blob: 9198179674bda7b21fcd3f0e6112466a0455823c [file] [log] [blame]
//===- DebugInfo.cpp - Debug Information Helper Classes -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the helper classes used to build and interpret debug
// information in LLVM IR form.
//
//===----------------------------------------------------------------------===//
#include "llvm-c/DebugInfo.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <optional>
#include <utility>
using namespace llvm;
using namespace llvm::at;
using namespace llvm::dwarf;
/// Finds all intrinsics declaring local variables as living in the memory that
/// 'V' points to. This may include a mix of dbg.declare and
/// dbg.addr intrinsics.
TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) {
// This function is hot. Check whether the value has any metadata to avoid a
// DenseMap lookup.
if (!V->isUsedByMetadata())
return {};
auto *L = LocalAsMetadata::getIfExists(V);
if (!L)
return {};
auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L);
if (!MDV)
return {};
TinyPtrVector<DbgVariableIntrinsic *> Declares;
for (User *U : MDV->users()) {
if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U))
if (DII->isAddressOfVariable())
Declares.push_back(DII);
}
return Declares;
}
TinyPtrVector<DbgDeclareInst *> llvm::FindDbgDeclareUses(Value *V) {
TinyPtrVector<DbgDeclareInst *> DDIs;
for (DbgVariableIntrinsic *DVI : FindDbgAddrUses(V))
if (auto *DDI = dyn_cast<DbgDeclareInst>(DVI))
DDIs.push_back(DDI);
return DDIs;
}
void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
// This function is hot. Check whether the value has any metadata to avoid a
// DenseMap lookup.
if (!V->isUsedByMetadata())
return;
// TODO: If this value appears multiple times in a DIArgList, we should still
// only add the owning DbgValueInst once; use this set to track ArgListUsers.
// This behaviour can be removed when we can automatically remove duplicates.
SmallPtrSet<DbgValueInst *, 4> EncounteredDbgValues;
if (auto *L = LocalAsMetadata::getIfExists(V)) {
if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) {
for (User *U : MDV->users())
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
DbgValues.push_back(DVI);
}
for (Metadata *AL : L->getAllArgListUsers()) {
if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), AL)) {
for (User *U : MDV->users())
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
if (EncounteredDbgValues.insert(DVI).second)
DbgValues.push_back(DVI);
}
}
}
}
void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers,
Value *V) {
// This function is hot. Check whether the value has any metadata to avoid a
// DenseMap lookup.
if (!V->isUsedByMetadata())
return;
// TODO: If this value appears multiple times in a DIArgList, we should still
// only add the owning DbgValueInst once; use this set to track ArgListUsers.
// This behaviour can be removed when we can automatically remove duplicates.
SmallPtrSet<DbgVariableIntrinsic *, 4> EncounteredDbgValues;
if (auto *L = LocalAsMetadata::getIfExists(V)) {
if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) {
for (User *U : MDV->users())
if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
DbgUsers.push_back(DII);
}
for (Metadata *AL : L->getAllArgListUsers()) {
if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), AL)) {
for (User *U : MDV->users())
if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U))
if (EncounteredDbgValues.insert(DII).second)
DbgUsers.push_back(DII);
}
}
}
}
DISubprogram *llvm::getDISubprogram(const MDNode *Scope) {
if (auto *LocalScope = dyn_cast_or_null<DILocalScope>(Scope))
return LocalScope->getSubprogram();
return nullptr;
}
DebugLoc llvm::getDebugValueLoc(DbgVariableIntrinsic *DII) {
// Original dbg.declare must have a location.
const DebugLoc &DeclareLoc = DII->getDebugLoc();
MDNode *Scope = DeclareLoc.getScope();
DILocation *InlinedAt = DeclareLoc.getInlinedAt();
// Because no machine insts can come from debug intrinsics, only the scope
// and inlinedAt is significant. Zero line numbers are used in case this
// DebugLoc leaks into any adjacent instructions. Produce an unknown location
// with the correct scope / inlinedAt fields.
return DILocation::get(DII->getContext(), 0, 0, Scope, InlinedAt);
}
//===----------------------------------------------------------------------===//
// DebugInfoFinder implementations.
//===----------------------------------------------------------------------===//
void DebugInfoFinder::reset() {
CUs.clear();
SPs.clear();
GVs.clear();
TYs.clear();
Scopes.clear();
NodesSeen.clear();
}
void DebugInfoFinder::processModule(const Module &M) {
for (auto *CU : M.debug_compile_units())
processCompileUnit(CU);
for (auto &F : M.functions()) {
if (auto *SP = cast_or_null<DISubprogram>(F.getSubprogram()))
processSubprogram(SP);
// There could be subprograms from inlined functions referenced from
// instructions only. Walk the function to find them.
for (const BasicBlock &BB : F)
for (const Instruction &I : BB)
processInstruction(M, I);
}
}
void DebugInfoFinder::processCompileUnit(DICompileUnit *CU) {
if (!addCompileUnit(CU))
return;
for (auto *DIG : CU->getGlobalVariables()) {
if (!addGlobalVariable(DIG))
continue;
auto *GV = DIG->getVariable();
processScope(GV->getScope());
processType(GV->getType());
}
for (auto *ET : CU->getEnumTypes())
processType(ET);
for (auto *RT : CU->getRetainedTypes())
if (auto *T = dyn_cast<DIType>(RT))
processType(T);
else
processSubprogram(cast<DISubprogram>(RT));
for (auto *Import : CU->getImportedEntities()) {
auto *Entity = Import->getEntity();
if (auto *T = dyn_cast<DIType>(Entity))
processType(T);
else if (auto *SP = dyn_cast<DISubprogram>(Entity))
processSubprogram(SP);
else if (auto *NS = dyn_cast<DINamespace>(Entity))
processScope(NS->getScope());
else if (auto *M = dyn_cast<DIModule>(Entity))
processScope(M->getScope());
}
}
void DebugInfoFinder::processInstruction(const Module &M,
const Instruction &I) {
if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I))
processVariable(M, *DVI);
if (auto DbgLoc = I.getDebugLoc())
processLocation(M, DbgLoc.get());
}
void DebugInfoFinder::processLocation(const Module &M, const DILocation *Loc) {
if (!Loc)
return;
processScope(Loc->getScope());
processLocation(M, Loc->getInlinedAt());
}
void DebugInfoFinder::processType(DIType *DT) {
if (!addType(DT))
return;
processScope(DT->getScope());
if (auto *ST = dyn_cast<DISubroutineType>(DT)) {
for (DIType *Ref : ST->getTypeArray())
processType(Ref);
return;
}
if (auto *DCT = dyn_cast<DICompositeType>(DT)) {
processType(DCT->getBaseType());
for (Metadata *D : DCT->getElements()) {
if (auto *T = dyn_cast<DIType>(D))
processType(T);
else if (auto *SP = dyn_cast<DISubprogram>(D))
processSubprogram(SP);
}
return;
}
if (auto *DDT = dyn_cast<DIDerivedType>(DT)) {
processType(DDT->getBaseType());
}
}
void DebugInfoFinder::processScope(DIScope *Scope) {
if (!Scope)
return;
if (auto *Ty = dyn_cast<DIType>(Scope)) {
processType(Ty);
return;
}
if (auto *CU = dyn_cast<DICompileUnit>(Scope)) {
addCompileUnit(CU);
return;
}
if (auto *SP = dyn_cast<DISubprogram>(Scope)) {
processSubprogram(SP);
return;
}
if (!addScope(Scope))
return;
if (auto *LB = dyn_cast<DILexicalBlockBase>(Scope)) {
processScope(LB->getScope());
} else if (auto *NS = dyn_cast<DINamespace>(Scope)) {
processScope(NS->getScope());
} else if (auto *M = dyn_cast<DIModule>(Scope)) {
processScope(M->getScope());
}
}
void DebugInfoFinder::processSubprogram(DISubprogram *SP) {
if (!addSubprogram(SP))
return;
processScope(SP->getScope());
// Some of the users, e.g. CloneFunctionInto / CloneModule, need to set up a
// ValueMap containing identity mappings for all of the DICompileUnit's, not
// just DISubprogram's, referenced from anywhere within the Function being
// cloned prior to calling MapMetadata / RemapInstruction to avoid their
// duplication later as DICompileUnit's are also directly referenced by
// llvm.dbg.cu list. Thefore we need to collect DICompileUnit's here as well.
// Also, DICompileUnit's may reference DISubprogram's too and therefore need
// to be at least looked through.
processCompileUnit(SP->getUnit());
processType(SP->getType());
for (auto *Element : SP->getTemplateParams()) {
if (auto *TType = dyn_cast<DITemplateTypeParameter>(Element)) {
processType(TType->getType());
} else if (auto *TVal = dyn_cast<DITemplateValueParameter>(Element)) {
processType(TVal->getType());
}
}
}
void DebugInfoFinder::processVariable(const Module &M,
const DbgVariableIntrinsic &DVI) {
auto *N = dyn_cast<MDNode>(DVI.getVariable());
if (!N)
return;
auto *DV = dyn_cast<DILocalVariable>(N);
if (!DV)
return;
if (!NodesSeen.insert(DV).second)
return;
processScope(DV->getScope());
processType(DV->getType());
}
bool DebugInfoFinder::addType(DIType *DT) {
if (!DT)
return false;
if (!NodesSeen.insert(DT).second)
return false;
TYs.push_back(const_cast<DIType *>(DT));
return true;
}
bool DebugInfoFinder::addCompileUnit(DICompileUnit *CU) {
if (!CU)
return false;
if (!NodesSeen.insert(CU).second)
return false;
CUs.push_back(CU);
return true;
}
bool DebugInfoFinder::addGlobalVariable(DIGlobalVariableExpression *DIG) {
if (!NodesSeen.insert(DIG).second)
return false;
GVs.push_back(DIG);
return true;
}
bool DebugInfoFinder::addSubprogram(DISubprogram *SP) {
if (!SP)
return false;
if (!NodesSeen.insert(SP).second)
return false;
SPs.push_back(SP);
return true;
}
bool DebugInfoFinder::addScope(DIScope *Scope) {
if (!Scope)
return false;
// FIXME: Ocaml binding generates a scope with no content, we treat it
// as null for now.
if (Scope->getNumOperands() == 0)
return false;
if (!NodesSeen.insert(Scope).second)
return false;
Scopes.push_back(Scope);
return true;
}
static MDNode *updateLoopMetadataDebugLocationsImpl(
MDNode *OrigLoopID, function_ref<Metadata *(Metadata *)> Updater) {
assert(OrigLoopID && OrigLoopID->getNumOperands() > 0 &&
"Loop ID needs at least one operand");
assert(OrigLoopID && OrigLoopID->getOperand(0).get() == OrigLoopID &&
"Loop ID should refer to itself");
// Save space for the self-referential LoopID.
SmallVector<Metadata *, 4> MDs = {nullptr};
for (unsigned i = 1; i < OrigLoopID->getNumOperands(); ++i) {
Metadata *MD = OrigLoopID->getOperand(i);
if (!MD)
MDs.push_back(nullptr);
else if (Metadata *NewMD = Updater(MD))
MDs.push_back(NewMD);
}
MDNode *NewLoopID = MDNode::getDistinct(OrigLoopID->getContext(), MDs);
// Insert the self-referential LoopID.
NewLoopID->replaceOperandWith(0, NewLoopID);
return NewLoopID;
}
void llvm::updateLoopMetadataDebugLocations(
Instruction &I, function_ref<Metadata *(Metadata *)> Updater) {
MDNode *OrigLoopID = I.getMetadata(LLVMContext::MD_loop);
if (!OrigLoopID)
return;
MDNode *NewLoopID = updateLoopMetadataDebugLocationsImpl(OrigLoopID, Updater);
I.setMetadata(LLVMContext::MD_loop, NewLoopID);
}
/// Return true if a node is a DILocation or if a DILocation is
/// indirectly referenced by one of the node's children.
static bool isDILocationReachable(SmallPtrSetImpl<Metadata *> &Visited,
SmallPtrSetImpl<Metadata *> &Reachable,
Metadata *MD) {
MDNode *N = dyn_cast_or_null<MDNode>(MD);
if (!N)
return false;
if (isa<DILocation>(N) || Reachable.count(N))
return true;
if (!Visited.insert(N).second)
return false;
for (auto &OpIt : N->operands()) {
Metadata *Op = OpIt.get();
if (isDILocationReachable(Visited, Reachable, Op)) {
Reachable.insert(N);
return true;
}
}
return false;
}
static MDNode *stripDebugLocFromLoopID(MDNode *N) {
assert(!N->operands().empty() && "Missing self reference?");
SmallPtrSet<Metadata *, 8> Visited, DILocationReachable;
// If we already visited N, there is nothing to do.
if (!Visited.insert(N).second)
return N;
// If there is no debug location, we do not have to rewrite this
// MDNode. This loop also initializes DILocationReachable, later
// needed by updateLoopMetadataDebugLocationsImpl; the use of
// count_if avoids an early exit.
if (!std::count_if(N->op_begin() + 1, N->op_end(),
[&Visited, &DILocationReachable](const MDOperand &Op) {
return isDILocationReachable(
Visited, DILocationReachable, Op.get());
}))
return N;
// If there is only the debug location without any actual loop metadata, we
// can remove the metadata.
if (llvm::all_of(llvm::drop_begin(N->operands()),
[&Visited, &DILocationReachable](const MDOperand &Op) {
return isDILocationReachable(Visited, DILocationReachable,
Op.get());
}))
return nullptr;
return updateLoopMetadataDebugLocationsImpl(
N, [&DILocationReachable](Metadata *MD) -> Metadata * {
if (isa<DILocation>(MD) || DILocationReachable.count(MD))
return nullptr;
return MD;
});
}
bool llvm::stripDebugInfo(Function &F) {
bool Changed = false;
if (F.hasMetadata(LLVMContext::MD_dbg)) {
Changed = true;
F.setSubprogram(nullptr);
}
DenseMap<MDNode *, MDNode *> LoopIDsMap;
for (BasicBlock &BB : F) {
for (Instruction &I : llvm::make_early_inc_range(BB)) {
if (isa<DbgInfoIntrinsic>(&I)) {
I.eraseFromParent();
Changed = true;
continue;
}
if (I.getDebugLoc()) {
Changed = true;
I.setDebugLoc(DebugLoc());
}
if (auto *LoopID = I.getMetadata(LLVMContext::MD_loop)) {
auto *NewLoopID = LoopIDsMap.lookup(LoopID);
if (!NewLoopID)
NewLoopID = LoopIDsMap[LoopID] = stripDebugLocFromLoopID(LoopID);
if (NewLoopID != LoopID)
I.setMetadata(LLVMContext::MD_loop, NewLoopID);
}
// Strip other attachments that are or use debug info.
if (I.hasMetadataOtherThanDebugLoc()) {
// Heapallocsites point into the DIType system.
I.setMetadata("heapallocsite", nullptr);
// DIAssignID are debug info metadata primitives.
I.setMetadata(LLVMContext::MD_DIAssignID, nullptr);
}
}
}
return Changed;
}
bool llvm::StripDebugInfo(Module &M) {
bool Changed = false;
for (NamedMDNode &NMD : llvm::make_early_inc_range(M.named_metadata())) {
// We're stripping debug info, and without them, coverage information
// doesn't quite make sense.
if (NMD.getName().startswith("llvm.dbg.") ||
NMD.getName() == "llvm.gcov") {
NMD.eraseFromParent();
Changed = true;
}
}
for (Function &F : M)
Changed |= stripDebugInfo(F);
for (auto &GV : M.globals()) {
Changed |= GV.eraseMetadata(LLVMContext::MD_dbg);
}
if (GVMaterializer *Materializer = M.getMaterializer())
Materializer->setStripDebugInfo();
return Changed;
}
namespace {
/// Helper class to downgrade -g metadata to -gline-tables-only metadata.
class DebugTypeInfoRemoval {
DenseMap<Metadata *, Metadata *> Replacements;
public:
/// The (void)() type.
MDNode *EmptySubroutineType;
private:
/// Remember what linkage name we originally had before stripping. If we end
/// up making two subprograms identical who originally had different linkage
/// names, then we need to make one of them distinct, to avoid them getting
/// uniqued. Maps the new node to the old linkage name.
DenseMap<DISubprogram *, StringRef> NewToLinkageName;
// TODO: Remember the distinct subprogram we created for a given linkage name,
// so that we can continue to unique whenever possible. Map <newly created
// node, old linkage name> to the first (possibly distinct) mdsubprogram
// created for that combination. This is not strictly needed for correctness,
// but can cut down on the number of MDNodes and let us diff cleanly with the
// output of -gline-tables-only.
public:
DebugTypeInfoRemoval(LLVMContext &C)
: EmptySubroutineType(DISubroutineType::get(C, DINode::FlagZero, 0,
MDNode::get(C, {}))) {}
Metadata *map(Metadata *M) {
if (!M)
return nullptr;
auto Replacement = Replacements.find(M);
if (Replacement != Replacements.end())
return Replacement->second;
return M;
}
MDNode *mapNode(Metadata *N) { return dyn_cast_or_null<MDNode>(map(N)); }
/// Recursively remap N and all its referenced children. Does a DF post-order
/// traversal, so as to remap bottoms up.
void traverseAndRemap(MDNode *N) { traverse(N); }
private:
// Create a new DISubprogram, to replace the one given.
DISubprogram *getReplacementSubprogram(DISubprogram *MDS) {
auto *FileAndScope = cast_or_null<DIFile>(map(MDS->getFile()));
StringRef LinkageName = MDS->getName().empty() ? MDS->getLinkageName() : "";
DISubprogram *Declaration = nullptr;
auto *Type = cast_or_null<DISubroutineType>(map(MDS->getType()));
DIType *ContainingType =
cast_or_null<DIType>(map(MDS->getContainingType()));
auto *Unit = cast_or_null<DICompileUnit>(map(MDS->getUnit()));
auto Variables = nullptr;
auto TemplateParams = nullptr;
// Make a distinct DISubprogram, for situations that warrent it.
auto distinctMDSubprogram = [&]() {
return DISubprogram::getDistinct(
MDS->getContext(), FileAndScope, MDS->getName(), LinkageName,
FileAndScope, MDS->getLine(), Type, MDS->getScopeLine(),
ContainingType, MDS->getVirtualIndex(), MDS->getThisAdjustment(),
MDS->getFlags(), MDS->getSPFlags(), Unit, TemplateParams, Declaration,
Variables);
};
if (MDS->isDistinct())
return distinctMDSubprogram();
auto *NewMDS = DISubprogram::get(
MDS->getContext(), FileAndScope, MDS->getName(), LinkageName,
FileAndScope, MDS->getLine(), Type, MDS->getScopeLine(), ContainingType,
MDS->getVirtualIndex(), MDS->getThisAdjustment(), MDS->getFlags(),
MDS->getSPFlags(), Unit, TemplateParams, Declaration, Variables);
StringRef OldLinkageName = MDS->getLinkageName();
// See if we need to make a distinct one.
auto OrigLinkage = NewToLinkageName.find(NewMDS);
if (OrigLinkage != NewToLinkageName.end()) {
if (OrigLinkage->second == OldLinkageName)
// We're good.
return NewMDS;
// Otherwise, need to make a distinct one.
// TODO: Query the map to see if we already have one.
return distinctMDSubprogram();
}
NewToLinkageName.insert({NewMDS, MDS->getLinkageName()});
return NewMDS;
}
/// Create a new compile unit, to replace the one given
DICompileUnit *getReplacementCU(DICompileUnit *CU) {
// Drop skeleton CUs.
if (CU->getDWOId())
return nullptr;
auto *File = cast_or_null<DIFile>(map(CU->getFile()));
MDTuple *EnumTypes = nullptr;
MDTuple *RetainedTypes = nullptr;
MDTuple *GlobalVariables = nullptr;
MDTuple *ImportedEntities = nullptr;
return DICompileUnit::getDistinct(
CU->getContext(), CU->getSourceLanguage(), File, CU->getProducer(),
CU->isOptimized(), CU->getFlags(), CU->getRuntimeVersion(),
CU->getSplitDebugFilename(), DICompileUnit::LineTablesOnly, EnumTypes,
RetainedTypes, GlobalVariables, ImportedEntities, CU->getMacros(),
CU->getDWOId(), CU->getSplitDebugInlining(),
CU->getDebugInfoForProfiling(), CU->getNameTableKind(),
CU->getRangesBaseAddress(), CU->getSysRoot(), CU->getSDK());
}
DILocation *getReplacementMDLocation(DILocation *MLD) {
auto *Scope = map(MLD->getScope());
auto *InlinedAt = map(MLD->getInlinedAt());
if (MLD->isDistinct())
return DILocation::getDistinct(MLD->getContext(), MLD->getLine(),
MLD->getColumn(), Scope, InlinedAt);
return DILocation::get(MLD->getContext(), MLD->getLine(), MLD->getColumn(),
Scope, InlinedAt);
}
/// Create a new generic MDNode, to replace the one given
MDNode *getReplacementMDNode(MDNode *N) {
SmallVector<Metadata *, 8> Ops;
Ops.reserve(N->getNumOperands());
for (auto &I : N->operands())
if (I)
Ops.push_back(map(I));
auto *Ret = MDNode::get(N->getContext(), Ops);
return Ret;
}
/// Attempt to re-map N to a newly created node.
void remap(MDNode *N) {
if (Replacements.count(N))
return;
auto doRemap = [&](MDNode *N) -> MDNode * {
if (!N)
return nullptr;
if (auto *MDSub = dyn_cast<DISubprogram>(N)) {
remap(MDSub->getUnit());
return getReplacementSubprogram(MDSub);
}
if (isa<DISubroutineType>(N))
return EmptySubroutineType;
if (auto *CU = dyn_cast<DICompileUnit>(N))
return getReplacementCU(CU);
if (isa<DIFile>(N))
return N;
if (auto *MDLB = dyn_cast<DILexicalBlockBase>(N))
// Remap to our referenced scope (recursively).
return mapNode(MDLB->getScope());
if (auto *MLD = dyn_cast<DILocation>(N))
return getReplacementMDLocation(MLD);
// Otherwise, if we see these, just drop them now. Not strictly necessary,
// but this speeds things up a little.
if (isa<DINode>(N))
return nullptr;
return getReplacementMDNode(N);
};
Replacements[N] = doRemap(N);
}
/// Do the remapping traversal.
void traverse(MDNode *);
};
} // end anonymous namespace
void DebugTypeInfoRemoval::traverse(MDNode *N) {
if (!N || Replacements.count(N))
return;
// To avoid cycles, as well as for efficiency sake, we will sometimes prune
// parts of the graph.
auto prune = [](MDNode *Parent, MDNode *Child) {
if (auto *MDS = dyn_cast<DISubprogram>(Parent))
return Child == MDS->getRetainedNodes().get();
return false;
};
SmallVector<MDNode *, 16> ToVisit;
DenseSet<MDNode *> Opened;
// Visit each node starting at N in post order, and map them.
ToVisit.push_back(N);
while (!ToVisit.empty()) {
auto *N = ToVisit.back();
if (!Opened.insert(N).second) {
// Close it.
remap(N);
ToVisit.pop_back();
continue;
}
for (auto &I : N->operands())
if (auto *MDN = dyn_cast_or_null<MDNode>(I))
if (!Opened.count(MDN) && !Replacements.count(MDN) && !prune(N, MDN) &&
!isa<DICompileUnit>(MDN))
ToVisit.push_back(MDN);
}
}
bool llvm::stripNonLineTableDebugInfo(Module &M) {
bool Changed = false;
// First off, delete the debug intrinsics.
auto RemoveUses = [&](StringRef Name) {
if (auto *DbgVal = M.getFunction(Name)) {
while (!DbgVal->use_empty())
cast<Instruction>(DbgVal->user_back())->eraseFromParent();
DbgVal->eraseFromParent();
Changed = true;
}
};
RemoveUses("llvm.dbg.addr");
RemoveUses("llvm.dbg.declare");
RemoveUses("llvm.dbg.label");
RemoveUses("llvm.dbg.value");
// Delete non-CU debug info named metadata nodes.
for (auto NMI = M.named_metadata_begin(), NME = M.named_metadata_end();
NMI != NME;) {
NamedMDNode *NMD = &*NMI;
++NMI;
// Specifically keep dbg.cu around.
if (NMD->getName() == "llvm.dbg.cu")
continue;
}
// Drop all dbg attachments from global variables.
for (auto &GV : M.globals())
GV.eraseMetadata(LLVMContext::MD_dbg);
DebugTypeInfoRemoval Mapper(M.getContext());
auto remap = [&](MDNode *Node) -> MDNode * {
if (!Node)
return nullptr;
Mapper.traverseAndRemap(Node);
auto *NewNode = Mapper.mapNode(Node);
Changed |= Node != NewNode;
Node = NewNode;
return NewNode;
};
// Rewrite the DebugLocs to be equivalent to what
// -gline-tables-only would have created.
for (auto &F : M) {
if (auto *SP = F.getSubprogram()) {
Mapper.traverseAndRemap(SP);
auto *NewSP = cast<DISubprogram>(Mapper.mapNode(SP));
Changed |= SP != NewSP;
F.setSubprogram(NewSP);
}
for (auto &BB : F) {
for (auto &I : BB) {
auto remapDebugLoc = [&](const DebugLoc &DL) -> DebugLoc {
auto *Scope = DL.getScope();
MDNode *InlinedAt = DL.getInlinedAt();
Scope = remap(Scope);
InlinedAt = remap(InlinedAt);
return DILocation::get(M.getContext(), DL.getLine(), DL.getCol(),
Scope, InlinedAt);
};
if (I.getDebugLoc() != DebugLoc())
I.setDebugLoc(remapDebugLoc(I.getDebugLoc()));
// Remap DILocations in llvm.loop attachments.
updateLoopMetadataDebugLocations(I, [&](Metadata *MD) -> Metadata * {
if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
return remapDebugLoc(Loc).get();
return MD;
});
// Strip heapallocsite attachments, they point into the DIType system.
if (I.hasMetadataOtherThanDebugLoc())
I.setMetadata("heapallocsite", nullptr);
}
}
}
// Create a new llvm.dbg.cu, which is equivalent to the one
// -gline-tables-only would have created.
for (auto &NMD : M.getNamedMDList()) {
SmallVector<MDNode *, 8> Ops;
for (MDNode *Op : NMD.operands())
Ops.push_back(remap(Op));
if (!Changed)
continue;
NMD.clearOperands();
for (auto *Op : Ops)
if (Op)
NMD.addOperand(Op);
}
return Changed;
}
unsigned llvm::getDebugMetadataVersionFromModule(const Module &M) {
if (auto *Val = mdconst::dyn_extract_or_null<ConstantInt>(
M.getModuleFlag("Debug Info Version")))
return Val->getZExtValue();
return 0;
}
void Instruction::applyMergedLocation(const DILocation *LocA,
const DILocation *LocB) {
setDebugLoc(DILocation::getMergedLocation(LocA, LocB));
}
void Instruction::mergeDIAssignID(
ArrayRef<const Instruction *> SourceInstructions) {
// Replace all uses (and attachments) of all the DIAssignIDs
// on SourceInstructions with a single merged value.
assert(getFunction() && "Uninserted instruction merged");
// Collect up the DIAssignID tags.
SmallVector<DIAssignID *, 4> IDs;
for (const Instruction *I : SourceInstructions) {
if (auto *MD = I->getMetadata(LLVMContext::MD_DIAssignID))
IDs.push_back(cast<DIAssignID>(MD));
assert(getFunction() == I->getFunction() &&
"Merging with instruction from another function not allowed");
}
// Add this instruction's DIAssignID too, if it has one.
if (auto *MD = getMetadata(LLVMContext::MD_DIAssignID))
IDs.push_back(cast<DIAssignID>(MD));
if (IDs.empty())
return; // No DIAssignID tags to process.
DIAssignID *MergeID = IDs[0];
for (auto It = std::next(IDs.begin()), End = IDs.end(); It != End; ++It) {
if (*It != MergeID)
at::RAUW(*It, MergeID);
}
setMetadata(LLVMContext::MD_DIAssignID, MergeID);
}
void Instruction::updateLocationAfterHoist() { dropLocation(); }
void Instruction::dropLocation() {
const DebugLoc &DL = getDebugLoc();
if (!DL)
return;
// If this isn't a call, drop the location to allow a location from a
// preceding instruction to propagate.
bool MayLowerToCall = false;
if (isa<CallBase>(this)) {
auto *II = dyn_cast<IntrinsicInst>(this);
MayLowerToCall =
!II || IntrinsicInst::mayLowerToFunctionCall(II->getIntrinsicID());
}
if (!MayLowerToCall) {
setDebugLoc(DebugLoc());
return;
}
// Set a line 0 location for calls to preserve scope information in case
// inlining occurs.
DISubprogram *SP = getFunction()->getSubprogram();
if (SP)
// If a function scope is available, set it on the line 0 location. When
// hoisting a call to a predecessor block, using the function scope avoids
// making it look like the callee was reached earlier than it should be.
setDebugLoc(DILocation::get(getContext(), 0, 0, SP));
else
// The parent function has no scope. Go ahead and drop the location. If
// the parent function is inlined, and the callee has a subprogram, the
// inliner will attach a location to the call.
//
// One alternative is to set a line 0 location with the existing scope and
// inlinedAt info. The location might be sensitive to when inlining occurs.
setDebugLoc(DebugLoc());
}
//===----------------------------------------------------------------------===//
// LLVM C API implementations.
//===----------------------------------------------------------------------===//
static unsigned map_from_llvmDWARFsourcelanguage(LLVMDWARFSourceLanguage lang) {
switch (lang) {
#define HANDLE_DW_LANG(ID, NAME, LOWER_BOUND, VERSION, VENDOR) \
case LLVMDWARFSourceLanguage##NAME: \
return ID;
#include "llvm/BinaryFormat/Dwarf.def"
#undef HANDLE_DW_LANG
}
llvm_unreachable("Unhandled Tag");
}
template <typename DIT> DIT *unwrapDI(LLVMMetadataRef Ref) {
return (DIT *)(Ref ? unwrap<MDNode>(Ref) : nullptr);
}
static DINode::DIFlags map_from_llvmDIFlags(LLVMDIFlags Flags) {
return static_cast<DINode::DIFlags>(Flags);
}
static LLVMDIFlags map_to_llvmDIFlags(DINode::DIFlags Flags) {
return static_cast<LLVMDIFlags>(Flags);
}
static DISubprogram::DISPFlags
pack_into_DISPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized) {
return DISubprogram::toSPFlags(IsLocalToUnit, IsDefinition, IsOptimized);
}
unsigned LLVMDebugMetadataVersion() {
return DEBUG_METADATA_VERSION;
}
LLVMDIBuilderRef LLVMCreateDIBuilderDisallowUnresolved(LLVMModuleRef M) {
return wrap(new DIBuilder(*unwrap(M), false));
}
LLVMDIBuilderRef LLVMCreateDIBuilder(LLVMModuleRef M) {
return wrap(new DIBuilder(*unwrap(M)));
}
unsigned LLVMGetModuleDebugMetadataVersion(LLVMModuleRef M) {
return getDebugMetadataVersionFromModule(*unwrap(M));
}
LLVMBool LLVMStripModuleDebugInfo(LLVMModuleRef M) {
return StripDebugInfo(*unwrap(M));
}
void LLVMDisposeDIBuilder(LLVMDIBuilderRef Builder) {
delete unwrap(Builder);
}
void LLVMDIBuilderFinalize(LLVMDIBuilderRef Builder) {
unwrap(Builder)->finalize();
}
void LLVMDIBuilderFinalizeSubprogram(LLVMDIBuilderRef Builder,
LLVMMetadataRef subprogram) {
unwrap(Builder)->finalizeSubprogram(unwrapDI<DISubprogram>(subprogram));
}
LLVMMetadataRef LLVMDIBuilderCreateCompileUnit(
LLVMDIBuilderRef Builder, LLVMDWARFSourceLanguage Lang,
LLVMMetadataRef FileRef, const char *Producer, size_t ProducerLen,
LLVMBool isOptimized, const char *Flags, size_t FlagsLen,
unsigned RuntimeVer, const char *SplitName, size_t SplitNameLen,
LLVMDWARFEmissionKind Kind, unsigned DWOId, LLVMBool SplitDebugInlining,
LLVMBool DebugInfoForProfiling, const char *SysRoot, size_t SysRootLen,
const char *SDK, size_t SDKLen) {
auto File = unwrapDI<DIFile>(FileRef);
return wrap(unwrap(Builder)->createCompileUnit(
map_from_llvmDWARFsourcelanguage(Lang), File,
StringRef(Producer, ProducerLen), isOptimized, StringRef(Flags, FlagsLen),
RuntimeVer, StringRef(SplitName, SplitNameLen),
static_cast<DICompileUnit::DebugEmissionKind>(Kind), DWOId,
SplitDebugInlining, DebugInfoForProfiling,
DICompileUnit::DebugNameTableKind::Default, false,
StringRef(SysRoot, SysRootLen), StringRef(SDK, SDKLen)));
}
LLVMMetadataRef
LLVMDIBuilderCreateFile(LLVMDIBuilderRef Builder, const char *Filename,
size_t FilenameLen, const char *Directory,
size_t DirectoryLen) {
return wrap(unwrap(Builder)->createFile(StringRef(Filename, FilenameLen),
StringRef(Directory, DirectoryLen)));
}
LLVMMetadataRef
LLVMDIBuilderCreateModule(LLVMDIBuilderRef Builder, LLVMMetadataRef ParentScope,
const char *Name, size_t NameLen,
const char *ConfigMacros, size_t ConfigMacrosLen,
const char *IncludePath, size_t IncludePathLen,
const char *APINotesFile, size_t APINotesFileLen) {
return wrap(unwrap(Builder)->createModule(
unwrapDI<DIScope>(ParentScope), StringRef(Name, NameLen),
StringRef(ConfigMacros, ConfigMacrosLen),
StringRef(IncludePath, IncludePathLen),
StringRef(APINotesFile, APINotesFileLen)));
}
LLVMMetadataRef LLVMDIBuilderCreateNameSpace(LLVMDIBuilderRef Builder,
LLVMMetadataRef ParentScope,
const char *Name, size_t NameLen,
LLVMBool ExportSymbols) {
return wrap(unwrap(Builder)->createNameSpace(
unwrapDI<DIScope>(ParentScope), StringRef(Name, NameLen), ExportSymbols));
}
LLVMMetadataRef LLVMDIBuilderCreateFunction(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, const char *LinkageName, size_t LinkageNameLen,
LLVMMetadataRef File, unsigned LineNo, LLVMMetadataRef Ty,
LLVMBool IsLocalToUnit, LLVMBool IsDefinition,
unsigned ScopeLine, LLVMDIFlags Flags, LLVMBool IsOptimized) {
return wrap(unwrap(Builder)->createFunction(
unwrapDI<DIScope>(Scope), {Name, NameLen}, {LinkageName, LinkageNameLen},
unwrapDI<DIFile>(File), LineNo, unwrapDI<DISubroutineType>(Ty), ScopeLine,
map_from_llvmDIFlags(Flags),
pack_into_DISPFlags(IsLocalToUnit, IsDefinition, IsOptimized), nullptr,
nullptr, nullptr));
}
LLVMMetadataRef LLVMDIBuilderCreateLexicalBlock(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope,
LLVMMetadataRef File, unsigned Line, unsigned Col) {
return wrap(unwrap(Builder)->createLexicalBlock(unwrapDI<DIScope>(Scope),
unwrapDI<DIFile>(File),
Line, Col));
}
LLVMMetadataRef
LLVMDIBuilderCreateLexicalBlockFile(LLVMDIBuilderRef Builder,
LLVMMetadataRef Scope,
LLVMMetadataRef File,
unsigned Discriminator) {
return wrap(unwrap(Builder)->createLexicalBlockFile(unwrapDI<DIScope>(Scope),
unwrapDI<DIFile>(File),
Discriminator));
}
LLVMMetadataRef
LLVMDIBuilderCreateImportedModuleFromNamespace(LLVMDIBuilderRef Builder,
LLVMMetadataRef Scope,
LLVMMetadataRef NS,
LLVMMetadataRef File,
unsigned Line) {
return wrap(unwrap(Builder)->createImportedModule(unwrapDI<DIScope>(Scope),
unwrapDI<DINamespace>(NS),
unwrapDI<DIFile>(File),
Line));
}
LLVMMetadataRef LLVMDIBuilderCreateImportedModuleFromAlias(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope,
LLVMMetadataRef ImportedEntity, LLVMMetadataRef File, unsigned Line,
LLVMMetadataRef *Elements, unsigned NumElements) {
auto Elts =
(NumElements > 0)
? unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements})
: nullptr;
return wrap(unwrap(Builder)->createImportedModule(
unwrapDI<DIScope>(Scope), unwrapDI<DIImportedEntity>(ImportedEntity),
unwrapDI<DIFile>(File), Line, Elts));
}
LLVMMetadataRef LLVMDIBuilderCreateImportedModuleFromModule(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, LLVMMetadataRef M,
LLVMMetadataRef File, unsigned Line, LLVMMetadataRef *Elements,
unsigned NumElements) {
auto Elts =
(NumElements > 0)
? unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements})
: nullptr;
return wrap(unwrap(Builder)->createImportedModule(
unwrapDI<DIScope>(Scope), unwrapDI<DIModule>(M), unwrapDI<DIFile>(File),
Line, Elts));
}
LLVMMetadataRef LLVMDIBuilderCreateImportedDeclaration(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, LLVMMetadataRef Decl,
LLVMMetadataRef File, unsigned Line, const char *Name, size_t NameLen,
LLVMMetadataRef *Elements, unsigned NumElements) {
auto Elts =
(NumElements > 0)
? unwrap(Builder)->getOrCreateArray({unwrap(Elements), NumElements})
: nullptr;
return wrap(unwrap(Builder)->createImportedDeclaration(
unwrapDI<DIScope>(Scope), unwrapDI<DINode>(Decl), unwrapDI<DIFile>(File),
Line, {Name, NameLen}, Elts));
}
LLVMMetadataRef
LLVMDIBuilderCreateDebugLocation(LLVMContextRef Ctx, unsigned Line,
unsigned Column, LLVMMetadataRef Scope,
LLVMMetadataRef InlinedAt) {
return wrap(DILocation::get(*unwrap(Ctx), Line, Column, unwrap(Scope),
unwrap(InlinedAt)));
}
unsigned LLVMDILocationGetLine(LLVMMetadataRef Location) {
return unwrapDI<DILocation>(Location)->getLine();
}
unsigned LLVMDILocationGetColumn(LLVMMetadataRef Location) {
return unwrapDI<DILocation>(Location)->getColumn();
}
LLVMMetadataRef LLVMDILocationGetScope(LLVMMetadataRef Location) {
return wrap(unwrapDI<DILocation>(Location)->getScope());
}
LLVMMetadataRef LLVMDILocationGetInlinedAt(LLVMMetadataRef Location) {
return wrap(unwrapDI<DILocation>(Location)->getInlinedAt());
}
LLVMMetadataRef LLVMDIScopeGetFile(LLVMMetadataRef Scope) {
return wrap(unwrapDI<DIScope>(Scope)->getFile());
}
const char *LLVMDIFileGetDirectory(LLVMMetadataRef File, unsigned *Len) {
auto Dir = unwrapDI<DIFile>(File)->getDirectory();
*Len = Dir.size();
return Dir.data();
}
const char *LLVMDIFileGetFilename(LLVMMetadataRef File, unsigned *Len) {
auto Name = unwrapDI<DIFile>(File)->getFilename();
*Len = Name.size();
return Name.data();
}
const char *LLVMDIFileGetSource(LLVMMetadataRef File, unsigned *Len) {
if (auto Src = unwrapDI<DIFile>(File)->getSource()) {
*Len = Src->size();
return Src->data();
}
*Len = 0;
return "";
}
LLVMMetadataRef LLVMDIBuilderCreateMacro(LLVMDIBuilderRef Builder,
LLVMMetadataRef ParentMacroFile,
unsigned Line,
LLVMDWARFMacinfoRecordType RecordType,
const char *Name, size_t NameLen,
const char *Value, size_t ValueLen) {
return wrap(
unwrap(Builder)->createMacro(unwrapDI<DIMacroFile>(ParentMacroFile), Line,
static_cast<MacinfoRecordType>(RecordType),
{Name, NameLen}, {Value, ValueLen}));
}
LLVMMetadataRef
LLVMDIBuilderCreateTempMacroFile(LLVMDIBuilderRef Builder,
LLVMMetadataRef ParentMacroFile, unsigned Line,
LLVMMetadataRef File) {
return wrap(unwrap(Builder)->createTempMacroFile(
unwrapDI<DIMacroFile>(ParentMacroFile), Line, unwrapDI<DIFile>(File)));
}
LLVMMetadataRef LLVMDIBuilderCreateEnumerator(LLVMDIBuilderRef Builder,
const char *Name, size_t NameLen,
int64_t Value,
LLVMBool IsUnsigned) {
return wrap(unwrap(Builder)->createEnumerator({Name, NameLen}, Value,
IsUnsigned != 0));
}
LLVMMetadataRef LLVMDIBuilderCreateEnumerationType(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, LLVMMetadataRef File, unsigned LineNumber,
uint64_t SizeInBits, uint32_t AlignInBits, LLVMMetadataRef *Elements,
unsigned NumElements, LLVMMetadataRef ClassTy) {
auto Elts = unwrap(Builder)->getOrCreateArray({unwrap(Elements),
NumElements});
return wrap(unwrap(Builder)->createEnumerationType(
unwrapDI<DIScope>(Scope), {Name, NameLen}, unwrapDI<DIFile>(File),
LineNumber, SizeInBits, AlignInBits, Elts, unwrapDI<DIType>(ClassTy)));
}
LLVMMetadataRef LLVMDIBuilderCreateUnionType(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, LLVMMetadataRef File, unsigned LineNumber,
uint64_t SizeInBits, uint32_t AlignInBits, LLVMDIFlags Flags,
LLVMMetadataRef *Elements, unsigned NumElements, unsigned RunTimeLang,
const char *UniqueId, size_t UniqueIdLen) {
auto Elts = unwrap(Builder)->getOrCreateArray({unwrap(Elements),
NumElements});
return wrap(unwrap(Builder)->createUnionType(
unwrapDI<DIScope>(Scope), {Name, NameLen}, unwrapDI<DIFile>(File),
LineNumber, SizeInBits, AlignInBits, map_from_llvmDIFlags(Flags),
Elts, RunTimeLang, {UniqueId, UniqueIdLen}));
}
LLVMMetadataRef
LLVMDIBuilderCreateArrayType(LLVMDIBuilderRef Builder, uint64_t Size,
uint32_t AlignInBits, LLVMMetadataRef Ty,
LLVMMetadataRef *Subscripts,
unsigned NumSubscripts) {
auto Subs = unwrap(Builder)->getOrCreateArray({unwrap(Subscripts),
NumSubscripts});
return wrap(unwrap(Builder)->createArrayType(Size, AlignInBits,
unwrapDI<DIType>(Ty), Subs));
}
LLVMMetadataRef
LLVMDIBuilderCreateVectorType(LLVMDIBuilderRef Builder, uint64_t Size,
uint32_t AlignInBits, LLVMMetadataRef Ty,
LLVMMetadataRef *Subscripts,
unsigned NumSubscripts) {
auto Subs = unwrap(Builder)->getOrCreateArray({unwrap(Subscripts),
NumSubscripts});
return wrap(unwrap(Builder)->createVectorType(Size, AlignInBits,
unwrapDI<DIType>(Ty), Subs));
}
LLVMMetadataRef
LLVMDIBuilderCreateBasicType(LLVMDIBuilderRef Builder, const char *Name,
size_t NameLen, uint64_t SizeInBits,
LLVMDWARFTypeEncoding Encoding,
LLVMDIFlags Flags) {
return wrap(unwrap(Builder)->createBasicType({Name, NameLen},
SizeInBits, Encoding,
map_from_llvmDIFlags(Flags)));
}
LLVMMetadataRef LLVMDIBuilderCreatePointerType(
LLVMDIBuilderRef Builder, LLVMMetadataRef PointeeTy,
uint64_t SizeInBits, uint32_t AlignInBits, unsigned AddressSpace,
const char *Name, size_t NameLen) {
return wrap(unwrap(Builder)->createPointerType(unwrapDI<DIType>(PointeeTy),
SizeInBits, AlignInBits,
AddressSpace, {Name, NameLen}));
}
LLVMMetadataRef LLVMDIBuilderCreateStructType(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, LLVMMetadataRef File, unsigned LineNumber,
uint64_t SizeInBits, uint32_t AlignInBits, LLVMDIFlags Flags,
LLVMMetadataRef DerivedFrom, LLVMMetadataRef *Elements,
unsigned NumElements, unsigned RunTimeLang, LLVMMetadataRef VTableHolder,
const char *UniqueId, size_t UniqueIdLen) {
auto Elts = unwrap(Builder)->getOrCreateArray({unwrap(Elements),
NumElements});
return wrap(unwrap(Builder)->createStructType(
unwrapDI<DIScope>(Scope), {Name, NameLen}, unwrapDI<DIFile>(File),
LineNumber, SizeInBits, AlignInBits, map_from_llvmDIFlags(Flags),
unwrapDI<DIType>(DerivedFrom), Elts, RunTimeLang,
unwrapDI<DIType>(VTableHolder), {UniqueId, UniqueIdLen}));
}
LLVMMetadataRef LLVMDIBuilderCreateMemberType(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, LLVMMetadataRef File, unsigned LineNo, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits, LLVMDIFlags Flags,
LLVMMetadataRef Ty) {
return wrap(unwrap(Builder)->createMemberType(unwrapDI<DIScope>(Scope),
{Name, NameLen}, unwrapDI<DIFile>(File), LineNo, SizeInBits, AlignInBits,
OffsetInBits, map_from_llvmDIFlags(Flags), unwrapDI<DIType>(Ty)));
}
LLVMMetadataRef
LLVMDIBuilderCreateUnspecifiedType(LLVMDIBuilderRef Builder, const char *Name,
size_t NameLen) {
return wrap(unwrap(Builder)->createUnspecifiedType({Name, NameLen}));
}
LLVMMetadataRef
LLVMDIBuilderCreateStaticMemberType(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, LLVMMetadataRef File, unsigned LineNumber,
LLVMMetadataRef Type, LLVMDIFlags Flags, LLVMValueRef ConstantVal,
uint32_t AlignInBits) {
return wrap(unwrap(Builder)->createStaticMemberType(
unwrapDI<DIScope>(Scope), {Name, NameLen},
unwrapDI<DIFile>(File), LineNumber, unwrapDI<DIType>(Type),
map_from_llvmDIFlags(Flags), unwrap<Constant>(ConstantVal),
AlignInBits));
}
LLVMMetadataRef
LLVMDIBuilderCreateObjCIVar(LLVMDIBuilderRef Builder,
const char *Name, size_t NameLen,
LLVMMetadataRef File, unsigned LineNo,
uint64_t SizeInBits, uint32_t AlignInBits,
uint64_t OffsetInBits, LLVMDIFlags Flags,
LLVMMetadataRef Ty, LLVMMetadataRef PropertyNode) {
return wrap(unwrap(Builder)->createObjCIVar(
{Name, NameLen}, unwrapDI<DIFile>(File), LineNo,
SizeInBits, AlignInBits, OffsetInBits,
map_from_llvmDIFlags(Flags), unwrapDI<DIType>(Ty),
unwrapDI<MDNode>(PropertyNode)));
}
LLVMMetadataRef
LLVMDIBuilderCreateObjCProperty(LLVMDIBuilderRef Builder,
const char *Name, size_t NameLen,
LLVMMetadataRef File, unsigned LineNo,
const char *GetterName, size_t GetterNameLen,
const char *SetterName, size_t SetterNameLen,
unsigned PropertyAttributes,
LLVMMetadataRef Ty) {
return wrap(unwrap(Builder)->createObjCProperty(
{Name, NameLen}, unwrapDI<DIFile>(File), LineNo,
{GetterName, GetterNameLen}, {SetterName, SetterNameLen},
PropertyAttributes, unwrapDI<DIType>(Ty)));
}
LLVMMetadataRef
LLVMDIBuilderCreateObjectPointerType(LLVMDIBuilderRef Builder,
LLVMMetadataRef Type) {
return wrap(unwrap(Builder)->createObjectPointerType(unwrapDI<DIType>(Type)));
}
LLVMMetadataRef
LLVMDIBuilderCreateTypedef(LLVMDIBuilderRef Builder, LLVMMetadataRef Type,
const char *Name, size_t NameLen,
LLVMMetadataRef File, unsigned LineNo,
LLVMMetadataRef Scope, uint32_t AlignInBits) {
return wrap(unwrap(Builder)->createTypedef(
unwrapDI<DIType>(Type), {Name, NameLen}, unwrapDI<DIFile>(File), LineNo,
unwrapDI<DIScope>(Scope), AlignInBits));
}
LLVMMetadataRef
LLVMDIBuilderCreateInheritance(LLVMDIBuilderRef Builder,
LLVMMetadataRef Ty, LLVMMetadataRef BaseTy,
uint64_t BaseOffset, uint32_t VBPtrOffset,
LLVMDIFlags Flags) {
return wrap(unwrap(Builder)->createInheritance(
unwrapDI<DIType>(Ty), unwrapDI<DIType>(BaseTy),
BaseOffset, VBPtrOffset, map_from_llvmDIFlags(Flags)));
}
LLVMMetadataRef
LLVMDIBuilderCreateForwardDecl(
LLVMDIBuilderRef Builder, unsigned Tag, const char *Name,
size_t NameLen, LLVMMetadataRef Scope, LLVMMetadataRef File, unsigned Line,
unsigned RuntimeLang, uint64_t SizeInBits, uint32_t AlignInBits,
const char *UniqueIdentifier, size_t UniqueIdentifierLen) {
return wrap(unwrap(Builder)->createForwardDecl(
Tag, {Name, NameLen}, unwrapDI<DIScope>(Scope),
unwrapDI<DIFile>(File), Line, RuntimeLang, SizeInBits,
AlignInBits, {UniqueIdentifier, UniqueIdentifierLen}));
}
LLVMMetadataRef
LLVMDIBuilderCreateReplaceableCompositeType(
LLVMDIBuilderRef Builder, unsigned Tag, const char *Name,
size_t NameLen, LLVMMetadataRef Scope, LLVMMetadataRef File, unsigned Line,
unsigned RuntimeLang, uint64_t SizeInBits, uint32_t AlignInBits,
LLVMDIFlags Flags, const char *UniqueIdentifier,
size_t UniqueIdentifierLen) {
return wrap(unwrap(Builder)->createReplaceableCompositeType(
Tag, {Name, NameLen}, unwrapDI<DIScope>(Scope),
unwrapDI<DIFile>(File), Line, RuntimeLang, SizeInBits,
AlignInBits, map_from_llvmDIFlags(Flags),
{UniqueIdentifier, UniqueIdentifierLen}));
}
LLVMMetadataRef
LLVMDIBuilderCreateQualifiedType(LLVMDIBuilderRef Builder, unsigned Tag,
LLVMMetadataRef Type) {
return wrap(unwrap(Builder)->createQualifiedType(Tag,
unwrapDI<DIType>(Type)));
}
LLVMMetadataRef
LLVMDIBuilderCreateReferenceType(LLVMDIBuilderRef Builder, unsigned Tag,
LLVMMetadataRef Type) {
return wrap(unwrap(Builder)->createReferenceType(Tag,
unwrapDI<DIType>(Type)));
}
LLVMMetadataRef
LLVMDIBuilderCreateNullPtrType(LLVMDIBuilderRef Builder) {
return wrap(unwrap(Builder)->createNullPtrType());
}
LLVMMetadataRef
LLVMDIBuilderCreateMemberPointerType(LLVMDIBuilderRef Builder,
LLVMMetadataRef PointeeType,
LLVMMetadataRef ClassType,
uint64_t SizeInBits,
uint32_t AlignInBits,
LLVMDIFlags Flags) {
return wrap(unwrap(Builder)->createMemberPointerType(
unwrapDI<DIType>(PointeeType),
unwrapDI<DIType>(ClassType), AlignInBits, SizeInBits,
map_from_llvmDIFlags(Flags)));
}
LLVMMetadataRef
LLVMDIBuilderCreateBitFieldMemberType(LLVMDIBuilderRef Builder,
LLVMMetadataRef Scope,
const char *Name, size_t NameLen,
LLVMMetadataRef File, unsigned LineNumber,
uint64_t SizeInBits,
uint64_t OffsetInBits,
uint64_t StorageOffsetInBits,
LLVMDIFlags Flags, LLVMMetadataRef Type) {
return wrap(unwrap(Builder)->createBitFieldMemberType(
unwrapDI<DIScope>(Scope), {Name, NameLen},
unwrapDI<DIFile>(File), LineNumber,
SizeInBits, OffsetInBits, StorageOffsetInBits,
map_from_llvmDIFlags(Flags), unwrapDI<DIType>(Type)));
}
LLVMMetadataRef LLVMDIBuilderCreateClassType(LLVMDIBuilderRef Builder,
LLVMMetadataRef Scope, const char *Name, size_t NameLen,
LLVMMetadataRef File, unsigned LineNumber, uint64_t SizeInBits,
uint32_t AlignInBits, uint64_t OffsetInBits, LLVMDIFlags Flags,
LLVMMetadataRef DerivedFrom,
LLVMMetadataRef *Elements, unsigned NumElements,
LLVMMetadataRef VTableHolder, LLVMMetadataRef TemplateParamsNode,
const char *UniqueIdentifier, size_t UniqueIdentifierLen) {
auto Elts = unwrap(Builder)->getOrCreateArray({unwrap(Elements),
NumElements});
return wrap(unwrap(Builder)->createClassType(
unwrapDI<DIScope>(Scope), {Name, NameLen},
unwrapDI<DIFile>(File), LineNumber,
SizeInBits, AlignInBits, OffsetInBits,
map_from_llvmDIFlags(Flags), unwrapDI<DIType>(DerivedFrom),
Elts, unwrapDI<DIType>(VTableHolder),
unwrapDI<MDNode>(TemplateParamsNode),
{UniqueIdentifier, UniqueIdentifierLen}));
}
LLVMMetadataRef
LLVMDIBuilderCreateArtificialType(LLVMDIBuilderRef Builder,
LLVMMetadataRef Type) {
return wrap(unwrap(Builder)->createArtificialType(unwrapDI<DIType>(Type)));
}
const char *LLVMDITypeGetName(LLVMMetadataRef DType, size_t *Length) {
StringRef Str = unwrap<DIType>(DType)->getName();
*Length = Str.size();
return Str.data();
}
uint64_t LLVMDITypeGetSizeInBits(LLVMMetadataRef DType) {
return unwrapDI<DIType>(DType)->getSizeInBits();
}
uint64_t LLVMDITypeGetOffsetInBits(LLVMMetadataRef DType) {
return unwrapDI<DIType>(DType)->getOffsetInBits();
}
uint32_t LLVMDITypeGetAlignInBits(LLVMMetadataRef DType) {
return unwrapDI<DIType>(DType)->getAlignInBits();
}
unsigned LLVMDITypeGetLine(LLVMMetadataRef DType) {
return unwrapDI<DIType>(DType)->getLine();
}
LLVMDIFlags LLVMDITypeGetFlags(LLVMMetadataRef DType) {
return map_to_llvmDIFlags(unwrapDI<DIType>(DType)->getFlags());
}
LLVMMetadataRef LLVMDIBuilderGetOrCreateTypeArray(LLVMDIBuilderRef Builder,
LLVMMetadataRef *Types,
size_t Length) {
return wrap(
unwrap(Builder)->getOrCreateTypeArray({unwrap(Types), Length}).get());
}
LLVMMetadataRef
LLVMDIBuilderCreateSubroutineType(LLVMDIBuilderRef Builder,
LLVMMetadataRef File,
LLVMMetadataRef *ParameterTypes,
unsigned NumParameterTypes,
LLVMDIFlags Flags) {
auto Elts = unwrap(Builder)->getOrCreateTypeArray({unwrap(ParameterTypes),
NumParameterTypes});
return wrap(unwrap(Builder)->createSubroutineType(
Elts, map_from_llvmDIFlags(Flags)));
}
LLVMMetadataRef LLVMDIBuilderCreateExpression(LLVMDIBuilderRef Builder,
uint64_t *Addr, size_t Length) {
return wrap(
unwrap(Builder)->createExpression(ArrayRef<uint64_t>(Addr, Length)));
}
LLVMMetadataRef
LLVMDIBuilderCreateConstantValueExpression(LLVMDIBuilderRef Builder,
uint64_t Value) {
return wrap(unwrap(Builder)->createConstantValueExpression(Value));
}
LLVMMetadataRef LLVMDIBuilderCreateGlobalVariableExpression(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, const char *Linkage, size_t LinkLen, LLVMMetadataRef File,
unsigned LineNo, LLVMMetadataRef Ty, LLVMBool LocalToUnit,
LLVMMetadataRef Expr, LLVMMetadataRef Decl, uint32_t AlignInBits) {
return wrap(unwrap(Builder)->createGlobalVariableExpression(
unwrapDI<DIScope>(Scope), {Name, NameLen}, {Linkage, LinkLen},
unwrapDI<DIFile>(File), LineNo, unwrapDI<DIType>(Ty), LocalToUnit,
true, unwrap<DIExpression>(Expr), unwrapDI<MDNode>(Decl),
nullptr, AlignInBits));
}
LLVMMetadataRef LLVMDIGlobalVariableExpressionGetVariable(LLVMMetadataRef GVE) {
return wrap(unwrapDI<DIGlobalVariableExpression>(GVE)->getVariable());
}
LLVMMetadataRef LLVMDIGlobalVariableExpressionGetExpression(
LLVMMetadataRef GVE) {
return wrap(unwrapDI<DIGlobalVariableExpression>(GVE)->getExpression());
}
LLVMMetadataRef LLVMDIVariableGetFile(LLVMMetadataRef Var) {
return wrap(unwrapDI<DIVariable>(Var)->getFile());
}
LLVMMetadataRef LLVMDIVariableGetScope(LLVMMetadataRef Var) {
return wrap(unwrapDI<DIVariable>(Var)->getScope());
}
unsigned LLVMDIVariableGetLine(LLVMMetadataRef Var) {
return unwrapDI<DIVariable>(Var)->getLine();
}
LLVMMetadataRef LLVMTemporaryMDNode(LLVMContextRef Ctx, LLVMMetadataRef *Data,
size_t Count) {
return wrap(
MDTuple::getTemporary(*unwrap(Ctx), {unwrap(Data), Count}).release());
}
void LLVMDisposeTemporaryMDNode(LLVMMetadataRef TempNode) {
MDNode::deleteTemporary(unwrapDI<MDNode>(TempNode));
}
void LLVMMetadataReplaceAllUsesWith(LLVMMetadataRef TargetMetadata,
LLVMMetadataRef Replacement) {
auto *Node = unwrapDI<MDNode>(TargetMetadata);
Node->replaceAllUsesWith(unwrap(Replacement));
MDNode::deleteTemporary(Node);
}
LLVMMetadataRef LLVMDIBuilderCreateTempGlobalVariableFwdDecl(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, const char *Linkage, size_t LnkLen, LLVMMetadataRef File,
unsigned LineNo, LLVMMetadataRef Ty, LLVMBool LocalToUnit,
LLVMMetadataRef Decl, uint32_t AlignInBits) {
return wrap(unwrap(Builder)->createTempGlobalVariableFwdDecl(
unwrapDI<DIScope>(Scope), {Name, NameLen}, {Linkage, LnkLen},
unwrapDI<DIFile>(File), LineNo, unwrapDI<DIType>(Ty), LocalToUnit,
unwrapDI<MDNode>(Decl), nullptr, AlignInBits));
}
LLVMValueRef
LLVMDIBuilderInsertDeclareBefore(LLVMDIBuilderRef Builder, LLVMValueRef Storage,
LLVMMetadataRef VarInfo, LLVMMetadataRef Expr,
LLVMMetadataRef DL, LLVMValueRef Instr) {
return wrap(unwrap(Builder)->insertDeclare(
unwrap(Storage), unwrap<DILocalVariable>(VarInfo),
unwrap<DIExpression>(Expr), unwrap<DILocation>(DL),
unwrap<Instruction>(Instr)));
}
LLVMValueRef LLVMDIBuilderInsertDeclareAtEnd(
LLVMDIBuilderRef Builder, LLVMValueRef Storage, LLVMMetadataRef VarInfo,
LLVMMetadataRef Expr, LLVMMetadataRef DL, LLVMBasicBlockRef Block) {
return wrap(unwrap(Builder)->insertDeclare(
unwrap(Storage), unwrap<DILocalVariable>(VarInfo),
unwrap<DIExpression>(Expr), unwrap<DILocation>(DL),
unwrap(Block)));
}
LLVMValueRef LLVMDIBuilderInsertDbgValueBefore(LLVMDIBuilderRef Builder,
LLVMValueRef Val,
LLVMMetadataRef VarInfo,
LLVMMetadataRef Expr,
LLVMMetadataRef DebugLoc,
LLVMValueRef Instr) {
return wrap(unwrap(Builder)->insertDbgValueIntrinsic(
unwrap(Val), unwrap<DILocalVariable>(VarInfo),
unwrap<DIExpression>(Expr), unwrap<DILocation>(DebugLoc),
unwrap<Instruction>(Instr)));
}
LLVMValueRef LLVMDIBuilderInsertDbgValueAtEnd(LLVMDIBuilderRef Builder,
LLVMValueRef Val,
LLVMMetadataRef VarInfo,
LLVMMetadataRef Expr,
LLVMMetadataRef DebugLoc,
LLVMBasicBlockRef Block) {
return wrap(unwrap(Builder)->insertDbgValueIntrinsic(
unwrap(Val), unwrap<DILocalVariable>(VarInfo),
unwrap<DIExpression>(Expr), unwrap<DILocation>(DebugLoc),
unwrap(Block)));
}
LLVMMetadataRef LLVMDIBuilderCreateAutoVariable(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, LLVMMetadataRef File, unsigned LineNo, LLVMMetadataRef Ty,
LLVMBool AlwaysPreserve, LLVMDIFlags Flags, uint32_t AlignInBits) {
return wrap(unwrap(Builder)->createAutoVariable(
unwrap<DIScope>(Scope), {Name, NameLen}, unwrap<DIFile>(File),
LineNo, unwrap<DIType>(Ty), AlwaysPreserve,
map_from_llvmDIFlags(Flags), AlignInBits));
}
LLVMMetadataRef LLVMDIBuilderCreateParameterVariable(
LLVMDIBuilderRef Builder, LLVMMetadataRef Scope, const char *Name,
size_t NameLen, unsigned ArgNo, LLVMMetadataRef File, unsigned LineNo,
LLVMMetadataRef Ty, LLVMBool AlwaysPreserve, LLVMDIFlags Flags) {
return wrap(unwrap(Builder)->createParameterVariable(
unwrap<DIScope>(Scope), {Name, NameLen}, ArgNo, unwrap<DIFile>(File),
LineNo, unwrap<DIType>(Ty), AlwaysPreserve,
map_from_llvmDIFlags(Flags)));
}
LLVMMetadataRef LLVMDIBuilderGetOrCreateSubrange(LLVMDIBuilderRef Builder,
int64_t Lo, int64_t Count) {
return wrap(unwrap(Builder)->getOrCreateSubrange(Lo, Count));
}
LLVMMetadataRef LLVMDIBuilderGetOrCreateArray(LLVMDIBuilderRef Builder,
LLVMMetadataRef *Data,
size_t Length) {
Metadata **DataValue = unwrap(Data);
return wrap(unwrap(Builder)->getOrCreateArray({DataValue, Length}).get());
}
LLVMMetadataRef LLVMGetSubprogram(LLVMValueRef Func) {
return wrap(unwrap<Function>(Func)->getSubprogram());
}
void LLVMSetSubprogram(LLVMValueRef Func, LLVMMetadataRef SP) {
unwrap<Function>(Func)->setSubprogram(unwrap<DISubprogram>(SP));
}
unsigned LLVMDISubprogramGetLine(LLVMMetadataRef Subprogram) {
return unwrapDI<DISubprogram>(Subprogram)->getLine();
}
LLVMMetadataRef LLVMInstructionGetDebugLoc(LLVMValueRef Inst) {
return wrap(unwrap<Instruction>(Inst)->getDebugLoc().getAsMDNode());
}
void LLVMInstructionSetDebugLoc(LLVMValueRef Inst, LLVMMetadataRef Loc) {
if (Loc)
unwrap<Instruction>(Inst)->setDebugLoc(DebugLoc(unwrap<MDNode>(Loc)));
else
unwrap<Instruction>(Inst)->setDebugLoc(DebugLoc());
}
LLVMMetadataKind LLVMGetMetadataKind(LLVMMetadataRef Metadata) {
switch(unwrap(Metadata)->getMetadataID()) {
#define HANDLE_METADATA_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
return (LLVMMetadataKind)LLVM##CLASS##MetadataKind;
#include "llvm/IR/Metadata.def"
default:
return (LLVMMetadataKind)LLVMGenericDINodeMetadataKind;
}
}
AssignmentInstRange at::getAssignmentInsts(DIAssignID *ID) {
assert(ID && "Expected non-null ID");
LLVMContext &Ctx = ID->getContext();
auto &Map = Ctx.pImpl->AssignmentIDToInstrs;
auto MapIt = Map.find(ID);
if (MapIt == Map.end())
return make_range(nullptr, nullptr);
return make_range(MapIt->second.begin(), MapIt->second.end());
}
AssignmentMarkerRange at::getAssignmentMarkers(DIAssignID *ID) {
assert(ID && "Expected non-null ID");
LLVMContext &Ctx = ID->getContext();
auto *IDAsValue = MetadataAsValue::getIfExists(Ctx, ID);
// The ID is only used wrapped in MetadataAsValue(ID), so lets check that
// one of those already exists first.
if (!IDAsValue)
return make_range(Value::user_iterator(), Value::user_iterator());
return make_range(IDAsValue->user_begin(), IDAsValue->user_end());
}
void at::deleteAssignmentMarkers(const Instruction *Inst) {
auto Range = getAssignmentMarkers(Inst);
if (Range.empty())
return;
SmallVector<DbgAssignIntrinsic *> ToDelete(Range.begin(), Range.end());
for (auto *DAI : ToDelete)
DAI->eraseFromParent();
}
void at::RAUW(DIAssignID *Old, DIAssignID *New) {
// Replace MetadataAsValue uses.
if (auto *OldIDAsValue =
MetadataAsValue::getIfExists(Old->getContext(), Old)) {
auto *NewIDAsValue = MetadataAsValue::get(Old->getContext(), New);
OldIDAsValue->replaceAllUsesWith(NewIDAsValue);
}
// Replace attachments.
AssignmentInstRange InstRange = getAssignmentInsts(Old);
// Use intermediate storage for the instruction ptrs because the
// getAssignmentInsts range iterators will be invalidated by adding and
// removing DIAssignID attachments.
SmallVector<Instruction *> InstVec(InstRange.begin(), InstRange.end());
for (auto *I : InstVec)
I->setMetadata(LLVMContext::MD_DIAssignID, New);
}
void at::deleteAll(Function *F) {
SmallVector<DbgAssignIntrinsic *, 12> ToDelete;
for (BasicBlock &BB : *F) {
for (Instruction &I : BB) {
if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
ToDelete.push_back(DAI);
else
I.setMetadata(LLVMContext::MD_DIAssignID, nullptr);
}
}
for (auto *DAI : ToDelete)
DAI->eraseFromParent();
}
/// Collect constant properies (base, size, offset) of \p StoreDest.
/// Return std::nullopt if any properties are not constants.
static std::optional<AssignmentInfo>
getAssignmentInfoImpl(const DataLayout &DL, const Value *StoreDest,
uint64_t SizeInBits) {
APInt GEPOffset(DL.getIndexTypeSizeInBits(StoreDest->getType()), 0);
const Value *Base = StoreDest->stripAndAccumulateConstantOffsets(
DL, GEPOffset, /*AllowNonInbounds*/ true);
uint64_t OffsetInBytes = GEPOffset.getLimitedValue();
// Check for overflow.
if (OffsetInBytes == UINT64_MAX)
return std::nullopt;
if (const auto *Alloca = dyn_cast<AllocaInst>(Base))
return AssignmentInfo(DL, Alloca, OffsetInBytes * 8, SizeInBits);
return std::nullopt;
}
std::optional<AssignmentInfo> at::getAssignmentInfo(const DataLayout &DL,
const MemIntrinsic *I) {
const Value *StoreDest = I->getRawDest();
// Assume 8 bit bytes.
auto *ConstLengthInBytes = dyn_cast<ConstantInt>(I->getLength());
if (!ConstLengthInBytes)
// We can't use a non-const size, bail.
return std::nullopt;
uint64_t SizeInBits = 8 * ConstLengthInBytes->getZExtValue();
return getAssignmentInfoImpl(DL, StoreDest, SizeInBits);
}
std::optional<AssignmentInfo> at::getAssignmentInfo(const DataLayout &DL,
const StoreInst *SI) {
const Value *StoreDest = SI->getPointerOperand();
uint64_t SizeInBits = DL.getTypeSizeInBits(SI->getValueOperand()->getType());
return getAssignmentInfoImpl(DL, StoreDest, SizeInBits);
}
std::optional<AssignmentInfo> at::getAssignmentInfo(const DataLayout &DL,
const AllocaInst *AI) {
uint64_t SizeInBits = DL.getTypeSizeInBits(AI->getAllocatedType());
return getAssignmentInfoImpl(DL, AI, SizeInBits);
}
static CallInst *emitDbgAssign(AssignmentInfo Info, Value *Val, Value *Dest,
Instruction &StoreLikeInst,
const VarRecord &VarRec, DIBuilder &DIB) {
auto *ID = StoreLikeInst.getMetadata(LLVMContext::MD_DIAssignID);
assert(ID && "Store instruction must have DIAssignID metadata");
(void)ID;
DIExpression *Expr =
DIExpression::get(StoreLikeInst.getContext(), std::nullopt);
if (!Info.StoreToWholeAlloca) {
auto R = DIExpression::createFragmentExpression(Expr, Info.OffsetInBits,
Info.SizeInBits);
assert(R.has_value() && "failed to create fragment expression");
Expr = *R;
}
DIExpression *AddrExpr =
DIExpression::get(StoreLikeInst.getContext(), std::nullopt);
return DIB.insertDbgAssign(&StoreLikeInst, Val, VarRec.Var, Expr, Dest,
AddrExpr, VarRec.DL);
}
#undef DEBUG_TYPE // Silence redefinition warning (from ConstantsContext.h).
#define DEBUG_TYPE "assignment-tracking"
void at::trackAssignments(Function::iterator Start, Function::iterator End,
const StorageToVarsMap &Vars, const DataLayout &DL,
bool DebugPrints) {
// Early-exit if there are no interesting variables.
if (Vars.empty())
return;
auto &Ctx = Start->getContext();
auto &Module = *Start->getModule();
// Undef type doesn't matter, so long as it isn't void. Let's just use i1.
auto *Undef = UndefValue::get(Type::getInt1Ty(Ctx));
DIBuilder DIB(Module, /*AllowUnresolved*/ false);
// Scan the instructions looking for stores to local variables' storage.
LLVM_DEBUG(errs() << "# Scanning instructions\n");
for (auto BBI = Start; BBI != End; ++BBI) {
for (Instruction &I : *BBI) {
std::optional<AssignmentInfo> Info;
Value *ValueComponent = nullptr;
Value *DestComponent = nullptr;
if (auto *AI = dyn_cast<AllocaInst>(&I)) {
// We want to track the variable's stack home from its alloca's
// position onwards so we treat it as an assignment (where the stored
// value is Undef).
Info = getAssignmentInfo(DL, AI);
ValueComponent = Undef;
DestComponent = AI;
} else if (auto *SI = dyn_cast<StoreInst>(&I)) {
Info = getAssignmentInfo(DL, SI);
ValueComponent = SI->getValueOperand();
DestComponent = SI->getPointerOperand();
} else if (auto *MI = dyn_cast<MemTransferInst>(&I)) {
Info = getAssignmentInfo(DL, MI);
// May not be able to represent this value easily.
ValueComponent = Undef;
DestComponent = MI->getOperand(0);
} else if (auto *MI = dyn_cast<MemSetInst>(&I)) {
Info = getAssignmentInfo(DL, MI);
// If we're zero-initing we can state the assigned value is zero,
// otherwise use undef.
auto *ConstValue = dyn_cast<ConstantInt>(MI->getOperand(1));
if (ConstValue && ConstValue->isZero())
ValueComponent = ConstValue;
else
ValueComponent = Undef;
DestComponent = MI->getOperand(0);
} else {
// Not a store-like instruction.
continue;
}
assert(ValueComponent && DestComponent);
LLVM_DEBUG(errs() << "SCAN: Found store-like: " << I << "\n");
// Check if getAssignmentInfo failed to understand this store.
if (!Info.has_value()) {
LLVM_DEBUG(
errs()
<< " | SKIP: Untrackable store (e.g. through non-const gep)\n");
continue;
}
LLVM_DEBUG(errs() << " | BASE: " << *Info->Base << "\n");
// Check if the store destination is a local variable with debug info.
auto LocalIt = Vars.find(Info->Base);
if (LocalIt == Vars.end()) {
LLVM_DEBUG(
errs()
<< " | SKIP: Base address not associated with local variable\n");
continue;
}
DIAssignID *ID =
cast_or_null<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
if (!ID) {
ID = DIAssignID::getDistinct(Ctx);
I.setMetadata(LLVMContext::MD_DIAssignID, ID);
}
for (const VarRecord &R : LocalIt->second) {
auto *Assign =
emitDbgAssign(*Info, ValueComponent, DestComponent, I, R, DIB);
(void)Assign;
LLVM_DEBUG(errs() << " > INSERT: " << *Assign << "\n");
}
}
}
}
void AssignmentTrackingPass::runOnFunction(Function &F) {
// Collect a map of {backing storage : dbg.declares} (currently "backing
// storage" is limited to Allocas). We'll use this to find dbg.declares to
// delete after running `trackAssignments`.
DenseMap<const AllocaInst *, SmallPtrSet<DbgDeclareInst *, 2>> DbgDeclares;
// Create another similar map of {storage : variables} that we'll pass to
// trackAssignments.
StorageToVarsMap Vars;
for (auto &BB : F) {
for (auto &I : BB) {
DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(&I);
if (!DDI)
continue;
// FIXME: trackAssignments doesn't let you specify any modifiers to the
// variable (e.g. fragment) or location (e.g. offset), so we have to
// leave dbg.declares with non-empty expressions in place.
if (DDI->getExpression()->getNumElements() != 0)
continue;
if (AllocaInst *Alloca =
dyn_cast<AllocaInst>(DDI->getAddress()->stripPointerCasts())) {
DbgDeclares[Alloca].insert(DDI);
Vars[Alloca].insert(VarRecord(DDI));
}
}
}
auto DL = std::make_unique<DataLayout>(F.getParent());
// FIXME: Locals can be backed by caller allocas (sret, byval).
// Note: trackAssignments doesn't respect dbg.declare's IR positions (as it
// doesn't "understand" dbg.declares). However, this doesn't appear to break
// any rules given this description of dbg.declare from
// llvm/docs/SourceLevelDebugging.rst:
//
// It is not control-dependent, meaning that if a call to llvm.dbg.declare
// exists and has a valid location argument, that address is considered to
// be the true home of the variable across its entire lifetime.
trackAssignments(F.begin(), F.end(), Vars, *DL);
// Delete dbg.declares for variables now tracked with assignment tracking.
for (auto &P : DbgDeclares) {
const AllocaInst *Alloca = P.first;
auto Markers = at::getAssignmentMarkers(Alloca);
(void)Markers;
for (DbgDeclareInst *DDI : P.second) {
// Assert that the alloca that DDI uses is now linked to a dbg.assign
// describing the same variable (i.e. check that this dbg.declare
// has been replaced by a dbg.assign).
assert(llvm::any_of(Markers, [DDI](DbgAssignIntrinsic *DAI) {
return DebugVariable(DAI) == DebugVariable(DDI);
}));
// Delete DDI because the variable location is now tracked using
// assignment tracking.
DDI->eraseFromParent();
}
}
}
static const char *AssignmentTrackingModuleFlag =
"debug-info-assignment-tracking";
static void setAssignmentTrackingModuleFlag(Module &M) {
M.setModuleFlag(Module::ModFlagBehavior::Max, AssignmentTrackingModuleFlag,
ConstantAsMetadata::get(
ConstantInt::get(Type::getInt1Ty(M.getContext()), 1)));
}
static bool getAssignmentTrackingModuleFlag(const Module &M) {
Metadata *Value = M.getModuleFlag(AssignmentTrackingModuleFlag);
return Value && !cast<ConstantAsMetadata>(Value)->getValue()->isZeroValue();
}
bool llvm::isAssignmentTrackingEnabled(const Module &M) {
return getAssignmentTrackingModuleFlag(M);
}
PreservedAnalyses AssignmentTrackingPass::run(Function &F,
FunctionAnalysisManager &AM) {
runOnFunction(F);
// Record that this module uses assignment tracking. It doesn't matter that
// some functons in the module may not use it - the debug info in those
// functions will still be handled properly.
setAssignmentTrackingModuleFlag(*F.getParent());
// Q: Can we return a less conservative set than just CFGAnalyses? Can we
// return PreservedAnalyses::all()?
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
PreservedAnalyses AssignmentTrackingPass::run(Module &M,
ModuleAnalysisManager &AM) {
for (auto &F : M)
runOnFunction(F);
// Record that this module uses assignment tracking.
setAssignmentTrackingModuleFlag(M);
// Q: Can we return a less conservative set than just CFGAnalyses? Can we
// return PreservedAnalyses::all()?
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
#undef DEBUG_TYPE