternallyLinkage()) { |
| Check(isa<GlobalValue>(C) && |
| cast<GlobalValue>(C).hasAvailableExternallyLinkage(), |
| "available_externally alias must point to available_externally " |
| "global value", |
| &GA); |
| } |
| if (const auto *GV = dyn_cast<GlobalValue>(&C)) { |
| if (!GA.hasAvailableExternallyLinkage()) { |
| Check(!GV->isDeclarationForLinker(), "Alias must point to a definition", |
| &GA); |
| } |
| |
| if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) { |
| Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA); |
| |
| Check(!GA2->isInterposable(), |
| "Alias cannot point to an interposable alias", &GA); |
| } else { |
| // Only continue verifying subexpressions of GlobalAliases. |
| // Do not recurse into global initializers. |
| return; |
| } |
| } |
| |
| if (const auto *CE = dyn_cast<ConstantExpr>(&C)) |
| visitConstantExprsRecursively(CE); |
| |
| for (const Use &U : C.operands()) { |
| Value *V = &*U; |
| if (const auto *GA2 = dyn_cast<GlobalAlias>(V)) |
| visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee()); |
| else if (const auto *C2 = dyn_cast<Constant>(V)) |
| visitAliaseeSubExpr(Visited, GA, *C2); |
| } |
| } |
| |
| void Verifier::visitGlobalAlias(const GlobalAlias &GA) { |
| Check(GlobalAlias::isValidLinkage(GA.getLinkage()), |
| "Alias should have private, internal, linkonce, weak, linkonce_odr, " |
| "weak_odr, external, or available_externally linkage!", |
| &GA); |
| const Constant *Aliasee = GA.getAliasee(); |
| Check(Aliasee, "Aliasee cannot be NULL!", &GA); |
| Check(GA.getType() == Aliasee->getType(), |
| "Alias and aliasee types should match!", &GA); |
| |
| Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee), |
| "Aliasee should be either GlobalValue or ConstantExpr", &GA); |
| |
| visitAliaseeSubExpr(GA, *Aliasee); |
| |
| visitGlobalValue(GA); |
| } |
| |
| void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) { |
| Check(GlobalIFunc::isValidLinkage(GI.getLinkage()), |
| "IFunc should have private, internal, linkonce, weak, linkonce_odr, " |
| "weak_odr, or external linkage!", |
| &GI); |
| // Pierce through ConstantExprs and GlobalAliases and check that the resolver |
| // is a Function definition. |
| const Function *Resolver = GI.getResolverFunction(); |
| Check(Resolver, "IFunc must have a Function resolver", &GI); |
| Check(!Resolver->isDeclarationForLinker(), |
| "IFunc resolver must be a definition", &GI); |
| |
| // Check that the immediate resolver operand (prior to any bitcasts) has the |
| // correct type. |
| const Type *ResolverTy = GI.getResolver()->getType(); |
| |
| Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()), |
| "IFunc resolver must return a pointer", &GI); |
| |
| const Type *ResolverFuncTy = |
| GlobalIFunc::getResolverFunctionType(GI.getValueType()); |
| Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()), |
| "IFunc resolver has incorrect type", &GI); |
| } |
| |
| void Verifier::visitNamedMDNode(const NamedMDNode &NMD) { |
| // There used to be various other llvm.dbg.* nodes, but we don't support |
| // upgrading them and we want to reserve the namespace for future uses. |
| if (NMD.getName().startswith("llvm.dbg.")) |
| CheckDI(NMD.getName() == "llvm.dbg.cu", |
| "unrecognized named metadata node in the llvm.dbg namespace", &NMD); |
| for (const MDNode *MD : NMD.operands()) { |
| if (NMD.getName() == "llvm.dbg.cu") |
| CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD); |
| |
| if (!MD) |
| continue; |
| |
| visitMDNode(*MD, AreDebugLocsAllowed::Yes); |
| } |
| } |
| |
| void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) { |
| // Only visit each node once. Metadata can be mutually recursive, so this |
| // avoids infinite recursion here, as well as being an optimization. |
| if (!MDNodes.insert(&MD).second) |
| return; |
| |
| Check(&MD.getContext() == &Context, |
| "MDNode context does not match Module context!", &MD); |
| |
| switch (MD.getMetadataID()) { |
| default: |
| llvm_unreachable("Invalid MDNode subclass"); |
| case Metadata::MDTupleKind: |
| break; |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ |
| case Metadata::CLASS##Kind: \ |
| visit##CLASS(cast<CLASS>(MD)); \ |
| break; |
| #include "llvm/IR/Metadata.def" |
| } |
| |
| for (const Metadata *Op : MD.operands()) { |
| if (!Op) |
| continue; |
| Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!", |
| &MD, Op); |
| CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes, |
| "DILocation not allowed within this metadata node", &MD, Op); |
| if (auto *N = dyn_cast<MDNode>(Op)) { |
| visitMDNode(*N, AllowLocs); |
| continue; |
| } |
| if (auto *V = dyn_cast<ValueAsMetadata>(Op)) { |
| visitValueAsMetadata(*V, nullptr); |
| continue; |
| } |
| } |
| |
| // Check these last, so we diagnose problems in operands first. |
| Check(!MD.isTemporary(), "Expected no forward declarations!", &MD); |
| Check(MD.isResolved(), "All nodes should be resolved!", &MD); |
| } |
| |
| void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) { |
| Check(MD.getValue(), "Expected valid value", &MD); |
| Check(!MD.getValue()->getType()->isMetadataTy(), |
| "Unexpected metadata round-trip through values", &MD, MD.getValue()); |
| |
| auto *L = dyn_cast<LocalAsMetadata>(&MD); |
| if (!L) |
| return; |
| |
| Check(F, "function-local metadata used outside a function", L); |
| |
| // If this was an instruction, bb, or argument, verify that it is in the |
| // function that we expect. |
| Function *ActualF = nullptr; |
| if (Instruction *I = dyn_cast<Instruction>(L->getValue())) { |
| Check(I->getParent(), "function-local metadata not in basic block", L, I); |
| ActualF = I->getParent()->getParent(); |
| } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue())) |
| ActualF = BB->getParent(); |
| else if (Argument *A = dyn_cast<Argument>(L->getValue())) |
| ActualF = A->getParent(); |
| assert(ActualF && "Unimplemented function local metadata case!"); |
| |
| Check(ActualF == F, "function-local metadata used in wrong function", L); |
| } |
| |
| void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) { |
| Metadata *MD = MDV.getMetadata(); |
| if (auto *N = dyn_cast<MDNode>(MD)) { |
| visitMDNode(*N, AreDebugLocsAllowed::No); |
| return; |
| } |
| |
| // Only visit each node once. Metadata can be mutually recursive, so this |
| // avoids infinite recursion here, as well as being an optimization. |
| if (!MDNodes.insert(MD).second) |
| return; |
| |
| if (auto *V = dyn_cast<ValueAsMetadata>(MD)) |
| visitValueAsMetadata(*V, F); |
| } |
| |
| static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); } |
| static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); } |
| static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); } |
| |
| void Verifier::visitDILocation(const DILocation &N) { |
| CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "location requires a valid scope", &N, N.getRawScope()); |
| if (auto *IA = N.getRawInlinedAt()) |
| CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA); |
| if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) |
| CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); |
| } |
| |
| void Verifier::visitGenericDINode(const GenericDINode &N) { |
| CheckDI(N.getTag(), "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIScope(const DIScope &N) { |
| if (auto *F = N.getRawFile()) |
| CheckDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDISubrange(const DISubrange &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N); |
| bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang); |
| CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() || |
| N.getRawUpperBound(), |
| "Subrange must contain count or upperBound", &N); |
| CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), |
| "Subrange can have any one of count or upperBound", &N); |
| auto *CBound = N.getRawCountNode(); |
| CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) || |
| isa<DIVariable>(CBound) || isa<DIExpression>(CBound), |
| "Count must be signed constant or DIVariable or DIExpression", &N); |
| auto Count = N.getCount(); |
| CheckDI(!Count || !Count.is<ConstantInt *>() || |
| Count.get<ConstantInt *>()->getSExtValue() >= -1, |
| "invalid subrange count", &N); |
| auto *LBound = N.getRawLowerBound(); |
| CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) || |
| isa<DIVariable>(LBound) || isa<DIExpression>(LBound), |
| "LowerBound must be signed constant or DIVariable or DIExpression", |
| &N); |
| auto *UBound = N.getRawUpperBound(); |
| CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) || |
| isa<DIVariable>(UBound) || isa<DIExpression>(UBound), |
| "UpperBound must be signed constant or DIVariable or DIExpression", |
| &N); |
| auto *Stride = N.getRawStride(); |
| CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) || |
| isa<DIVariable>(Stride) || isa<DIExpression>(Stride), |
| "Stride must be signed constant or DIVariable or DIExpression", &N); |
| } |
| |
| void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N); |
| CheckDI(N.getRawCountNode() || N.getRawUpperBound(), |
| "GenericSubrange must contain count or upperBound", &N); |
| CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(), |
| "GenericSubrange can have any one of count or upperBound", &N); |
| auto *CBound = N.getRawCountNode(); |
| CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound), |
| "Count must be signed constant or DIVariable or DIExpression", &N); |
| auto *LBound = N.getRawLowerBound(); |
| CheckDI(LBound, "GenericSubrange must contain lowerBound", &N); |
| CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound), |
| "LowerBound must be signed constant or DIVariable or DIExpression", |
| &N); |
| auto *UBound = N.getRawUpperBound(); |
| CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound), |
| "UpperBound must be signed constant or DIVariable or DIExpression", |
| &N); |
| auto *Stride = N.getRawStride(); |
| CheckDI(Stride, "GenericSubrange must contain stride", &N); |
| CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride), |
| "Stride must be signed constant or DIVariable or DIExpression", &N); |
| } |
| |
| void Verifier::visitDIEnumerator(const DIEnumerator &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIBasicType(const DIBasicType &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_base_type || |
| N.getTag() == dwarf::DW_TAG_unspecified_type || |
| N.getTag() == dwarf::DW_TAG_string_type, |
| "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIStringType(const DIStringType &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N); |
| CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags", |
| &N); |
| } |
| |
| void Verifier::visitDIDerivedType(const DIDerivedType &N) { |
| // Common scope checks. |
| visitDIScope(N); |
| |
| CheckDI(N.getTag() == dwarf::DW_TAG_typedef || |
| N.getTag() == dwarf::DW_TAG_pointer_type || |
| N.getTag() == dwarf::DW_TAG_ptr_to_member_type || |
| N.getTag() == dwarf::DW_TAG_reference_type || |
| N.getTag() == dwarf::DW_TAG_rvalue_reference_type || |
| N.getTag() == dwarf::DW_TAG_const_type || |
| N.getTag() == dwarf::DW_TAG_immutable_type || |
| N.getTag() == dwarf::DW_TAG_volatile_type || |
| N.getTag() == dwarf::DW_TAG_restrict_type || |
| N.getTag() == dwarf::DW_TAG_atomic_type || |
| N.getTag() == dwarf::DW_TAG_member || |
| N.getTag() == dwarf::DW_TAG_inheritance || |
| N.getTag() == dwarf::DW_TAG_friend || |
| N.getTag() == dwarf::DW_TAG_set_type, |
| "invalid tag", &N); |
| if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) { |
| CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N, |
| N.getRawExtraData()); |
| } |
| |
| if (N.getTag() == dwarf::DW_TAG_set_type) { |
| if (auto *T = N.getRawBaseType()) { |
| auto *Enum = dyn_cast_or_null<DICompositeType>(T); |
| auto *Basic = dyn_cast_or_null<DIBasicType>(T); |
| CheckDI( |
| (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) || |
| (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned || |
| Basic->getEncoding() == dwarf::DW_ATE_signed || |
| Basic->getEncoding() == dwarf::DW_ATE_unsigned_char || |
| Basic->getEncoding() == dwarf::DW_ATE_signed_char || |
| Basic->getEncoding() == dwarf::DW_ATE_boolean)), |
| "invalid set base type", &N, T); |
| } |
| } |
| |
| CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, |
| N.getRawBaseType()); |
| |
| if (N.getDWARFAddressSpace()) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type || |
| N.getTag() == dwarf::DW_TAG_reference_type || |
| N.getTag() == dwarf::DW_TAG_rvalue_reference_type, |
| "DWARF address space only applies to pointer or reference types", |
| &N); |
| } |
| } |
| |
| /// Detect mutually exclusive flags. |
| static bool hasConflictingReferenceFlags(unsigned Flags) { |
| return ((Flags & DINode::FlagLValueReference) && |
| (Flags & DINode::FlagRValueReference)) || |
| ((Flags & DINode::FlagTypePassByValue) && |
| (Flags & DINode::FlagTypePassByReference)); |
| } |
| |
| void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) { |
| auto *Params = dyn_cast<MDTuple>(&RawParams); |
| CheckDI(Params, "invalid template params", &N, &RawParams); |
| for (Metadata *Op : Params->operands()) { |
| CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter", |
| &N, Params, Op); |
| } |
| } |
| |
| void Verifier::visitDICompositeType(const DICompositeType &N) { |
| // Common scope checks. |
| visitDIScope(N); |
| |
| CheckDI(N.getTag() == dwarf::DW_TAG_array_type || |
| N.getTag() == dwarf::DW_TAG_structure_type || |
| N.getTag() == dwarf::DW_TAG_union_type || |
| N.getTag() == dwarf::DW_TAG_enumeration_type || |
| N.getTag() == dwarf::DW_TAG_class_type || |
| N.getTag() == dwarf::DW_TAG_variant_part || |
| N.getTag() == dwarf::DW_TAG_namelist, |
| "invalid tag", &N); |
| |
| CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| CheckDI(isType(N.getRawBaseType()), "invalid base type", &N, |
| N.getRawBaseType()); |
| |
| CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()), |
| "invalid composite elements", &N, N.getRawElements()); |
| CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N, |
| N.getRawVTableHolder()); |
| CheckDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| unsigned DIBlockByRefStruct = 1 << 4; |
| CheckDI((N.getFlags() & DIBlockByRefStruct) == 0, |
| "DIBlockByRefStruct on DICompositeType is no longer supported", &N); |
| |
| if (N.isVector()) { |
| const DINodeArray Elements = N.getElements(); |
| CheckDI(Elements.size() == 1 && |
| Elements[0]->getTag() == dwarf::DW_TAG_subrange_type, |
| "invalid vector, expected one element of type subrange", &N); |
| } |
| |
| if (auto *Params = N.getRawTemplateParams()) |
| visitTemplateParams(N, *Params); |
| |
| if (auto *D = N.getRawDiscriminator()) { |
| CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part, |
| "discriminator can only appear on variant part"); |
| } |
| |
| if (N.getRawDataLocation()) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_array_type, |
| "dataLocation can only appear in array type"); |
| } |
| |
| if (N.getRawAssociated()) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_array_type, |
| "associated can only appear in array type"); |
| } |
| |
| if (N.getRawAllocated()) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_array_type, |
| "allocated can only appear in array type"); |
| } |
| |
| if (N.getRawRank()) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_array_type, |
| "rank can only appear in array type"); |
| } |
| } |
| |
| void Verifier::visitDISubroutineType(const DISubroutineType &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N); |
| if (auto *Types = N.getRawTypeArray()) { |
| CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types); |
| for (Metadata *Ty : N.getTypeArray()->operands()) { |
| CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty); |
| } |
| } |
| CheckDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| } |
| |
| void Verifier::visitDIFile(const DIFile &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N); |
| std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum(); |
| if (Checksum) { |
| CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last, |
| "invalid checksum kind", &N); |
| size_t Size; |
| switch (Checksum->Kind) { |
| case DIFile::CSK_MD5: |
| Size = 32; |
| break; |
| case DIFile::CSK_SHA1: |
| Size = 40; |
| break; |
| case DIFile::CSK_SHA256: |
| Size = 64; |
| break; |
| } |
| CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N); |
| CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos, |
| "invalid checksum", &N); |
| } |
| } |
| |
| void Verifier::visitDICompileUnit(const DICompileUnit &N) { |
| CheckDI(N.isDistinct(), "compile units must be distinct", &N); |
| CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N); |
| |
| // Don't bother verifying the compilation directory or producer string |
| // as those could be empty. |
| CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N, |
| N.getRawFile()); |
| CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N, |
| N.getFile()); |
| |
| CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage(); |
| |
| verifySourceDebugInfo(N, *N.getFile()); |
| |
| CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind), |
| "invalid emission kind", &N); |
| |
| if (auto *Array = N.getRawEnumTypes()) { |
| CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array); |
| for (Metadata *Op : N.getEnumTypes()->operands()) { |
| auto *Enum = dyn_cast_or_null<DICompositeType>(Op); |
| CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type, |
| "invalid enum type", &N, N.getEnumTypes(), Op); |
| } |
| } |
| if (auto *Array = N.getRawRetainedTypes()) { |
| CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array); |
| for (Metadata *Op : N.getRetainedTypes()->operands()) { |
| CheckDI( |
| Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) && |
| !cast<DISubprogram>(Op)->isDefinition())), |
| "invalid retained type", &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawGlobalVariables()) { |
| CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array); |
| for (Metadata *Op : N.getGlobalVariables()->operands()) { |
| CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)), |
| "invalid global variable ref", &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawImportedEntities()) { |
| CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array); |
| for (Metadata *Op : N.getImportedEntities()->operands()) { |
| CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref", |
| &N, Op); |
| } |
| } |
| if (auto *Array = N.getRawMacros()) { |
| CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); |
| for (Metadata *Op : N.getMacros()->operands()) { |
| CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); |
| } |
| } |
| CUVisited.insert(&N); |
| } |
| |
| void Verifier::visitDISubprogram(const DISubprogram &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N); |
| CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope()); |
| if (auto *F = N.getRawFile()) |
| CheckDI(isa<DIFile>(F), "invalid file", &N, F); |
| else |
| CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine()); |
| if (auto *T = N.getRawType()) |
| CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T); |
| CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N, |
| N.getRawContainingType()); |
| if (auto *Params = N.getRawTemplateParams()) |
| visitTemplateParams(N, *Params); |
| if (auto *S = N.getRawDeclaration()) |
| CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(), |
| "invalid subprogram declaration", &N, S); |
| if (auto *RawNode = N.getRawRetainedNodes()) { |
| auto *Node = dyn_cast<MDTuple>(RawNode); |
| CheckDI(Node, "invalid retained nodes list", &N, RawNode); |
| for (Metadata *Op : Node->operands()) { |
| CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op)), |
| "invalid retained nodes, expected DILocalVariable or DILabel", &N, |
| Node, Op); |
| } |
| } |
| CheckDI(!hasConflictingReferenceFlags(N.getFlags()), |
| "invalid reference flags", &N); |
| |
| auto *Unit = N.getRawUnit(); |
| if (N.isDefinition()) { |
| // Subprogram definitions (not part of the type hierarchy). |
| CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N); |
| CheckDI(Unit, "subprogram definitions must have a compile unit", &N); |
| CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit); |
| if (N.getFile()) |
| verifySourceDebugInfo(*N.getUnit(), *N.getFile()); |
| } else { |
| // Subprogram declarations (part of the type hierarchy). |
| CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N); |
| } |
| |
| if (auto *RawThrownTypes = N.getRawThrownTypes()) { |
| auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes); |
| CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes); |
| for (Metadata *Op : ThrownTypes->operands()) |
| CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes, |
| Op); |
| } |
| |
| if (N.areAllCallsDescribed()) |
| CheckDI(N.isDefinition(), |
| "DIFlagAllCallsDescribed must be attached to a definition"); |
| } |
| |
| void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N); |
| CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "invalid local scope", &N, N.getRawScope()); |
| if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope())) |
| CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N); |
| } |
| |
| void Verifier::visitDILexicalBlock(const DILexicalBlock &N) { |
| visitDILexicalBlockBase(N); |
| |
| CheckDI(N.getLine() || !N.getColumn(), |
| "cannot have column info without line info", &N); |
| } |
| |
| void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) { |
| visitDILexicalBlockBase(N); |
| } |
| |
| void Verifier::visitDICommonBlock(const DICommonBlock &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); |
| if (auto *S = N.getRawDecl()) |
| CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S); |
| } |
| |
| void Verifier::visitDINamespace(const DINamespace &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S); |
| } |
| |
| void Verifier::visitDIMacro(const DIMacro &N) { |
| CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define || |
| N.getMacinfoType() == dwarf::DW_MACINFO_undef, |
| "invalid macinfo type", &N); |
| CheckDI(!N.getName().empty(), "anonymous macro", &N); |
| if (!N.getValue().empty()) { |
| assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix"); |
| } |
| } |
| |
| void Verifier::visitDIMacroFile(const DIMacroFile &N) { |
| CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file, |
| "invalid macinfo type", &N); |
| if (auto *F = N.getRawFile()) |
| CheckDI(isa<DIFile>(F), "invalid file", &N, F); |
| |
| if (auto *Array = N.getRawElements()) { |
| CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array); |
| for (Metadata *Op : N.getElements()->operands()) { |
| CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op); |
| } |
| } |
| } |
| |
| void Verifier::visitDIArgList(const DIArgList &N) { |
| CheckDI(!N.getNumOperands(), |
| "DIArgList should have no operands other than a list of " |
| "ValueAsMetadata", |
| &N); |
| } |
| |
| void Verifier::visitDIModule(const DIModule &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N); |
| CheckDI(!N.getName().empty(), "anonymous module", &N); |
| } |
| |
| void Verifier::visitDITemplateParameter(const DITemplateParameter &N) { |
| CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| } |
| |
| void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) { |
| visitDITemplateParameter(N); |
| |
| CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag", |
| &N); |
| } |
| |
| void Verifier::visitDITemplateValueParameter( |
| const DITemplateValueParameter &N) { |
| visitDITemplateParameter(N); |
| |
| CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter || |
| N.getTag() == dwarf::DW_TAG_GNU_template_template_param || |
| N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack, |
| "invalid tag", &N); |
| } |
| |
| void Verifier::visitDIVariable(const DIVariable &N) { |
| if (auto *S = N.getRawScope()) |
| CheckDI(isa<DIScope>(S), "invalid scope", &N, S); |
| if (auto *F = N.getRawFile()) |
| CheckDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) { |
| // Checks common to all variables. |
| visitDIVariable(N); |
| |
| CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); |
| CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| // Check only if the global variable is not an extern |
| if (N.isDefinition()) |
| CheckDI(N.getType(), "missing global variable type", &N); |
| if (auto *Member = N.getRawStaticDataMemberDeclaration()) { |
| CheckDI(isa<DIDerivedType>(Member), |
| "invalid static data member declaration", &N, Member); |
| } |
| } |
| |
| void Verifier::visitDILocalVariable(const DILocalVariable &N) { |
| // Checks common to all variables. |
| visitDIVariable(N); |
| |
| CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType()); |
| CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N); |
| CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "local variable requires a valid scope", &N, N.getRawScope()); |
| if (auto Ty = N.getType()) |
| CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType()); |
| } |
| |
| void Verifier::visitDIAssignID(const DIAssignID &N) { |
| CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N); |
| CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N); |
| } |
| |
| void Verifier::visitDILabel(const DILabel &N) { |
| if (auto *S = N.getRawScope()) |
| CheckDI(isa<DIScope>(S), "invalid scope", &N, S); |
| if (auto *F = N.getRawFile()) |
| CheckDI(isa<DIFile>(F), "invalid file", &N, F); |
| |
| CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N); |
| CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()), |
| "label requires a valid scope", &N, N.getRawScope()); |
| } |
| |
| void Verifier::visitDIExpression(const DIExpression &N) { |
| CheckDI(N.isValid(), "invalid expression", &N); |
| } |
| |
| void Verifier::visitDIGlobalVariableExpression( |
| const DIGlobalVariableExpression &GVE) { |
| CheckDI(GVE.getVariable(), "missing variable"); |
| if (auto *Var = GVE.getVariable()) |
| visitDIGlobalVariable(*Var); |
| if (auto *Expr = GVE.getExpression()) { |
| visitDIExpression(*Expr); |
| if (auto Fragment = Expr->getFragmentInfo()) |
| verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE); |
| } |
| } |
| |
| void Verifier::visitDIObjCProperty(const DIObjCProperty &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N); |
| if (auto *T = N.getRawType()) |
| CheckDI(isType(T), "invalid type ref", &N, T); |
| if (auto *F = N.getRawFile()) |
| CheckDI(isa<DIFile>(F), "invalid file", &N, F); |
| } |
| |
| void Verifier::visitDIImportedEntity(const DIImportedEntity &N) { |
| CheckDI(N.getTag() == dwarf::DW_TAG_imported_module || |
| N.getTag() == dwarf::DW_TAG_imported_declaration, |
| "invalid tag", &N); |
| if (auto *S = N.getRawScope()) |
| CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S); |
| CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N, |
| N.getRawEntity()); |
| } |
| |
| void Verifier::visitComdat(const Comdat &C) { |
| // In COFF the Module is invalid if the GlobalValue has private linkage. |
| // Entities with private linkage don't have entries in the symbol table. |
| if (TT.isOSBinFormatCOFF()) |
| if (const GlobalValue *GV = M.getNamedValue(C.getName())) |
| Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage", |
| GV); |
| } |
| |
| void Verifier::visitModuleIdents() { |
| const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident"); |
| if (!Idents) |
| return; |
| |
| // llvm.ident takes a list of metadata entry. Each entry has only one string. |
| // Scan each llvm.ident entry and make sure that this requirement is met. |
| for (const MDNode *N : Idents->operands()) { |
| Check(N->getNumOperands() == 1, |
| "incorrect number of operands in llvm.ident metadata", N); |
| Check(dyn_cast_or_null<MDString>(N->getOperand(0)), |
| ("invalid value for llvm.ident metadata entry operand" |
| "(the operand should be a string)"), |
| N->getOperand(0)); |
| } |
| } |
| |
| void Verifier::visitModuleCommandLines() { |
| const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline"); |
| if (!CommandLines) |
| return; |
| |
| // llvm.commandline takes a list of metadata entry. Each entry has only one |
| // string. Scan each llvm.commandline entry and make sure that this |
| // requirement is met. |
| for (const MDNode *N : CommandLines->operands()) { |
| Check(N->getNumOperands() == 1, |
| "incorrect number of operands in llvm.commandline metadata", N); |
| Check(dyn_cast_or_null<MDString>(N->getOperand(0)), |
| ("invalid value for llvm.commandline metadata entry operand" |
| "(the operand should be a string)"), |
| N->getOperand(0)); |
| } |
| } |
| |
| void Verifier::visitModuleFlags() { |
| const NamedMDNode *Flags = M.getModuleFlagsMetadata(); |
| if (!Flags) return; |
| |
| // Scan each flag, and track the flags and requirements. |
| DenseMap<const MDString*, const MDNode*> SeenIDs; |
| SmallVector<const MDNode*, 16> Requirements; |
| for (const MDNode *MDN : Flags->operands()) |
| visitModuleFlag(MDN, SeenIDs, Requirements); |
| |
| // Validate that the requirements in the module are valid. |
| for (const MDNode *Requirement : Requirements) { |
| const MDString *Flag = cast<MDString>(Requirement->getOperand(0)); |
| const Metadata *ReqValue = Requirement->getOperand(1); |
| |
| const MDNode *Op = SeenIDs.lookup(Flag); |
| if (!Op) { |
| CheckFailed("invalid requirement on flag, flag is not present in module", |
| Flag); |
| continue; |
| } |
| |
| if (Op->getOperand(2) != ReqValue) { |
| CheckFailed(("invalid requirement on flag, " |
| "flag does not have the required value"), |
| Flag); |
| continue; |
| } |
| } |
| } |
| |
| void |
| Verifier::visitModuleFlag(const MDNode *Op, |
| DenseMap<const MDString *, const MDNode *> &SeenIDs, |
| SmallVectorImpl<const MDNode *> &Requirements) { |
| // Each module flag should have three arguments, the merge behavior (a |
| // constant int), the flag ID (an MDString), and the value. |
| Check(Op->getNumOperands() == 3, |
| "incorrect number of operands in module flag", Op); |
| Module::ModFlagBehavior MFB; |
| if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) { |
| Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)), |
| "invalid behavior operand in module flag (expected constant integer)", |
| Op->getOperand(0)); |
| Check(false, |
| "invalid behavior operand in module flag (unexpected constant)", |
| Op->getOperand(0)); |
| } |
| MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1)); |
| Check(ID, "invalid ID operand in module flag (expected metadata string)", |
| Op->getOperand(1)); |
| |
| // Check the values for behaviors with additional requirements. |
| switch (MFB) { |
| case Module::Error: |
| case Module::Warning: |
| case Module::Override: |
| // These behavior types accept any value. |
| break; |
| |
| case Module::Min: { |
| auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); |
| Check(V && V->getValue().isNonNegative(), |
| "invalid value for 'min' module flag (expected constant non-negative " |
| "integer)", |
| Op->getOperand(2)); |
| break; |
| } |
| |
| case Module::Max: { |
| Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)), |
| "invalid value for 'max' module flag (expected constant integer)", |
| Op->getOperand(2)); |
| break; |
| } |
| |
| case Module::Require: { |
| // The value should itself be an MDNode with two operands, a flag ID (an |
| // MDString), and a value. |
| MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2)); |
| Check(Value && Value->getNumOperands() == 2, |
| "invalid value for 'require' module flag (expected metadata pair)", |
| Op->getOperand(2)); |
| Check(isa<MDString>(Value->getOperand(0)), |
| ("invalid value for 'require' module flag " |
| "(first value operand should be a string)"), |
| Value->getOperand(0)); |
| |
| // Append it to the list of requirements, to check once all module flags are |
| // scanned. |
| Requirements.push_back(Value); |
| break; |
| } |
| |
| case Module::Append: |
| case Module::AppendUnique: { |
| // These behavior types require the operand be an MDNode. |
| Check(isa<MDNode>(Op->getOperand(2)), |
| "invalid value for 'append'-type module flag " |
| "(expected a metadata node)", |
| Op->getOperand(2)); |
| break; |
| } |
| } |
| |
| // Unless this is a "requires" flag, check the ID is unique. |
| if (MFB != Module::Require) { |
| bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second; |
| Check(Inserted, |
| "module flag identifiers must be unique (or of 'require' type)", ID); |
| } |
| |
| if (ID->getString() == "wchar_size") { |
| ConstantInt *Value |
| = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); |
| Check(Value, "wchar_size metadata requires constant integer argument"); |
| } |
| |
| if (ID->getString() == "Linker Options") { |
| // If the llvm.linker.options named metadata exists, we assume that the |
| // bitcode reader has upgraded the module flag. Otherwise the flag might |
| // have been created by a client directly. |
| Check(M.getNamedMetadata("llvm.linker.options"), |
| "'Linker Options' named metadata no longer supported"); |
| } |
| |
| if (ID->getString() == "SemanticInterposition") { |
| ConstantInt *Value = |
| mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)); |
| Check(Value, |
| "SemanticInterposition metadata requires constant integer argument"); |
| } |
| |
| if (ID->getString() == "CG Profile") { |
| for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands()) |
| visitModuleFlagCGProfileEntry(MDO); |
| } |
| } |
| |
| void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) { |
| auto CheckFunction = [&](const MDOperand &FuncMDO) { |
| if (!FuncMDO) |
| return; |
| auto F = dyn_cast<ValueAsMetadata>(FuncMDO); |
| Check(F && isa<Function>(F->getValue()->stripPointerCasts()), |
| "expected a Function or null", FuncMDO); |
| }; |
| auto Node = dyn_cast_or_null<MDNode>(MDO); |
| Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO); |
| CheckFunction(Node->getOperand(0)); |
| CheckFunction(Node->getOperand(1)); |
| auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2)); |
| Check(Count && Count->getType()->isIntegerTy(), |
| "expected an integer constant", Node->getOperand(2)); |
| } |
| |
| void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) { |
| for (Attribute A : Attrs) { |
| |
| if (A.isStringAttribute()) { |
| #define GET_ATTR_NAMES |
| #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) |
| #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ |
| if (A.getKindAsString() == #DISPLAY_NAME) { \ |
| auto V = A.getValueAsString(); \ |
| if (!(V.empty() || V == "true" || V == "false")) \ |
| CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \ |
| ""); \ |
| } |
| |
| #include "llvm/IR/Attributes.inc" |
| continue; |
| } |
| |
| if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) { |
| CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument", |
| V); |
| return; |
| } |
| } |
| } |
| |
| // VerifyParameterAttrs - Check the given attributes for an argument or return |
| // value of the specified type. The value V is printed in error messages. |
| void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty, |
| const Value *V) { |
| if (!Attrs.hasAttributes()) |
| return; |
| |
| verifyAttributeTypes(Attrs, V); |
| |
| for (Attribute Attr : Attrs) |
| Check(Attr.isStringAttribute() || |
| Attribute::canUseAsParamAttr(Attr.getKindAsEnum()), |
| "Attribute '" + Attr.getAsString() + "' does not apply to parameters", |
| V); |
| |
| if (Attrs.hasAttribute(Attribute::ImmArg)) { |
| Check(Attrs.getNumAttributes() == 1, |
| "Attribute 'immarg' is incompatible with other attributes", V); |
| } |
| |
| // Check for mutually incompatible attributes. Only inreg is compatible with |
| // sret. |
| unsigned AttrCount = 0; |
| AttrCount += Attrs.hasAttribute(Attribute::ByVal); |
| AttrCount += Attrs.hasAttribute(Attribute::InAlloca); |
| AttrCount += Attrs.hasAttribute(Attribute::Preallocated); |
| AttrCount += Attrs.hasAttribute(Attribute::StructRet) || |
| Attrs.hasAttribute(Attribute::InReg); |
| AttrCount += Attrs.hasAttribute(Attribute::Nest); |
| AttrCount += Attrs.hasAttribute(Attribute::ByRef); |
| Check(AttrCount <= 1, |
| "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', " |
| "'byref', and 'sret' are incompatible!", |
| V); |
| |
| Check(!(Attrs.hasAttribute(Attribute::InAlloca) && |
| Attrs.hasAttribute(Attribute::ReadOnly)), |
| "Attributes " |
| "'inalloca and readonly' are incompatible!", |
| V); |
| |
| Check(!(Attrs.hasAttribute(Attribute::StructRet) && |
| Attrs.hasAttribute(Attribute::Returned)), |
| "Attributes " |
| "'sret and returned' are incompatible!", |
| V); |
| |
| Check(!(Attrs.hasAttribute(Attribute::ZExt) && |
| Attrs.hasAttribute(Attribute::SExt)), |
| "Attributes " |
| "'zeroext and signext' are incompatible!", |
| V); |
| |
| Check(!(Attrs.hasAttribute(Attribute::ReadNone) && |
| Attrs.hasAttribute(Attribute::ReadOnly)), |
| "Attributes " |
| "'readnone and readonly' are incompatible!", |
| V); |
| |
| Check(!(Attrs.hasAttribute(Attribute::ReadNone) && |
| Attrs.hasAttribute(Attribute::WriteOnly)), |
| "Attributes " |
| "'readnone and writeonly' are incompatible!", |
| V); |
| |
| Check(!(Attrs.hasAttribute(Attribute::ReadOnly) && |
| Attrs.hasAttribute(Attribute::WriteOnly)), |
| "Attributes " |
| "'readonly and writeonly' are incompatible!", |
| V); |
| |
| Check(!(Attrs.hasAttribute(Attribute::NoInline) && |
| Attrs.hasAttribute(Attribute::AlwaysInline)), |
| "Attributes " |
| "'noinline and alwaysinline' are incompatible!", |
| V); |
| |
| AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty); |
| for (Attribute Attr : Attrs) { |
| if (!Attr.isStringAttribute() && |
| IncompatibleAttrs.contains(Attr.getKindAsEnum())) { |
| CheckFailed("Attribute '" + Attr.getAsString() + |
| "' applied to incompatible type!", V); |
| return; |
| } |
| } |
| |
| if (PointerType *PTy = dyn_cast<PointerType>(Ty)) { |
| if (Attrs.hasAttribute(Attribute::ByVal)) { |
| if (Attrs.hasAttribute(Attribute::Alignment)) { |
| Align AttrAlign = Attrs.getAlignment().valueOrOne(); |
| Align MaxAlign(ParamMaxAlignment); |
| Check(AttrAlign <= MaxAlign, |
| "Attribute 'align' exceed the max size 2^14", V); |
| } |
| SmallPtrSet<Type *, 4> Visited; |
| Check(Attrs.getByValType()->isSized(&Visited), |
| "Attribute 'byval' does not support unsized types!", V); |
| } |
| if (Attrs.hasAttribute(Attribute::ByRef)) { |
| SmallPtrSet<Type *, 4> Visited; |
| Check(Attrs.getByRefType()->isSized(&Visited), |
| "Attribute 'byref' does not support unsized types!", V); |
| } |
| if (Attrs.hasAttribute(Attribute::InAlloca)) { |
| SmallPtrSet<Type *, 4> Visited; |
| Check(Attrs.getInAllocaType()->isSized(&Visited), |
| "Attribute 'inalloca' does not support unsized types!", V); |
| } |
| if (Attrs.hasAttribute(Attribute::Preallocated)) { |
| SmallPtrSet<Type *, 4> Visited; |
| Check(Attrs.getPreallocatedType()->isSized(&Visited), |
| "Attribute 'preallocated' does not support unsized types!", V); |
| } |
| if (!PTy->isOpaque()) { |
| if (!isa<PointerType>(PTy->getNonOpaquePointerElementType())) |
| Check(!Attrs.hasAttribute(Attribute::SwiftError), |
| "Attribute 'swifterror' only applies to parameters " |
| "with pointer to pointer type!", |
| V); |
| if (Attrs.hasAttribute(Attribute::ByRef)) { |
| Check(Attrs.getByRefType() == PTy->getNonOpaquePointerElementType(), |
| "Attribute 'byref' type does not match parameter!", V); |
| } |
| |
| if (Attrs.hasAttribute(Attribute::ByVal) && Attrs.getByValType()) { |
| Check(Attrs.getByValType() == PTy->getNonOpaquePointerElementType(), |
| "Attribute 'byval' type does not match parameter!", V); |
| } |
| |
| if (Attrs.hasAttribute(Attribute::Preallocated)) { |
| Check(Attrs.getPreallocatedType() == |
| PTy->getNonOpaquePointerElementType(), |
| "Attribute 'preallocated' type does not match parameter!", V); |
| } |
| |
| if (Attrs.hasAttribute(Attribute::InAlloca)) { |
| Check(Attrs.getInAllocaType() == PTy->getNonOpaquePointerElementType(), |
| "Attribute 'inalloca' type does not match parameter!", V); |
| } |
| |
| if (Attrs.hasAttribute(Attribute::ElementType)) { |
| Check(Attrs.getElementType() == PTy->getNonOpaquePointerElementType(), |
| "Attribute 'elementtype' type does not match parameter!", V); |
| } |
| } |
| } |
| } |
| |
| void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr, |
| const Value *V) { |
| if (Attrs.hasFnAttr(Attr)) { |
| StringRef S = Attrs.getFnAttr(Attr).getValueAsString(); |
| unsigned N; |
| if (S.getAsInteger(10, N)) |
| CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V); |
| } |
| } |
| |
| // Check parameter attributes against a function type. |
| // The value V is printed in error messages. |
| void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs, |
| const Value *V, bool IsIntrinsic, |
| bool IsInlineAsm) { |
| if (Attrs.isEmpty()) |
| return; |
| |
| if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) { |
| Check(Attrs.hasParentContext(Context), |
| "Attribute list does not match Module context!", &Attrs, V); |
| for (const auto &AttrSet : Attrs) { |
| Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context), |
| "Attribute set does not match Module context!", &AttrSet, V); |
| for (const auto &A : AttrSet) { |
| Check(A.hasParentContext(Context), |
| "Attribute does not match Module context!", &A, V); |
| } |
| } |
| } |
| |
| bool SawNest = false; |
| bool SawReturned = false; |
| bool SawSRet = false; |
| bool SawSwiftSelf = false; |
| bool SawSwiftAsync = false; |
| bool SawSwiftError = false; |
| |
| // Verify return value attributes. |
| AttributeSet RetAttrs = Attrs.getRetAttrs(); |
| for (Attribute RetAttr : RetAttrs) |
| Check(RetAttr.isStringAttribute() || |
| Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()), |
| "Attribute '" + RetAttr.getAsString() + |
| "' does not apply to function return values", |
| V); |
| |
| verifyParameterAttrs(RetAttrs, FT->getReturnType(), V); |
| |
| // Verify parameter attributes. |
| for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
| Type *Ty = FT->getParamType(i); |
| AttributeSet ArgAttrs = Attrs.getParamAttrs(i); |
| |
| if (!IsIntrinsic) { |
| Check(!ArgAttrs.hasAttribute(Attribute::ImmArg), |
| "immarg attribute only applies to intrinsics", V); |
| if (!IsInlineAsm) |
| Check(!ArgAttrs.hasAttribute(Attribute::ElementType), |
| "Attribute 'elementtype' can only be applied to intrinsics" |
| " and inline asm.", |
| V); |
| } |
| |
| verifyParameterAttrs(ArgAttrs, Ty, V); |
| |
| if (ArgAttrs.hasAttribute(Attribute::Nest)) { |
| Check(!SawNest, "More than one parameter has attribute nest!", V); |
| SawNest = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::Returned)) { |
| Check(!SawReturned, "More than one parameter has attribute returned!", V); |
| Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()), |
| "Incompatible argument and return types for 'returned' attribute", |
| V); |
| SawReturned = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::StructRet)) { |
| Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V); |
| Check(i == 0 || i == 1, |
| "Attribute 'sret' is not on first or second parameter!", V); |
| SawSRet = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) { |
| Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V); |
| SawSwiftSelf = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) { |
| Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V); |
| SawSwiftAsync = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::SwiftError)) { |
| Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V); |
| SawSwiftError = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::InAlloca)) { |
| Check(i == FT->getNumParams() - 1, |
| "inalloca isn't on the last parameter!", V); |
| } |
| } |
| |
| if (!Attrs.hasFnAttrs()) |
| return; |
| |
| verifyAttributeTypes(Attrs.getFnAttrs(), V); |
| for (Attribute FnAttr : Attrs.getFnAttrs()) |
| Check(FnAttr.isStringAttribute() || |
| Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()), |
| "Attribute '" + FnAttr.getAsString() + |
| "' does not apply to functions!", |
| V); |
| |
| Check(!(Attrs.hasFnAttr(Attribute::NoInline) && |
| Attrs.hasFnAttr(Attribute::AlwaysInline)), |
| "Attributes 'noinline and alwaysinline' are incompatible!", V); |
| |
| if (Attrs.hasFnAttr(Attribute::OptimizeNone)) { |
| Check(Attrs.hasFnAttr(Attribute::NoInline), |
| "Attribute 'optnone' requires 'noinline'!", V); |
| |
| Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize), |
| "Attributes 'optsize and optnone' are incompatible!", V); |
| |
| Check(!Attrs.hasFnAttr(Attribute::MinSize), |
| "Attributes 'minsize and optnone' are incompatible!", V); |
| } |
| |
| if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) { |
| Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"), |
| "Attributes 'aarch64_pstate_sm_enabled and " |
| "aarch64_pstate_sm_compatible' are incompatible!", |
| V); |
| } |
| |
| if (Attrs.hasFnAttr("aarch64_pstate_za_new")) { |
| Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"), |
| "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' " |
| "are incompatible!", |
| V); |
| |
| Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"), |
| "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' " |
| "are incompatible!", |
| V); |
| } |
| |
| if (Attrs.hasFnAttr(Attribute::JumpTable)) { |
| const GlobalValue *GV = cast<GlobalValue>(V); |
| Check(GV->hasGlobalUnnamedAddr(), |
| "Attribute 'jumptable' requires 'unnamed_addr'", V); |
| } |
| |
| if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) { |
| auto CheckParam = [&](StringRef Name, unsigned ParamNo) { |
| if (ParamNo >= FT->getNumParams()) { |
| CheckFailed("'allocsize' " + Name + " argument is out of bounds", V); |
| return false; |
| } |
| |
| if (!FT->getParamType(ParamNo)->isIntegerTy()) { |
| CheckFailed("'allocsize' " + Name + |
| " argument must refer to an integer parameter", |
| V); |
| return false; |
| } |
| |
| return true; |
| }; |
| |
| if (!CheckParam("element size", Args->first)) |
| return; |
| |
| if (Args->second && !CheckParam("number of elements", *Args->second)) |
| return; |
| } |
| |
| if (Attrs.hasFnAttr(Attribute::AllocKind)) { |
| AllocFnKind K = Attrs.getAllocKind(); |
| AllocFnKind Type = |
| K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free); |
| if (!is_contained( |
| {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free}, |
| Type)) |
| CheckFailed( |
| "'allockind()' requires exactly one of alloc, realloc, and free"); |
| if ((Type == AllocFnKind::Free) && |
| ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed | |
| AllocFnKind::Aligned)) != AllocFnKind::Unknown)) |
| CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, " |
| "or aligned modifiers."); |
| AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed; |
| if ((K & ZeroedUninit) == ZeroedUninit) |
| CheckFailed("'allockind()' can't be both zeroed and uninitialized"); |
| } |
| |
| if (Attrs.hasFnAttr(Attribute::VScaleRange)) { |
| unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin(); |
| if (VScaleMin == 0) |
| CheckFailed("'vscale_range' minimum must be greater than 0", V); |
| |
| std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax(); |
| if (VScaleMax && VScaleMin > VScaleMax) |
| CheckFailed("'vscale_range' minimum cannot be greater than maximum", V); |
| } |
| |
| if (Attrs.hasFnAttr("frame-pointer")) { |
| StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString(); |
| if (FP != "all" && FP != "non-leaf" && FP != "none") |
| CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V); |
| } |
| |
| checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V); |
| checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V); |
| checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V); |
| } |
| |
| void Verifier::verifyFunctionMetadata( |
| ArrayRef<std::pair<unsigned, MDNode *>> MDs) { |
| for (const auto &Pair : MDs) { |
| if (Pair.first == LLVMContext::MD_prof) { |
| MDNode *MD = Pair.second; |
| Check(MD->getNumOperands() >= 2, |
| "!prof annotations should have no less than 2 operands", MD); |
| |
| // Check first operand. |
| Check(MD->getOperand(0) != nullptr, "first operand should not be null", |
| MD); |
| Check(isa<MDString>(MD->getOperand(0)), |
| "expected string with name of the !prof annotation", MD); |
| MDString *MDS = cast<MDString>(MD->getOperand(0)); |
| StringRef ProfName = MDS->getString(); |
| Check(ProfName.equals("function_entry_count") || |
| ProfName.equals("synthetic_function_entry_count"), |
| "first operand should be 'function_entry_count'" |
| " or 'synthetic_function_entry_count'", |
| MD); |
| |
| // Check second operand. |
| Check(MD->getOperand(1) != nullptr, "second operand should not be null", |
| MD); |
| Check(isa<ConstantAsMetadata>(MD->getOperand(1)), |
| "expected integer argument to function_entry_count", MD); |
| } else if (Pair.first == LLVMContext::MD_kcfi_type) { |
| MDNode *MD = Pair.second; |
| Check(MD->getNumOperands() == 1, |
| "!kcfi_type must have exactly one operand", MD); |
| Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null", |
| MD); |
| Check(isa<ConstantAsMetadata>(MD->getOperand(0)), |
| "expected a constant operand for !kcfi_type", MD); |
| Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue(); |
| Check(isa<ConstantInt>(C), |
| "expected a constant integer operand for !kcfi_type", MD); |
| IntegerType *Type = cast<ConstantInt>(C)->getType(); |
| Check(Type->getBitWidth() == 32, |
| "expected a 32-bit integer constant operand for !kcfi_type", MD); |
| } |
| } |
| } |
| |
| void Verifier::visitConstantExprsRecursively(const Constant *EntryC) { |
| if (!ConstantExprVisited.insert(EntryC).second) |
| return; |
| |
| SmallVector<const Constant *, 16> Stack; |
| Stack.push_back(EntryC); |
| |
| while (!Stack.empty()) { |
| const Constant *C = Stack.pop_back_val(); |
| |
| // Check this constant expression. |
| if (const auto *CE = dyn_cast<ConstantExpr>(C)) |
| visitConstantExpr(CE); |
| |
| if (const auto *GV = dyn_cast<GlobalValue>(C)) { |
| // Global Values get visited separately, but we do need to make sure |
| // that the global value is in the correct module |
| Check(GV->getParent() == &M, "Referencing global in another module!", |
| EntryC, &M, GV, GV->getParent()); |
| continue; |
| } |
| |
| // Visit all sub-expressions. |
| for (const Use &U : C->operands()) { |
| const auto *OpC = dyn_cast<Constant>(U); |
| if (!OpC) |
| continue; |
| if (!ConstantExprVisited.insert(OpC).second) |
| continue; |
| Stack.push_back(OpC); |
| } |
| } |
| } |
| |
| void Verifier::visitConstantExpr(const ConstantExpr *CE) { |
| if (CE->getOpcode() == Instruction::BitCast) |
| Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0), |
| CE->getType()), |
| "Invalid bitcast", CE); |
| } |
| |
| bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) { |
| // There shouldn't be more attribute sets than there are parameters plus the |
| // function and return value. |
| return Attrs.getNumAttrSets() <= Params + 2; |
| } |
| |
| void Verifier::verifyInlineAsmCall(const CallBase &Call) { |
| const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); |
| unsigned ArgNo = 0; |
| unsigned LabelNo = 0; |
| for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { |
| if (CI.Type == InlineAsm::isLabel) { |
| ++LabelNo; |
| continue; |
| } |
| |
| // Only deal with constraints that correspond to call arguments. |
| if (!CI.hasArg()) |
| continue; |
| |
| if (CI.isIndirect) { |
| const Value *Arg = Call.getArgOperand(ArgNo); |
| Check(Arg->getType()->isPointerTy(), |
| "Operand for indirect constraint must have pointer type", &Call); |
| |
| Check(Call.getParamElementType(ArgNo), |
| "Operand for indirect constraint must have elementtype attribute", |
| &Call); |
| } else { |
| Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType), |
| "Elementtype attribute can only be applied for indirect " |
| "constraints", |
| &Call); |
| } |
| |
| ArgNo++; |
| } |
| |
| if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) { |
| Check(LabelNo == CallBr->getNumIndirectDests(), |
| "Number of label constraints does not match number of callbr dests", |
| &Call); |
| } else { |
| Check(LabelNo == 0, "Label constraints can only be used with callbr", |
| &Call); |
| } |
| } |
| |
| /// Verify that statepoint intrinsic is well formed. |
| void Verifier::verifyStatepoint(const CallBase &Call) { |
| assert(Call.getCalledFunction() && |
| Call.getCalledFunction()->getIntrinsicID() == |
| Intrinsic::experimental_gc_statepoint); |
| |
| Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() && |
| !Call.onlyAccessesArgMemory(), |
| "gc.statepoint must read and write all memory to preserve " |
| "reordering restrictions required by safepoint semantics", |
| Call); |
| |
| const int64_t NumPatchBytes = |
| cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue(); |
| assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!"); |
| Check(NumPatchBytes >= 0, |
| "gc.statepoint number of patchable bytes must be " |
| "positive", |
| Call); |
| |
| Type *TargetElemType = Call.getParamElementType(2); |
| Check(TargetElemType, |
| "gc.statepoint callee argument must have elementtype attribute", Call); |
| FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType); |
| Check(TargetFuncType, |
| "gc.statepoint callee elementtype must be function type", Call); |
| |
| const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue(); |
| Check(NumCallArgs >= 0, |
| "gc.statepoint number of arguments to underlying call " |
| "must be positive", |
| Call); |
| const int NumParams = (int)TargetFuncType->getNumParams(); |
| if (TargetFuncType->isVarArg()) { |
| Check(NumCallArgs >= NumParams, |
| "gc.statepoint mismatch in number of vararg call args", Call); |
| |
| // TODO: Remove this limitation |
| Check(TargetFuncType->getReturnType()->isVoidTy(), |
| "gc.statepoint doesn't support wrapping non-void " |
| "vararg functions yet", |
| Call); |
| } else |
| Check(NumCallArgs == NumParams, |
| "gc.statepoint mismatch in number of call args", Call); |
| |
| const uint64_t Flags |
| = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue(); |
| Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0, |
| "unknown flag used in gc.statepoint flags argument", Call); |
| |
| // Verify that the types of the call parameter arguments match |
| // the type of the wrapped callee. |
| AttributeList Attrs = Call.getAttributes(); |
| for (int i = 0; i < NumParams; i++) { |
| Type *ParamType = TargetFuncType->getParamType(i); |
| Type *ArgType = Call.getArgOperand(5 + i)->getType(); |
| Check(ArgType == ParamType, |
| "gc.statepoint call argument does not match wrapped " |
| "function type", |
| Call); |
| |
| if (TargetFuncType->isVarArg()) { |
| AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i); |
| Check(!ArgAttrs.hasAttribute(Attribute::StructRet), |
| "Attribute 'sret' cannot be used for vararg call arguments!", Call); |
| } |
| } |
| |
| const int EndCallArgsInx = 4 + NumCallArgs; |
| |
| const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1); |
| Check(isa<ConstantInt>(NumTransitionArgsV), |
| "gc.statepoint number of transition arguments " |
| "must be constant integer", |
| Call); |
| const int NumTransitionArgs = |
| cast<ConstantInt>(NumTransitionArgsV)->getZExtValue(); |
| Check(NumTransitionArgs == 0, |
| "gc.statepoint w/inline transition bundle is deprecated", Call); |
| const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs; |
| |
| const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1); |
| Check(isa<ConstantInt>(NumDeoptArgsV), |
| "gc.statepoint number of deoptimization arguments " |
| "must be constant integer", |
| Call); |
| const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue(); |
| Check(NumDeoptArgs == 0, |
| "gc.statepoint w/inline deopt operands is deprecated", Call); |
| |
| const int ExpectedNumArgs = 7 + NumCallArgs; |
| Check(ExpectedNumArgs == (int)Call.arg_size(), |
| "gc.statepoint too many arguments", Call); |
| |
| // Check that the only uses of this gc.statepoint are gc.result or |
| // gc.relocate calls which are tied to this statepoint and thus part |
| // of the same statepoint sequence |
| for (const User *U : Call.users()) { |
| const CallInst *UserCall = dyn_cast<const CallInst>(U); |
| Check(UserCall, "illegal use of statepoint token", Call, U); |
| if (!UserCall) |
| continue; |
| Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall), |
| "gc.result or gc.relocate are the only value uses " |
| "of a gc.statepoint", |
| Call, U); |
| if (isa<GCResultInst>(UserCall)) { |
| Check(UserCall->getArgOperand(0) == &Call, |
| "gc.result connected to wrong gc.statepoint", Call, UserCall); |
| } else if (isa<GCRelocateInst>(Call)) { |
| Check(UserCall->getArgOperand(0) == &Call, |
| "gc.relocate connected to wrong gc.statepoint", Call, UserCall); |
| } |
| } |
| |
| // Note: It is legal for a single derived pointer to be listed multiple |
| // times. It's non-optimal, but it is legal. It can also happen after |
| // insertion if we strip a bitcast away. |
| // Note: It is really tempting to check that each base is relocated and |
| // that a derived pointer is never reused as a base pointer. This turns |
| // out to be problematic since optimizations run after safepoint insertion |
| // can recognize equality properties that the insertion logic doesn't know |
| // about. See example statepoint.ll in the verifier subdirectory |
| } |
| |
| void Verifier::verifyFrameRecoverIndices() { |
| for (auto &Counts : FrameEscapeInfo) { |
| Function *F = Counts.first; |
| unsigned EscapedObjectCount = Counts.second.first; |
| unsigned MaxRecoveredIndex = Counts.second.second; |
| Check(MaxRecoveredIndex <= EscapedObjectCount, |
| "all indices passed to llvm.localrecover must be less than the " |
| "number of arguments passed to llvm.localescape in the parent " |
| "function", |
| F); |
| } |
| } |
| |
| static Instruction *getSuccPad(Instruction *Terminator) { |
| BasicBlock *UnwindDest; |
| if (auto *II = dyn_cast<InvokeInst>(Terminator)) |
| UnwindDest = II->getUnwindDest(); |
| else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator)) |
| UnwindDest = CSI->getUnwindDest(); |
| else |
| UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest(); |
| return UnwindDest->getFirstNonPHI(); |
| } |
| |
| void Verifier::verifySiblingFuncletUnwinds() { |
| SmallPtrSet<Instruction *, 8> Visited; |
| SmallPtrSet<Instruction *, 8> Active; |
| for (const auto &Pair : SiblingFuncletInfo) { |
| Instruction *PredPad = Pair.first; |
| if (Visited.count(PredPad)) |
| continue; |
| Active.insert(PredPad); |
| Instruction *Terminator = Pair.second; |
| do { |
| Instruction *SuccPad = getSuccPad(Terminator); |
| if (Active.count(SuccPad)) { |
| // Found a cycle; report error |
| Instruction *CyclePad = SuccPad; |
| SmallVector<Instruction *, 8> CycleNodes; |
| do { |
| CycleNodes.push_back(CyclePad); |
| Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad]; |
| if (CycleTerminator != CyclePad) |
| CycleNodes.push_back(CycleTerminator); |
| CyclePad = getSuccPad(CycleTerminator); |
| } while (CyclePad != SuccPad); |
| Check(false, "EH pads can't handle each other's exceptions", |
| ArrayRef<Instruction *>(CycleNodes)); |
| } |
| // Don't re-walk a node we've already checked |
| if (!Visited.insert(SuccPad).second) |
| break; |
| // Walk to this successor if it has a map entry. |
| PredPad = SuccPad; |
| auto TermI = SiblingFuncletInfo.find(PredPad); |
| if (TermI == SiblingFuncletInfo.end()) |
| break; |
| Terminator = TermI->second; |
| Active.insert(PredPad); |
| } while (true); |
| // Each node only has one successor, so we've walked all the active |
| // nodes' successors. |
| Active.clear(); |
| } |
| } |
| |
| // visitFunction - Verify that a function is ok. |
| // |
| void Verifier::visitFunction(const Function &F) { |
| visitGlobalValue(F); |
| |
| // Check function arguments. |
| FunctionType *FT = F.getFunctionType(); |
| unsigned NumArgs = F.arg_size(); |
| |
| Check(&Context == &F.getContext(), |
| "Function context does not match Module context!", &F); |
| |
| Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F); |
| Check(FT->getNumParams() == NumArgs, |
| "# formal arguments must match # of arguments for function type!", &F, |
| FT); |
| Check(F.getReturnType()->isFirstClassType() || |
| F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(), |
| "Functions cannot return aggregate values!", &F); |
| |
| Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(), |
| "Invalid struct return type!", &F); |
| |
| AttributeList Attrs = F.getAttributes(); |
| |
| Check(verifyAttributeCount(Attrs, FT->getNumParams()), |
| "Attribute after last parameter!", &F); |
| |
| bool IsIntrinsic = F.isIntrinsic(); |
| |
| // Check function attributes. |
| verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false); |
| |
| // On function declarations/definitions, we do not support the builtin |
| // attribute. We do not check this in VerifyFunctionAttrs since that is |
| // checking for Attributes that can/can not ever be on functions. |
| Check(!Attrs.hasFnAttr(Attribute::Builtin), |
| "Attribute 'builtin' can only be applied to a callsite.", &F); |
| |
| Check(!Attrs.hasAttrSomewhere(Attribute::ElementType), |
| "Attribute 'elementtype' can only be applied to a callsite.", &F); |
| |
| // Check that this function meets the restrictions on this calling convention. |
| // Sometimes varargs is used for perfectly forwarding thunks, so some of these |
| // restrictions can be lifted. |
| switch (F.getCallingConv()) { |
| default: |
| case CallingConv::C: |
| break; |
| case CallingConv::X86_INTR: { |
| Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal), |
| "Calling convention parameter requires byval", &F); |
| break; |
| } |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| Check(F.getReturnType()->isVoidTy(), |
| "Calling convention requires void return type", &F); |
| [[fallthrough]]; |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F); |
| if (F.getCallingConv() != CallingConv::SPIR_KERNEL) { |
| const unsigned StackAS = DL.getAllocaAddrSpace(); |
| unsigned i = 0; |
| for (const Argument &Arg : F.args()) { |
| Check(!Attrs.hasParamAttr(i, Attribute::ByVal), |
| "Calling convention disallows byval", &F); |
| Check(!Attrs.hasParamAttr(i, Attribute::Preallocated), |
| "Calling convention disallows preallocated", &F); |
| Check(!Attrs.hasParamAttr(i, Attribute::InAlloca), |
| "Calling convention disallows inalloca", &F); |
| |
| if (Attrs.hasParamAttr(i, Attribute::ByRef)) { |
| // FIXME: Should also disallow LDS and GDS, but we don't have the enum |
| // value here. |
| Check(Arg.getType()->getPointerAddressSpace() != StackAS, |
| "Calling convention disallows stack byref", &F); |
| } |
| |
| ++i; |
| } |
| } |
| |
| [[fallthrough]]; |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| case CallingConv::Intel_OCL_BI: |
| case CallingConv::PTX_Kernel: |
| case CallingConv::PTX_Device: |
| Check(!F.isVarArg(), |
| "Calling convention does not support varargs or " |
| "perfect forwarding!", |
| &F); |
| break; |
| } |
| |
| // Check that the argument values match the function type for this function... |
| unsigned i = 0; |
| for (const Argument &Arg : F.args()) { |
| Check(Arg.getType() == FT->getParamType(i), |
| "Argument value does not match function argument type!", &Arg, |
| FT->getParamType(i)); |
| Check(Arg.getType()->isFirstClassType(), |
| "Function arguments must have first-class types!", &Arg); |
| if (!IsIntrinsic) { |
| Check(!Arg.getType()->isMetadataTy(), |
| "Function takes metadata but isn't an intrinsic", &Arg, &F); |
| Check(!Arg.getType()->isTokenTy(), |
| "Function takes token but isn't an intrinsic", &Arg, &F); |
| Check(!Arg.getType()->isX86_AMXTy(), |
| "Function takes x86_amx but isn't an intrinsic", &Arg, &F); |
| } |
| |
| // Check that swifterror argument is only used by loads and stores. |
| if (Attrs.hasParamAttr(i, Attribute::SwiftError)) { |
| verifySwiftErrorValue(&Arg); |
| } |
| ++i; |
| } |
| |
| if (!IsIntrinsic) { |
| Check(!F.getReturnType()->isTokenTy(), |
| "Function returns a token but isn't an intrinsic", &F); |
| Check(!F.getReturnType()->isX86_AMXTy(), |
| "Function returns a x86_amx but isn't an intrinsic", &F); |
| } |
| |
| // Get the function metadata attachments. |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| F.getAllMetadata(MDs); |
| assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync"); |
| verifyFunctionMetadata(MDs); |
| |
| // Check validity of the personality function |
| if (F.hasPersonalityFn()) { |
| auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()); |
| if (Per) |
| Check(Per->getParent() == F.getParent(), |
| "Referencing personality function in another module!", &F, |
| F.getParent(), Per, Per->getParent()); |
| } |
| |
| if (F.isMaterializable()) { |
| // Function has a body somewhere we can't see. |
| Check(MDs.empty(), "unmaterialized function cannot have metadata", &F, |
| MDs.empty() ? nullptr : MDs.front().second); |
| } else if (F.isDeclaration()) { |
| for (const auto &I : MDs) { |
| // This is used for call site debug information. |
| CheckDI(I.first != LLVMContext::MD_dbg || |
| !cast<DISubprogram>(I.second)->isDistinct(), |
| "function declaration may only have a unique !dbg attachment", |
| &F); |
| Check(I.first != LLVMContext::MD_prof, |
| "function declaration may not have a !prof attachment", &F); |
| |
| // Verify the metadata itself. |
| visitMDNode(*I.second, AreDebugLocsAllowed::Yes); |
| } |
| Check(!F.hasPersonalityFn(), |
| "Function declaration shouldn't have a personality routine", &F); |
| } else { |
| // Verify that this function (which has a body) is not named "llvm.*". It |
| // is not legal to define intrinsics. |
| Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F); |
| |
| // Check the entry node |
| const BasicBlock *Entry = &F.getEntryBlock(); |
| Check(pred_empty(Entry), |
| "Entry block to function must not have predecessors!", Entry); |
| |
| // The address of the entry block cannot be taken, unless it is dead. |
| if (Entry->hasAddressTaken()) { |
| Check(!BlockAddress::lookup(Entry)->isConstantUsed(), |
| "blockaddress may not be used with the entry block!", Entry); |
| } |
| |
| unsigned NumDebugAttachments = 0, NumProfAttachments = 0, |
| NumKCFIAttachments = 0; |
| // Visit metadata attachments. |
| for (const auto &I : MDs) { |
| // Verify that the attachment is legal. |
| auto AllowLocs = AreDebugLocsAllowed::No; |
| switch (I.first) { |
| default: |
| break; |
| case LLVMContext::MD_dbg: { |
| ++NumDebugAttachments; |
| CheckDI(NumDebugAttachments == 1, |
| "function must have a single !dbg attachment", &F, I.second); |
| CheckDI(isa<DISubprogram>(I.second), |
| "function !dbg attachment must be a subprogram", &F, I.second); |
| CheckDI(cast<DISubprogram>(I.second)->isDistinct(), |
| "function definition may only have a distinct !dbg attachment", |
| &F); |
| |
| auto *SP = cast<DISubprogram>(I.second); |
| const Function *&AttachedTo = DISubprogramAttachments[SP]; |
| CheckDI(!AttachedTo || AttachedTo == &F, |
| "DISubprogram attached to more than one function", SP, &F); |
| AttachedTo = &F; |
| AllowLocs = AreDebugLocsAllowed::Yes; |
| break; |
| } |
| case LLVMContext::MD_prof: |
| ++NumProfAttachments; |
| Check(NumProfAttachments == 1, |
| "function must have a single !prof attachment", &F, I.second); |
| break; |
| case LLVMContext::MD_kcfi_type: |
| ++NumKCFIAttachments; |
| Check(NumKCFIAttachments == 1, |
| "function must have a single !kcfi_type attachment", &F, |
| I.second); |
| break; |
| } |
| |
| // Verify the metadata itself. |
| visitMDNode(*I.second, AllowLocs); |
| } |
| } |
| |
| // If this function is actually an intrinsic, verify that it is only used in |
| // direct call/invokes, never having its "address taken". |
| // Only do this if the module is materialized, otherwise we don't have all the |
| // uses. |
| if (F.isIntrinsic() && F.getParent()->isMaterialized()) { |
| const User *U; |
| if (F.hasAddressTaken(&U, false, true, false, |
| /*IgnoreARCAttachedCall=*/true)) |
| Check(false, "Invalid user of intrinsic instruction!", U); |
| } |
| |
| // Check intrinsics' signatures. |
| switch (F.getIntrinsicID()) { |
| case Intrinsic::experimental_gc_get_pointer_base: { |
| FunctionType *FT = F.getFunctionType(); |
| Check(FT->getNumParams() == 1, "wrong number of parameters", F); |
| Check(isa<PointerType>(F.getReturnType()), |
| "gc.get.pointer.base must return a pointer", F); |
| Check(FT->getParamType(0) == F.getReturnType(), |
| "gc.get.pointer.base operand and result must be of the same type", F); |
| break; |
| } |
| case Intrinsic::experimental_gc_get_pointer_offset: { |
| FunctionType *FT = F.getFunctionType(); |
| Check(FT->getNumParams() == 1, "wrong number of parameters", F); |
| Check(isa<PointerType>(FT->getParamType(0)), |
| "gc.get.pointer.offset operand must be a pointer", F); |
| Check(F.getReturnType()->isIntegerTy(), |
| "gc.get.pointer.offset must return integer", F); |
| break; |
| } |
| } |
| |
| auto *N = F.getSubprogram(); |
| HasDebugInfo = (N != nullptr); |
| if (!HasDebugInfo) |
| return; |
| |
| // Check that all !dbg attachments lead to back to N. |
| // |
| // FIXME: Check this incrementally while visiting !dbg attachments. |
| // FIXME: Only check when N is the canonical subprogram for F. |
| SmallPtrSet<const MDNode *, 32> Seen; |
| auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) { |
| // Be careful about using DILocation here since we might be dealing with |
| // broken code (this is the Verifier after all). |
| const DILocation *DL = dyn_cast_or_null<DILocation>(Node); |
| if (!DL) |
| return; |
| if (!Seen.insert(DL).second) |
| return; |
| |
| Metadata *Parent = DL->getRawScope(); |
| CheckDI(Parent && isa<DILocalScope>(Parent), |
| "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent); |
| |
| DILocalScope *Scope = DL->getInlinedAtScope(); |
| Check(Scope, "Failed to find DILocalScope", DL); |
| |
| if (!Seen.insert(Scope).second) |
| return; |
| |
| DISubprogram *SP = Scope->getSubprogram(); |
| |
| // Scope and SP could be the same MDNode and we don't want to skip |
| // validation in that case |
| if (SP && ((Scope != SP) && !Seen.insert(SP).second)) |
| return; |
| |
| CheckDI(SP->describes(&F), |
| "!dbg attachment points at wrong subprogram for function", N, &F, |
| &I, DL, Scope, SP); |
| }; |
| for (auto &BB : F) |
| for (auto &I : BB) { |
| VisitDebugLoc(I, I.getDebugLoc().getAsMDNode()); |
| // The llvm.loop annotations also contain two DILocations. |
| if (auto MD = I.getMetadata(LLVMContext::MD_loop)) |
| for (unsigned i = 1; i < MD->getNumOperands(); ++i) |
| VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i))); |
| if (BrokenDebugInfo) |
| return; |
| } |
| } |
| |
| // verifyBasicBlock - Verify that a basic block is well formed... |
| // |
| void Verifier::visitBasicBlock(BasicBlock &BB) { |
| InstsInThisBlock.clear(); |
| |
| // Ensure that basic blocks have terminators! |
| Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB); |
| |
| // Check constraints that this basic block imposes on all of the PHI nodes in |
| // it. |
| if (isa<PHINode>(BB.front())) { |
| SmallVector<BasicBlock *, 8> Preds(predecessors(&BB)); |
| SmallVector<std::pair<BasicBlock*, Value*>, 8> Values; |
| llvm::sort(Preds); |
| for (const PHINode &PN : BB.phis()) { |
| Check(PN.getNumIncomingValues() == Preds.size(), |
| "PHINode should have one entry for each predecessor of its " |
| "parent basic block!", |
| &PN); |
| |
| // Get and sort all incoming values in the PHI node... |
| Values.clear(); |
| Values.reserve(PN.getNumIncomingValues()); |
| for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
| Values.push_back( |
| std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i))); |
| llvm::sort(Values); |
| |
| for (unsigned i = 0, e = Values.size(); i != e; ++i) { |
| // Check to make sure that if there is more than one entry for a |
| // particular basic block in this PHI node, that the incoming values are |
| // all identical. |
| // |
| Check(i == 0 || Values[i].first != Values[i - 1].first || |
| Values[i].second == Values[i - 1].second, |
| "PHI node has multiple entries for the same basic block with " |
| "different incoming values!", |
| &PN, Values[i].first, Values[i].second, Values[i - 1].second); |
| |
| // Check to make sure that the predecessors and PHI node entries are |
| // matched up. |
| Check(Values[i].first == Preds[i], |
| "PHI node entries do not match predecessors!", &PN, |
| Values[i].first, Preds[i]); |
| } |
| } |
| } |
| |
| // Check that all instructions have their parent pointers set up correctly. |
| for (auto &I : BB) |
| { |
| Check(I.getParent() == &BB, "Instruction has bogus parent pointer!"); |
| } |
| } |
| |
| void Verifier::visitTerminator(Instruction &I) { |
| // Ensure that terminators only exist at the end of the basic block. |
| Check(&I == I.getParent()->getTerminator(), |
| "Terminator found in the middle of a basic block!", I.getParent()); |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitBranchInst(BranchInst &BI) { |
| if (BI.isConditional()) { |
| Check(BI.getCondition()->getType()->isIntegerTy(1), |
| "Branch condition is not 'i1' type!", &BI, BI.getCondition()); |
| } |
| visitTerminator(BI); |
| } |
| |
| void Verifier::visitReturnInst(ReturnInst &RI) { |
| Function *F = RI.getParent()->getParent(); |
| unsigned N = RI.getNumOperands(); |
| if (F->getReturnType()->isVoidTy()) |
| Check(N == 0, |
| "Found return instr that returns non-void in Function of void " |
| "return type!", |
| &RI, F->getReturnType()); |
| else |
| Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(), |
| "Function return type does not match operand " |
| "type of return inst!", |
| &RI, F->getReturnType()); |
| |
| // Check to make sure that the return value has necessary properties for |
| // terminators... |
| visitTerminator(RI); |
| } |
| |
| void Verifier::visitSwitchInst(SwitchInst &SI) { |
| Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI); |
| // Check to make sure that all of the constants in the switch instruction |
| // have the same type as the switched-on value. |
| Type *SwitchTy = SI.getCondition()->getType(); |
| SmallPtrSet<ConstantInt*, 32> Constants; |
| for (auto &Case : SI.cases()) { |
| Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)), |
| "Case value is not a constant integer.", &SI); |
| Check(Case.getCaseValue()->getType() == SwitchTy, |
| "Switch constants must all be same type as switch value!", &SI); |
| Check(Constants.insert(Case.getCaseValue()).second, |
| "Duplicate integer as switch case", &SI, Case.getCaseValue()); |
| } |
| |
| visitTerminator(SI); |
| } |
| |
| void Verifier::visitIndirectBrInst(IndirectBrInst &BI) { |
| Check(BI.getAddress()->getType()->isPointerTy(), |
| "Indirectbr operand must have pointer type!", &BI); |
| for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i) |
| Check(BI.getDestination(i)->getType()->isLabelTy(), |
| "Indirectbr destinations must all have pointer type!", &BI); |
| |
| visitTerminator(BI); |
| } |
| |
| void Verifier::visitCallBrInst(CallBrInst &CBI) { |
| Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI); |
| const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand()); |
| Check(!IA->canThrow(), "Unwinding from Callbr is not allowed"); |
| |
| verifyInlineAsmCall(CBI); |
| visitTerminator(CBI); |
| } |
| |
| void Verifier::visitSelectInst(SelectInst &SI) { |
| Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1), |
| SI.getOperand(2)), |
| "Invalid operands for select instruction!", &SI); |
| |
| Check(SI.getTrueValue()->getType() == SI.getType(), |
| "Select values must have same type as select instruction!", &SI); |
| visitInstruction(SI); |
| } |
| |
| /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of |
| /// a pass, if any exist, it's an error. |
| /// |
| void Verifier::visitUserOp1(Instruction &I) { |
| Check(false, "User-defined operators should not live outside of a pass!", &I); |
| } |
| |
| void Verifier::visitTruncInst(TruncInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I); |
| Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I); |
| Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "trunc source and destination must both be a vector or neither", &I); |
| Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitZExtInst(ZExtInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I); |
| Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I); |
| Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "zext source and destination must both be a vector or neither", &I); |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitSExtInst(SExtInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I); |
| Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I); |
| Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "sext source and destination must both be a vector or neither", &I); |
| Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPTruncInst(FPTruncInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I); |
| Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I); |
| Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "fptrunc source and destination must both be a vector or neither", &I); |
| Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPExtInst(FPExtInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| // Get the size of the types in bits, we'll need this later |
| unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); |
| unsigned DestBitSize = DestTy->getScalarSizeInBits(); |
| |
| Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I); |
| Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I); |
| Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), |
| "fpext source and destination must both be a vector or neither", &I); |
| Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitUIToFPInst(UIToFPInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->isVectorTy(); |
| bool DstVec = DestTy->isVectorTy(); |
| |
| Check(SrcVec == DstVec, |
| "UIToFP source and dest must both be vector or scalar", &I); |
| Check(SrcTy->isIntOrIntVectorTy(), |
| "UIToFP source must be integer or integer vector", &I); |
| Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector", |
| &I); |
| |
| if (SrcVec && DstVec) |
| Check(cast<VectorType>(SrcTy)->getElementCount() == |
| cast<VectorType>(DestTy)->getElementCount(), |
| "UIToFP source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitSIToFPInst(SIToFPInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->isVectorTy(); |
| bool DstVec = DestTy->isVectorTy(); |
| |
| Check(SrcVec == DstVec, |
| "SIToFP source and dest must both be vector or scalar", &I); |
| Check(SrcTy->isIntOrIntVectorTy(), |
| "SIToFP source must be integer or integer vector", &I); |
| Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector", |
| &I); |
| |
| if (SrcVec && DstVec) |
| Check(cast<VectorType>(SrcTy)->getElementCount() == |
| cast<VectorType>(DestTy)->getElementCount(), |
| "SIToFP source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPToUIInst(FPToUIInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->isVectorTy(); |
| bool DstVec = DestTy->isVectorTy(); |
| |
| Check(SrcVec == DstVec, |
| "FPToUI source and dest must both be vector or scalar", &I); |
| Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I); |
| Check(DestTy->isIntOrIntVectorTy(), |
| "FPToUI result must be integer or integer vector", &I); |
| |
| if (SrcVec && DstVec) |
| Check(cast<VectorType>(SrcTy)->getElementCount() == |
| cast<VectorType>(DestTy)->getElementCount(), |
| "FPToUI source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitFPToSIInst(FPToSIInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| bool SrcVec = SrcTy->isVectorTy(); |
| bool DstVec = DestTy->isVectorTy(); |
| |
| Check(SrcVec == DstVec, |
| "FPToSI source and dest must both be vector or scalar", &I); |
| Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I); |
| Check(DestTy->isIntOrIntVectorTy(), |
| "FPToSI result must be integer or integer vector", &I); |
| |
| if (SrcVec && DstVec) |
| Check(cast<VectorType>(SrcTy)->getElementCount() == |
| cast<VectorType>(DestTy)->getElementCount(), |
| "FPToSI source and dest vector length mismatch", &I); |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitPtrToIntInst(PtrToIntInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I); |
| |
| Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I); |
| Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch", |
| &I); |
| |
| if (SrcTy->isVectorTy()) { |
| auto *VSrc = cast<VectorType>(SrcTy); |
| auto *VDest = cast<VectorType>(DestTy); |
| Check(VSrc->getElementCount() == VDest->getElementCount(), |
| "PtrToInt Vector width mismatch", &I); |
| } |
| |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitIntToPtrInst(IntToPtrInst &I) { |
| // Get the source and destination types |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I); |
| Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I); |
| |
| Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch", |
| &I); |
| if (SrcTy->isVectorTy()) { |
| auto *VSrc = cast<VectorType>(SrcTy); |
| auto *VDest = cast<VectorType>(DestTy); |
| Check(VSrc->getElementCount() == VDest->getElementCount(), |
| "IntToPtr Vector width mismatch", &I); |
| } |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitBitCastInst(BitCastInst &I) { |
| Check( |
| CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()), |
| "Invalid bitcast", &I); |
| visitInstruction(I); |
| } |
| |
| void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) { |
| Type *SrcTy = I.getOperand(0)->getType(); |
| Type *DestTy = I.getType(); |
| |
| Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer", |
| &I); |
| Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer", |
| &I); |
| Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(), |
| "AddrSpaceCast must be between different address spaces", &I); |
| if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy)) |
| Check(SrcVTy->getElementCount() == |
| cast<VectorType>(DestTy)->getElementCount(), |
| "AddrSpaceCast vector pointer number of elements mismatch", &I); |
| visitInstruction(I); |
| } |
| |
| /// visitPHINode - Ensure that a PHI node is well formed. |
| /// |
| void Verifier::visitPHINode(PHINode &PN) { |
| // Ensure that the PHI nodes are all grouped together at the top of the block. |
| // This can be tested by checking whether the instruction before this is |
| // either nonexistent (because this is begin()) or is a PHI node. If not, |
| // then there is some other instruction before a PHI. |
| Check(&PN == &PN.getParent()->front() || |
| isa<PHINode>(--BasicBlock::iterator(&PN)), |
| "PHI nodes not grouped at top of basic block!", &PN, PN.getParent()); |
| |
| // Check that a PHI doesn't yield a Token. |
| Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!"); |
| |
| // Check that all of the values of the PHI node have the same type as the |
| // result, and that the incoming blocks are really basic blocks. |
| for (Value *IncValue : PN.incoming_values()) { |
| Check(PN.getType() == IncValue->getType(), |
| "PHI node operands are not the same type as the result!", &PN); |
| } |
| |
| // All other PHI node constraints are checked in the visitBasicBlock method. |
| |
| visitInstruction(PN); |
| } |
| |
| void Verifier::visitCallBase(CallBase &Call) { |
| Check(Call.getCalledOperand()->getType()->isPointerTy(), |
| "Called function must be a pointer!", Call); |
| PointerType *FPTy = cast<PointerType>(Call.getCalledOperand()->getType()); |
| |
| Check(FPTy->isOpaqueOrPointeeTypeMatches(Call.getFunctionType()), |
| "Called function is not the same type as the call!", Call); |
| |
| FunctionType *FTy = Call.getFunctionType(); |
| |
| // Verify that the correct number of arguments are being passed |
| if (FTy->isVarArg()) |
| Check(Call.arg_size() >= FTy->getNumParams(), |
| "Called function requires more parameters than were provided!", Call); |
| else |
| Check(Call.arg_size() == FTy->getNumParams(), |
| "Incorrect number of arguments passed to called function!", Call); |
| |
| // Verify that all arguments to the call match the function type. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i), |
| "Call parameter type does not match function signature!", |
| Call.getArgOperand(i), FTy->getParamType(i), Call); |
| |
| AttributeList Attrs = Call.getAttributes(); |
| |
| Check(verifyAttributeCount(Attrs, Call.arg_size()), |
| "Attribute after last parameter!", Call); |
| |
| Function *Callee = |
| dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts()); |
| bool IsIntrinsic = Callee && Callee->isIntrinsic(); |
| if (IsIntrinsic) |
| Check(Callee->getValueType() == FTy, |
| "Intrinsic called with incompatible signature", Call); |
| |
| auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) { |
| if (!Ty->isSized()) |
| return; |
| Align ABIAlign = DL.getABITypeAlign(Ty); |
| Align MaxAlign(ParamMaxAlignment); |
| Check(ABIAlign <= MaxAlign, |
| "Incorrect alignment of " + Message + " to called function!", Call); |
| }; |
| |
| if (!IsIntrinsic) { |
| VerifyTypeAlign(FTy->getReturnType(), "return type"); |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { |
| Type *Ty = FTy->getParamType(i); |
| VerifyTypeAlign(Ty, "argument passed"); |
| } |
| } |
| |
| if (Attrs.hasFnAttr(Attribute::Speculatable)) { |
| // Don't allow speculatable on call sites, unless the underlying function |
| // declaration is also speculatable. |
| Check(Callee && Callee->isSpeculatable(), |
| "speculatable attribute may not apply to call sites", Call); |
| } |
| |
| if (Attrs.hasFnAttr(Attribute::Preallocated)) { |
| Check(Call.getCalledFunction()->getIntrinsicID() == |
| Intrinsic::call_preallocated_arg, |
| "preallocated as a call site attribute can only be on " |
| "llvm.call.preallocated.arg"); |
| } |
| |
| // Verify call attributes. |
| verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm()); |
| |
| // Conservatively check the inalloca argument. |
| // We have a bug if we can find that there is an underlying alloca without |
| // inalloca. |
| if (Call.hasInAllocaArgument()) { |
| Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1); |
| if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets())) |
| Check(AI->isUsedWithInAlloca(), |
| "inalloca argument for call has mismatched alloca", AI, Call); |
| } |
| |
| // For each argument of the callsite, if it has the swifterror argument, |
| // make sure the underlying alloca/parameter it comes from has a swifterror as |
| // well. |
| for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { |
| if (Call.paramHasAttr(i, Attribute::SwiftError)) { |
| Value *SwiftErrorArg = Call.getArgOperand(i); |
| if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) { |
| Check(AI->isSwiftError(), |
| "swifterror argument for call has mismatched alloca", AI, Call); |
| continue; |
| } |
| auto ArgI = dyn_cast<Argument>(SwiftErrorArg); |
| Check(ArgI, "swifterror argument should come from an alloca or parameter", |
| SwiftErrorArg, Call); |
| Check(ArgI->hasSwiftErrorAttr(), |
| "swifterror argument for call has mismatched parameter", ArgI, |
| Call); |
| } |
| |
| if (Attrs.hasParamAttr(i, Attribute::ImmArg)) { |
| // Don't allow immarg on call sites, unless the underlying declaration |
| // also has the matching immarg. |
| Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg), |
| "immarg may not apply only to call sites", Call.getArgOperand(i), |
| Call); |
| } |
| |
| if (Call.paramHasAttr(i, Attribute::ImmArg)) { |
| Value *ArgVal = Call.getArgOperand(i); |
| Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal), |
| "immarg operand has non-immediate parameter", ArgVal, Call); |
| } |
| |
| if (Call.paramHasAttr(i, Attribute::Preallocated)) { |
| Value *ArgVal = Call.getArgOperand(i); |
| bool hasOB = |
| Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0; |
| bool isMustTail = Call.isMustTailCall(); |
| Check(hasOB != isMustTail, |
| "preallocated operand either requires a preallocated bundle or " |
| "the call to be musttail (but not both)", |
| ArgVal, Call); |
| } |
| } |
| |
| if (FTy->isVarArg()) { |
| // FIXME? is 'nest' even legal here? |
| bool SawNest = false; |
| bool SawReturned = false; |
| |
| for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) { |
| if (Attrs.hasParamAttr(Idx, Attribute::Nest)) |
| SawNest = true; |
| if (Attrs.hasParamAttr(Idx, Attribute::Returned)) |
| SawReturned = true; |
| } |
| |
| // Check attributes on the varargs part. |
| for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) { |
| Type *Ty = Call.getArgOperand(Idx)->getType(); |
| AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx); |
| verifyParameterAttrs(ArgAttrs, Ty, &Call); |
| |
| if (ArgAttrs.hasAttribute(Attribute::Nest)) { |
| Check(!SawNest, "More than one parameter has attribute nest!", Call); |
| SawNest = true; |
| } |
| |
| if (ArgAttrs.hasAttribute(Attribute::Returned)) { |
| Check(!SawReturned, "More than one parameter has attribute returned!", |
| Call); |
| Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()), |
| "Incompatible argument and return types for 'returned' " |
| "attribute", |
| Call); |
| SawReturned = true; |
| } |
| |
| // Statepoint intrinsic is vararg but the wrapped function may be not. |
| // Allow sret here and check the wrapped function in verifyStatepoint. |
| if (!Call.getCalledFunction() || |
| Call.getCalledFunction()->getIntrinsicID() != |
| Intrinsic::experimental_gc_statepoint) |
| Check(!ArgAttrs.hasAttribute(Attribute::StructRet), |
| "Attribute 'sret' cannot be used for vararg call arguments!", |
| Call); |
| |
| if (ArgAttrs.hasAttribute(Attribute::InAlloca)) |
| Check(Idx == Call.arg_size() - 1, |
| "inalloca isn't on the last argument!", Call); |
| } |
| } |
| |
| // Verify that there's no metadata unless it's a direct call to an intrinsic. |
| if (!IsIntrinsic) { |
| for (Type *ParamTy : FTy->params()) { |
| Check(!ParamTy->isMetadataTy(), |
| "Function has metadata parameter but isn't an intrinsic", Call); |
| Check(!ParamTy->isTokenTy(), |
| "Function has token parameter but isn't an intrinsic", Call); |
| } |
| } |
| |
| // Verify that indirect calls don't return tokens. |
| if (!Call.getCalledFunction()) { |
| Check(!FTy->getReturnType()->isTokenTy(), |
| "Return type cannot be token for indirect call!"); |
| Check(!FTy->getReturnType()->isX86_AMXTy(), |
| "Return type cannot be x86_amx for indirect call!"); |
| } |
| |
| if (Function *F = Call.getCalledFunction()) |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) |
| visitIntrinsicCall(ID, Call); |
| |
| // Verify that a callsite has at most one "deopt", at most one "funclet", at |
| // most one "gc-transition", at most one "cfguardtarget", at most one |
| // "preallocated" operand bundle, and at most one "ptrauth" operand bundle. |
| bool FoundDeoptBundle = false, FoundFuncletBundle = false, |
| FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false, |
| FoundPreallocatedBundle = false, FoundGCLiveBundle = false, |
| FoundPtrauthBundle = false, FoundKCFIBundle = false, |
| FoundAttachedCallBundle = false; |
| for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) { |
| OperandBundleUse BU = Call.getOperandBundleAt(i); |
| uint32_t Tag = BU.getTagID(); |
| if (Tag == LLVMContext::OB_deopt) { |
| Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call); |
| FoundDeoptBundle = true; |
| } else if (Tag == LLVMContext::OB_gc_transition) { |
| Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles", |
| Call); |
| FoundGCTransitionBundle = true; |
| } else if (Tag == LLVMContext::OB_funclet) { |
| Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call); |
| FoundFuncletBundle = true; |
| Check(BU.Inputs.size() == 1, |
| "Expected exactly one funclet bundle operand", Call); |
| Check(isa<FuncletPadInst>(BU.Inputs.front()), |
| "Funclet bundle operands should correspond to a FuncletPadInst", |
| Call); |
| } else if (Tag == LLVMContext::OB_cfguardtarget) { |
| Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles", |
| Call); |
| FoundCFGuardTargetBundle = true; |
| Check(BU.Inputs.size() == 1, |
| "Expected exactly one cfguardtarget bundle operand", Call); |
| } else if (Tag == LLVMContext::OB_ptrauth) { |
| Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call); |
| FoundPtrauthBundle = true; |
| Check(BU.Inputs.size() == 2, |
| "Expected exactly two ptrauth bundle operands", Call); |
| Check(isa<ConstantInt>(BU.Inputs[0]) && |
| BU.Inputs[0]->getType()->isIntegerTy(32), |
| "Ptrauth bundle key operand must be an i32 constant", Call); |
| Check(BU.Inputs[1]->getType()->isIntegerTy(64), |
| "Ptrauth bundle discriminator operand must be an i64", Call); |
| } else if (Tag == LLVMContext::OB_kcfi) { |
| Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call); |
| FoundKCFIBundle = true; |
| Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand", |
| Call); |
| Check(isa<ConstantInt>(BU.Inputs[0]) && |
| BU.Inputs[0]->getType()->isIntegerTy(32), |
| "Kcfi bundle operand must be an i32 constant", Call); |
| } else if (Tag == LLVMContext::OB_preallocated) { |
| Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles", |
| Call); |
| FoundPreallocatedBundle = true; |
| Check(BU.Inputs.size() == 1, |
| "Expected exactly one preallocated bundle operand", Call); |
| auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front()); |
| Check(Input && |
| Input->getIntrinsicID() == Intrinsic::call_preallocated_setup, |
| "\"preallocated\" argument must be a token from " |
| "llvm.call.preallocated.setup", |
| Call); |
| } else if (Tag == LLVMContext::OB_gc_live) { |
| Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call); |
| FoundGCLiveBundle = true; |
| } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) { |
| Check(!FoundAttachedCallBundle, |
| "Multiple \"clang.arc.attachedcall\" operand bundles", Call); |
| FoundAttachedCallBundle = true; |
| verifyAttachedCallBundle(Call, BU); |
| } |
| } |
| |
| // Verify that callee and callsite agree on whether to use pointer auth. |
| Check(!(Call.getCalledFunction() && FoundPtrauthBundle), |
| "Direct call cannot have a ptrauth bundle", Call); |
| |
| // Verify that each inlinable callsite of a debug-info-bearing function in a |
| // debug-info-bearing function has a debug location attached to it. Failure to |
| // do so causes assertion failures when the inliner sets up inline scope info |
| // (Interposable functions are not inlinable, neither are functions without |
| // definitions.) |
| if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() && |
| !Call.getCalledFunction()->isInterposable() && |
| !Call.getCalledFunction()->isDeclaration() && |
| Call.getCalledFunction()->getSubprogram()) |
| CheckDI(Call.getDebugLoc(), |
| "inlinable function call in a function with " |
| "debug info must have a !dbg location", |
| Call); |
| |
| if (Call.isInlineAsm()) |
| verifyInlineAsmCall(Call); |
| |
| visitInstruction(Call); |
| } |
| |
| void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, |
| StringRef Context) { |
| Check(!Attrs.contains(Attribute::InAlloca), |
| Twine("inalloca attribute not allowed in ") + Context); |
| Check(!Attrs.contains(Attribute::InReg), |
| Twine("inreg attribute not allowed in ") + Context); |
| Check(!Attrs.contains(Attribute::SwiftError), |
| Twine("swifterror attribute not allowed in ") + Context); |
| Check(!Attrs.contains(Attribute::Preallocated), |
| Twine("preallocated attribute not allowed in ") + Context); |
| Check(!Attrs.contains(Attribute::ByRef), |
| Twine("byref attribute not allowed in ") + Context); |
| } |
| |
| /// Two types are "congruent" if they are identical, or if they are both pointer |
| /// types with different pointee types and the same address space. |
| static bool isTypeCongruent(Type *L, Type *R) { |
| if (L == R) |
| return true; |
| PointerType *PL = dyn_cast<PointerType>(L); |
| PointerType *PR = dyn_cast<PointerType>(R); |
| if (!PL || !PR) |
| return false; |
| return PL->getAddressSpace() == PR->getAddressSpace(); |
| } |
| |
| static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) { |
| static const Attribute::AttrKind ABIAttrs[] = { |
| Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca, |
| Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf, |
| Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated, |
| Attribute::ByRef}; |
| AttrBuilder Copy(C); |
| for (auto AK : ABIAttrs) { |
| Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK); |
| if (Attr.isValid()) |
| Copy.addAttribute(Attr); |
| } |
| |
| // `align` is ABI-affecting only in combination with `byval` or `byref`. |
| if (Attrs.hasParamAttr(I, Attribute::Alignment) && |
| (Attrs.hasParamAttr(I, Attribute::ByVal) || |
| Attrs.hasParamAttr(I, Attribute::ByRef))) |
| Copy.addAlignmentAttr(Attrs.getParamAlignment(I)); |
| return Copy; |
| } |
| |
| void Verifier::verifyMustTailCall(CallInst &CI) { |
| Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI); |
| |
| Function *F = CI.getParent()->getParent(); |
| FunctionType *CallerTy = F->getFunctionType(); |
| FunctionType *CalleeTy = CI.getFunctionType(); |
| Check(CallerTy->isVarArg() == CalleeTy->isVarArg(), |
| "cannot guarantee tail call due to mismatched varargs", &CI); |
| Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()), |
| "cannot guarantee tail call due to mismatched return types", &CI); |
| |
| // - The calling conventions of the caller and callee must match. |
| Check(F->getCallingConv() == CI.getCallingConv(), |
| "cannot guarantee tail call due to mismatched calling conv", &CI); |
| |
| // - The call must immediately precede a :ref:`ret <i_ret>` instruction, |
| // or a pointer bitcast followed by a ret instruction. |
| // - The ret instruction must return the (possibly bitcasted) value |
| // produced by the call or void. |
| Value *RetVal = &CI; |
| Instruction *Next = CI.getNextNode(); |
| |
| // Handle the optional bitcast. |
| if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) { |
| Check(BI->getOperand(0) == RetVal, |
| "bitcast following musttail call must use the call", BI); |
| RetVal = BI; |
| Next = BI->getNextNode(); |
| } |
| |
| // Check the return. |
| ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next); |
| Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI); |
| Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal || |
| isa<UndefValue>(Ret->getReturnValue()), |
| "musttail call result must be returned", Ret); |
| |
| AttributeList CallerAttrs = F->getAttributes(); |
| AttributeList CalleeAttrs = CI.getAttributes(); |
| if (CI.getCallingConv() == CallingConv::SwiftTail || |
| CI.getCallingConv() == CallingConv::Tail) { |
| StringRef CCName = |
| CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc"; |
| |
| // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes |
| // are allowed in swifttailcc call |
| for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { |
| AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); |
| SmallString<32> Context{CCName, StringRef(" musttail caller")}; |
| verifyTailCCMustTailAttrs(ABIAttrs, Context); |
| } |
| for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) { |
| AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); |
| SmallString<32> Context{CCName, StringRef(" musttail callee")}; |
| verifyTailCCMustTailAttrs(ABIAttrs, Context); |
| } |
| // - Varargs functions are not allowed |
| Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName + |
| " tail call for varargs function"); |
| return; |
| } |
| |
| // - The caller and callee prototypes must match. Pointer types of |
| // parameters or return types may differ in pointee type, but not |
| // address space. |
| if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) { |
| Check(CallerTy->getNumParams() == CalleeTy->getNumParams(), |
| "cannot guarantee tail call due to mismatched parameter counts", &CI); |
| for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { |
| Check( |
| isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)), |
| "cannot guarantee tail call due to mismatched parameter types", &CI); |
| } |
| } |
| |
| // - All ABI-impacting function attributes, such as sret, byval, inreg, |
| // returned, preallocated, and inalloca, must match. |
| for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) { |
| AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs); |
| AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs); |
| Check(CallerABIAttrs == CalleeABIAttrs, |
| "cannot guarantee tail call due to mismatched ABI impacting " |
| "function attributes", |
| &CI, CI.getOperand(I)); |
| } |
| } |
| |
| void Verifier::visitCallInst(CallInst &CI) { |
| visitCallBase(CI); |
| |
| if (CI.isMustTailCall()) |
| verifyMustTailCall(CI); |
| } |
| |
| void Verifier::visitInvokeInst(InvokeInst &II) { |
| visitCallBase(II); |
| |
| // Verify that the first non-PHI instruction of the unwind destination is an |
| // exception handling instruction. |
| Check( |
| II.getUnwindDest()->isEHPad(), |
| "The unwind destination does not have an exception handling instruction!", |
| &II); |
| |
| visitTerminator(II); |
| } |
| |
| /// visitUnaryOperator - Check the argument to the unary operator. |
| /// |
| void Verifier::visitUnaryOperator(UnaryOperator &U) { |
| Check(U.getType() == U.getOperand(0)->getType(), |
| "Unary operators must have same type for" |
| "operands and result!", |
| &U); |
| |
| switch (U.getOpcode()) { |
| // Check that floating-point arithmetic operators are only used with |
| // floating-point operands. |
| case Instruction::FNeg: |
| Check(U.getType()->isFPOrFPVectorTy(), |
| "FNeg operator only works with float types!", &U); |
| break; |
| default: |
| llvm_unreachable("Unknown UnaryOperator opcode!"); |
| } |
| |
| visitInstruction(U); |
| } |
| |
| /// visitBinaryOperator - Check that both arguments to the binary operator are |
| /// of the same type! |
| /// |
| void Verifier::visitBinaryOperator(BinaryOperator &B) { |
| Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(), |
| "Both operands to a binary operator are not of the same type!", &B); |
| |
| switch (B.getOpcode()) { |
| // Check that integer arithmetic operators are only used with |
| // integral operands. |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::SDiv: |
| case Instruction::UDiv: |
| case Instruction::SRem: |
| case Instruction::URem: |
| Check(B.getType()->isIntOrIntVectorTy(), |
| "Integer arithmetic operators only work with integral types!", &B); |
| Check(B.getType() == B.getOperand(0)->getType(), |
| "Integer arithmetic operators must have same type " |
| "for operands and result!", |
| &B); |
| break; |
| // Check that floating-point arithmetic operators are only used with |
| // floating-point operands. |
| case Instruction::FAdd: |
| case Instruction::FSub: |
| case Instruction::FMul: |
| case Instruction::FDiv: |
| case Instruction::FRem: |
| Check(B.getType()->isFPOrFPVectorTy(), |
| "Floating-point arithmetic operators only work with " |
| "floating-point types!", |
| &B); |
| Check(B.getType() == B.getOperand(0)->getType(), |
| "Floating-point arithmetic operators must have same type " |
| "for operands and result!", |
| &B); |
| break; |
| // Check that logical operators are only used with integral operands. |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| Check(B.getType()->isIntOrIntVectorTy(), |
| "Logical operators only work with integral types!", &B); |
| Check(B.getType() == B.getOperand(0)->getType(), |
| "Logical operators must have same type for operands and result!", &B); |
| break; |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| Check(B.getType()->isIntOrIntVectorTy(), |
| "Shifts only work with integral types!", &B); |
| Check(B.getType() == B.getOperand(0)->getType(), |
| "Shift return type must be same as operands!", &B); |
| break; |
| default: |
| llvm_unreachable("Unknown BinaryOperator opcode!"); |
| } |
| |
| visitInstruction(B); |
| } |
| |
| void Verifier::visitICmpInst(ICmpInst &IC) { |
| // Check that the operands are the same type |
| Type *Op0Ty = IC.getOperand(0)->getType(); |
| Type *Op1Ty = IC.getOperand(1)->getType(); |
| Check(Op0Ty == Op1Ty, |
| "Both operands to ICmp instruction are not of the same type!", &IC); |
| // Check that the operands are the right type |
| Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(), |
| "Invalid operand types for ICmp instruction", &IC); |
| // Check that the predicate is valid. |
| Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC); |
| |
| visitInstruction(IC); |
| } |
| |
| void Verifier::visitFCmpInst(FCmpInst &FC) { |
| // Check that the operands are the same type |
| Type *Op0Ty = FC.getOperand(0)->getType(); |
| Type *Op1Ty = FC.getOperand(1)->getType(); |
| Check(Op0Ty == Op1Ty, |
| "Both operands to FCmp instruction are not of the same type!", &FC); |
| // Check that the operands are the right type |
| Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction", |
| &FC); |
| // Check that the predicate is valid. |
| Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC); |
| |
| visitInstruction(FC); |
| } |
| |
| void Verifier::visitExtractElementInst(ExtractElementInst &EI) { |
| Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)), |
| "Invalid extractelement operands!", &EI); |
| visitInstruction(EI); |
| } |
| |
| void Verifier::visitInsertElementInst(InsertElementInst &IE) { |
| Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1), |
| IE.getOperand(2)), |
| "Invalid insertelement operands!", &IE); |
| visitInstruction(IE); |
| } |
| |
| void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) { |
| Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1), |
| SV.getShuffleMask()), |
| "Invalid shufflevector operands!", &SV); |
| visitInstruction(SV); |
| } |
| |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| Type *TargetTy = GEP.getPointerOperandType()->getScalarType(); |
| |
| Check(isa<PointerType>(TargetTy), |
| "GEP base pointer is not a vector or a vector of pointers", &GEP); |
| Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP); |
| |
| SmallVector<Value *, 16> Idxs(GEP.indices()); |
| Check( |
| all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }), |
| "GEP indexes must be integers", &GEP); |
| Type *ElTy = |
| GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs); |
| Check(ElTy, "Invalid indices for GEP pointer type!", &GEP); |
| |
| Check(GEP.getType()->isPtrOrPtrVectorTy() && |
| GEP.getResultElementType() == ElTy, |
| "GEP is not of right type for indices!", &GEP, ElTy); |
| |
| if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) { |
| // Additional checks for vector GEPs. |
| ElementCount GEPWidth = GEPVTy->getElementCount(); |
| if (GEP.getPointerOperandType()->isVectorTy()) |
| Check( |
| GEPWidth == |
| cast<VectorType>(GEP.getPointerOperandType())->getElementCount(), |
| "Vector GEP result width doesn't match operand's", &GEP); |
| for (Value *Idx : Idxs) { |
| Type *IndexTy = Idx->getType(); |
| if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) { |
| ElementCount IndexWidth = IndexVTy->getElementCount(); |
| Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP); |
| } |
| Check(IndexTy->isIntOrIntVectorTy(), |
| "All GEP indices should be of integer type"); |
| } |
| } |
| |
| if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) { |
| Check(GEP.getAddressSpace() == PTy->getAddressSpace(), |
| "GEP address space doesn't match type", &GEP); |
| } |
| |
| visitInstruction(GEP); |
| } |
| |
| static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { |
| return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); |
| } |
| |
| void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) { |
| assert(Range && Range == I.getMetadata(LLVMContext::MD_range) && |
| "precondition violation"); |
| |
| unsigned NumOperands = Range->getNumOperands(); |
| Check(NumOperands % 2 == 0, "Unfinished range!", Range); |
| unsigned NumRanges = NumOperands / 2; |
| Check(NumRanges >= 1, "It should have at least one range!", Range); |
| |
| ConstantRange LastRange(1, true); // Dummy initial value |
| for (unsigned i = 0; i < NumRanges; ++i) { |
| ConstantInt *Low = |
| mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i)); |
| Check(Low, "The lower limit must be an integer!", Low); |
| ConstantInt *High = |
| mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1)); |
| Check(High, "The upper limit must be an integer!", High); |
| Check(High->getType() == Low->getType() && High->getType() == Ty, |
| "Range types must match instruction type!", &I); |
| |
| APInt HighV = High->getValue(); |
| APInt LowV = Low->getValue(); |
| ConstantRange CurRange(LowV, HighV); |
| Check(!CurRange.isEmptySet() && !CurRange.isFullSet(), |
| "Range must not be empty!", Range); |
| if (i != 0) { |
| Check(CurRange.intersectWith(LastRange).isEmptySet(), |
| "Intervals are overlapping", Range); |
| Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order", |
| Range); |
| Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous", |
| Range); |
| } |
| LastRange = ConstantRange(LowV, HighV); |
| } |
| if (NumRanges > 2) { |
| APInt FirstLow = |
| mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue(); |
| APInt FirstHigh = |
| mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue(); |
| ConstantRange FirstRange(FirstLow, FirstHigh); |
| Check(FirstRange.intersectWith(LastRange).isEmptySet(), |
| "Intervals are overlapping", Range); |
| Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous", |
| Range); |
| } |
| } |
| |
| void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) { |
| unsigned Size = DL.getTypeSizeInBits(Ty); |
| Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I); |
| Check(!(Size & (Size - 1)), |
| "atomic memory access' operand must have a power-of-two size", Ty, I); |
| } |
| |
| void Verifier::visitLoadInst(LoadInst &LI) { |
| PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType()); |
| Check(PTy, "Load operand must be a pointer.", &LI); |
| Type *ElTy = LI.getType(); |
| if (MaybeAlign A = LI.getAlign()) { |
| Check(A->value() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", &LI); |
| } |
| Check(ElTy->isSized(), "loading unsized types is not allowed", &LI); |
| if (LI.isAtomic()) { |
| Check(LI.getOrdering() != AtomicOrdering::Release && |
| LI.getOrdering() != AtomicOrdering::AcquireRelease, |
| "Load cannot have Release ordering", &LI); |
| Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), |
| "atomic load operand must have integer, pointer, or floating point " |
| "type!", |
| ElTy, &LI); |
| checkAtomicMemAccessSize(ElTy, &LI); |
| } else { |
| Check(LI.getSyncScopeID() == SyncScope::System, |
| "Non-atomic load cannot have SynchronizationScope specified", &LI); |
| } |
| |
| visitInstruction(LI); |
| } |
| |
| void Verifier::visitStoreInst(StoreInst &SI) { |
| PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType()); |
| Check(PTy, "Store operand must be a pointer.", &SI); |
| Type *ElTy = SI.getOperand(0)->getType(); |
| Check(PTy->isOpaqueOrPointeeTypeMatches(ElTy), |
| "Stored value type does not match pointer operand type!", &SI, ElTy); |
| if (MaybeAlign A = SI.getAlign()) { |
| Check(A->value() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", &SI); |
| } |
| Check(ElTy->isSized(), "storing unsized types is not allowed", &SI); |
| if (SI.isAtomic()) { |
| Check(SI.getOrdering() != AtomicOrdering::Acquire && |
| SI.getOrdering() != AtomicOrdering::AcquireRelease, |
| "Store cannot have Acquire ordering", &SI); |
| Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(), |
| "atomic store operand must have integer, pointer, or floating point " |
| "type!", |
| ElTy, &SI); |
| checkAtomicMemAccessSize(ElTy, &SI); |
| } else { |
| Check(SI.getSyncScopeID() == SyncScope::System, |
| "Non-atomic store cannot have SynchronizationScope specified", &SI); |
| } |
| visitInstruction(SI); |
| } |
| |
| /// Check that SwiftErrorVal is used as a swifterror argument in CS. |
| void Verifier::verifySwiftErrorCall(CallBase &Call, |
| const Value *SwiftErrorVal) { |
| for (const auto &I : llvm::enumerate(Call.args())) { |
| if (I.value() == SwiftErrorVal) { |
| Check(Call.paramHasAttr(I.index(), Attribute::SwiftError), |
| "swifterror value when used in a callsite should be marked " |
| "with swifterror attribute", |
| SwiftErrorVal, Call); |
| } |
| } |
| } |
| |
| void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) { |
| // Check that swifterror value is only used by loads, stores, or as |
| // a swifterror argument. |
| for (const User *U : SwiftErrorVal->users()) { |
| Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) || |
| isa<InvokeInst>(U), |
| "swifterror value can only be loaded and stored from, or " |
| "as a swifterror argument!", |
| SwiftErrorVal, U); |
| // If it is used by a store, check it is the second operand. |
| if (auto StoreI = dyn_cast<StoreInst>(U)) |
| Check(StoreI->getOperand(1) == SwiftErrorVal, |
| "swifterror value should be the second operand when used " |
| "by stores", |
| SwiftErrorVal, U); |
| if (auto *Call = dyn_cast<CallBase>(U)) |
| verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal); |
| } |
| } |
| |
| void Verifier::visitAllocaInst(AllocaInst &AI) { |
| SmallPtrSet<Type*, 4> Visited; |
| Check(AI.getAllocatedType()->isSized(&Visited), |
| "Cannot allocate unsized type", &AI); |
| Check(AI.getArraySize()->getType()->isIntegerTy(), |
| "Alloca array size must have integer type", &AI); |
| if (MaybeAlign A = AI.getAlign()) { |
| Check(A->value() <= Value::MaximumAlignment, |
| "huge alignment values are unsupported", &AI); |
| } |
| |
| if (AI.isSwiftError()) { |
| Check(AI.getAllocatedType()->isPointerTy(), |
| "swifterror alloca must have pointer type", &AI); |
| Check(!AI.isArrayAllocation(), |
| "swifterror alloca must not be array allocation", &AI); |
| verifySwiftErrorValue(&AI); |
| } |
| |
| visitInstruction(AI); |
| } |
| |
| void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) { |
| Type *ElTy = CXI.getOperand(1)->getType(); |
| Check(ElTy->isIntOrPtrTy(), |
| "cmpxchg operand must have integer or pointer type", ElTy, &CXI); |
| checkAtomicMemAccessSize(ElTy, &CXI); |
| visitInstruction(CXI); |
| } |
| |
| void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) { |
| Check(RMWI.getOrdering() != AtomicOrdering::Unordered, |
| "atomicrmw instructions cannot be unordered.", &RMWI); |
| auto Op = RMWI.getOperation(); |
| Type *ElTy = RMWI.getOperand(1)->getType(); |
| if (Op == AtomicRMWInst::Xchg) { |
| Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() || |
| ElTy->isPointerTy(), |
| "atomicrmw " + AtomicRMWInst::getOperationName(Op) + |
| " operand must have integer or floating point type!", |
| &RMWI, ElTy); |
| } else if (AtomicRMWInst::isFPOperation(Op)) { |
| Check(ElTy->isFloatingPointTy(), |
| "atomicrmw " + AtomicRMWInst::getOperationName(Op) + |
| " operand must have floating point type!", |
| &RMWI, ElTy); |
| } else { |
| Check(ElTy->isIntegerTy(), |
| "atomicrmw " + AtomicRMWInst::getOperationName(Op) + |
| " operand must have integer type!", |
| &RMWI, ElTy); |
| } |
| checkAtomicMemAccessSize(ElTy, &RMWI); |
| Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP, |
| "Invalid binary operation!", &RMWI); |
| visitInstruction(RMWI); |
| } |
| |
| void Verifier::visitFenceInst(FenceInst &FI) { |
| const AtomicOrdering Ordering = FI.getOrdering(); |
| Check(Ordering == AtomicOrdering::Acquire || |
| Ordering == AtomicOrdering::Release || |
| Ordering == AtomicOrdering::AcquireRelease || |
| Ordering == AtomicOrdering::SequentiallyConsistent, |
| "fence instructions may only have acquire, release, acq_rel, or " |
| "seq_cst ordering.", |
| &FI); |
| visitInstruction(FI); |
| } |
| |
| void Verifier::visitExtractValueInst(ExtractValueInst &EVI) { |
| Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(), |
| EVI.getIndices()) == EVI.getType(), |
| "Invalid ExtractValueInst operands!", &EVI); |
| |
| visitInstruction(EVI); |
| } |
| |
| void Verifier::visitInsertValueInst(InsertValueInst &IVI) { |
| Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(), |
| IVI.getIndices()) == |
| IVI.getOperand(1)->getType(), |
| "Invalid InsertValueInst operands!", &IVI); |
| |
| visitInstruction(IVI); |
| } |
| |
| static Value *getParentPad(Value *EHPad) { |
| if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) |
| return FPI->getParentPad(); |
| |
| return cast<CatchSwitchInst>(EHPad)->getParentPad(); |
| } |
| |
| void Verifier::visitEHPadPredecessors(Instruction &I) { |
| assert(I.isEHPad()); |
| |
| BasicBlock *BB = I.getParent(); |
| Function *F = BB->getParent(); |
| |
| Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I); |
| |
| if (auto *LPI = dyn_cast<LandingPadInst>(&I)) { |
| // The landingpad instruction defines its parent as a landing pad block. The |
| // landing pad block may be branched to only by the unwind edge of an |
| // invoke. |
| for (BasicBlock *PredBB : predecessors(BB)) { |
| const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator()); |
| Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB, |
| "Block containing LandingPadInst must be jumped to " |
| "only by the unwind edge of an invoke.", |
| LPI); |
| } |
| return; |
| } |
| if (auto *CPI = dyn_cast<CatchPadInst>(&I)) { |
| if (!pred_empty(BB)) |
| Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(), |
| "Block containg CatchPadInst must be jumped to " |
| "only by its catchswitch.", |
| CPI); |
| Check(BB != CPI->getCatchSwitch()->getUnwindDest(), |
| "Catchswitch cannot unwind to one of its catchpads", |
| CPI->getCatchSwitch(), CPI); |
| return; |
| } |
| |
| // Verify that each pred has a legal terminator with a legal to/from EH |
| // pad relationship. |
| Instruction *ToPad = &I; |
| Value *ToPadParent = getParentPad(ToPad); |
| for (BasicBlock *PredBB : predecessors(BB)) { |
| Instruction *TI = PredBB->getTerminator(); |
| Value *FromPad; |
| if (auto *II = dyn_cast<InvokeInst>(TI)) { |
| Check(II->getUnwindDest() == BB && II->getNormalDest() != BB, |
| "EH pad must be jumped to via an unwind edge", ToPad, II); |
| if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet)) |
| FromPad = Bundle->Inputs[0]; |
| else |
| FromPad = ConstantTokenNone::get(II->getContext()); |
| } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { |
| FromPad = CRI->getOperand(0); |
| Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI); |
| } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { |
| FromPad = CSI; |
| } else { |
| Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI); |
| } |
| |
| // The edge may exit from zero or more nested pads. |
| SmallSet<Value *, 8> Seen; |
| for (;; FromPad = getParentPad(FromPad)) { |
| Check(FromPad != ToPad, |
| "EH pad cannot handle exceptions raised within it", FromPad, TI); |
| if (FromPad == ToPadParent) { |
| // This is a legal unwind edge. |
| break; |
| } |
| Check(!isa<ConstantTokenNone>(FromPad), |
| "A single unwind edge may only enter one EH pad", TI); |
| Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads", |
| FromPad); |
| |
| // This will be diagnosed on the corresponding instruction already. We |
| // need the extra check here to make sure getParentPad() works. |
| Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad), |
| "Parent pad must be catchpad/cleanuppad/catchswitch", TI); |
| } |
| } |
| } |
| |
| void Verifier::visitLandingPadInst(LandingPadInst &LPI) { |
| // The landingpad instruction is ill-formed if it doesn't have any clauses and |
| // isn't a cleanup. |
| Check(LPI.getNumClauses() > 0 || LPI.isCleanup(), |
| "LandingPadInst needs at least one clause or to be a cleanup.", &LPI); |
| |
| visitEHPadPredecessors(LPI); |
| |
| if (!LandingPadResultTy) |
| LandingPadResultTy = LPI.getType(); |
| else |
| Check(LandingPadResultTy == LPI.getType(), |
| "The landingpad instruction should have a consistent result type " |
| "inside a function.", |
| &LPI); |
| |
| Function *F = LPI.getParent()->getParent(); |
| Check(F->hasPersonalityFn(), |
| "LandingPadInst needs to be in a function with a personality.", &LPI); |
| |
| // The landingpad instruction must be the first non-PHI instruction in the |
| // block. |
| Check(LPI.getParent()->getLandingPadInst() == &LPI, |
| "LandingPadInst not the first non-PHI instruction in the block.", &LPI); |
| |
| for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) { |
| Constant *Clause = LPI.getClause(i); |
| if (LPI.isCatch(i)) { |
| Check(isa<PointerType>(Clause->getType()), |
| "Catch operand does not have pointer type!", &LPI); |
| } else { |
| Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI); |
| Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause), |
| "Filter operand is not an array of constants!", &LPI); |
| } |
| } |
| |
| visitInstruction(LPI); |
| } |
| |
| void Verifier::visitResumeInst(ResumeInst &RI) { |
| Check(RI.getFunction()->hasPersonalityFn(), |
| "ResumeInst needs to be in a function with a personality.", &RI); |
| |
| if (!LandingPadResultTy) |
| LandingPadResultTy = RI.getValue()->getType(); |
| else |
| Check(LandingPadResultTy == RI.getValue()->getType(), |
| "The resume instruction should have a consistent result type " |
| "inside a function.", |
| &RI); |
| |
| visitTerminator(RI); |
| } |
| |
| void Verifier::visitCatchPadInst(CatchPadInst &CPI) { |
| BasicBlock *BB = CPI.getParent(); |
| |
| Function *F = BB->getParent(); |
| Check(F->hasPersonalityFn(), |
| "CatchPadInst needs to be in a function with a personality.", &CPI); |
| |
| Check(isa<CatchSwitchInst>(CPI.getParentPad()), |
| "CatchPadInst needs to be directly nested in a CatchSwitchInst.", |
| CPI.getParentPad()); |
| |
| // The catchpad instruction must be the first non-PHI instruction in the |
| // block. |
| Check(BB->getFirstNonPHI() == &CPI, |
| "CatchPadInst not the first non-PHI instruction in the block.", &CPI); |
| |
| visitEHPadPredecessors(CPI); |
| visitFuncletPadInst(CPI); |
| } |
| |
| void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) { |
| Check(isa<CatchPadInst>(CatchReturn.getOperand(0)), |
| "CatchReturnInst needs to be provided a CatchPad", &CatchReturn, |
| CatchReturn.getOperand(0)); |
| |
| visitTerminator(CatchReturn); |
| } |
| |
| void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) { |
| BasicBlock *BB = CPI.getParent(); |
| |
| Function *F = BB->getParent(); |
| Check(F->hasPersonalityFn(), |
| "CleanupPadInst needs to be in a function with a personality.", &CPI); |
| |
| // The cleanuppad instruction must be the first non-PHI instruction in the |
| // block. |
| Check(BB->getFirstNonPHI() == &CPI, |
| "CleanupPadInst not the first non-PHI instruction in the block.", &CPI); |
| |
| auto *ParentPad = CPI.getParentPad(); |
| Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), |
| "CleanupPadInst has an invalid parent.", &CPI); |
| |
| visitEHPadPredecessors(CPI); |
| visitFuncletPadInst(CPI); |
| } |
| |
| void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) { |
| User *FirstUser = nullptr; |
| Value *FirstUnwindPad = nullptr; |
| SmallVector<FuncletPadInst *, 8> Worklist({&FPI}); |
| SmallSet<FuncletPadInst *, 8> Seen; |
| |
| while (!Worklist.empty()) { |
| FuncletPadInst *CurrentPad = Worklist.pop_back_val(); |
| Check(Seen.insert(CurrentPad).second, |
| "FuncletPadInst must not be nested within itself", CurrentPad); |
| Value *UnresolvedAncestorPad = nullptr; |
| for (User *U : CurrentPad->users()) { |
| BasicBlock *UnwindDest; |
| if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) { |
| UnwindDest = CRI->getUnwindDest(); |
| } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) { |
| // We allow catchswitch unwind to caller to nest |
| // within an outer pad that unwinds somewhere else, |
| // because catchswitch doesn't have a nounwind variant. |
| // See e.g. SimplifyCFGOpt::SimplifyUnreachable. |
| if (CSI->unwindsToCaller()) |
| continue; |
| UnwindDest = CSI->getUnwindDest(); |
| } else if (auto *II = dyn_cast<InvokeInst>(U)) { |
| UnwindDest = II->getUnwindDest(); |
| } else if (isa<CallInst>(U)) { |
| // Calls which don't unwind may be found inside funclet |
| // pads that unwind somewhere else. We don't *require* |
| // such calls to be annotated nounwind. |
| continue; |
| } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) { |
| // The unwind dest for a cleanup can only be found by |
| // recursive search. Add it to the worklist, and we'll |
| // search for its first use that determines where it unwinds. |
| Worklist.push_back(CPI); |
| continue; |
| } else { |
| Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U); |
| continue; |
| } |
| |
| Value *UnwindPad; |
| bool ExitsFPI; |
| if (UnwindDest) { |
| UnwindPad = UnwindDest->getFirstNonPHI(); |
| if (!cast<Instruction>(UnwindPad)->isEHPad()) |
| continue; |
| Value *UnwindParent = getParentPad(UnwindPad); |
| // Ignore unwind edges that don't exit CurrentPad. |
| if (UnwindParent == CurrentPad) |
| continue; |
| // Determine whether the original funclet pad is exited, |
| // and if we are scanning nested pads determine how many |
| // of them are exited so we can stop searching their |
| // children. |
| Value *ExitedPad = CurrentPad; |
| ExitsFPI = false; |
| do { |
| if (ExitedPad == &FPI) { |
| ExitsFPI = true; |
| // Now we can resolve any ancestors of CurrentPad up to |
| // FPI, but not including FPI since we need to make sure |
| // to check all direct users of FPI for consistency. |
| UnresolvedAncestorPad = &FPI; |
| break; |
| } |
| Value *ExitedParent = getParentPad(ExitedPad); |
| if (ExitedParent == UnwindParent) { |
| // ExitedPad is the ancestor-most pad which this unwind |
| // edge exits, so we can resolve up to it, meaning that |
| // ExitedParent is the first ancestor still unresolved. |
| UnresolvedAncestorPad = ExitedParent; |
| break; |
| } |
| ExitedPad = ExitedParent; |
| } while (!isa<ConstantTokenNone>(ExitedPad)); |
| } else { |
| // Unwinding to caller exits all pads. |
| UnwindPad = ConstantTokenNone::get(FPI.getContext()); |
| ExitsFPI = true; |
| UnresolvedAncestorPad = &FPI; |
| } |
| |
| if (ExitsFPI) { |
| // This unwind edge exits FPI. Make sure it agrees with other |
| // such edges. |
| if (FirstUser) { |
| Check(UnwindPad == FirstUnwindPad, |
| "Unwind edges out of a funclet " |
| "pad must have the same unwind " |
| "dest", |
| &FPI, U, FirstUser); |
| } else { |
| FirstUser = U; |
| FirstUnwindPad = UnwindPad; |
| // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds |
| if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) && |
| getParentPad(UnwindPad) == getParentPad(&FPI)) |
| SiblingFuncletInfo[&FPI] = cast<Instruction>(U); |
| } |
| } |
| // Make sure we visit all uses of FPI, but for nested pads stop as |
| // soon as we know where they unwind to. |
| if (CurrentPad != &FPI) |
| break; |
| } |
| if (UnresolvedAncestorPad) { |
| if (CurrentPad == UnresolvedAncestorPad) { |
| // When CurrentPad is FPI itself, we don't mark it as resolved even if |
| // we've found an unwind edge that exits it, because we need to verify |
| // all direct uses of FPI. |
| assert(CurrentPad == &FPI); |
| continue; |
| } |
| // Pop off the worklist any nested pads that we've found an unwind |
| // destination for. The pads on the worklist are the uncles, |
| // great-uncles, etc. of CurrentPad. We've found an unwind destination |
| // for all ancestors of CurrentPad up to but not including |
| // UnresolvedAncestorPad. |
| Value *ResolvedPad = CurrentPad; |
| while (!Worklist.empty()) { |
| Value *UnclePad = Worklist.back(); |
| Value *AncestorPad = getParentPad(UnclePad); |
| // Walk ResolvedPad up the ancestor list until we either find the |
| // uncle's parent or the last resolved ancestor. |
| while (ResolvedPad != AncestorPad) { |
| Value *ResolvedParent = getParentPad(ResolvedPad); |
| if (ResolvedParent == UnresolvedAncestorPad) { |
| break; |
| } |
| ResolvedPad = ResolvedParent; |
| } |
| // If the resolved ancestor search didn't find the uncle's parent, |
| // then the uncle is not yet resolved. |
| if (ResolvedPad != AncestorPad) |
| break; |
| // This uncle is resolved, so pop it from the worklist. |
| Worklist.pop_back(); |
| } |
| } |
| } |
| |
| if (FirstUnwindPad) { |
| if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) { |
| BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest(); |
| Value *SwitchUnwindPad; |
| if (SwitchUnwindDest) |
| SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI(); |
| else |
| SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext()); |
| Check(SwitchUnwindPad == FirstUnwindPad, |
| "Unwind edges out of a catch must have the same unwind dest as " |
| "the parent catchswitch", |
| &FPI, FirstUser, CatchSwitch); |
| } |
| } |
| |
| visitInstruction(FPI); |
| } |
| |
| void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) { |
| BasicBlock *BB = CatchSwitch.getParent(); |
| |
| Function *F = BB->getParent(); |
| Check(F->hasPersonalityFn(), |
| "CatchSwitchInst needs to be in a function with a personality.", |
| &CatchSwitch); |
| |
| // The catchswitch instruction must be the first non-PHI instruction in the |
| // block. |
| Check(BB->getFirstNonPHI() == &CatchSwitch, |
| "CatchSwitchInst not the first non-PHI instruction in the block.", |
| &CatchSwitch); |
| |
| auto *ParentPad = CatchSwitch.getParentPad(); |
| Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad), |
| "CatchSwitchInst has an invalid parent.", ParentPad); |
| |
| if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) { |
| Instruction *I = UnwindDest->getFirstNonPHI(); |
| Check(I->isEHPad() && !isa<LandingPadInst>(I), |
| "CatchSwitchInst must unwind to an EH block which is not a " |
| "landingpad.", |
| &CatchSwitch); |
| |
| // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds |
| if (getParentPad(I) == ParentPad) |
| SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch; |
| } |
| |
| Check(CatchSwitch.getNumHandlers() != 0, |
| "CatchSwitchInst cannot have empty handler list", &CatchSwitch); |
| |
| for (BasicBlock *Handler : CatchSwitch.handlers()) { |
| Check(isa<CatchPadInst>(Handler->getFirstNonPHI()), |
| "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler); |
| } |
| |
| visitEHPadPredecessors(CatchSwitch); |
| visitTerminator(CatchSwitch); |
| } |
| |
| void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) { |
| Check(isa<CleanupPadInst>(CRI.getOperand(0)), |
| "CleanupReturnInst needs to be provided a CleanupPad", &CRI, |
| CRI.getOperand(0)); |
| |
| if (BasicBlock *UnwindDest = CRI.getUnwindDest()) { |
| Instruction *I = UnwindDest->getFirstNonPHI(); |
| Check(I->isEHPad() && !isa<LandingPadInst>(I), |
| "CleanupReturnInst must unwind to an EH block which is not a " |
| "landingpad.", |
| &CRI); |
| } |
| |
| visitTerminator(CRI); |
| } |
| |
| void Verifier::verifyDominatesUse(Instruction &I, unsigned i) { |
| Instruction *Op = cast<Instruction>(I.getOperand(i)); |
| // If the we have an invalid invoke, don't try to compute the dominance. |
| // We already reject it in the invoke specific checks and the dominance |
| // computation doesn't handle multiple edges. |
| if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) { |
| if (II->getNormalDest() == II->getUnwindDest()) |
| return; |
| } |
| |
| // Quick check whether the def has already been encountered in the same block. |
| // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI |
| // uses are defined to happen on the incoming edge, not at the instruction. |
| // |
| // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata) |
| // wrapping an SSA value, assert that we've already encountered it. See |
| // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp. |
| if (!isa<PHINode>(I) && InstsInThisBlock.count(Op)) |
| return; |
| |
| const Use &U = I.getOperandUse(i); |
| Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I); |
| } |
| |
| void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) { |
| Check(I.getType()->isPointerTy(), |
| "dereferenceable, dereferenceable_or_null " |
| "apply only to pointer types", |
| &I); |
| Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)), |
| "dereferenceable, dereferenceable_or_null apply only to load" |
| " and inttoptr instructions, use attributes for calls or invokes", |
| &I); |
| Check(MD->getNumOperands() == 1, |
| "dereferenceable, dereferenceable_or_null " |
| "take one operand!", |
| &I); |
| ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); |
| Check(CI && CI->getType()->isIntegerTy(64), |
| "dereferenceable, " |
| "dereferenceable_or_null metadata value must be an i64!", |
| &I); |
| } |
| |
| void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) { |
| Check(MD->getNumOperands() >= 2, |
| "!prof annotations should have no less than 2 operands", MD); |
| |
| // Check first operand. |
| Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD); |
| Check(isa<MDString>(MD->getOperand(0)), |
| "expected string with name of the !prof annotation", MD); |
| MDString *MDS = cast<MDString>(MD->getOperand(0)); |
| StringRef ProfName = MDS->getString(); |
| |
| // Check consistency of !prof branch_weights metadata. |
| if (ProfName.equals("branch_weights")) { |
| if (isa<InvokeInst>(&I)) { |
| Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3, |
| "Wrong number of InvokeInst branch_weights operands", MD); |
| } else { |
| unsigned ExpectedNumOperands = 0; |
| if (BranchInst *BI = dyn_cast<BranchInst>(&I)) |
| ExpectedNumOperands = BI->getNumSuccessors(); |
| else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) |
| ExpectedNumOperands = SI->getNumSuccessors(); |
| else if (isa<CallInst>(&I)) |
| ExpectedNumOperands = 1; |
| else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) |
| ExpectedNumOperands = IBI->getNumDestinations(); |
| else if (isa<SelectInst>(&I)) |
| ExpectedNumOperands = 2; |
| else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I)) |
| ExpectedNumOperands = CI->getNumSuccessors(); |
| else |
| CheckFailed("!prof branch_weights are not allowed for this instruction", |
| MD); |
| |
| Check(MD->getNumOperands() == 1 + ExpectedNumOperands, |
| "Wrong number of operands", MD); |
| } |
| for (unsigned i = 1; i < MD->getNumOperands(); ++i) { |
| auto &MDO = MD->getOperand(i); |
| Check(MDO, "second operand should not be null", MD); |
| Check(mdconst::dyn_extract<ConstantInt>(MDO), |
| "!prof brunch_weights operand is not a const int"); |
| } |
| } |
| } |
| |
| void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) { |
| assert(I.hasMetadata(LLVMContext::MD_DIAssignID)); |
| bool ExpectedInstTy = |
| isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I); |
| CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind", |
| I, MD); |
| // Iterate over the MetadataAsValue uses of the DIAssignID - these should |
| // only be found as DbgAssignIntrinsic operands. |
| if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) { |
| for (auto *User : AsValue->users()) { |
| CheckDI(isa<DbgAssignIntrinsic>(User), |
| "!DIAssignID should only be used by llvm.dbg.assign intrinsics", |
| MD, User); |
| // All of the dbg.assign intrinsics should be in the same function as I. |
| if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User)) |
| CheckDI(DAI->getFunction() == I.getFunction(), |
| "dbg.assign not in same function as inst", DAI, &I); |
| } |
| } |
| } |
| |
| void Verifier::visitCallStackMetadata(MDNode *MD) { |
| // Call stack metadata should consist of a list of at least 1 constant int |
| // (representing a hash of the location). |
| Check(MD->getNumOperands() >= 1, |
| "call stack metadata should have at least 1 operand", MD); |
| |
| for (const auto &Op : MD->operands()) |
| Check(mdconst::dyn_extract_or_null<ConstantInt>(Op), |
| "call stack metadata operand should be constant integer", Op); |
| } |
| |
| void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) { |
| Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I); |
| Check(MD->getNumOperands() >= 1, |
| "!memprof annotations should have at least 1 metadata operand " |
| "(MemInfoBlock)", |
| MD); |
| |
| // Check each MIB |
| for (auto &MIBOp : MD->operands()) { |
| MDNode *MIB = dyn_cast<MDNode>(MIBOp); |
| // The first operand of an MIB should be the call stack metadata. |
| // There rest of the operands should be MDString tags, and there should be |
| // at least one. |
| Check(MIB->getNumOperands() >= 2, |
| "Each !memprof MemInfoBlock should have at least 2 operands", MIB); |
| |
| // Check call stack metadata (first operand). |
| Check(MIB->getOperand(0) != nullptr, |
| "!memprof MemInfoBlock first operand should not be null", MIB); |
| Check(isa<MDNode>(MIB->getOperand(0)), |
| "!memprof MemInfoBlock first operand should be an MDNode", MIB); |
| MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0)); |
| visitCallStackMetadata(StackMD); |
| |
| // Check that remaining operands are MDString. |
| Check(llvm::all_of(llvm::drop_begin(MIB->operands()), |
| [](const MDOperand &Op) { return isa<MDString>(Op); }), |
| "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB); |
| } |
| } |
| |
| void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) { |
| Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I); |
| // Verify the partial callstack annotated from memprof profiles. This callsite |
| // is a part of a profiled allocation callstack. |
| visitCallStackMetadata(MD); |
| } |
| |
| void Verifier::visitAnnotationMetadata(MDNode *Annotation) { |
| Check(isa<MDTuple>(Annotation), "annotation must be a tuple"); |
| Check(Annotation->getNumOperands() >= 1, |
| "annotation must have at least one operand"); |
| for (const MDOperand &Op : Annotation->operands()) |
| Check(isa<MDString>(Op.get()), "operands must be strings"); |
| } |
| |
| void Verifier::visitAliasScopeMetadata(const MDNode *MD) { |
| unsigned NumOps = MD->getNumOperands(); |
| Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands", |
| MD); |
| Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)), |
| "first scope operand must be self-referential or string", MD); |
| if (NumOps == 3) |
| Check(isa<MDString>(MD->getOperand(2)), |
| "third scope operand must be string (if used)", MD); |
| |
| MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1)); |
| Check(Domain != nullptr, "second scope operand must be MDNode", MD); |
| |
| unsigned NumDomainOps = Domain->getNumOperands(); |
| Check(NumDomainOps >= 1 && NumDomainOps <= 2, |
| "domain must have one or two operands", Domain); |
| Check(Domain->getOperand(0).get() == Domain || |
| isa<MDString>(Domain->getOperand(0)), |
| "first domain operand must be self-referential or string", Domain); |
| if (NumDomainOps == 2) |
| Check(isa<MDString>(Domain->getOperand(1)), |
| "second domain operand must be string (if used)", Domain); |
| } |
| |
| void Verifier::visitAliasScopeListMetadata(const MDNode *MD) { |
| for (const MDOperand &Op : MD->operands()) { |
| const MDNode *OpMD = dyn_cast<MDNode>(Op); |
| Check(OpMD != nullptr, "scope list must consist of MDNodes", MD); |
| visitAliasScopeMetadata(OpMD); |
| } |
| } |
| |
| void Verifier::visitAccessGroupMetadata(const MDNode *MD) { |
| auto IsValidAccessScope = [](const MDNode *MD) { |
| return MD->getNumOperands() == 0 && MD->isDistinct(); |
| }; |
| |
| // It must be either an access scope itself... |
| if (IsValidAccessScope(MD)) |
| return; |
| |
| // ...or a list of access scopes. |
| for (const MDOperand &Op : MD->operands()) { |
| const MDNode *OpMD = dyn_cast<MDNode>(Op); |
| Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD); |
| Check(IsValidAccessScope(OpMD), |
| "Access scope list contains invalid access scope", MD); |
| } |
| } |
| |
| /// verifyInstruction - Verify that an instruction is well formed. |
| /// |
| void Verifier::visitInstruction(Instruction &I) { |
| BasicBlock *BB = I.getParent(); |
| Check(BB, "Instruction not embedded in basic block!", &I); |
| |
| if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential |
| for (User *U : I.users()) { |
| Check(U != (User *)&I || !DT.isReachableFromEntry(BB), |
| "Only PHI nodes may reference their own value!", &I); |
| } |
| } |
| |
| // Check that void typed values don't have names |
| Check(!I.getType()->isVoidTy() || !I.hasName(), |
| "Instruction has a name, but provides a void value!", &I); |
| |
| // Check that the return value of the instruction is either void or a legal |
| // value type. |
| Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(), |
| "Instruction returns a non-scalar type!", &I); |
| |
| // Check that the instruction doesn't produce metadata. Calls are already |
| // checked against the callee type. |
| Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I), |
| "Invalid use of metadata!", &I); |
| |
| // Check that all uses of the instruction, if they are instructions |
| // themselves, actually have parent basic blocks. If the use is not an |
| // instruction, it is an error! |
| for (Use &U : I.uses()) { |
| if (Instruction *Used = dyn_cast<Instruction>(U.getUser())) |
| Check(Used->getParent() != nullptr, |
| "Instruction referencing" |
| " instruction not embedded in a basic block!", |
| &I, Used); |
| else { |
| CheckFailed("Use of instruction is not an instruction!", U); |
| return; |
| } |
| } |
| |
| // Get a pointer to the call base of the instruction if it is some form of |
| // call. |
| const CallBase *CBI = dyn_cast<CallBase>(&I); |
| |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I); |
| |
| // Check to make sure that only first-class-values are operands to |
| // instructions. |
| if (!I.getOperand(i)->getType()->isFirstClassType()) { |
| Check(false, "Instruction operands must be first-class values!", &I); |
| } |
| |
| if (Function *F = dyn_cast<Function>(I.getOperand(i))) { |
| // This code checks whether the function is used as the operand of a |
| // clang_arc_attachedcall operand bundle. |
| auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI, |
| int Idx) { |
| return CBI && CBI->isOperandBundleOfType( |
| LLVMContext::OB_clang_arc_attachedcall, Idx); |
| }; |
| |
| // Check to make sure that the "address of" an intrinsic function is never |
| // taken. Ignore cases where the address of the intrinsic function is used |
| // as the argument of operand bundle "clang.arc.attachedcall" as those |
| // cases are handled in verifyAttachedCallBundle. |
| Check((!F->isIntrinsic() || |
| (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) || |
| IsAttachedCallOperand(F, CBI, i)), |
| "Cannot take the address of an intrinsic!", &I); |
| Check(!F->isIntrinsic() || isa<CallInst>(I) || |
| F->getIntrinsicID() == Intrinsic::donothing || |
| F->getIntrinsicID() == Intrinsic::seh_try_begin || |
| F->getIntrinsicID() == Intrinsic::seh_try_end || |
| F->getIntrinsicID() == Intrinsic::seh_scope_begin || |
| F->getIntrinsicID() == Intrinsic::seh_scope_end || |
| F->getIntrinsicID() == Intrinsic::coro_resume || |
| F->getIntrinsicID() == Intrinsic::coro_destroy || |
| F->getIntrinsicID() == |
| Intrinsic::experimental_patchpoint_void || |
| F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 || |
| F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint || |
| F->getIntrinsicID() == Intrinsic::wasm_rethrow || |
| IsAttachedCallOperand(F, CBI, i), |
| "Cannot invoke an intrinsic other than donothing, patchpoint, " |
| "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall", |
| &I); |
| Check(F->getParent() == &M, "Referencing function in another module!", &I, |
| &M, F, F->getParent()); |
| } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) { |
| Check(OpBB->getParent() == BB->getParent(), |
| "Referring to a basic block in another function!", &I); |
| } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) { |
| Check(OpArg->getParent() == BB->getParent(), |
| "Referring to an argument in another function!", &I); |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) { |
| Check(GV->getParent() == &M, "Referencing global in another module!", &I, |
| &M, GV, GV->getParent()); |
| } else if (isa<Instruction>(I.getOperand(i))) { |
| verifyDominatesUse(I, i); |
| } else if (isa<InlineAsm>(I.getOperand(i))) { |
| Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i), |
| "Cannot take the address of an inline asm!", &I); |
| } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) { |
| if (CE->getType()->isPtrOrPtrVectorTy()) { |
| // If we have a ConstantExpr pointer, we need to see if it came from an |
| // illegal bitcast. |
| visitConstantExprsRecursively(CE); |
| } |
| } |
| } |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) { |
| Check(I.getType()->isFPOrFPVectorTy(), |
| "fpmath requires a floating point result!", &I); |
| Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I); |
| if (ConstantFP *CFP0 = |
| mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) { |
| const APFloat &Accuracy = CFP0->getValueAPF(); |
| Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(), |
| "fpmath accuracy must have float type", &I); |
| Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(), |
| "fpmath accuracy not a positive number!", &I); |
| } else { |
| Check(false, "invalid fpmath accuracy!", &I); |
| } |
| } |
| |
| if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) { |
| Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I), |
| "Ranges are only for loads, calls and invokes!", &I); |
| visitRangeMetadata(I, Range, I.getType()); |
| } |
| |
| if (I.hasMetadata(LLVMContext::MD_invariant_group)) { |
| Check(isa<LoadInst>(I) || isa<StoreInst>(I), |
| "invariant.group metadata is only for loads and stores", &I); |
| } |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) { |
| Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types", |
| &I); |
| Check(isa<LoadInst>(I), |
| "nonnull applies only to load instructions, use attributes" |
| " for calls or invokes", |
| &I); |
| Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I); |
| } |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable)) |
| visitDereferenceableMetadata(I, MD); |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null)) |
| visitDereferenceableMetadata(I, MD); |
| |
| if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa)) |
| TBAAVerifyHelper.visitTBAAMetadata(I, TBAA); |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias)) |
| visitAliasScopeListMetadata(MD); |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope)) |
| visitAliasScopeListMetadata(MD); |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group)) |
| visitAccessGroupMetadata(MD); |
| |
| if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) { |
| Check(I.getType()->isPointerTy(), "align applies only to pointer types", |
| &I); |
| Check(isa<LoadInst>(I), |
| "align applies only to load instructions, " |
| "use attributes for calls or invokes", |
| &I); |
| Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I); |
| ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0)); |
| Check(CI && CI->getType()->isIntegerTy(64), |
| "align metadata value must be an i64!", &I); |
| uint64_t Align = CI->getZExtValue(); |
| Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!", |
| &I); |
| Check(Align <= Value::MaximumAlignment, |
| "alignment is larger that implementation defined limit", &I); |
| } |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof)) |
| visitProfMetadata(I, MD); |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof)) |
| visitMemProfMetadata(I, MD); |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite)) |
| visitCallsiteMetadata(I, MD); |
| |
| if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID)) |
| visitDIAssignIDMetadata(I, MD); |
| |
| if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation)) |
| visitAnnotationMetadata(Annotation); |
| |
| if (MDNode *N = I.getDebugLoc().getAsMDNode()) { |
| CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N); |
| visitMDNode(*N, AreDebugLocsAllowed::Yes); |
| } |
| |
| if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { |
| verifyFragmentExpression(*DII); |
| verifyNotEntryValue(*DII); |
| } |
| |
| SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| I.getAllMetadata(MDs); |
| for (auto Attachment : MDs) { |
| unsigned Kind = Attachment.first; |
| auto AllowLocs = |
| (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop) |
| ? AreDebugLocsAllowed::Yes |
| : AreDebugLocsAllowed::No; |
| visitMDNode(*Attachment.second, AllowLocs); |
| } |
| |
| InstsInThisBlock.insert(&I); |
| } |
| |
| /// Allow intrinsics to be verified in different ways. |
| void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) { |
| Function *IF = Call.getCalledFunction(); |
| Check(IF->isDeclaration(), "Intrinsic functions should never be defined!", |
| IF); |
| |
| // Verify that the intrinsic prototype lines up with what the .td files |
| // describe. |
| FunctionType *IFTy = IF->getFunctionType(); |
| bool IsVarArg = IFTy->isVarArg(); |
| |
| SmallVector<Intrinsic::IITDescriptor, 8> Table; |
| getIntrinsicInfoTableEntries(ID, Table); |
| ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; |
| |
| // Walk the descriptors to extract overloaded types. |
| SmallVector<Type *, 4> ArgTys; |
| Intrinsic::MatchIntrinsicTypesResult Res = |
| Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys); |
| Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet, |
| "Intrinsic has incorrect return type!", IF); |
| Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg, |
| "Intrinsic has incorrect argument type!", IF); |
| |
| // Verify if the intrinsic call matches the vararg property. |
| if (IsVarArg) |
| Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), |
| "Intrinsic was not defined with variable arguments!", IF); |
| else |
| Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef), |
| "Callsite was not defined with variable arguments!", IF); |
| |
| // All descriptors should be absorbed by now. |
| Check(TableRef.empty(), "Intrinsic has too few arguments!", IF); |
| |
| // Now that we have the intrinsic ID and the actual argument types (and we |
| // know they are legal for the intrinsic!) get the intrinsic name through the |
| // usual means. This allows us to verify the mangling of argument types into |
| // the name. |
| const std::string ExpectedName = |
| Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy); |
| Check(ExpectedName == IF->getName(), |
| "Intrinsic name not mangled correctly for type arguments! " |
| "Should be: " + |
| ExpectedName, |
| IF); |
| |
| // If the intrinsic takes MDNode arguments, verify that they are either global |
| // or are local to *this* function. |
| for (Value *V : Call.args()) { |
| if (auto *MD = dyn_cast<MetadataAsValue>(V)) |
| visitMetadataAsValue(*MD, Call.getCaller()); |
| if (auto *Const = dyn_cast<Constant>(V)) |
| Check(!Const->getType()->isX86_AMXTy(), |
| "const x86_amx is not allowed in argument!"); |
| } |
| |
| switch (ID) { |
| default: |
| break; |
| case Intrinsic::assume: { |
| for (auto &Elem : Call.bundle_op_infos()) { |
| unsigned ArgCount = Elem.End - Elem.Begin; |
| // Separate storage assumptions are special insofar as they're the only |
| // operand bundles allowed on assumes that aren't parameter attributes. |
| if (Elem.Tag->getKey() == "separate_storage") { |
| Check(ArgCount == 2, |
| "separate_storage assumptions should have 2 arguments", Call); |
| Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() && |
| Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(), |
| "arguments to separate_storage assumptions should be pointers", |
| Call); |
| return; |
| } |
| Check(Elem.Tag->getKey() == "ignore" || |
| Attribute::isExistingAttribute(Elem.Tag->getKey()), |
| "tags must be valid attribute names", Call); |
| Attribute::AttrKind Kind = |
| Attribute::getAttrKindFromName(Elem.Tag->getKey()); |
| if (Kind == Attribute::Alignment) { |
| Check(ArgCount <= 3 && ArgCount >= 2, |
| "alignment assumptions should have 2 or 3 arguments", Call); |
| Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(), |
| "first argument should be a pointer", Call); |
| Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(), |
| "second argument should be an integer", Call); |
| if (ArgCount == 3) |
| Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(), |
| "third argument should be an integer if present", Call); |
| return; |
| } |
| Check(ArgCount <= 2, "too many arguments", Call); |
| if (Kind == Attribute::None) |
| break; |
| if (Attribute::isIntAttrKind(Kind)) { |
| Check(ArgCount == 2, "this attribute should have 2 arguments", Call); |
| Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)), |
| "the second argument should be a constant integral value", Call); |
| } else if (Attribute::canUseAsParamAttr(Kind)) { |
| Check((ArgCount) == 1, "this attribute should have one argument", Call); |
| } else if (Attribute::canUseAsFnAttr(Kind)) { |
| Check((ArgCount) == 0, "this attribute has no argument", Call); |
| } |
| } |
| break; |
| } |
| case Intrinsic::coro_id: { |
| auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts(); |
| if (isa<ConstantPointerNull>(InfoArg)) |
| break; |
| auto *GV = dyn_cast<GlobalVariable>(InfoArg); |
| Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(), |
| "info argument of llvm.coro.id must refer to an initialized " |
| "constant"); |
| Constant *Init = GV->getInitializer(); |
| Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init), |
| "info argument of llvm.coro.id must refer to either a struct or " |
| "an array"); |
| break; |
| } |
| case Intrinsic::is_fpclass: { |
| const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1)); |
| Check((TestMask->getZExtValue() & ~fcAllFlags) == 0, |
| "unsupported bits for llvm.is.fpclass test mask"); |
| break; |
| } |
| case Intrinsic::fptrunc_round: { |
| // Check the rounding mode |
| Metadata *MD = nullptr; |
| auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1)); |
| if (MAV) |
| MD = MAV->getMetadata(); |
| |
| Check(MD != nullptr, "missing rounding mode argument", Call); |
| |
| Check(isa<MDString>(MD), |
| ("invalid value for llvm.fptrunc.round metadata operand" |
| " (the operand should be a string)"), |
| MD); |
| |
| std::optional<RoundingMode> RoundMode = |
| convertStrToRoundingMode(cast<MDString>(MD)->getString()); |
| Check(RoundMode && *RoundMode != RoundingMode::Dynamic, |
| "unsupported rounding mode argument", Call); |
| break; |
| } |
| #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: |
| #include "llvm/IR/VPIntrinsics.def" |
| visitVPIntrinsic(cast<VPIntrinsic>(Call)); |
| break; |
| #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \ |
| case Intrinsic::INTRINSIC: |
| #include "llvm/IR/ConstrainedOps.def" |
| visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_declare: // llvm.dbg.declare |
| Check(isa<MetadataAsValue>(Call.getArgOperand(0)), |
| "invalid llvm.dbg.declare intrinsic call 1", Call); |
| visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_addr: // llvm.dbg.addr |
| visitDbgIntrinsic("addr", cast<DbgVariableIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_value: // llvm.dbg.value |
| visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_assign: // llvm.dbg.assign |
| visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call)); |
| break; |
| case Intrinsic::dbg_label: // llvm.dbg.label |
| visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call)); |
| break; |
| case Intrinsic::memcpy: |
| case Intrinsic::memcpy_inline: |
| case Intrinsic::memmove: |
| case Intrinsic::memset: |
| case Intrinsic::memset_inline: { |
| break; |
| } |
| case Intrinsic::memcpy_element_unordered_atomic: |
| case Intrinsic::memmove_element_unordered_atomic: |
| case Intrinsic::memset_element_unordered_atomic: { |
| const auto *AMI = cast<AtomicMemIntrinsic>(&Call); |
| |
| ConstantInt *ElementSizeCI = |
| cast<ConstantInt>(AMI->getRawElementSizeInBytes()); |
| const APInt &ElementSizeVal = ElementSizeCI->getValue(); |
| Check(ElementSizeVal.isPowerOf2(), |
| "element size of the element-wise atomic memory intrinsic " |
| "must be a power of 2", |
| Call); |
| |
| auto IsValidAlignment = [&](MaybeAlign Alignment) { |
| return Alignment && ElementSizeVal.ule(Alignment->value()); |
| }; |
| Check(IsValidAlignment(AMI->getDestAlign()), |
| "incorrect alignment of the destination argument", Call); |
| if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) { |
| Check(IsValidAlignment(AMT->getSourceAlign()), |
| "incorrect alignment of the source argument", Call); |
| } |
| break; |
| } |
| case Intrinsic::call_preallocated_setup: { |
| auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0)); |
| Check(NumArgs != nullptr, |
| "llvm.call.preallocated.setup argument must be a constant"); |
| bool FoundCall = false; |
| for (User *U : Call.users()) { |
| auto *UseCall = dyn_cast<CallBase>(U); |
| Check(UseCall != nullptr, |
| "Uses of llvm.call.preallocated.setup must be calls"); |
| const Function *Fn = UseCall->getCalledFunction(); |
| if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) { |
| auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1)); |
| Check(AllocArgIndex != nullptr, |
| "llvm.call.preallocated.alloc arg index must be a constant"); |
| auto AllocArgIndexInt = AllocArgIndex->getValue(); |
| Check(AllocArgIndexInt.sge(0) && |
| AllocArgIndexInt.slt(NumArgs->getValue()), |
| "llvm.call.preallocated.alloc arg index must be between 0 and " |
| "corresponding " |
| "llvm.call.preallocated.setup's argument count"); |
| } else if (Fn && Fn->getIntrinsicID() == |
| Intrinsic::call_preallocated_teardown) { |
| // nothing to do |
| } else { |
| Check(!FoundCall, "Can have at most one call corresponding to a " |
| "llvm.call.preallocated.setup"); |
| FoundCall = true; |
| size_t NumPreallocatedArgs = 0; |
| for (unsigned i = 0; i < UseCall->arg_size(); i++) { |
| if (UseCall->paramHasAttr(i, Attribute::Preallocated)) { |
| ++NumPreallocatedArgs; |
| } |
| } |
| Check(NumPreallocatedArgs != 0, |
| "cannot use preallocated intrinsics on a call without " |
| "preallocated arguments"); |
| Check(NumArgs->equalsInt(NumPreallocatedArgs), |
| "llvm.call.preallocated.setup arg size must be equal to number " |
| "of preallocated arguments " |
| "at call site", |
| Call, *UseCall); |
| // getOperandBundle() cannot be called if more than one of the operand |
| // bundle exists. There is already a check elsewhere for this, so skip |
| // here if we see more than one. |
| if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) > |
| 1) { |
| return; |
| } |
| auto PreallocatedBundle = |
| UseCall->getOperandBundle(LLVMContext::OB_preallocated); |
| Check(PreallocatedBundle, |
| "Use of llvm.call.preallocated.setup outside intrinsics " |
| "must be in \"preallocated\" operand bundle"); |
| Check(PreallocatedBundle->Inputs.front().get() == &Call, |
| "preallocated bundle must have token from corresponding " |
| "llvm.call.preallocated.setup"); |
| } |
| } |
| break; |
| } |
| case Intrinsic::call_preallocated_arg: { |
| auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); |
| Check(Token && Token->getCalledFunction()->getIntrinsicID() == |
| Intrinsic::call_preallocated_setup, |
| "llvm.call.preallocated.arg token argument must be a " |
| "llvm.call.preallocated.setup"); |
| Check(Call.hasFnAttr(Attribute::Preallocated), |
| "llvm.call.preallocated.arg must be called with a \"preallocated\" " |
| "call site attribute"); |
| break; |
| } |
| case Intrinsic::call_preallocated_teardown: { |
| auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0)); |
| Check(Token && Token->getCalledFunction()->getIntrinsicID() == |
| Intrinsic::call_preallocated_setup, |
| "llvm.call.preallocated.teardown token argument must be a " |
| "llvm.call.preallocated.setup"); |
| break; |
| } |
| case Intrinsic::gcroot: |
| case Intrinsic::gcwrite: |
| case Intrinsic::gcread: |
| if (ID == Intrinsic::gcroot) { |
| AllocaInst *AI = |
| dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts()); |
| Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call); |
| Check(isa<Constant>(Call.getArgOperand(1)), |
| "llvm.gcroot parameter #2 must be a constant.", Call); |
| if (!AI->getAllocatedType()->isPointerTy()) { |
| Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)), |
| "llvm.gcroot parameter #1 must either be a pointer alloca, " |
| "or argument #2 must be a non-null constant.", |
| Call); |
| } |
| } |
| |
| Check(Call.getParent()->getParent()->hasGC(), |
| "Enclosing function does not use GC.", Call); |
| break; |
| case Intrinsic::init_trampoline: |
| Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()), |
| "llvm.init_trampoline parameter #2 must resolve to a function.", |
| Call); |
| break; |
| case Intrinsic::prefetch: |
| Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, |
| "rw argument to llvm.prefetch must be 0-1", Call); |
| Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, |
| "locality argument to llvm.prefetch must be 0-4", Call); |
| Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, |
| "cache type argument to llvm.prefetch must be 0-1", Call); |
| break; |
| case Intrinsic::stackprotector: |
| Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()), |
| "llvm.stackprotector parameter #2 must resolve to an alloca.", Call); |
| break; |
| case Intrinsic::localescape: { |
| BasicBlock *BB = Call.getParent(); |
| Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block", |
| Call); |
| Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function", |
| Call); |
| for (Value *Arg : Call.args()) { |
| if (isa<ConstantPointerNull>(Arg)) |
| continue; // Null values are allowed as placeholders. |
| auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); |
| Check(AI && AI->isStaticAlloca(), |
| "llvm.localescape only accepts static allocas", Call); |
| } |
| FrameEscapeInfo[BB->getParent()].first = Call.arg_size(); |
| SawFrameEscape = true; |
| break; |
| } |
| case Intrinsic::localrecover: { |
| Value *FnArg = Call.getArgOperand(0)->stripPointerCasts(); |
| Function *Fn = dyn_cast<Function>(FnArg); |
| Check(Fn && !Fn->isDeclaration(), |
| "llvm.localrecover first " |
| "argument must be function defined in this module", |
| Call); |
| auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2)); |
| auto &Entry = FrameEscapeInfo[Fn]; |
| Entry.second = unsigned( |
| std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1)); |
| break; |
| } |
| |
| case Intrinsic::experimental_gc_statepoint: |
| if (auto *CI = dyn_cast<CallInst>(&Call)) |
| Check(!CI->isInlineAsm(), |
| "gc.statepoint support for inline assembly unimplemented", CI); |
| Check(Call.getParent()->getParent()->hasGC(), |
| "Enclosing function does not use GC.", Call); |
| |
| verifyStatepoint(Call); |
| break; |
| case Intrinsic::experimental_gc_result: { |
| Check(Call.getParent()->getParent()->hasGC(), |
| "Enclosing function does not use GC.", Call); |
| |
| auto *Statepoint = Call.getArgOperand(0); |
| if (isa<UndefValue>(Statepoint)) |
| break; |
| |
| // Are we tied to a statepoint properly? |
| const auto *StatepointCall = dyn_cast<CallBase>(Statepoint); |
| const Function *StatepointFn = |
| StatepointCall ? StatepointCall->getCalledFunction() : nullptr; |
| Check(StatepointFn && StatepointFn->isDeclaration() && |
| StatepointFn->getIntrinsicID() == |
| Intrinsic::experimental_gc_statepoint, |
| "gc.result operand #1 must be from a statepoint", Call, |
| Call.getArgOperand(0)); |
| |
| // Check that result type matches wrapped callee. |
| auto *TargetFuncType = |
| cast<FunctionType>(StatepointCall->getParamElementType(2)); |
| Check(Call.getType() == TargetFuncType->getReturnType(), |
| "gc.result result type does not match wrapped callee", Call); |
| break; |
| } |
| case Intrinsic::experimental_gc_relocate: { |
| Check(Call.arg_size() == 3, "wrong number of arguments", Call); |
| |
| Check(isa<PointerType>(Call.getType()->getScalarType()), |
| "gc.relocate must return a pointer or a vector of pointers", Call); |
| |
| // Check that this relocate is correctly tied to the statepoint |
| |
| // This is case for relocate on the unwinding path of an invoke statepoint |
| if (LandingPadInst *LandingPad = |
| dyn_cast<LandingPadInst>(Call.getArgOperand(0))) { |
| |
| const BasicBlock *InvokeBB = |
| LandingPad->getParent()->getUniquePredecessor(); |
| |
| // Landingpad relocates should have only one predecessor with invoke |
| // statepoint terminator |
| Check(InvokeBB, "safepoints should have unique landingpads", |
| LandingPad->getParent()); |
| Check(InvokeBB->getTerminator(), "safepoint block should be well formed", |
| InvokeBB); |
| Check(isa<GCStatepointInst>(InvokeBB->getTerminator()), |
| "gc relocate should be linked to a statepoint", InvokeBB); |
| } else { |
| // In all other cases relocate should be tied to the statepoint directly. |
| // This covers relocates on a normal return path of invoke statepoint and |
| // relocates of a call statepoint. |
| auto *Token = Call.getArgOperand(0); |
| Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token), |
| "gc relocate is incorrectly tied to the statepoint", Call, Token); |
| } |
| |
| // Verify rest of the relocate arguments. |
| const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint(); |
| |
| // Both the base and derived must be piped through the safepoint. |
| Value *Base = Call.getArgOperand(1); |
| Check(isa<ConstantInt>(Base), |
| "gc.relocate operand #2 must be integer offset", Call); |
| |
| Value *Derived = Call.getArgOperand(2); |
| Check(isa<ConstantInt>(Derived), |
| "gc.relocate operand #3 must be integer offset", Call); |
| |
| const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue(); |
| const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue(); |
| |
| // Check the bounds |
| if (isa<UndefValue>(StatepointCall)) |
| break; |
| if (auto Opt = cast<GCStatepointInst>(StatepointCall) |
| .getOperandBundle(LLVMContext::OB_gc_live)) { |
| Check(BaseIndex < Opt->Inputs.size(), |
| "gc.relocate: statepoint base index out of bounds", Call); |
| Check(DerivedIndex < Opt->Inputs.size(), |
| "gc.relocate: statepoint derived index out of bounds", Call); |
| } |
| |
| // Relocated value must be either a pointer type or vector-of-pointer type, |
| // but gc_relocate does not need to return the same pointer type as the |
| // relocated pointer. It can be casted to the correct type later if it's |
| // desired. However, they must have the same address space and 'vectorness' |
| GCRelocateInst &Relocate = cast<GCRelocateInst>(Call); |
| auto *ResultType = Call.getType(); |
| auto *DerivedType = Relocate.getDerivedPtr()->getType(); |
| auto *BaseType = Relocate.getBasePtr()->getType(); |
| |
| Check(BaseType->isPtrOrPtrVectorTy(), |
| "gc.relocate: relocated value must be a pointer", Call); |
| Check(DerivedType->isPtrOrPtrVectorTy(), |
| "gc.relocate: relocated value must be a pointer", Call); |
| |
| Check(ResultType->isVectorTy() == DerivedType->isVectorTy(), |
| "gc.relocate: vector relocates to vector and pointer to pointer", |
| Call); |
| Check( |
| ResultType->getPointerAddressSpace() == |
| DerivedType->getPointerAddressSpace(), |
| "gc.relocate: relocating a pointer shouldn't change its address space", |
| Call); |
| |
| auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC()); |
| Check(GC, "gc.relocate: calling function must have GCStrategy", |
| Call.getFunction()); |
| if (GC) { |
| auto isGCPtr = [&GC](Type *PTy) { |
| return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true); |
| }; |
| Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call); |
| Check(isGCPtr(BaseType), |
| "gc.relocate: relocated value must be a gc pointer", Call); |
| Check(isGCPtr(DerivedType), |
| "gc.relocate: relocated value must be a gc pointer", Call); |
| } |
| break; |
| } |
| case Intrinsic::eh_exceptioncode: |
| case Intrinsic::eh_exceptionpointer: { |
| Check(isa<CatchPadInst>(Call.getArgOperand(0)), |
| "eh.exceptionpointer argument must be a catchpad", Call); |
| break; |
| } |
| case Intrinsic::get_active_lane_mask: { |
| Check(Call.getType()->isVectorTy(), |
| "get_active_lane_mask: must return a " |
| "vector", |
| Call); |
| auto *ElemTy = Call.getType()->getScalarType(); |
| Check(ElemTy->isIntegerTy(1), |
| "get_active_lane_mask: element type is not " |
| "i1", |
| Call); |
| break; |
| } |
| case Intrinsic::masked_load: { |
| Check(Call.getType()->isVectorTy(), "masked_load: must return a vector", |
| Call); |
| |
| Value *Ptr = Call.getArgOperand(0); |
| ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1)); |
| Value *Mask = Call.getArgOperand(2); |
| Value *PassThru = Call.getArgOperand(3); |
| Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector", |
| Call); |
| Check(Alignment->getValue().isPowerOf2(), |
| "masked_load: alignment must be a power of 2", Call); |
| |
| PointerType *PtrTy = cast<PointerType>(Ptr->getType()); |
| Check(PtrTy->isOpaqueOrPointeeTypeMatches(Call.getType()), |
| "masked_load: return must match pointer type", Call); |
| Check(PassThru->getType() == Call.getType(), |
| "masked_load: pass through and return type must match", Call); |
| Check(cast<VectorType>(Mask->getType())->getElementCount() == |
| cast<VectorType>(Call.getType())->getElementCount(), |
| "masked_load: vector mask must be same length as return", Call); |
| break; |
| } |
| case Intrinsic::masked_store: { |
| Value *Val = Call.getArgOperand(0); |
| Value *Ptr = Call.getArgOperand(1); |
| ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2)); |
| Value *Mask = Call.getArgOperand(3); |
| Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector", |
| Call); |
| Check(Alignment->getValue().isPowerOf2(), |
| "masked_store: alignment must be a power of 2", Call); |
| |
| PointerType *PtrTy = cast<PointerType>(Ptr->getType()); |
| Check(PtrTy->isOpaqueOrPointeeTypeMatches(Val->getType()), |
| "masked_store: storee must match pointer type", Call); |
| Check(cast<VectorType>(Mask->getType())->getElementCount() == |
| cast<VectorType>(Val->getType())->getElementCount(), |
| "masked_store: vector mask must be same length as value", Call); |
| break; |
| } |
| |
| case Intrinsic::masked_gather: { |
| const APInt &Alignment = |
| cast<ConstantInt>(Call.getArgOperand(1))->getValue(); |
| Check(Alignment.isZero() || Alignment.isPowerOf2(), |
| "masked_gather: alignment must be 0 or a power of 2", Call); |
| break; |
| } |
| case Intrinsic::masked_scatter: { |
| const APInt &Alignment = |
| cast<ConstantInt>(Call.getArgOperand(2))->getValue(); |
| Check(Alignment.isZero() || Alignment.isPowerOf2(), |
| "masked_scatter: alignment must be 0 or a power of 2", Call); |
| break; |
| } |
| |
| case Intrinsic::experimental_guard: { |
| Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call); |
| Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, |
| "experimental_guard must have exactly one " |
| "\"deopt\" operand bundle"); |
| break; |
| } |
| |
| case Intrinsic::experimental_deoptimize: { |
| Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked", |
| Call); |
| Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1, |
| "experimental_deoptimize must have exactly one " |
| "\"deopt\" operand bundle"); |
| Check(Call.getType() == Call.getFunction()->getReturnType(), |
| "experimental_deoptimize return type must match caller return type"); |
| |
| if (isa<CallInst>(Call)) { |
| auto *RI = dyn_cast<ReturnInst>(Call.getNextNode()); |
| Check(RI, |
| "calls to experimental_deoptimize must be followed by a return"); |
| |
| if (!Call.getType()->isVoidTy() && RI) |
| Check(RI->getReturnValue() == &Call, |
| "calls to experimental_deoptimize must be followed by a return " |
| "of the value computed by experimental_deoptimize"); |
| } |
| |
| break; |
| } |
| case Intrinsic::vector_reduce_and: |
| case Intrinsic::vector_reduce_or: |
| case Intrinsic::vector_reduce_xor: |
| case Intrinsic::vector_reduce_add: |
| case Intrinsic::vector_reduce_mul: |
| case Intrinsic::vector_reduce_smax: |
| case Intrinsic::vector_reduce_smin: |
| case Intrinsic::vector_reduce_umax: |
| case Intrinsic::vector_reduce_umin: { |
| Type *ArgTy = Call.getArgOperand(0)->getType(); |
| Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(), |
| "Intrinsic has incorrect argument type!"); |
| break; |
| } |
| case Intrinsic::vector_reduce_fmax: |
| case Intrinsic::vector_reduce_fmin: { |
| Type *ArgTy = Call.getArgOperand(0)->getType(); |
| Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), |
| "Intrinsic has incorrect argument type!"); |
| break; |
| } |
| case Intrinsic::vector_reduce_fadd: |
| case Intrinsic::vector_reduce_fmul: { |
| // Unlike the other reductions, the first argument is a start value. The |
| // second argument is the vector to be reduced. |
| Type *ArgTy = Call.getArgOperand(1)->getType(); |
| Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(), |
| "Intrinsic has incorrect argument type!"); |
| break; |
| } |
| case Intrinsic::smul_fix: |
| case Intrinsic::smul_fix_sat: |
| case Intrinsic::umul_fix: |
| case Intrinsic::umul_fix_sat: |
| case Intrinsic::sdiv_fix: |
| case Intrinsic::sdiv_fix_sat: |
| case Intrinsic::udiv_fix: |
| case Intrinsic::udiv_fix_sat: { |
| Value *Op1 = Call.getArgOperand(0); |
| Value *Op2 = Call.getArgOperand(1); |
| Check(Op1->getType()->isIntOrIntVectorTy(), |
| "first operand of [us][mul|div]_fix[_sat] must be an int type or " |
| "vector of ints"); |
| Check(Op2->getType()->isIntOrIntVectorTy(), |
| "second operand of [us][mul|div]_fix[_sat] must be an int type or " |
| "vector of ints"); |
| |
| auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2)); |
| Check(Op3->getType()->getBitWidth() <= 32, |
| "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits"); |
| |
| if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat || |
| ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) { |
| Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(), |
| "the scale of s[mul|div]_fix[_sat] must be less than the width of " |
| "the operands"); |
| } else { |
| Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(), |
| "the scale of u[mul|div]_fix[_sat] must be less than or equal " |
| "to the width of the operands"); |
| } |
| break; |
| } |
| case Intrinsic::lround: |
| case Intrinsic::llround: |
| case Intrinsic::lrint: |
| case Intrinsic::llrint: { |
| Type *ValTy = Call.getArgOperand(0)->getType(); |
| Type *ResultTy = Call.getType(); |
| Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), |
| "Intrinsic does not support vectors", &Call); |
| break; |
| } |
| case Intrinsic::bswap: { |
| Type *Ty = Call.getType(); |
| unsigned Size = Ty->getScalarSizeInBits(); |
| Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call); |
| break; |
| } |
| case Intrinsic::invariant_start: { |
| ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0)); |
| Check(InvariantSize && |
| (!InvariantSize->isNegative() || InvariantSize->isMinusOne()), |
| "invariant_start parameter must be -1, 0 or a positive number", |
| &Call); |
| break; |
| } |
| case Intrinsic::matrix_multiply: |
| case Intrinsic::matrix_transpose: |
| case Intrinsic::matrix_column_major_load: |
| case Intrinsic::matrix_column_major_store: { |
| Function *IF = Call.getCalledFunction(); |
| ConstantInt *Stride = nullptr; |
| ConstantInt *NumRows; |
| ConstantInt *NumColumns; |
| VectorType *ResultTy; |
| Type *Op0ElemTy = nullptr; |
| Type *Op1ElemTy = nullptr; |
| switch (ID) { |
| case Intrinsic::matrix_multiply: |
| NumRows = cast<ConstantInt>(Call.getArgOperand(2)); |
| NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); |
| ResultTy = cast<VectorType>(Call.getType()); |
| Op0ElemTy = |
| cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); |
| Op1ElemTy = |
| cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType(); |
| break; |
| case Intrinsic::matrix_transpose: |
| NumRows = cast<ConstantInt>(Call.getArgOperand(1)); |
| NumColumns = cast<ConstantInt>(Call.getArgOperand(2)); |
| ResultTy = cast<VectorType>(Call.getType()); |
| Op0ElemTy = |
| cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); |
| break; |
| case Intrinsic::matrix_column_major_load: { |
| Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1)); |
| NumRows = cast<ConstantInt>(Call.getArgOperand(3)); |
| NumColumns = cast<ConstantInt>(Call.getArgOperand(4)); |
| ResultTy = cast<VectorType>(Call.getType()); |
| |
| PointerType *Op0PtrTy = |
| cast<PointerType>(Call.getArgOperand(0)->getType()); |
| if (!Op0PtrTy->isOpaque()) |
| Op0ElemTy = Op0PtrTy->getNonOpaquePointerElementType(); |
| break; |
| } |
| case Intrinsic::matrix_column_major_store: { |
| Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2)); |
| NumRows = cast<ConstantInt>(Call.getArgOperand(4)); |
| NumColumns = cast<ConstantInt>(Call.getArgOperand(5)); |
| ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType()); |
| Op0ElemTy = |
| cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType(); |
| |
| PointerType *Op1PtrTy = |
| cast<PointerType>(Call.getArgOperand(1)->getType()); |
| if (!Op1PtrTy->isOpaque()) |
| Op1ElemTy = Op1PtrTy->getNonOpaquePointerElementType(); |
| break; |
| } |
| default: |
| llvm_unreachable("unexpected intrinsic"); |
| } |
| |
| Check(ResultTy->getElementType()->isIntegerTy() || |
| ResultTy->getElementType()->isFloatingPointTy(), |
| "Result type must be an integer or floating-point type!", IF); |
| |
| if (Op0ElemTy) |
| Check(ResultTy->getElementType() == Op0ElemTy, |
| "Vector element type mismatch of the result and first operand " |
| "vector!", |
| IF); |
| |
| if (Op1ElemTy) |
| Check(ResultTy->getElementType() == Op1ElemTy, |
| "Vector element type mismatch of the result and second operand " |
| "vector!", |
| IF); |
| |
| Check(cast<FixedVectorType>(ResultTy)->getNumElements() == |
| NumRows->getZExtValue() * NumColumns->getZExtValue(), |
| "Result of a matrix operation does not fit in the returned vector!"); |
| |
| if (Stride) |
| Check(Stride->getZExtValue() >= NumRows->getZExtValue(), |
| "Stride must be greater or equal than the number of rows!", IF); |
| |
| break; |
| } |
| case Intrinsic::experimental_vector_splice: { |
| VectorType *VecTy = cast<VectorType>(Call.getType()); |
| int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue(); |
| int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue(); |
| if (Call.getParent() && Call.getParent()->getParent()) { |
| AttributeList Attrs = Call.getParent()->getParent()->getAttributes(); |
| if (Attrs.hasFnAttr(Attribute::VScaleRange)) |
| KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin(); |
| } |
| Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) || |
| (Idx >= 0 && Idx < KnownMinNumElements), |
| "The splice index exceeds the range [-VL, VL-1] where VL is the " |
| "known minimum number of elements in the vector. For scalable " |
| "vectors the minimum number of elements is determined from " |
| "vscale_range.", |
| &Call); |
| break; |
| } |
| case Intrinsic::experimental_stepvector: { |
| VectorType *VecTy = dyn_cast<VectorType>(Call.getType()); |
| Check(VecTy && VecTy->getScalarType()->isIntegerTy() && |
| VecTy->getScalarSizeInBits() >= 8, |
| "experimental_stepvector only supported for vectors of integers " |
| "with a bitwidth of at least 8.", |
| &Call); |
| break; |
| } |
| case Intrinsic::vector_insert: { |
| Value *Vec = Call.getArgOperand(0); |
| Value *SubVec = Call.getArgOperand(1); |
| Value *Idx = Call.getArgOperand(2); |
| unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); |
| |
| VectorType *VecTy = cast<VectorType>(Vec->getType()); |
| VectorType *SubVecTy = cast<VectorType>(SubVec->getType()); |
| |
| ElementCount VecEC = VecTy->getElementCount(); |
| ElementCount SubVecEC = SubVecTy->getElementCount(); |
| Check(VecTy->getElementType() == SubVecTy->getElementType(), |
| "vector_insert parameters must have the same element " |
| "type.", |
| &Call); |
| Check(IdxN % SubVecEC.getKnownMinValue() == 0, |
| "vector_insert index must be a constant multiple of " |
| "the subvector's known minimum vector length."); |
| |
| // If this insertion is not the 'mixed' case where a fixed vector is |
| // inserted into a scalable vector, ensure that the insertion of the |
| // subvector does not overrun the parent vector. |
| if (VecEC.isScalable() == SubVecEC.isScalable()) { |
| Check(IdxN < VecEC.getKnownMinValue() && |
| IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(), |
| "subvector operand of vector_insert would overrun the " |
| "vector being inserted into."); |
| } |
| break; |
| } |
| case Intrinsic::vector_extract: { |
| Value *Vec = Call.getArgOperand(0); |
| Value *Idx = Call.getArgOperand(1); |
| unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); |
| |
| VectorType *ResultTy = cast<VectorType>(Call.getType()); |
| VectorType *VecTy = cast<VectorType>(Vec->getType()); |
| |
| ElementCount VecEC = VecTy->getElementCount(); |
| ElementCount ResultEC = ResultTy->getElementCount(); |
| |
| Check(ResultTy->getElementType() == VecTy->getElementType(), |
| "vector_extract result must have the same element " |
| "type as the input vector.", |
| &Call); |
| Check(IdxN % ResultEC.getKnownMinValue() == 0, |
| "vector_extract index must be a constant multiple of " |
| "the result type's known minimum vector length."); |
| |
| // If this extraction is not the 'mixed' case where a fixed vector is is |
| // extracted from a scalable vector, ensure that the extraction does not |
| // overrun the parent vector. |
| if (VecEC.isScalable() == ResultEC.isScalable()) { |
| Check(IdxN < VecEC.getKnownMinValue() && |
| IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(), |
| "vector_extract would overrun."); |
| } |
| break; |
| } |
| case Intrinsic::experimental_noalias_scope_decl: { |
| NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call)); |
| break; |
| } |
| case Intrinsic::preserve_array_access_index: |
| case Intrinsic::preserve_struct_access_index: |
| case Intrinsic::aarch64_ldaxr: |
| case Intrinsic::aarch64_ldxr: |
| case Intrinsic::arm_ldaex: |
| case Intrinsic::arm_ldrex: { |
| Type *ElemTy = Call.getParamElementType(0); |
| Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.", |
| &Call); |
| break; |
| } |
| case Intrinsic::aarch64_stlxr: |
| case Intrinsic::aarch64_stxr: |
| case Intrinsic::arm_stlex: |
| case Intrinsic::arm_strex: { |
| Type *ElemTy = Call.getAttributes().getParamElementType(1); |
| Check(ElemTy, |
| "Intrinsic requires elementtype attribute on second argument.", |
| &Call); |
| break; |
| } |
| case Intrinsic::aarch64_prefetch: { |
| Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2, |
| "write argument to llvm.aarch64.prefetch must be 0 or 1", Call); |
| Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4, |
| "target argument to llvm.aarch64.prefetch must be 0-3", Call); |
| Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2, |
| "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call); |
| Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2, |
| "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call); |
| break; |
| } |
| }; |
| } |
| |
| /// Carefully grab the subprogram from a local scope. |
| /// |
| /// This carefully grabs the subprogram from a local scope, avoiding the |
| /// built-in assertions that would typically fire. |
| static DISubprogram *getSubprogram(Metadata *LocalScope) { |
| if (!LocalScope) |
| return nullptr; |
| |
| if (auto *SP = dyn_cast<DISubprogram>(LocalScope)) |
| return SP; |
| |
| if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope)) |
| return getSubprogram(LB->getRawScope()); |
| |
| // Just return null; broken scope chains are checked elsewhere. |
| assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope"); |
| return nullptr; |
| } |
| |
| void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) { |
| if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) { |
| auto *RetTy = cast<VectorType>(VPCast->getType()); |
| auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType()); |
| Check(RetTy->getElementCount() == ValTy->getElementCount(), |
| "VP cast intrinsic first argument and result vector lengths must be " |
| "equal", |
| *VPCast); |
| |
| switch (VPCast->getIntrinsicID()) { |
| default: |
| llvm_unreachable("Unknown VP cast intrinsic"); |
| case Intrinsic::vp_trunc: |
| Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), |
| "llvm.vp.trunc intrinsic first argument and result element type " |
| "must be integer", |
| *VPCast); |
| Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), |
| "llvm.vp.trunc intrinsic the bit size of first argument must be " |
| "larger than the bit size of the return type", |
| *VPCast); |
| break; |
| case Intrinsic::vp_zext: |
| case Intrinsic::vp_sext: |
| Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(), |
| "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result " |
| "element type must be integer", |
| *VPCast); |
| Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), |
| "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first " |
| "argument must be smaller than the bit size of the return type", |
| *VPCast); |
| break; |
| case Intrinsic::vp_fptoui: |
| case Intrinsic::vp_fptosi: |
| Check( |
| RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(), |
| "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element " |
| "type must be floating-point and result element type must be integer", |
| *VPCast); |
| break; |
| case Intrinsic::vp_uitofp: |
| case Intrinsic::vp_sitofp: |
| Check( |
| RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(), |
| "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element " |
| "type must be integer and result element type must be floating-point", |
| *VPCast); |
| break; |
| case Intrinsic::vp_fptrunc: |
| Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), |
| "llvm.vp.fptrunc intrinsic first argument and result element type " |
| "must be floating-point", |
| *VPCast); |
| Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(), |
| "llvm.vp.fptrunc intrinsic the bit size of first argument must be " |
| "larger than the bit size of the return type", |
| *VPCast); |
| break; |
| case Intrinsic::vp_fpext: |
| Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(), |
| "llvm.vp.fpext intrinsic first argument and result element type " |
| "must be floating-point", |
| *VPCast); |
| Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(), |
| "llvm.vp.fpext intrinsic the bit size of first argument must be " |
| "smaller than the bit size of the return type", |
| *VPCast); |
| break; |
| case Intrinsic::vp_ptrtoint: |
| Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(), |
| "llvm.vp.ptrtoint intrinsic first argument element type must be " |
| "pointer and result element type must be integer", |
| *VPCast); |
| break; |
| case Intrinsic::vp_inttoptr: |
| Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(), |
| "llvm.vp.inttoptr intrinsic first argument element type must be " |
| "integer and result element type must be pointer", |
| *VPCast); |
| break; |
| } |
| } |
| if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) { |
| auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); |
| Check(CmpInst::isFPPredicate(Pred), |
| "invalid predicate for VP FP comparison intrinsic", &VPI); |
| } |
| if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) { |
| auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate(); |
| Check(CmpInst::isIntPredicate(Pred), |
| "invalid predicate for VP integer comparison intrinsic", &VPI); |
| } |
| } |
| |
| void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) { |
| unsigned NumOperands; |
| bool HasRoundingMD; |
| switch (FPI.getIntrinsicID()) { |
| #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ |
| case Intrinsic::INTRINSIC: \ |
| NumOperands = NARG; \ |
| HasRoundingMD = ROUND_MODE; \ |
| break; |
| #include "llvm/IR/ConstrainedOps.def" |
| default: |
| llvm_unreachable("Invalid constrained FP intrinsic!"); |
| } |
| NumOperands += (1 + HasRoundingMD); |
| // Compare intrinsics carry an extra predicate metadata operand. |
| if (isa<ConstrainedFPCmpIntrinsic>(FPI)) |
| NumOperands += 1; |
| Check((FPI.arg_size() == NumOperands), |
| "invalid arguments for constrained FP intrinsic", &FPI); |
| |
| switch (FPI.getIntrinsicID()) { |
| case Intrinsic::experimental_constrained_lrint: |
| case Intrinsic::experimental_constrained_llrint: { |
| Type *ValTy = FPI.getArgOperand(0)->getType(); |
| Type *ResultTy = FPI.getType(); |
| Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), |
| "Intrinsic does not support vectors", &FPI); |
| } |
| break; |
| |
| case Intrinsic::experimental_constrained_lround: |
| case Intrinsic::experimental_constrained_llround: { |
| Type *ValTy = FPI.getArgOperand(0)->getType(); |
| Type *ResultTy = FPI.getType(); |
| Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(), |
| "Intrinsic does not support vectors", &FPI); |
| break; |
| } |
| |
| case Intrinsic::experimental_constrained_fcmp: |
| case Intrinsic::experimental_constrained_fcmps: { |
| auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate(); |
| Check(CmpInst::isFPPredicate(Pred), |
| "invalid predicate for constrained FP comparison intrinsic", &FPI); |
| break; |
| } |
| |
| case Intrinsic::experimental_constrained_fptosi: |
| case Intrinsic::experimental_constrained_fptoui: { |
| Value *Operand = FPI.getArgOperand(0); |
| uint64_t NumSrcElem = 0; |
| Check(Operand->getType()->isFPOrFPVectorTy(), |
| "Intrinsic first argument must be floating point", &FPI); |
| if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { |
| NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); |
| } |
| |
| Operand = &FPI; |
| Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(), |
| "Intrinsic first argument and result disagree on vector use", &FPI); |
| Check(Operand->getType()->isIntOrIntVectorTy(), |
| "Intrinsic result must be an integer", &FPI); |
| if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { |
| Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), |
| "Intrinsic first argument and result vector lengths must be equal", |
| &FPI); |
| } |
| } |
| break; |
| |
| case Intrinsic::experimental_constrained_sitofp: |
| case Intrinsic::experimental_constrained_uitofp: { |
| Value *Operand = FPI.getArgOperand(0); |
| uint64_t NumSrcElem = 0; |
| Check(Operand->getType()->isIntOrIntVectorTy(), |
| "Intrinsic first argument must be integer", &FPI); |
| if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { |
| NumSrcElem = cast<FixedVectorType>(OperandT)->getNumElements(); |
| } |
| |
| Operand = &FPI; |
| Check((NumSrcElem > 0) == Operand->getType()->isVectorTy(), |
| "Intrinsic first argument and result disagree on vector use", &FPI); |
| Check(Operand->getType()->isFPOrFPVectorTy(), |
| "Intrinsic result must be a floating point", &FPI); |
| if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) { |
| Check(NumSrcElem == cast<FixedVectorType>(OperandT)->getNumElements(), |
| "Intrinsic first argument and result vector lengths must be equal", |
| &FPI); |
| } |
| } break; |
| |
| case Intrinsic::experimental_constrained_fptrunc: |
| case Intrinsic::experimental_constrained_fpext: { |
| Value *Operand = FPI.getArgOperand(0); |
| Type *OperandTy = Operand->getType(); |
| Value *Result = &FPI; |
| Type *ResultTy = Result->getType(); |
| Check(OperandTy->isFPOrFPVectorTy(), |
| "Intrinsic first argument must be FP or FP vector", &FPI); |
| Check(ResultTy->isFPOrFPVectorTy(), |
| "Intrinsic result must be FP or FP vector", &FPI); |
| Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(), |
| "Intrinsic first argument and result disagree on vector use", &FPI); |
| if (OperandTy->isVectorTy()) { |
| Check(cast<FixedVectorType>(OperandTy)->getNumElements() == |
| cast<FixedVectorType>(ResultTy)->getNumElements(), |
| "Intrinsic first argument and result vector lengths must be equal", |
| &FPI); |
| } |
| if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) { |
| Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(), |
| "Intrinsic first argument's type must be larger than result type", |
| &FPI); |
| } else { |
| Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(), |
| "Intrinsic first argument's type must be smaller than result type", |
| &FPI); |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| // If a non-metadata argument is passed in a metadata slot then the |
| // error will be caught earlier when the incorrect argument doesn't |
| // match the specification in the intrinsic call table. Thus, no |
| // argument type check is needed here. |
| |
| Check(FPI.getExceptionBehavior().has_value(), |
| "invalid exception behavior argument", &FPI); |
| if (HasRoundingMD) { |
| Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument", |
| &FPI); |
| } |
| } |
| |
| void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) { |
| auto *MD = DII.getRawLocation(); |
| CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) || |
| (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()), |
| "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD); |
| CheckDI(isa<DILocalVariable>(DII.getRawVariable()), |
| "invalid llvm.dbg." + Kind + " intrinsic variable", &DII, |
| DII.getRawVariable()); |
| CheckDI(isa<DIExpression>(DII.getRawExpression()), |
| "invalid llvm.dbg." + Kind + " intrinsic expression", &DII, |
| DII.getRawExpression()); |
| |
| if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) { |
| CheckDI(isa<DIAssignID>(DAI->getRawAssignID()), |
| "invalid llvm.dbg.assign intrinsic DIAssignID", &DII, |
| DAI->getRawAssignID()); |
| const auto *RawAddr = DAI->getRawAddress(); |
| CheckDI( |
| isa<ValueAsMetadata>(RawAddr) || |
| (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()), |
| "invalid llvm.dbg.assign intrinsic address", &DII, |
| DAI->getRawAddress()); |
| CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()), |
| "invalid llvm.dbg.assign intrinsic address expression", &DII, |
| DAI->getRawAddressExpression()); |
| // All of the linked instructions should be in the same function as DII. |
| for (Instruction *I : at::getAssignmentInsts(DAI)) |
| CheckDI(DAI->getFunction() == I->getFunction(), |
| "inst not in same function as dbg.assign", I, DAI); |
| } |
| |
| // Ignore broken !dbg attachments; they're checked elsewhere. |
| if (MDNode *N = DII.getDebugLoc().getAsMDNode()) |
| if (!isa<DILocation>(N)) |
| return; |
| |
| BasicBlock *BB = DII.getParent(); |
| Function *F = BB ? BB->getParent() : nullptr; |
| |
| // The scopes for variables and !dbg attachments must agree. |
| DILocalVariable *Var = DII.getVariable(); |
| DILocation *Loc = DII.getDebugLoc(); |
| CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", |
| &DII, BB, F); |
| |
| DISubprogram *VarSP = getSubprogram(Var->getRawScope()); |
| DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); |
| if (!VarSP || !LocSP) |
| return; // Broken scope chains are checked elsewhere. |
| |
| CheckDI(VarSP == LocSP, |
| "mismatched subprogram between llvm.dbg." + Kind + |
| " variable and !dbg attachment", |
| &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc, |
| Loc->getScope()->getSubprogram()); |
| |
| // This check is redundant with one in visitLocalVariable(). |
| CheckDI(isType(Var->getRawType()), "invalid type ref", Var, |
| Var->getRawType()); |
| verifyFnArgs(DII); |
| } |
| |
| void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) { |
| CheckDI(isa<DILabel>(DLI.getRawLabel()), |
| "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI, |
| DLI.getRawLabel()); |
| |
| // Ignore broken !dbg attachments; they're checked elsewhere. |
| if (MDNode *N = DLI.getDebugLoc().getAsMDNode()) |
| if (!isa<DILocation>(N)) |
| return; |
| |
| BasicBlock *BB = DLI.getParent(); |
| Function *F = BB ? BB->getParent() : nullptr; |
| |
| // The scopes for variables and !dbg attachments must agree. |
| DILabel *Label = DLI.getLabel(); |
| DILocation *Loc = DLI.getDebugLoc(); |
| Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI, |
| BB, F); |
| |
| DISubprogram *LabelSP = getSubprogram(Label->getRawScope()); |
| DISubprogram *LocSP = getSubprogram(Loc->getRawScope()); |
| if (!LabelSP || !LocSP) |
| return; |
| |
| CheckDI(LabelSP == LocSP, |
| "mismatched subprogram between llvm.dbg." + Kind + |
| " label and !dbg attachment", |
| &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc, |
| Loc->getScope()->getSubprogram()); |
| } |
| |
| void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) { |
| DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable()); |
| DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); |
| |
| // We don't know whether this intrinsic verified correctly. |
| if (!V || !E || !E->isValid()) |
| return; |
| |
| // Nothing to do if this isn't a DW_OP_LLVM_fragment expression. |
| auto Fragment = E->getFragmentInfo(); |
| if (!Fragment) |
| return; |
| |
| // The frontend helps out GDB by emitting the members of local anonymous |
| // unions as artificial local variables with shared storage. When SROA splits |
| // the storage for artificial local variables that are smaller than the entire |
| // union, the overhang piece will be outside of the allotted space for the |
| // variable and this check fails. |
| // FIXME: Remove this check as soon as clang stops doing this; it hides bugs. |
| if (V->isArtificial()) |
| return; |
| |
| verifyFragmentExpression(*V, *Fragment, &I); |
| } |
| |
| template <typename ValueOrMetadata> |
| void Verifier::verifyFragmentExpression(const DIVariable &V, |
| DIExpression::FragmentInfo Fragment, |
| ValueOrMetadata *Desc) { |
| // If there's no size, the type is broken, but that should be checked |
| // elsewhere. |
| auto VarSize = V.getSizeInBits(); |
| if (!VarSize) |
| return; |
| |
| unsigned FragSize = Fragment.SizeInBits; |
| unsigned FragOffset = Fragment.OffsetInBits; |
| CheckDI(FragSize + FragOffset <= *VarSize, |
| "fragment is larger than or outside of variable", Desc, &V); |
| CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V); |
| } |
| |
| void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) { |
| // This function does not take the scope of noninlined function arguments into |
| // account. Don't run it if current function is nodebug, because it may |
| // contain inlined debug intrinsics. |
| if (!HasDebugInfo) |
| return; |
| |
| // For performance reasons only check non-inlined ones. |
| if (I.getDebugLoc()->getInlinedAt()) |
| return; |
| |
| DILocalVariable *Var = I.getVariable(); |
| CheckDI(Var, "dbg intrinsic without variable"); |
| |
| unsigned ArgNo = Var->getArg(); |
| if (!ArgNo) |
| return; |
| |
| // Verify there are no duplicate function argument debug info entries. |
| // These will cause hard-to-debug assertions in the DWARF backend. |
| if (DebugFnArgs.size() < ArgNo) |
| DebugFnArgs.resize(ArgNo, nullptr); |
| |
| auto *Prev = DebugFnArgs[ArgNo - 1]; |
| DebugFnArgs[ArgNo - 1] = Var; |
| CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I, |
| Prev, Var); |
| } |
| |
| void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) { |
| DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression()); |
| |
| // We don't know whether this intrinsic verified correctly. |
| if (!E || !E->isValid()) |
| return; |
| |
| CheckDI(!E->isEntryValue(), "Entry values are only allowed in MIR", &I); |
| } |
| |
| void Verifier::verifyCompileUnits() { |
| // When more than one Module is imported into the same context, such as during |
| // an LTO build before linking the modules, ODR type uniquing may cause types |
| // to point to a different CU. This check does not make sense in this case. |
| if (M.getContext().isODRUniquingDebugTypes()) |
| return; |
| auto *CUs = M.getNamedMetadata("llvm.dbg.cu"); |
| SmallPtrSet<const Metadata *, 2> Listed; |
| if (CUs) |
| Listed.insert(CUs->op_begin(), CUs->op_end()); |
| for (const auto *CU : CUVisited) |
| CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU); |
| CUVisited.clear(); |
| } |
| |
| void Verifier::verifyDeoptimizeCallingConvs() { |
| if (DeoptimizeDeclarations.empty()) |
| return; |
| |
| const Function *First = DeoptimizeDeclarations[0]; |
| for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) { |
| Check(First->getCallingConv() == F->getCallingConv(), |
| "All llvm.experimental.deoptimize declarations must have the same " |
| "calling convention", |
| First, F); |
| } |
| } |
| |
| void Verifier::verifyAttachedCallBundle(const CallBase &Call, |
| const OperandBundleUse &BU) { |
| FunctionType *FTy = Call.getFunctionType(); |
| |
| Check((FTy->getReturnType()->isPointerTy() || |
| (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())), |
| "a call with operand bundle \"clang.arc.attachedcall\" must call a " |
| "function returning a pointer or a non-returning function that has a " |
| "void return type", |
| Call); |
| |
| Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()), |
| "operand bundle \"clang.arc.attachedcall\" requires one function as " |
| "an argument", |
| Call); |
| |
| auto *Fn = cast<Function>(BU.Inputs.front()); |
| Intrinsic::ID IID = Fn->getIntrinsicID(); |
| |
| if (IID) { |
| Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue || |
| IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue), |
| "invalid function argument", Call); |
| } else { |
| StringRef FnName = Fn->getName(); |
| Check((FnName == "objc_retainAutoreleasedReturnValue" || |
| FnName == "objc_unsafeClaimAutoreleasedReturnValue"), |
| "invalid function argument", Call); |
| } |
| } |
| |
| void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) { |
| bool HasSource = F.getSource().has_value(); |
| if (!HasSourceDebugInfo.count(&U)) |
| HasSourceDebugInfo[&U] = HasSource; |
| CheckDI(HasSource == HasSourceDebugInfo[&U], |
| "inconsistent use of embedded source"); |
| } |
| |
| void Verifier::verifyNoAliasScopeDecl() { |
| if (NoAliasScopeDecls.empty()) |
| return; |
| |
| // only a single scope must be declared at a time. |
| for (auto *II : NoAliasScopeDecls) { |
| assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl && |
| "Not a llvm.experimental.noalias.scope.decl ?"); |
| const auto *ScopeListMV = dyn_cast<MetadataAsValue>( |
| II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); |
| Check(ScopeListMV != nullptr, |
| "llvm.experimental.noalias.scope.decl must have a MetadataAsValue " |
| "argument", |
| II); |
| |
| const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata()); |
| Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II); |
| Check(ScopeListMD->getNumOperands() == 1, |
| "!id.scope.list must point to a list with a single scope", II); |
| visitAliasScopeListMetadata(ScopeListMD); |
| } |
| |
| // Only check the domination rule when requested. Once all passes have been |
| // adapted this option can go away. |
| if (!VerifyNoAliasScopeDomination) |
| return; |
| |
| // Now sort the intrinsics based on the scope MDNode so that declarations of |
| // the same scopes are next to each other. |
| auto GetScope = [](IntrinsicInst *II) { |
| const auto *ScopeListMV = cast<MetadataAsValue>( |
| II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg)); |
| return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0); |
| }; |
| |
| // We are sorting on MDNode pointers here. For valid input IR this is ok. |
| // TODO: Sort on Metadata ID to avoid non-deterministic error messages. |
| auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) { |
| return GetScope(Lhs) < GetScope(Rhs); |
| }; |
| |
| llvm::sort(NoAliasScopeDecls, Compare); |
| |
| // Go over the intrinsics and check that for the same scope, they are not |
| // dominating each other. |
| auto ItCurrent = NoAliasScopeDecls.begin(); |
| while (ItCurrent != NoAliasScopeDecls.end()) { |
| auto CurScope = GetScope(*ItCurrent); |
| auto ItNext = ItCurrent; |
| do { |
| ++ItNext; |
| } while (ItNext != NoAliasScopeDecls.end() && |
| GetScope(*ItNext) == CurScope); |
| |
| // [ItCurrent, ItNext) represents the declarations for the same scope. |
| // Ensure they are not dominating each other.. but only if it is not too |
| // expensive. |
| if (ItNext - ItCurrent < 32) |
| for (auto *I : llvm::make_range(ItCurrent, ItNext)) |
| for (auto *J : llvm::make_range(ItCurrent, ItNext)) |
| if (I != J) |
| Check(!DT.dominates(I, J), |
| "llvm.experimental.noalias.scope.decl dominates another one " |
| "with the same scope", |
| I); |
| ItCurrent = ItNext; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Implement the public interfaces to this file... |
| //===----------------------------------------------------------------------===// |
| |
| bool llvm::verifyFunction(const Function &f, raw_ostream *OS) { |
| Function &F = const_cast<Function &>(f); |
| |
| // Don't use a raw_null_ostream. Printing IR is expensive. |
| Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent()); |
| |
| // Note that this function's return value is inverted from what you would |
| // expect of a function called "verify". |
| return !V.verify(F); |
| } |
| |
| bool llvm::verifyModule(const Module &M, raw_ostream *OS, |
| bool *BrokenDebugInfo) { |
| // Don't use a raw_null_ostream. Printing IR is expensive. |
| Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M); |
| |
| bool Broken = false; |
| for (const Function &F : M) |
| Broken |= !V.verify(F); |
| |
| Broken |= !V.verify(); |
| if (BrokenDebugInfo) |
| *BrokenDebugInfo = V.hasBrokenDebugInfo(); |
| // Note that this function's return value is inverted from what you would |
| // expect of a function called "verify". |
| return Broken; |
| } |
| |
| namespace { |
| |
| struct VerifierLegacyPass : public FunctionPass { |
| static char ID; |
| |
| std::unique_ptr<Verifier> V; |
| bool FatalErrors = true; |
| |
| VerifierLegacyPass() : FunctionPass(ID) { |
| initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| explicit VerifierLegacyPass(bool FatalErrors) |
| : FunctionPass(ID), |
| FatalErrors(FatalErrors) { |
| initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool doInitialization(Module &M) override { |
| V = std::make_unique<Verifier>( |
| &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M); |
| return false; |
| } |
| |
| bool runOnFunction(Function &F) override { |
| if (!V->verify(F) && FatalErrors) { |
| errs() << "in function " << F.getName() << '\n'; |
| report_fatal_error("Broken function found, compilation aborted!"); |
| } |
| return false; |
| } |
| |
| bool doFinalization(Module &M) override { |
| bool HasErrors = false; |
| for (Function &F : M) |
| if (F.isDeclaration()) |
| HasErrors |= !V->verify(F); |
| |
| HasErrors |= !V->verify(); |
| if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo())) |
| report_fatal_error("Broken module found, compilation aborted!"); |
| return false; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Helper to issue failure from the TBAA verification |
| template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) { |
| if (Diagnostic) |
| return Diagnostic->CheckFailed(Args...); |
| } |
| |
| #define CheckTBAA(C, ...) \ |
| do { \ |
| if (!(C)) { \ |
| CheckFailed(__VA_ARGS__); \ |
| return false; \ |
| } \ |
| } while (false) |
| |
| /// Verify that \p BaseNode can be used as the "base type" in the struct-path |
| /// TBAA scheme. This means \p BaseNode is either a scalar node, or a |
| /// struct-type node describing an aggregate data structure (like a struct). |
| TBAAVerifier::TBAABaseNodeSummary |
| TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode, |
| bool IsNewFormat) { |
| if (BaseNode->getNumOperands() < 2) { |
| CheckFailed("Base nodes must have at least two operands", &I, BaseNode); |
| return {true, ~0u}; |
| } |
| |
| auto Itr = TBAABaseNodes.find(BaseNode); |
| if (Itr != TBAABaseNodes.end()) |
| return Itr->second; |
| |
| auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat); |
| auto InsertResult = TBAABaseNodes.insert({BaseNode, Result}); |
| (void)InsertResult; |
| assert(InsertResult.second && "We just checked!"); |
| return Result; |
| } |
| |
| TBAAVerifier::TBAABaseNodeSummary |
| TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode, |
| bool IsNewFormat) { |
| const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u}; |
| |
| if (BaseNode->getNumOperands() == 2) { |
| // Scalar nodes can only be accessed at offset 0. |
| return isValidScalarTBAANode(BaseNode) |
| ? TBAAVerifier::TBAABaseNodeSummary({false, 0}) |
| : InvalidNode; |
| } |
| |
| if (IsNewFormat) { |
| if (BaseNode->getNumOperands() % 3 != 0) { |
| CheckFailed("Access tag nodes must have the number of operands that is a " |
| "multiple of 3!", BaseNode); |
| return InvalidNode; |
| } |
| } else { |
| if (BaseNode->getNumOperands() % 2 != 1) { |
| CheckFailed("Struct tag nodes must have an odd number of operands!", |
| BaseNode); |
| return InvalidNode; |
| } |
| } |
| |
| // Check the type size field. |
| if (IsNewFormat) { |
| auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( |
| BaseNode->getOperand(1)); |
| if (!TypeSizeNode) { |
| CheckFailed("Type size nodes must be constants!", &I, BaseNode); |
| return InvalidNode; |
| } |
| } |
| |
| // Check the type name field. In the new format it can be anything. |
| if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) { |
| CheckFailed("Struct tag nodes have a string as their first operand", |
| BaseNode); |
| return InvalidNode; |
| } |
| |
| bool Failed = false; |
| |
| std::optional<APInt> PrevOffset; |
| unsigned BitWidth = ~0u; |
| |
| // We've already checked that BaseNode is not a degenerate root node with one |
| // operand in \c verifyTBAABaseNode, so this loop should run at least once. |
| unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; |
| unsigned NumOpsPerField = IsNewFormat ? 3 : 2; |
| for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); |
| Idx += NumOpsPerField) { |
| const MDOperand &FieldTy = BaseNode->getOperand(Idx); |
| const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1); |
| if (!isa<MDNode>(FieldTy)) { |
| CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode); |
| Failed = true; |
| continue; |
| } |
| |
| auto *OffsetEntryCI = |
| mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset); |
| if (!OffsetEntryCI) { |
| CheckFailed("Offset entries must be constants!", &I, BaseNode); |
| Failed = true; |
| continue; |
| } |
| |
| if (BitWidth == ~0u) |
| BitWidth = OffsetEntryCI->getBitWidth(); |
| |
| if (OffsetEntryCI->getBitWidth() != BitWidth) { |
| CheckFailed( |
| "Bitwidth between the offsets and struct type entries must match", &I, |
| BaseNode); |
| Failed = true; |
| continue; |
| } |
| |
| // NB! As far as I can tell, we generate a non-strictly increasing offset |
| // sequence only from structs that have zero size bit fields. When |
| // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we |
| // pick the field lexically the latest in struct type metadata node. This |
| // mirrors the actual behavior of the alias analysis implementation. |
| bool IsAscending = |
| !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue()); |
| |
| if (!IsAscending) { |
| CheckFailed("Offsets must be increasing!", &I, BaseNode); |
| Failed = true; |
| } |
| |
| PrevOffset = OffsetEntryCI->getValue(); |
| |
| if (IsNewFormat) { |
| auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( |
| BaseNode->getOperand(Idx + 2)); |
| if (!MemberSizeNode) { |
| CheckFailed("Member size entries must be constants!", &I, BaseNode); |
| Failed = true; |
| continue; |
| } |
| } |
| } |
| |
| return Failed ? InvalidNode |
| : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth); |
| } |
| |
| static bool IsRootTBAANode(const MDNode *MD) { |
| return MD->getNumOperands() < 2; |
| } |
| |
| static bool IsScalarTBAANodeImpl(const MDNode *MD, |
| SmallPtrSetImpl<const MDNode *> &Visited) { |
| if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3) |
| return false; |
| |
| if (!isa<MDString>(MD->getOperand(0))) |
| return false; |
| |
| if (MD->getNumOperands() == 3) { |
| auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); |
| if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0)))) |
| return false; |
| } |
| |
| auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1)); |
| return Parent && Visited.insert(Parent).second && |
| (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited)); |
| } |
| |
| bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) { |
| auto ResultIt = TBAAScalarNodes.find(MD); |
| if (ResultIt != TBAAScalarNodes.end()) |
| return ResultIt->second; |
| |
| SmallPtrSet<const MDNode *, 4> Visited; |
| bool Result = IsScalarTBAANodeImpl(MD, Visited); |
| auto InsertResult = TBAAScalarNodes.insert({MD, Result}); |
| (void)InsertResult; |
| assert(InsertResult.second && "Just checked!"); |
| |
| return Result; |
| } |
| |
| /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p |
| /// Offset in place to be the offset within the field node returned. |
| /// |
| /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode. |
| MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I, |
| const MDNode *BaseNode, |
| APInt &Offset, |
| bool IsNewFormat) { |
| assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!"); |
| |
| // Scalar nodes have only one possible "field" -- their parent in the access |
| // hierarchy. Offset must be zero at this point, but our caller is supposed |
| // to check that. |
| if (BaseNode->getNumOperands() == 2) |
| return cast<MDNode>(BaseNode->getOperand(1)); |
| |
| unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1; |
| unsigned NumOpsPerField = IsNewFormat ? 3 : 2; |
| for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands(); |
| Idx += NumOpsPerField) { |
| auto *OffsetEntryCI = |
| mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1)); |
| if (OffsetEntryCI->getValue().ugt(Offset)) { |
| if (Idx == FirstFieldOpNo) { |
| CheckFailed("Could not find TBAA parent in struct type node", &I, |
| BaseNode, &Offset); |
| return nullptr; |
| } |
| |
| unsigned PrevIdx = Idx - NumOpsPerField; |
| auto *PrevOffsetEntryCI = |
| mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1)); |
| Offset -= PrevOffsetEntryCI->getValue(); |
| return cast<MDNode>(BaseNode->getOperand(PrevIdx)); |
| } |
| } |
| |
| unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField; |
| auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>( |
| BaseNode->getOperand(LastIdx + 1)); |
| Offset -= LastOffsetEntryCI->getValue(); |
| return cast<MDNode>(BaseNode->getOperand(LastIdx)); |
| } |
| |
| static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) { |
| if (!Type || Type->getNumOperands() < 3) |
| return false; |
| |
| // In the new format type nodes shall have a reference to the parent type as |
| // its first operand. |
| return isa_and_nonnull<MDNode>(Type->getOperand(0)); |
| } |
| |
| bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) { |
| CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || |
| isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) || |
| isa<AtomicCmpXchgInst>(I), |
| "This instruction shall not have a TBAA access tag!", &I); |
| |
| bool IsStructPathTBAA = |
| isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3; |
| |
| CheckTBAA(IsStructPathTBAA, |
| "Old-style TBAA is no longer allowed, use struct-path TBAA instead", |
| &I); |
| |
| MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0)); |
| MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1)); |
| |
| bool IsNewFormat = isNewFormatTBAATypeNode(AccessType); |
| |
| if (IsNewFormat) { |
| CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5, |
| "Access tag metadata must have either 4 or 5 operands", &I, MD); |
| } else { |
| CheckTBAA(MD->getNumOperands() < 5, |
| "Struct tag metadata must have either 3 or 4 operands", &I, MD); |
| } |
| |
| // Check the access size field. |
| if (IsNewFormat) { |
| auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>( |
| MD->getOperand(3)); |
| CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD); |
| } |
| |
| // Check the immutability flag. |
| unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3; |
| if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) { |
| auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>( |
| MD->getOperand(ImmutabilityFlagOpNo)); |
| CheckTBAA(IsImmutableCI, |
| "Immutability tag on struct tag metadata must be a constant", &I, |
| MD); |
| CheckTBAA( |
| IsImmutableCI->isZero() || IsImmutableCI->isOne(), |
| "Immutability part of the struct tag metadata must be either 0 or 1", |
| &I, MD); |
| } |
| |
| CheckTBAA(BaseNode && AccessType, |
| "Malformed struct tag metadata: base and access-type " |
| "should be non-null and point to Metadata nodes", |
| &I, MD, BaseNode, AccessType); |
| |
| if (!IsNewFormat) { |
| CheckTBAA(isValidScalarTBAANode(AccessType), |
| "Access type node must be a valid scalar type", &I, MD, |
| AccessType); |
| } |
| |
| auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2)); |
| CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD); |
| |
| APInt Offset = OffsetCI->getValue(); |
| bool SeenAccessTypeInPath = false; |
| |
| SmallPtrSet<MDNode *, 4> StructPath; |
| |
| for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode); |
| BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset, |
| IsNewFormat)) { |
| if (!StructPath.insert(BaseNode).second) { |
| CheckFailed("Cycle detected in struct path", &I, MD); |
| return false; |
| } |
| |
| bool Invalid; |
| unsigned BaseNodeBitWidth; |
| std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode, |
| IsNewFormat); |
| |
| // If the base node is invalid in itself, then we've already printed all the |
| // errors we wanted to print. |
| if (Invalid) |
| return false; |
| |
| SeenAccessTypeInPath |= BaseNode == AccessType; |
| |
| if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType) |
| CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access", |
| &I, MD, &Offset); |
| |
| CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() || |
| (BaseNodeBitWidth == 0 && Offset == 0) || |
| (IsNewFormat && BaseNodeBitWidth == ~0u), |
| "Access bit-width not the same as description bit-width", &I, MD, |
| BaseNodeBitWidth, Offset.getBitWidth()); |
| |
| if (IsNewFormat && SeenAccessTypeInPath) |
| break; |
| } |
| |
| CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I, |
| MD); |
| return true; |
| } |
| |
| char VerifierLegacyPass::ID = 0; |
| INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false) |
| |
| FunctionPass *llvm::createVerifierPass(bool FatalErrors) { |
| return new VerifierLegacyPass(FatalErrors); |
| } |
| |
| AnalysisKey VerifierAnalysis::Key; |
| VerifierAnalysis::Result VerifierAnalysis::run(Module &M, |
| ModuleAnalysisManager &) { |
| Result Res; |
| Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken); |
| return Res; |
| } |
| |
| VerifierAnalysis::Result VerifierAnalysis::run(Function &F, |
| FunctionAnalysisManager &) { |
| return { llvm::verifyFunction(F, &dbgs()), false }; |
| } |
| |
| PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) { |
| auto Res = AM.getResult<VerifierAnalysis>(M); |
| if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken)) |
| report_fatal_error("Broken module found, compilation aborted!"); |
| |
| return PreservedAnalyses::all(); |
| } |
| |
| PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) { |
| auto res = AM.getResult<VerifierAnalysis>(F); |
| if (res.IRBroken && FatalErrors) |
| report_fatal_error("Broken function found, compilation aborted!"); |
| |
| return PreservedAnalyses::all(); |
| } |