| //===- BitTracker.cpp -----------------------------------------------------===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // SSA-based bit propagation. | 
 | // | 
 | // The purpose of this code is, for a given virtual register, to provide | 
 | // information about the value of each bit in the register. The values | 
 | // of bits are represented by the class BitValue, and take one of four | 
 | // cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the | 
 | // "ref" value means that the bit is a copy of another bit (which itself | 
 | // cannot be a copy of yet another bit---such chains are not allowed). | 
 | // A "ref" value is associated with a BitRef structure, which indicates | 
 | // which virtual register, and which bit in that register is the origin | 
 | // of the value. For example, given an instruction | 
 | //   %2 = ASL %1, 1 | 
 | // assuming that nothing is known about bits of %1, bit 1 of %2 | 
 | // will be a "ref" to (%1, 0). If there is a subsequent instruction | 
 | //   %3 = ASL %2, 2 | 
 | // then bit 3 of %3 will be a "ref" to (%1, 0) as well. | 
 | // The "bottom" case means that the bit's value cannot be determined, | 
 | // and that this virtual register actually defines it. The "bottom" case | 
 | // is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref | 
 | // to self", so for the %1 above, the bit 0 of it will be a "ref" to | 
 | // (%1, 0), bit 1 will be a "ref" to (%1, 1), etc. | 
 | // | 
 | // The tracker implements the Wegman-Zadeck algorithm, originally developed | 
 | // for SSA-based constant propagation. Each register is represented as | 
 | // a sequence of bits, with the convention that bit 0 is the least signi- | 
 | // ficant bit. Each bit is propagated individually. The class RegisterCell | 
 | // implements the register's representation, and is also the subject of | 
 | // the lattice operations in the tracker. | 
 | // | 
 | // The intended usage of the bit tracker is to create a target-specific | 
 | // machine instruction evaluator, pass the evaluator to the BitTracker | 
 | // object, and run the tracker. The tracker will then collect the bit | 
 | // value information for a given machine function. After that, it can be | 
 | // queried for the cells for each virtual register. | 
 | // Sample code: | 
 | //   const TargetSpecificEvaluator TSE(TRI, MRI); | 
 | //   BitTracker BT(TSE, MF); | 
 | //   BT.run(); | 
 | //   ... | 
 | //   unsigned Reg = interestingRegister(); | 
 | //   RegisterCell RC = BT.get(Reg); | 
 | //   if (RC[3].is(1)) | 
 | //      Reg0bit3 = 1; | 
 | // | 
 | // The code below is intended to be fully target-independent. | 
 |  | 
 | #include "BitTracker.h" | 
 | #include "llvm/ADT/APInt.h" | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/IR/Constants.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | using BT = BitTracker; | 
 |  | 
 | namespace { | 
 |  | 
 |   // Local trickery to pretty print a register (without the whole "%number" | 
 |   // business). | 
 |   struct printv { | 
 |     printv(unsigned r) : R(r) {} | 
 |  | 
 |     unsigned R; | 
 |   }; | 
 |  | 
 |   raw_ostream &operator<< (raw_ostream &OS, const printv &PV) { | 
 |     if (PV.R) | 
 |       OS << 'v' << Register::virtReg2Index(PV.R); | 
 |     else | 
 |       OS << 's'; | 
 |     return OS; | 
 |   } | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | namespace llvm { | 
 |  | 
 |   raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) { | 
 |     switch (BV.Type) { | 
 |       case BT::BitValue::Top: | 
 |         OS << 'T'; | 
 |         break; | 
 |       case BT::BitValue::Zero: | 
 |         OS << '0'; | 
 |         break; | 
 |       case BT::BitValue::One: | 
 |         OS << '1'; | 
 |         break; | 
 |       case BT::BitValue::Ref: | 
 |         OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']'; | 
 |         break; | 
 |     } | 
 |     return OS; | 
 |   } | 
 |  | 
 |   raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) { | 
 |     unsigned n = RC.Bits.size(); | 
 |     OS << "{ w:" << n; | 
 |     // Instead of printing each bit value individually, try to group them | 
 |     // into logical segments, such as sequences of 0 or 1 bits or references | 
 |     // to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz"). | 
 |     // "Start" will be the index of the beginning of the most recent segment. | 
 |     unsigned Start = 0; | 
 |     bool SeqRef = false;    // A sequence of refs to consecutive bits. | 
 |     bool ConstRef = false;  // A sequence of refs to the same bit. | 
 |  | 
 |     for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) { | 
 |       const BT::BitValue &V = RC[i]; | 
 |       const BT::BitValue &SV = RC[Start]; | 
 |       bool IsRef = (V.Type == BT::BitValue::Ref); | 
 |       // If the current value is the same as Start, skip to the next one. | 
 |       if (!IsRef && V == SV) | 
 |         continue; | 
 |       if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) { | 
 |         if (Start+1 == i) { | 
 |           SeqRef = (V.RefI.Pos == SV.RefI.Pos+1); | 
 |           ConstRef = (V.RefI.Pos == SV.RefI.Pos); | 
 |         } | 
 |         if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start)) | 
 |           continue; | 
 |         if (ConstRef && V.RefI.Pos == SV.RefI.Pos) | 
 |           continue; | 
 |       } | 
 |  | 
 |       // The current value is different. Print the previous one and reset | 
 |       // the Start. | 
 |       OS << " [" << Start; | 
 |       unsigned Count = i - Start; | 
 |       if (Count == 1) { | 
 |         OS << "]:" << SV; | 
 |       } else { | 
 |         OS << '-' << i-1 << "]:"; | 
 |         if (SV.Type == BT::BitValue::Ref && SeqRef) | 
 |           OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' | 
 |              << SV.RefI.Pos+(Count-1) << ']'; | 
 |         else | 
 |           OS << SV; | 
 |       } | 
 |       Start = i; | 
 |       SeqRef = ConstRef = false; | 
 |     } | 
 |  | 
 |     OS << " [" << Start; | 
 |     unsigned Count = n - Start; | 
 |     if (n-Start == 1) { | 
 |       OS << "]:" << RC[Start]; | 
 |     } else { | 
 |       OS << '-' << n-1 << "]:"; | 
 |       const BT::BitValue &SV = RC[Start]; | 
 |       if (SV.Type == BT::BitValue::Ref && SeqRef) | 
 |         OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-' | 
 |            << SV.RefI.Pos+(Count-1) << ']'; | 
 |       else | 
 |         OS << SV; | 
 |     } | 
 |     OS << " }"; | 
 |  | 
 |     return OS; | 
 |   } | 
 |  | 
 | } // end namespace llvm | 
 |  | 
 | void BitTracker::print_cells(raw_ostream &OS) const { | 
 |   for (const std::pair<unsigned, RegisterCell> P : Map) | 
 |     dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n"; | 
 | } | 
 |  | 
 | BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F) | 
 |     : ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) { | 
 | } | 
 |  | 
 | BitTracker::~BitTracker() { | 
 |   delete ⤅ | 
 | } | 
 |  | 
 | // If we were allowed to update a cell for a part of a register, the meet | 
 | // operation would need to be parametrized by the register number and the | 
 | // exact part of the register, so that the computer BitRefs correspond to | 
 | // the actual bits of the "self" register. | 
 | // While this cannot happen in the current implementation, I'm not sure | 
 | // if this should be ruled out in the future. | 
 | bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) { | 
 |   // An example when "meet" can be invoked with SelfR == 0 is a phi node | 
 |   // with a physical register as an operand. | 
 |   assert(SelfR == 0 || Register::isVirtualRegister(SelfR)); | 
 |   bool Changed = false; | 
 |   for (uint16_t i = 0, n = Bits.size(); i < n; ++i) { | 
 |     const BitValue &RCV = RC[i]; | 
 |     Changed |= Bits[i].meet(RCV, BitRef(SelfR, i)); | 
 |   } | 
 |   return Changed; | 
 | } | 
 |  | 
 | // Insert the entire cell RC into the current cell at position given by M. | 
 | BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC, | 
 |       const BitMask &M) { | 
 |   uint16_t B = M.first(), E = M.last(), W = width(); | 
 |   // Sanity: M must be a valid mask for *this. | 
 |   assert(B < W && E < W); | 
 |   // Sanity: the masked part of *this must have the same number of bits | 
 |   // as the source. | 
 |   assert(B > E || E-B+1 == RC.width());      // B <= E  =>  E-B+1 = |RC|. | 
 |   assert(B <= E || E+(W-B)+1 == RC.width()); // E < B   =>  E+(W-B)+1 = |RC|. | 
 |   if (B <= E) { | 
 |     for (uint16_t i = 0; i <= E-B; ++i) | 
 |       Bits[i+B] = RC[i]; | 
 |   } else { | 
 |     for (uint16_t i = 0; i < W-B; ++i) | 
 |       Bits[i+B] = RC[i]; | 
 |     for (uint16_t i = 0; i <= E; ++i) | 
 |       Bits[i] = RC[i+(W-B)]; | 
 |   } | 
 |   return *this; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const { | 
 |   uint16_t B = M.first(), E = M.last(), W = width(); | 
 |   assert(B < W && E < W); | 
 |   if (B <= E) { | 
 |     RegisterCell RC(E-B+1); | 
 |     for (uint16_t i = B; i <= E; ++i) | 
 |       RC.Bits[i-B] = Bits[i]; | 
 |     return RC; | 
 |   } | 
 |  | 
 |   RegisterCell RC(E+(W-B)+1); | 
 |   for (uint16_t i = 0; i < W-B; ++i) | 
 |     RC.Bits[i] = Bits[i+B]; | 
 |   for (uint16_t i = 0; i <= E; ++i) | 
 |     RC.Bits[i+(W-B)] = Bits[i]; | 
 |   return RC; | 
 | } | 
 |  | 
 | BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) { | 
 |   // Rotate left (i.e. towards increasing bit indices). | 
 |   // Swap the two parts:  [0..W-Sh-1] [W-Sh..W-1] | 
 |   uint16_t W = width(); | 
 |   Sh = Sh % W; | 
 |   if (Sh == 0) | 
 |     return *this; | 
 |  | 
 |   RegisterCell Tmp(W-Sh); | 
 |   // Tmp = [0..W-Sh-1]. | 
 |   for (uint16_t i = 0; i < W-Sh; ++i) | 
 |     Tmp[i] = Bits[i]; | 
 |   // Shift [W-Sh..W-1] to [0..Sh-1]. | 
 |   for (uint16_t i = 0; i < Sh; ++i) | 
 |     Bits[i] = Bits[W-Sh+i]; | 
 |   // Copy Tmp to [Sh..W-1]. | 
 |   for (uint16_t i = 0; i < W-Sh; ++i) | 
 |     Bits[i+Sh] = Tmp.Bits[i]; | 
 |   return *this; | 
 | } | 
 |  | 
 | BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E, | 
 |       const BitValue &V) { | 
 |   assert(B <= E); | 
 |   while (B < E) | 
 |     Bits[B++] = V; | 
 |   return *this; | 
 | } | 
 |  | 
 | BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) { | 
 |   // Append the cell given as the argument to the "this" cell. | 
 |   // Bit 0 of RC becomes bit W of the result, where W is this->width(). | 
 |   uint16_t W = width(), WRC = RC.width(); | 
 |   Bits.resize(W+WRC); | 
 |   for (uint16_t i = 0; i < WRC; ++i) | 
 |     Bits[i+W] = RC.Bits[i]; | 
 |   return *this; | 
 | } | 
 |  | 
 | uint16_t BT::RegisterCell::ct(bool B) const { | 
 |   uint16_t W = width(); | 
 |   uint16_t C = 0; | 
 |   BitValue V = B; | 
 |   while (C < W && Bits[C] == V) | 
 |     C++; | 
 |   return C; | 
 | } | 
 |  | 
 | uint16_t BT::RegisterCell::cl(bool B) const { | 
 |   uint16_t W = width(); | 
 |   uint16_t C = 0; | 
 |   BitValue V = B; | 
 |   while (C < W && Bits[W-(C+1)] == V) | 
 |     C++; | 
 |   return C; | 
 | } | 
 |  | 
 | bool BT::RegisterCell::operator== (const RegisterCell &RC) const { | 
 |   uint16_t W = Bits.size(); | 
 |   if (RC.Bits.size() != W) | 
 |     return false; | 
 |   for (uint16_t i = 0; i < W; ++i) | 
 |     if (Bits[i] != RC[i]) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | BT::RegisterCell &BT::RegisterCell::regify(unsigned R) { | 
 |   for (unsigned i = 0, n = width(); i < n; ++i) { | 
 |     const BitValue &V = Bits[i]; | 
 |     if (V.Type == BitValue::Ref && V.RefI.Reg == 0) | 
 |       Bits[i].RefI = BitRef(R, i); | 
 |   } | 
 |   return *this; | 
 | } | 
 |  | 
 | uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const { | 
 |   // The general problem is with finding a register class that corresponds | 
 |   // to a given reference reg:sub. There can be several such classes, and | 
 |   // since we only care about the register size, it does not matter which | 
 |   // such class we would find. | 
 |   // The easiest way to accomplish what we want is to | 
 |   // 1. find a physical register PhysR from the same class as RR.Reg, | 
 |   // 2. find a physical register PhysS that corresponds to PhysR:RR.Sub, | 
 |   // 3. find a register class that contains PhysS. | 
 |   if (Register::isVirtualRegister(RR.Reg)) { | 
 |     const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub); | 
 |     return TRI.getRegSizeInBits(VC); | 
 |   } | 
 |   assert(Register::isPhysicalRegister(RR.Reg)); | 
 |   Register PhysR = | 
 |       (RR.Sub == 0) ? Register(RR.Reg) : TRI.getSubReg(RR.Reg, RR.Sub); | 
 |   return getPhysRegBitWidth(PhysR); | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR, | 
 |       const CellMapType &M) const { | 
 |   uint16_t BW = getRegBitWidth(RR); | 
 |  | 
 |   // Physical registers are assumed to be present in the map with an unknown | 
 |   // value. Don't actually insert anything in the map, just return the cell. | 
 |   if (Register::isPhysicalRegister(RR.Reg)) | 
 |     return RegisterCell::self(0, BW); | 
 |  | 
 |   assert(Register::isVirtualRegister(RR.Reg)); | 
 |   // For virtual registers that belong to a class that is not tracked, | 
 |   // generate an "unknown" value as well. | 
 |   const TargetRegisterClass *C = MRI.getRegClass(RR.Reg); | 
 |   if (!track(C)) | 
 |     return RegisterCell::self(0, BW); | 
 |  | 
 |   CellMapType::const_iterator F = M.find(RR.Reg); | 
 |   if (F != M.end()) { | 
 |     if (!RR.Sub) | 
 |       return F->second; | 
 |     BitMask M = mask(RR.Reg, RR.Sub); | 
 |     return F->second.extract(M); | 
 |   } | 
 |   // If not found, create a "top" entry, but do not insert it in the map. | 
 |   return RegisterCell::top(BW); | 
 | } | 
 |  | 
 | void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC, | 
 |       CellMapType &M) const { | 
 |   // While updating the cell map can be done in a meaningful way for | 
 |   // a part of a register, it makes little sense to implement it as the | 
 |   // SSA representation would never contain such "partial definitions". | 
 |   if (!Register::isVirtualRegister(RR.Reg)) | 
 |     return; | 
 |   assert(RR.Sub == 0 && "Unexpected sub-register in definition"); | 
 |   // Eliminate all ref-to-reg-0 bit values: replace them with "self". | 
 |   M[RR.Reg] = RC.regify(RR.Reg); | 
 | } | 
 |  | 
 | // Check if the cell represents a compile-time integer value. | 
 | bool BT::MachineEvaluator::isInt(const RegisterCell &A) const { | 
 |   uint16_t W = A.width(); | 
 |   for (uint16_t i = 0; i < W; ++i) | 
 |     if (!A[i].is(0) && !A[i].is(1)) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | // Convert a cell to the integer value. The result must fit in uint64_t. | 
 | uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const { | 
 |   assert(isInt(A)); | 
 |   uint64_t Val = 0; | 
 |   uint16_t W = A.width(); | 
 |   for (uint16_t i = 0; i < W; ++i) { | 
 |     Val <<= 1; | 
 |     Val |= A[i].is(1); | 
 |   } | 
 |   return Val; | 
 | } | 
 |  | 
 | // Evaluator helper functions. These implement some common operation on | 
 | // register cells that can be used to implement target-specific instructions | 
 | // in a target-specific evaluator. | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const { | 
 |   RegisterCell Res(W); | 
 |   // For bits beyond the 63rd, this will generate the sign bit of V. | 
 |   for (uint16_t i = 0; i < W; ++i) { | 
 |     Res[i] = BitValue(V & 1); | 
 |     V >>= 1; | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const { | 
 |   const APInt &A = CI->getValue(); | 
 |   uint16_t BW = A.getBitWidth(); | 
 |   assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow"); | 
 |   RegisterCell Res(BW); | 
 |   for (uint16_t i = 0; i < BW; ++i) | 
 |     Res[i] = A[i]; | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1, | 
 |       const RegisterCell &A2) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(W == A2.width()); | 
 |   RegisterCell Res(W); | 
 |   bool Carry = false; | 
 |   uint16_t I; | 
 |   for (I = 0; I < W; ++I) { | 
 |     const BitValue &V1 = A1[I]; | 
 |     const BitValue &V2 = A2[I]; | 
 |     if (!V1.num() || !V2.num()) | 
 |       break; | 
 |     unsigned S = bool(V1) + bool(V2) + Carry; | 
 |     Res[I] = BitValue(S & 1); | 
 |     Carry = (S > 1); | 
 |   } | 
 |   for (; I < W; ++I) { | 
 |     const BitValue &V1 = A1[I]; | 
 |     const BitValue &V2 = A2[I]; | 
 |     // If the next bit is same as Carry, the result will be 0 plus the | 
 |     // other bit. The Carry bit will remain unchanged. | 
 |     if (V1.is(Carry)) | 
 |       Res[I] = BitValue::ref(V2); | 
 |     else if (V2.is(Carry)) | 
 |       Res[I] = BitValue::ref(V1); | 
 |     else | 
 |       break; | 
 |   } | 
 |   for (; I < W; ++I) | 
 |     Res[I] = BitValue::self(); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1, | 
 |       const RegisterCell &A2) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(W == A2.width()); | 
 |   RegisterCell Res(W); | 
 |   bool Borrow = false; | 
 |   uint16_t I; | 
 |   for (I = 0; I < W; ++I) { | 
 |     const BitValue &V1 = A1[I]; | 
 |     const BitValue &V2 = A2[I]; | 
 |     if (!V1.num() || !V2.num()) | 
 |       break; | 
 |     unsigned S = bool(V1) - bool(V2) - Borrow; | 
 |     Res[I] = BitValue(S & 1); | 
 |     Borrow = (S > 1); | 
 |   } | 
 |   for (; I < W; ++I) { | 
 |     const BitValue &V1 = A1[I]; | 
 |     const BitValue &V2 = A2[I]; | 
 |     if (V1.is(Borrow)) { | 
 |       Res[I] = BitValue::ref(V2); | 
 |       break; | 
 |     } | 
 |     if (V2.is(Borrow)) | 
 |       Res[I] = BitValue::ref(V1); | 
 |     else | 
 |       break; | 
 |   } | 
 |   for (; I < W; ++I) | 
 |     Res[I] = BitValue::self(); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1, | 
 |       const RegisterCell &A2) const { | 
 |   uint16_t W = A1.width() + A2.width(); | 
 |   uint16_t Z = A1.ct(false) + A2.ct(false); | 
 |   RegisterCell Res(W); | 
 |   Res.fill(0, Z, BitValue::Zero); | 
 |   Res.fill(Z, W, BitValue::self()); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1, | 
 |       const RegisterCell &A2) const { | 
 |   uint16_t W = A1.width() + A2.width(); | 
 |   uint16_t Z = A1.ct(false) + A2.ct(false); | 
 |   RegisterCell Res(W); | 
 |   Res.fill(0, Z, BitValue::Zero); | 
 |   Res.fill(Z, W, BitValue::self()); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1, | 
 |       uint16_t Sh) const { | 
 |   assert(Sh <= A1.width()); | 
 |   RegisterCell Res = RegisterCell::ref(A1); | 
 |   Res.rol(Sh); | 
 |   Res.fill(0, Sh, BitValue::Zero); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1, | 
 |       uint16_t Sh) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(Sh <= W); | 
 |   RegisterCell Res = RegisterCell::ref(A1); | 
 |   Res.rol(W-Sh); | 
 |   Res.fill(W-Sh, W, BitValue::Zero); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1, | 
 |       uint16_t Sh) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(Sh <= W); | 
 |   RegisterCell Res = RegisterCell::ref(A1); | 
 |   BitValue Sign = Res[W-1]; | 
 |   Res.rol(W-Sh); | 
 |   Res.fill(W-Sh, W, Sign); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1, | 
 |       const RegisterCell &A2) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(W == A2.width()); | 
 |   RegisterCell Res(W); | 
 |   for (uint16_t i = 0; i < W; ++i) { | 
 |     const BitValue &V1 = A1[i]; | 
 |     const BitValue &V2 = A2[i]; | 
 |     if (V1.is(1)) | 
 |       Res[i] = BitValue::ref(V2); | 
 |     else if (V2.is(1)) | 
 |       Res[i] = BitValue::ref(V1); | 
 |     else if (V1.is(0) || V2.is(0)) | 
 |       Res[i] = BitValue::Zero; | 
 |     else if (V1 == V2) | 
 |       Res[i] = V1; | 
 |     else | 
 |       Res[i] = BitValue::self(); | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1, | 
 |       const RegisterCell &A2) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(W == A2.width()); | 
 |   RegisterCell Res(W); | 
 |   for (uint16_t i = 0; i < W; ++i) { | 
 |     const BitValue &V1 = A1[i]; | 
 |     const BitValue &V2 = A2[i]; | 
 |     if (V1.is(1) || V2.is(1)) | 
 |       Res[i] = BitValue::One; | 
 |     else if (V1.is(0)) | 
 |       Res[i] = BitValue::ref(V2); | 
 |     else if (V2.is(0)) | 
 |       Res[i] = BitValue::ref(V1); | 
 |     else if (V1 == V2) | 
 |       Res[i] = V1; | 
 |     else | 
 |       Res[i] = BitValue::self(); | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1, | 
 |       const RegisterCell &A2) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(W == A2.width()); | 
 |   RegisterCell Res(W); | 
 |   for (uint16_t i = 0; i < W; ++i) { | 
 |     const BitValue &V1 = A1[i]; | 
 |     const BitValue &V2 = A2[i]; | 
 |     if (V1.is(0)) | 
 |       Res[i] = BitValue::ref(V2); | 
 |     else if (V2.is(0)) | 
 |       Res[i] = BitValue::ref(V1); | 
 |     else if (V1 == V2) | 
 |       Res[i] = BitValue::Zero; | 
 |     else | 
 |       Res[i] = BitValue::self(); | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const { | 
 |   uint16_t W = A1.width(); | 
 |   RegisterCell Res(W); | 
 |   for (uint16_t i = 0; i < W; ++i) { | 
 |     const BitValue &V = A1[i]; | 
 |     if (V.is(0)) | 
 |       Res[i] = BitValue::One; | 
 |     else if (V.is(1)) | 
 |       Res[i] = BitValue::Zero; | 
 |     else | 
 |       Res[i] = BitValue::self(); | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1, | 
 |       uint16_t BitN) const { | 
 |   assert(BitN < A1.width()); | 
 |   RegisterCell Res = RegisterCell::ref(A1); | 
 |   Res[BitN] = BitValue::One; | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1, | 
 |       uint16_t BitN) const { | 
 |   assert(BitN < A1.width()); | 
 |   RegisterCell Res = RegisterCell::ref(A1); | 
 |   Res[BitN] = BitValue::Zero; | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B, | 
 |       uint16_t W) const { | 
 |   uint16_t C = A1.cl(B), AW = A1.width(); | 
 |   // If the last leading non-B bit is not a constant, then we don't know | 
 |   // the real count. | 
 |   if ((C < AW && A1[AW-1-C].num()) || C == AW) | 
 |     return eIMM(C, W); | 
 |   return RegisterCell::self(0, W); | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B, | 
 |       uint16_t W) const { | 
 |   uint16_t C = A1.ct(B), AW = A1.width(); | 
 |   // If the last trailing non-B bit is not a constant, then we don't know | 
 |   // the real count. | 
 |   if ((C < AW && A1[C].num()) || C == AW) | 
 |     return eIMM(C, W); | 
 |   return RegisterCell::self(0, W); | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1, | 
 |       uint16_t FromN) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(FromN <= W); | 
 |   RegisterCell Res = RegisterCell::ref(A1); | 
 |   BitValue Sign = Res[FromN-1]; | 
 |   // Sign-extend "inreg". | 
 |   Res.fill(FromN, W, Sign); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1, | 
 |       uint16_t FromN) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(FromN <= W); | 
 |   RegisterCell Res = RegisterCell::ref(A1); | 
 |   Res.fill(FromN, W, BitValue::Zero); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1, | 
 |       uint16_t B, uint16_t E) const { | 
 |   uint16_t W = A1.width(); | 
 |   assert(B < W && E <= W); | 
 |   if (B == E) | 
 |     return RegisterCell(0); | 
 |   uint16_t Last = (E > 0) ? E-1 : W-1; | 
 |   RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last)); | 
 |   // Return shorter cell. | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1, | 
 |       const RegisterCell &A2, uint16_t AtN) const { | 
 |   uint16_t W1 = A1.width(), W2 = A2.width(); | 
 |   (void)W1; | 
 |   assert(AtN < W1 && AtN+W2 <= W1); | 
 |   // Copy bits from A1, insert A2 at position AtN. | 
 |   RegisterCell Res = RegisterCell::ref(A1); | 
 |   if (W2 > 0) | 
 |     Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1)); | 
 |   return Res; | 
 | } | 
 |  | 
 | BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const { | 
 |   assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0"); | 
 |   uint16_t W = getRegBitWidth(Reg); | 
 |   assert(W > 0 && "Cannot generate mask for empty register"); | 
 |   return BitMask(0, W-1); | 
 | } | 
 |  | 
 | uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const { | 
 |   assert(Register::isPhysicalRegister(Reg)); | 
 |   const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg); | 
 |   return TRI.getRegSizeInBits(PC); | 
 | } | 
 |  | 
 | bool BT::MachineEvaluator::evaluate(const MachineInstr &MI, | 
 |                                     const CellMapType &Inputs, | 
 |                                     CellMapType &Outputs) const { | 
 |   unsigned Opc = MI.getOpcode(); | 
 |   switch (Opc) { | 
 |     case TargetOpcode::REG_SEQUENCE: { | 
 |       RegisterRef RD = MI.getOperand(0); | 
 |       assert(RD.Sub == 0); | 
 |       RegisterRef RS = MI.getOperand(1); | 
 |       unsigned SS = MI.getOperand(2).getImm(); | 
 |       RegisterRef RT = MI.getOperand(3); | 
 |       unsigned ST = MI.getOperand(4).getImm(); | 
 |       assert(SS != ST); | 
 |  | 
 |       uint16_t W = getRegBitWidth(RD); | 
 |       RegisterCell Res(W); | 
 |       Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS)); | 
 |       Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST)); | 
 |       putCell(RD, Res, Outputs); | 
 |       break; | 
 |     } | 
 |  | 
 |     case TargetOpcode::COPY: { | 
 |       // COPY can transfer a smaller register into a wider one. | 
 |       // If that is the case, fill the remaining high bits with 0. | 
 |       RegisterRef RD = MI.getOperand(0); | 
 |       RegisterRef RS = MI.getOperand(1); | 
 |       assert(RD.Sub == 0); | 
 |       uint16_t WD = getRegBitWidth(RD); | 
 |       uint16_t WS = getRegBitWidth(RS); | 
 |       assert(WD >= WS); | 
 |       RegisterCell Src = getCell(RS, Inputs); | 
 |       RegisterCell Res(WD); | 
 |       Res.insert(Src, BitMask(0, WS-1)); | 
 |       Res.fill(WS, WD, BitValue::Zero); | 
 |       putCell(RD, Res, Outputs); | 
 |       break; | 
 |     } | 
 |  | 
 |     default: | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA, | 
 |                                        const MachineInstr *InstB) const { | 
 |   // This is a comparison function for a priority queue: give higher priority | 
 |   // to earlier instructions. | 
 |   // This operator is used as "less", so returning "true" gives InstB higher | 
 |   // priority (because then InstA < InstB). | 
 |   if (InstA == InstB) | 
 |     return false; | 
 |   const MachineBasicBlock *BA = InstA->getParent(); | 
 |   const MachineBasicBlock *BB = InstB->getParent(); | 
 |   if (BA != BB) { | 
 |     // If the blocks are different, ideally the dominating block would | 
 |     // have a higher priority, but it may be too expensive to check. | 
 |     return BA->getNumber() > BB->getNumber(); | 
 |   } | 
 |  | 
 |   auto getDist = [this] (const MachineInstr *MI) { | 
 |     auto F = Dist.find(MI); | 
 |     if (F != Dist.end()) | 
 |       return F->second; | 
 |     MachineBasicBlock::const_iterator I = MI->getParent()->begin(); | 
 |     MachineBasicBlock::const_iterator E = MI->getIterator(); | 
 |     unsigned D = std::distance(I, E); | 
 |     Dist.insert(std::make_pair(MI, D)); | 
 |     return D; | 
 |   }; | 
 |  | 
 |   return getDist(InstA) > getDist(InstB); | 
 | } | 
 |  | 
 | // Main W-Z implementation. | 
 |  | 
 | void BT::visitPHI(const MachineInstr &PI) { | 
 |   int ThisN = PI.getParent()->getNumber(); | 
 |   if (Trace) | 
 |     dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI; | 
 |  | 
 |   const MachineOperand &MD = PI.getOperand(0); | 
 |   assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition"); | 
 |   RegisterRef DefRR(MD); | 
 |   uint16_t DefBW = ME.getRegBitWidth(DefRR); | 
 |  | 
 |   RegisterCell DefC = ME.getCell(DefRR, Map); | 
 |   if (DefC == RegisterCell::self(DefRR.Reg, DefBW))    // XXX slow | 
 |     return; | 
 |  | 
 |   bool Changed = false; | 
 |  | 
 |   for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) { | 
 |     const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB(); | 
 |     int PredN = PB->getNumber(); | 
 |     if (Trace) | 
 |       dbgs() << "  edge " << printMBBReference(*PB) << "->" | 
 |              << printMBBReference(*PI.getParent()); | 
 |     if (!EdgeExec.count(CFGEdge(PredN, ThisN))) { | 
 |       if (Trace) | 
 |         dbgs() << " not executable\n"; | 
 |       continue; | 
 |     } | 
 |  | 
 |     RegisterRef RU = PI.getOperand(i); | 
 |     RegisterCell ResC = ME.getCell(RU, Map); | 
 |     if (Trace) | 
 |       dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub) | 
 |              << " cell: " << ResC << "\n"; | 
 |     Changed |= DefC.meet(ResC, DefRR.Reg); | 
 |   } | 
 |  | 
 |   if (Changed) { | 
 |     if (Trace) | 
 |       dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub) | 
 |              << " cell: " << DefC << "\n"; | 
 |     ME.putCell(DefRR, DefC, Map); | 
 |     visitUsesOf(DefRR.Reg); | 
 |   } | 
 | } | 
 |  | 
 | void BT::visitNonBranch(const MachineInstr &MI) { | 
 |   if (Trace) | 
 |     dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI; | 
 |   if (MI.isDebugInstr()) | 
 |     return; | 
 |   assert(!MI.isBranch() && "Unexpected branch instruction"); | 
 |  | 
 |   CellMapType ResMap; | 
 |   bool Eval = ME.evaluate(MI, Map, ResMap); | 
 |  | 
 |   if (Trace && Eval) { | 
 |     for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) { | 
 |       const MachineOperand &MO = MI.getOperand(i); | 
 |       if (!MO.isReg() || !MO.isUse()) | 
 |         continue; | 
 |       RegisterRef RU(MO); | 
 |       dbgs() << "  input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub) | 
 |              << " cell: " << ME.getCell(RU, Map) << "\n"; | 
 |     } | 
 |     dbgs() << "Outputs:\n"; | 
 |     for (const std::pair<const unsigned, RegisterCell> &P : ResMap) { | 
 |       RegisterRef RD(P.first); | 
 |       dbgs() << "  " << printReg(P.first, &ME.TRI) << " cell: " | 
 |              << ME.getCell(RD, ResMap) << "\n"; | 
 |     } | 
 |   } | 
 |  | 
 |   // Iterate over all definitions of the instruction, and update the | 
 |   // cells accordingly. | 
 |   for (const MachineOperand &MO : MI.operands()) { | 
 |     // Visit register defs only. | 
 |     if (!MO.isReg() || !MO.isDef()) | 
 |       continue; | 
 |     RegisterRef RD(MO); | 
 |     assert(RD.Sub == 0 && "Unexpected sub-register in definition"); | 
 |     if (!Register::isVirtualRegister(RD.Reg)) | 
 |       continue; | 
 |  | 
 |     bool Changed = false; | 
 |     if (!Eval || ResMap.count(RD.Reg) == 0) { | 
 |       // Set to "ref" (aka "bottom"). | 
 |       uint16_t DefBW = ME.getRegBitWidth(RD); | 
 |       RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW); | 
 |       if (RefC != ME.getCell(RD, Map)) { | 
 |         ME.putCell(RD, RefC, Map); | 
 |         Changed = true; | 
 |       } | 
 |     } else { | 
 |       RegisterCell DefC = ME.getCell(RD, Map); | 
 |       RegisterCell ResC = ME.getCell(RD, ResMap); | 
 |       // This is a non-phi instruction, so the values of the inputs come | 
 |       // from the same registers each time this instruction is evaluated. | 
 |       // During the propagation, the values of the inputs can become lowered | 
 |       // in the sense of the lattice operation, which may cause different | 
 |       // results to be calculated in subsequent evaluations. This should | 
 |       // not cause the bottoming of the result in the map, since the new | 
 |       // result is already reflecting the lowered inputs. | 
 |       for (uint16_t i = 0, w = DefC.width(); i < w; ++i) { | 
 |         BitValue &V = DefC[i]; | 
 |         // Bits that are already "bottom" should not be updated. | 
 |         if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg) | 
 |           continue; | 
 |         // Same for those that are identical in DefC and ResC. | 
 |         if (V == ResC[i]) | 
 |           continue; | 
 |         V = ResC[i]; | 
 |         Changed = true; | 
 |       } | 
 |       if (Changed) | 
 |         ME.putCell(RD, DefC, Map); | 
 |     } | 
 |     if (Changed) | 
 |       visitUsesOf(RD.Reg); | 
 |   } | 
 | } | 
 |  | 
 | void BT::visitBranchesFrom(const MachineInstr &BI) { | 
 |   const MachineBasicBlock &B = *BI.getParent(); | 
 |   MachineBasicBlock::const_iterator It = BI, End = B.end(); | 
 |   BranchTargetList Targets, BTs; | 
 |   bool FallsThrough = true, DefaultToAll = false; | 
 |   int ThisN = B.getNumber(); | 
 |  | 
 |   do { | 
 |     BTs.clear(); | 
 |     const MachineInstr &MI = *It; | 
 |     if (Trace) | 
 |       dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI; | 
 |     assert(MI.isBranch() && "Expecting branch instruction"); | 
 |     InstrExec.insert(&MI); | 
 |     bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough); | 
 |     if (!Eval) { | 
 |       // If the evaluation failed, we will add all targets. Keep going in | 
 |       // the loop to mark all executable branches as such. | 
 |       DefaultToAll = true; | 
 |       FallsThrough = true; | 
 |       if (Trace) | 
 |         dbgs() << "  failed to evaluate: will add all CFG successors\n"; | 
 |     } else if (!DefaultToAll) { | 
 |       // If evaluated successfully add the targets to the cumulative list. | 
 |       if (Trace) { | 
 |         dbgs() << "  adding targets:"; | 
 |         for (unsigned i = 0, n = BTs.size(); i < n; ++i) | 
 |           dbgs() << " " << printMBBReference(*BTs[i]); | 
 |         if (FallsThrough) | 
 |           dbgs() << "\n  falls through\n"; | 
 |         else | 
 |           dbgs() << "\n  does not fall through\n"; | 
 |       } | 
 |       Targets.insert(BTs.begin(), BTs.end()); | 
 |     } | 
 |     ++It; | 
 |   } while (FallsThrough && It != End); | 
 |  | 
 |   if (!DefaultToAll) { | 
 |     // Need to add all CFG successors that lead to EH landing pads. | 
 |     // There won't be explicit branches to these blocks, but they must | 
 |     // be processed. | 
 |     for (const MachineBasicBlock *SB : B.successors()) { | 
 |       if (SB->isEHPad()) | 
 |         Targets.insert(SB); | 
 |     } | 
 |     if (FallsThrough) { | 
 |       MachineFunction::const_iterator BIt = B.getIterator(); | 
 |       MachineFunction::const_iterator Next = std::next(BIt); | 
 |       if (Next != MF.end()) | 
 |         Targets.insert(&*Next); | 
 |     } | 
 |   } else { | 
 |     for (const MachineBasicBlock *SB : B.successors()) | 
 |       Targets.insert(SB); | 
 |   } | 
 |  | 
 |   for (const MachineBasicBlock *TB : Targets) | 
 |     FlowQ.push(CFGEdge(ThisN, TB->getNumber())); | 
 | } | 
 |  | 
 | void BT::visitUsesOf(unsigned Reg) { | 
 |   if (Trace) | 
 |     dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI) | 
 |            << " cell: " << ME.getCell(Reg, Map) << '\n'; | 
 |  | 
 |   for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg)) | 
 |     UseQ.push(&UseI); | 
 | } | 
 |  | 
 | BT::RegisterCell BT::get(RegisterRef RR) const { | 
 |   return ME.getCell(RR, Map); | 
 | } | 
 |  | 
 | void BT::put(RegisterRef RR, const RegisterCell &RC) { | 
 |   ME.putCell(RR, RC, Map); | 
 | } | 
 |  | 
 | // Replace all references to bits from OldRR with the corresponding bits | 
 | // in NewRR. | 
 | void BT::subst(RegisterRef OldRR, RegisterRef NewRR) { | 
 |   assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map"); | 
 |   BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub); | 
 |   BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub); | 
 |   uint16_t OMB = OM.first(), OME = OM.last(); | 
 |   uint16_t NMB = NM.first(), NME = NM.last(); | 
 |   (void)NME; | 
 |   assert((OME-OMB == NME-NMB) && | 
 |          "Substituting registers of different lengths"); | 
 |   for (std::pair<const unsigned, RegisterCell> &P : Map) { | 
 |     RegisterCell &RC = P.second; | 
 |     for (uint16_t i = 0, w = RC.width(); i < w; ++i) { | 
 |       BitValue &V = RC[i]; | 
 |       if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg) | 
 |         continue; | 
 |       if (V.RefI.Pos < OMB || V.RefI.Pos > OME) | 
 |         continue; | 
 |       V.RefI.Reg = NewRR.Reg; | 
 |       V.RefI.Pos += NMB-OMB; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Check if the block has been "executed" during propagation. (If not, the | 
 | // block is dead, but it may still appear to be reachable.) | 
 | bool BT::reached(const MachineBasicBlock *B) const { | 
 |   int BN = B->getNumber(); | 
 |   assert(BN >= 0); | 
 |   return ReachedBB.count(BN); | 
 | } | 
 |  | 
 | // Visit an individual instruction. This could be a newly added instruction, | 
 | // or one that has been modified by an optimization. | 
 | void BT::visit(const MachineInstr &MI) { | 
 |   assert(!MI.isBranch() && "Only non-branches are allowed"); | 
 |   InstrExec.insert(&MI); | 
 |   visitNonBranch(MI); | 
 |   // Make sure to flush all the pending use updates. | 
 |   runUseQueue(); | 
 |   // The call to visitNonBranch could propagate the changes until a branch | 
 |   // is actually visited. This could result in adding CFG edges to the flow | 
 |   // queue. Since the queue won't be processed, clear it. | 
 |   while (!FlowQ.empty()) | 
 |     FlowQ.pop(); | 
 | } | 
 |  | 
 | void BT::reset() { | 
 |   EdgeExec.clear(); | 
 |   InstrExec.clear(); | 
 |   Map.clear(); | 
 |   ReachedBB.clear(); | 
 |   ReachedBB.reserve(MF.size()); | 
 | } | 
 |  | 
 | void BT::runEdgeQueue(BitVector &BlockScanned) { | 
 |   while (!FlowQ.empty()) { | 
 |     CFGEdge Edge = FlowQ.front(); | 
 |     FlowQ.pop(); | 
 |  | 
 |     if (EdgeExec.count(Edge)) | 
 |       return; | 
 |     EdgeExec.insert(Edge); | 
 |     ReachedBB.insert(Edge.second); | 
 |  | 
 |     const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second); | 
 |     MachineBasicBlock::const_iterator It = B.begin(), End = B.end(); | 
 |     // Visit PHI nodes first. | 
 |     while (It != End && It->isPHI()) { | 
 |       const MachineInstr &PI = *It++; | 
 |       InstrExec.insert(&PI); | 
 |       visitPHI(PI); | 
 |     } | 
 |  | 
 |     // If this block has already been visited through a flow graph edge, | 
 |     // then the instructions have already been processed. Any updates to | 
 |     // the cells would now only happen through visitUsesOf... | 
 |     if (BlockScanned[Edge.second]) | 
 |       return; | 
 |     BlockScanned[Edge.second] = true; | 
 |  | 
 |     // Visit non-branch instructions. | 
 |     while (It != End && !It->isBranch()) { | 
 |       const MachineInstr &MI = *It++; | 
 |       InstrExec.insert(&MI); | 
 |       visitNonBranch(MI); | 
 |     } | 
 |     // If block end has been reached, add the fall-through edge to the queue. | 
 |     if (It == End) { | 
 |       MachineFunction::const_iterator BIt = B.getIterator(); | 
 |       MachineFunction::const_iterator Next = std::next(BIt); | 
 |       if (Next != MF.end() && B.isSuccessor(&*Next)) { | 
 |         int ThisN = B.getNumber(); | 
 |         int NextN = Next->getNumber(); | 
 |         FlowQ.push(CFGEdge(ThisN, NextN)); | 
 |       } | 
 |     } else { | 
 |       // Handle the remaining sequence of branches. This function will update | 
 |       // the work queue. | 
 |       visitBranchesFrom(*It); | 
 |     } | 
 |   } // while (!FlowQ->empty()) | 
 | } | 
 |  | 
 | void BT::runUseQueue() { | 
 |   while (!UseQ.empty()) { | 
 |     MachineInstr &UseI = *UseQ.front(); | 
 |     UseQ.pop(); | 
 |  | 
 |     if (!InstrExec.count(&UseI)) | 
 |       continue; | 
 |     if (UseI.isPHI()) | 
 |       visitPHI(UseI); | 
 |     else if (!UseI.isBranch()) | 
 |       visitNonBranch(UseI); | 
 |     else | 
 |       visitBranchesFrom(UseI); | 
 |   } | 
 | } | 
 |  | 
 | void BT::run() { | 
 |   reset(); | 
 |   assert(FlowQ.empty()); | 
 |  | 
 |   using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>; | 
 |   const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF); | 
 |  | 
 |   unsigned MaxBN = 0; | 
 |   for (const MachineBasicBlock &B : MF) { | 
 |     assert(B.getNumber() >= 0 && "Disconnected block"); | 
 |     unsigned BN = B.getNumber(); | 
 |     if (BN > MaxBN) | 
 |       MaxBN = BN; | 
 |   } | 
 |  | 
 |   // Keep track of visited blocks. | 
 |   BitVector BlockScanned(MaxBN+1); | 
 |  | 
 |   int EntryN = Entry->getNumber(); | 
 |   // Generate a fake edge to get something to start with. | 
 |   FlowQ.push(CFGEdge(-1, EntryN)); | 
 |  | 
 |   while (!FlowQ.empty() || !UseQ.empty()) { | 
 |     runEdgeQueue(BlockScanned); | 
 |     runUseQueue(); | 
 |   } | 
 |   UseQ.reset(); | 
 |  | 
 |   if (Trace) | 
 |     print_cells(dbgs() << "Cells after propagation:\n"); | 
 | } |