| //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend is responsible for emitting the memory fold tables of |
| // the X86 backend instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenTarget.h" |
| #include "X86RecognizableInstr.h" |
| #include "llvm/TableGen/Error.h" |
| #include "llvm/TableGen/TableGenBackend.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| // 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the |
| // manual added entries. |
| enum UnfoldStrategy { |
| UNFOLD, // Allow unfolding |
| NO_UNFOLD, // Prevent unfolding |
| NO_STRATEGY // Make decision according to operands' sizes |
| }; |
| |
| // Represents an entry in the manual mapped instructions set. |
| struct ManualMapEntry { |
| const char *RegInstStr; |
| const char *MemInstStr; |
| UnfoldStrategy Strategy; |
| |
| ManualMapEntry(const char *RegInstStr, const char *MemInstStr, |
| UnfoldStrategy Strategy = NO_STRATEGY) |
| : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {} |
| }; |
| |
| class IsMatch; |
| |
| // List of instructions requiring explicitly aligned memory. |
| const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS", |
| "MOVNTPD", "MOVNTDQ", "MOVNTDQA"}; |
| |
| // List of instructions NOT requiring explicit memory alignment. |
| const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD", |
| "PCMPESTRM", "PCMPESTRI", |
| "PCMPISTRM", "PCMPISTRI" }; |
| |
| // For manually mapping instructions that do not match by their encoding. |
| const ManualMapEntry ManualMapSet[] = { |
| { "ADD16ri_DB", "ADD16mi", NO_UNFOLD }, |
| { "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD }, |
| { "ADD16rr_DB", "ADD16mr", NO_UNFOLD }, |
| { "ADD32ri_DB", "ADD32mi", NO_UNFOLD }, |
| { "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD }, |
| { "ADD32rr_DB", "ADD32mr", NO_UNFOLD }, |
| { "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD }, |
| { "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD }, |
| { "ADD64rr_DB", "ADD64mr", NO_UNFOLD }, |
| { "ADD16rr_DB", "ADD16rm", NO_UNFOLD }, |
| { "ADD32rr_DB", "ADD32rm", NO_UNFOLD }, |
| { "ADD64rr_DB", "ADD64rm", NO_UNFOLD }, |
| { "PUSH16r", "PUSH16rmm", UNFOLD }, |
| { "PUSH32r", "PUSH32rmm", UNFOLD }, |
| { "PUSH64r", "PUSH64rmm", UNFOLD }, |
| { "TAILJMPr", "TAILJMPm", UNFOLD }, |
| { "TAILJMPr64", "TAILJMPm64", UNFOLD }, |
| { "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD }, |
| }; |
| |
| |
| static bool isExplicitAlign(const CodeGenInstruction *Inst) { |
| return any_of(ExplicitAlign, [Inst](const char *InstStr) { |
| return Inst->TheDef->getName().find(InstStr) != StringRef::npos; |
| }); |
| } |
| |
| static bool isExplicitUnalign(const CodeGenInstruction *Inst) { |
| return any_of(ExplicitUnalign, [Inst](const char *InstStr) { |
| return Inst->TheDef->getName().find(InstStr) != StringRef::npos; |
| }); |
| } |
| |
| class X86FoldTablesEmitter { |
| RecordKeeper &Records; |
| CodeGenTarget Target; |
| |
| // Represents an entry in the folding table |
| class X86FoldTableEntry { |
| const CodeGenInstruction *RegInst; |
| const CodeGenInstruction *MemInst; |
| |
| public: |
| bool CannotUnfold = false; |
| bool IsLoad = false; |
| bool IsStore = false; |
| bool IsAligned = false; |
| unsigned int Alignment = 0; |
| |
| X86FoldTableEntry(const CodeGenInstruction *RegInst, |
| const CodeGenInstruction *MemInst) |
| : RegInst(RegInst), MemInst(MemInst) {} |
| |
| friend raw_ostream &operator<<(raw_ostream &OS, |
| const X86FoldTableEntry &E) { |
| OS << "{ X86::" << E.RegInst->TheDef->getName() |
| << ", X86::" << E.MemInst->TheDef->getName() << ", "; |
| |
| if (E.IsLoad) |
| OS << "TB_FOLDED_LOAD | "; |
| if (E.IsStore) |
| OS << "TB_FOLDED_STORE | "; |
| if (E.CannotUnfold) |
| OS << "TB_NO_REVERSE | "; |
| if (E.IsAligned) |
| OS << "TB_ALIGN_" << E.Alignment << " | "; |
| |
| OS << "0 },\n"; |
| |
| return OS; |
| } |
| }; |
| |
| typedef std::vector<X86FoldTableEntry> FoldTable; |
| // std::vector for each folding table. |
| // Table2Addr - Holds instructions which their memory form performs load+store |
| // Table#i - Holds instructions which the their memory form perform a load OR |
| // a store, and their #i'th operand is folded. |
| FoldTable Table2Addr; |
| FoldTable Table0; |
| FoldTable Table1; |
| FoldTable Table2; |
| FoldTable Table3; |
| FoldTable Table4; |
| |
| public: |
| X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {} |
| |
| // run - Generate the 6 X86 memory fold tables. |
| void run(raw_ostream &OS); |
| |
| private: |
| // Decides to which table to add the entry with the given instructions. |
| // S sets the strategy of adding the TB_NO_REVERSE flag. |
| void updateTables(const CodeGenInstruction *RegInstr, |
| const CodeGenInstruction *MemInstr, |
| const UnfoldStrategy S = NO_STRATEGY); |
| |
| // Generates X86FoldTableEntry with the given instructions and fill it with |
| // the appropriate flags - then adds it to Table. |
| void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr, |
| const CodeGenInstruction *MemInstr, |
| const UnfoldStrategy S, const unsigned int FoldedInd); |
| |
| // Print the given table as a static const C++ array of type |
| // X86MemoryFoldTableEntry. |
| void printTable(const FoldTable &Table, StringRef TableName, |
| raw_ostream &OS) { |
| OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName |
| << "[] = {\n"; |
| |
| for (const X86FoldTableEntry &E : Table) |
| OS << E; |
| |
| OS << "};\n"; |
| } |
| }; |
| |
| // Return true if one of the instruction's operands is a RST register class |
| static bool hasRSTRegClass(const CodeGenInstruction *Inst) { |
| return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { |
| return OpIn.Rec->getName() == "RST"; |
| }); |
| } |
| |
| // Return true if one of the instruction's operands is a ptr_rc_tailcall |
| static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) { |
| return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { |
| return OpIn.Rec->getName() == "ptr_rc_tailcall"; |
| }); |
| } |
| |
| // Calculates the integer value representing the BitsInit object |
| static inline uint64_t getValueFromBitsInit(const BitsInit *B) { |
| assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!"); |
| |
| uint64_t Value = 0; |
| for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) { |
| BitInit *Bit = cast<BitInit>(B->getBit(i)); |
| Value |= uint64_t(Bit->getValue()) << i; |
| } |
| return Value; |
| } |
| |
| // Returns true if the two given BitsInits represent the same integer value |
| static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) { |
| if (B1->getNumBits() != B2->getNumBits()) |
| PrintFatalError("Comparing two BitsInits with different sizes!"); |
| |
| for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) { |
| BitInit *Bit1 = cast<BitInit>(B1->getBit(i)); |
| BitInit *Bit2 = cast<BitInit>(B2->getBit(i)); |
| if (Bit1->getValue() != Bit2->getValue()) |
| return false; |
| } |
| return true; |
| } |
| |
| // Return the size of the register operand |
| static inline unsigned int getRegOperandSize(const Record *RegRec) { |
| if (RegRec->isSubClassOf("RegisterOperand")) |
| RegRec = RegRec->getValueAsDef("RegClass"); |
| if (RegRec->isSubClassOf("RegisterClass")) |
| return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size"); |
| |
| llvm_unreachable("Register operand's size not known!"); |
| } |
| |
| // Return the size of the memory operand |
| static inline unsigned int |
| getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) { |
| if (MemRec->isSubClassOf("Operand")) { |
| // Intrinsic memory instructions use ssmem/sdmem. |
| if (IntrinsicSensitive && |
| (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem")) |
| return 128; |
| |
| StringRef Name = |
| MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name"); |
| if (Name == "Mem8") |
| return 8; |
| if (Name == "Mem16") |
| return 16; |
| if (Name == "Mem32") |
| return 32; |
| if (Name == "Mem64") |
| return 64; |
| if (Name == "Mem80") |
| return 80; |
| if (Name == "Mem128") |
| return 128; |
| if (Name == "Mem256") |
| return 256; |
| if (Name == "Mem512") |
| return 512; |
| } |
| |
| llvm_unreachable("Memory operand's size not known!"); |
| } |
| |
| // Return true if the instruction defined as a register flavor. |
| static inline bool hasRegisterFormat(const Record *Inst) { |
| const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); |
| uint64_t FormBitsNum = getValueFromBitsInit(FormBits); |
| |
| // Values from X86Local namespace defined in X86RecognizableInstr.cpp |
| return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r; |
| } |
| |
| // Return true if the instruction defined as a memory flavor. |
| static inline bool hasMemoryFormat(const Record *Inst) { |
| const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); |
| uint64_t FormBitsNum = getValueFromBitsInit(FormBits); |
| |
| // Values from X86Local namespace defined in X86RecognizableInstr.cpp |
| return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m; |
| } |
| |
| static inline bool isNOREXRegClass(const Record *Op) { |
| return Op->getName().find("_NOREX") != StringRef::npos; |
| } |
| |
| static inline bool isRegisterOperand(const Record *Rec) { |
| return Rec->isSubClassOf("RegisterClass") || |
| Rec->isSubClassOf("RegisterOperand") || |
| Rec->isSubClassOf("PointerLikeRegClass"); |
| } |
| |
| static inline bool isMemoryOperand(const Record *Rec) { |
| return Rec->isSubClassOf("Operand") && |
| Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; |
| } |
| |
| static inline bool isImmediateOperand(const Record *Rec) { |
| return Rec->isSubClassOf("Operand") && |
| Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; |
| } |
| |
| // Get the alternative instruction pointed by "FoldGenRegForm" field. |
| static inline const CodeGenInstruction * |
| getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records, |
| const CodeGenTarget &Target) { |
| |
| StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm"); |
| Record *AltRegInstRec = Records.getDef(AltRegInstStr); |
| assert(AltRegInstRec && |
| "Alternative register form instruction def not found"); |
| CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec); |
| return &AltRegInst; |
| } |
| |
| // Function object - Operator() returns true if the given VEX instruction |
| // matches the EVEX instruction of this object. |
| class IsMatch { |
| const CodeGenInstruction *MemInst; |
| |
| public: |
| IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records) |
| : MemInst(Inst) {} |
| |
| bool operator()(const CodeGenInstruction *RegInst) { |
| Record *MemRec = MemInst->TheDef; |
| Record *RegRec = RegInst->TheDef; |
| |
| // Return false if one (at least) of the encoding fields of both |
| // instructions do not match. |
| if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") || |
| !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"), |
| MemRec->getValueAsBitsInit("Opcode")) || |
| // VEX/EVEX fields |
| RegRec->getValueAsDef("OpPrefix") != |
| MemRec->getValueAsDef("OpPrefix") || |
| RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") || |
| RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") || |
| RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") || |
| RegRec->getValueAsBit("hasVEX_4V") != |
| MemRec->getValueAsBit("hasVEX_4V") || |
| RegRec->getValueAsBit("hasEVEX_K") != |
| MemRec->getValueAsBit("hasEVEX_K") || |
| RegRec->getValueAsBit("hasEVEX_Z") != |
| MemRec->getValueAsBit("hasEVEX_Z") || |
| // EVEX_B means different things for memory and register forms. |
| RegRec->getValueAsBit("hasEVEX_B") != 0 || |
| MemRec->getValueAsBit("hasEVEX_B") != 0 || |
| RegRec->getValueAsBit("hasEVEX_RC") != |
| MemRec->getValueAsBit("hasEVEX_RC") || |
| RegRec->getValueAsBit("hasREX_WPrefix") != |
| MemRec->getValueAsBit("hasREX_WPrefix") || |
| RegRec->getValueAsBit("hasLockPrefix") != |
| MemRec->getValueAsBit("hasLockPrefix") || |
| RegRec->getValueAsBit("hasNoTrackPrefix") != |
| MemRec->getValueAsBit("hasNoTrackPrefix") || |
| !equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"), |
| MemRec->getValueAsBitsInit("EVEX_LL")) || |
| !equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"), |
| MemRec->getValueAsBitsInit("VEX_WPrefix")) || |
| // Instruction's format - The register form's "Form" field should be |
| // the opposite of the memory form's "Form" field. |
| !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"), |
| MemRec->getValueAsBitsInit("FormBits")) || |
| RegRec->getValueAsBit("isAsmParserOnly") != |
| MemRec->getValueAsBit("isAsmParserOnly")) |
| return false; |
| |
| // Make sure the sizes of the operands of both instructions suit each other. |
| // This is needed for instructions with intrinsic version (_Int). |
| // Where the only difference is the size of the operands. |
| // For example: VUCOMISDZrm and Int_VUCOMISDrm |
| // Also for instructions that their EVEX version was upgraded to work with |
| // k-registers. For example VPCMPEQBrm (xmm output register) and |
| // VPCMPEQBZ128rm (k register output register). |
| bool ArgFolded = false; |
| unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); |
| unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); |
| unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); |
| unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); |
| |
| // Instructions with one output in their memory form use the memory folded |
| // operand as source and destination (Read-Modify-Write). |
| unsigned RegStartIdx = |
| (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0; |
| |
| for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) { |
| Record *MemOpRec = MemInst->Operands[i].Rec; |
| Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec; |
| |
| if (MemOpRec == RegOpRec) |
| continue; |
| |
| if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) { |
| if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) || |
| isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec)) |
| return false; |
| } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) { |
| if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)) |
| return false; |
| } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) { |
| if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")) |
| return false; |
| } else { |
| // Only one operand can be folded. |
| if (ArgFolded) |
| return false; |
| |
| assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)); |
| ArgFolded = true; |
| } |
| } |
| |
| return true; |
| } |
| |
| private: |
| // Return true of the 2 given forms are the opposite of each other. |
| bool areOppositeForms(const BitsInit *RegFormBits, |
| const BitsInit *MemFormBits) { |
| uint64_t MemFormNum = getValueFromBitsInit(MemFormBits); |
| uint64_t RegFormNum = getValueFromBitsInit(RegFormBits); |
| |
| if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) || |
| (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) || |
| (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) || |
| (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) || |
| (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) || |
| (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) || |
| (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) || |
| (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) || |
| (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) || |
| (MemFormNum == X86Local::MRMDestMem && |
| RegFormNum == X86Local::MRMDestReg) || |
| (MemFormNum == X86Local::MRMSrcMem && |
| RegFormNum == X86Local::MRMSrcReg) || |
| (MemFormNum == X86Local::MRMSrcMem4VOp3 && |
| RegFormNum == X86Local::MRMSrcReg4VOp3) || |
| (MemFormNum == X86Local::MRMSrcMemOp4 && |
| RegFormNum == X86Local::MRMSrcRegOp4)) |
| return true; |
| |
| return false; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table, |
| const CodeGenInstruction *RegInstr, |
| const CodeGenInstruction *MemInstr, |
| const UnfoldStrategy S, |
| const unsigned int FoldedInd) { |
| |
| X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr); |
| Record *RegRec = RegInstr->TheDef; |
| Record *MemRec = MemInstr->TheDef; |
| |
| // Only table0 entries should explicitly specify a load or store flag. |
| if (&Table == &Table0) { |
| unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs(); |
| unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs(); |
| // If the instruction writes to the folded operand, it will appear as an |
| // output in the register form instruction and as an input in the memory |
| // form instruction. |
| // If the instruction reads from the folded operand, it well appear as in |
| // input in both forms. |
| if (MemInOpsNum == RegInOpsNum) |
| Result.IsLoad = true; |
| else |
| Result.IsStore = true; |
| } |
| |
| Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec; |
| Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec; |
| |
| // Unfolding code generates a load/store instruction according to the size of |
| // the register in the register form instruction. |
| // If the register's size is greater than the memory's operand size, do not |
| // allow unfolding. |
| if (S == UNFOLD) |
| Result.CannotUnfold = false; |
| else if (S == NO_UNFOLD) |
| Result.CannotUnfold = true; |
| else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec)) |
| Result.CannotUnfold = true; // S == NO_STRATEGY |
| |
| uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits")); |
| if (isExplicitAlign(RegInstr)) { |
| // The instruction require explicitly aligned memory. |
| BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize"); |
| uint64_t Value = getValueFromBitsInit(VectSize); |
| Result.IsAligned = true; |
| Result.Alignment = Value; |
| } else if (Enc != X86Local::XOP && Enc != X86Local::VEX && |
| Enc != X86Local::EVEX) { |
| // Instructions with VEX encoding do not require alignment. |
| if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) { |
| // SSE packed vector instructions require a 16 byte alignment. |
| Result.IsAligned = true; |
| Result.Alignment = 16; |
| } |
| } |
| |
| Table.push_back(Result); |
| } |
| |
| void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr, |
| const CodeGenInstruction *MemInstr, |
| const UnfoldStrategy S) { |
| |
| Record *RegRec = RegInstr->TheDef; |
| Record *MemRec = MemInstr->TheDef; |
| unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); |
| unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); |
| unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); |
| unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); |
| |
| // Instructions which Read-Modify-Write should be added to Table2Addr. |
| if (MemOutSize != RegOutSize && MemInSize == RegInSize) { |
| addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0); |
| return; |
| } |
| |
| if (MemInSize == RegInSize && MemOutSize == RegOutSize) { |
| // Load-Folding cases. |
| // If the i'th register form operand is a register and the i'th memory form |
| // operand is a memory operand, add instructions to Table#i. |
| for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) { |
| Record *RegOpRec = RegInstr->Operands[i].Rec; |
| Record *MemOpRec = MemInstr->Operands[i].Rec; |
| if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) { |
| switch (i) { |
| case 0: |
| addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); |
| return; |
| case 1: |
| addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1); |
| return; |
| case 2: |
| addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2); |
| return; |
| case 3: |
| addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3); |
| return; |
| case 4: |
| addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4); |
| return; |
| } |
| } |
| } |
| } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) { |
| // Store-Folding cases. |
| // If the memory form instruction performs a store, the *output* |
| // register of the register form instructions disappear and instead a |
| // memory *input* operand appears in the memory form instruction. |
| // For example: |
| // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src) |
| // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src) |
| Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec; |
| Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec; |
| if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) && |
| getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) |
| addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); |
| } |
| |
| return; |
| } |
| |
| void X86FoldTablesEmitter::run(raw_ostream &OS) { |
| emitSourceFileHeader("X86 fold tables", OS); |
| |
| // Holds all memory instructions |
| std::vector<const CodeGenInstruction *> MemInsts; |
| // Holds all register instructions - divided according to opcode. |
| std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts; |
| |
| ArrayRef<const CodeGenInstruction *> NumberedInstructions = |
| Target.getInstructionsByEnumValue(); |
| |
| for (const CodeGenInstruction *Inst : NumberedInstructions) { |
| if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst")) |
| continue; |
| |
| const Record *Rec = Inst->TheDef; |
| |
| // - Do not proceed if the instruction is marked as notMemoryFoldable. |
| // - Instructions including RST register class operands are not relevant |
| // for memory folding (for further details check the explanation in |
| // lib/Target/X86/X86InstrFPStack.td file). |
| // - Some instructions (listed in the manual map above) use the register |
| // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure |
| // safe mapping of these instruction we manually map them and exclude |
| // them from the automation. |
| if (Rec->getValueAsBit("isMemoryFoldable") == false || |
| hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst)) |
| continue; |
| |
| // Add all the memory form instructions to MemInsts, and all the register |
| // form instructions to RegInsts[Opc], where Opc in the opcode of each |
| // instructions. this helps reducing the runtime of the backend. |
| if (hasMemoryFormat(Rec)) |
| MemInsts.push_back(Inst); |
| else if (hasRegisterFormat(Rec)) { |
| uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode")); |
| RegInsts[Opc].push_back(Inst); |
| } |
| } |
| |
| // For each memory form instruction, try to find its register form |
| // instruction. |
| for (const CodeGenInstruction *MemInst : MemInsts) { |
| uint8_t Opc = |
| getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode")); |
| |
| if (RegInsts.count(Opc) == 0) |
| continue; |
| |
| // Two forms (memory & register) of the same instruction must have the same |
| // opcode. try matching only with register form instructions with the same |
| // opcode. |
| std::vector<const CodeGenInstruction *> &OpcRegInsts = |
| RegInsts.find(Opc)->second; |
| |
| auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records)); |
| if (Match != OpcRegInsts.end()) { |
| const CodeGenInstruction *RegInst = *Match; |
| // If the matched instruction has it's "FoldGenRegForm" set, map the |
| // memory form instruction to the register form instruction pointed by |
| // this field |
| if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) { |
| updateTables(RegInst, MemInst); |
| } else { |
| const CodeGenInstruction *AltRegInst = |
| getAltRegInst(RegInst, Records, Target); |
| updateTables(AltRegInst, MemInst); |
| } |
| OpcRegInsts.erase(Match); |
| } |
| } |
| |
| // Add the manually mapped instructions listed above. |
| for (const ManualMapEntry &Entry : ManualMapSet) { |
| Record *RegInstIter = Records.getDef(Entry.RegInstStr); |
| Record *MemInstIter = Records.getDef(Entry.MemInstStr); |
| |
| updateTables(&(Target.getInstruction(RegInstIter)), |
| &(Target.getInstruction(MemInstIter)), Entry.Strategy); |
| } |
| |
| // Print all tables to raw_ostream OS. |
| printTable(Table2Addr, "Table2Addr", OS); |
| printTable(Table0, "Table0", OS); |
| printTable(Table1, "Table1", OS); |
| printTable(Table2, "Table2", OS); |
| printTable(Table3, "Table3", OS); |
| printTable(Table4, "Table4", OS); |
| } |
| |
| namespace llvm { |
| |
| void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) { |
| X86FoldTablesEmitter(RK).run(OS); |
| } |
| } // namespace llvm |