| //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an instruction selector for the ARM target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "arm-isel" |
| #include "ARM.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMTargetMachine.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| DisableShifterOp("disable-shifter-op", cl::Hidden, |
| cl::desc("Disable isel of shifter-op"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| CheckVMLxHazard("check-vmlx-hazard", cl::Hidden, |
| cl::desc("Check fp vmla / vmls hazard at isel time"), |
| cl::init(true)); |
| |
| static cl::opt<bool> |
| DisableARMIntABS("disable-arm-int-abs", cl::Hidden, |
| cl::desc("Enable / disable ARM integer abs transform"), |
| cl::init(false)); |
| |
| //===--------------------------------------------------------------------===// |
| /// ARMDAGToDAGISel - ARM specific code to select ARM machine |
| /// instructions for SelectionDAG operations. |
| /// |
| namespace { |
| |
| enum AddrMode2Type { |
| AM2_BASE, // Simple AM2 (+-imm12) |
| AM2_SHOP // Shifter-op AM2 |
| }; |
| |
| class ARMDAGToDAGISel : public SelectionDAGISel { |
| ARMBaseTargetMachine &TM; |
| const ARMBaseInstrInfo *TII; |
| |
| /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can |
| /// make the right decision when generating code for different targets. |
| const ARMSubtarget *Subtarget; |
| |
| public: |
| explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, |
| CodeGenOpt::Level OptLevel) |
| : SelectionDAGISel(tm, OptLevel), TM(tm), |
| TII(static_cast<const ARMBaseInstrInfo*>(TM.getInstrInfo())), |
| Subtarget(&TM.getSubtarget<ARMSubtarget>()) { |
| } |
| |
| virtual const char *getPassName() const { |
| return "ARM Instruction Selection"; |
| } |
| |
| /// getI32Imm - Return a target constant of type i32 with the specified |
| /// value. |
| inline SDValue getI32Imm(unsigned Imm) { |
| return CurDAG->getTargetConstant(Imm, MVT::i32); |
| } |
| |
| SDNode *Select(SDNode *N); |
| |
| |
| bool hasNoVMLxHazardUse(SDNode *N) const; |
| bool isShifterOpProfitable(const SDValue &Shift, |
| ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt); |
| bool SelectRegShifterOperand(SDValue N, SDValue &A, |
| SDValue &B, SDValue &C, |
| bool CheckProfitability = true); |
| bool SelectImmShifterOperand(SDValue N, SDValue &A, |
| SDValue &B, bool CheckProfitability = true); |
| bool SelectShiftRegShifterOperand(SDValue N, SDValue &A, |
| SDValue &B, SDValue &C) { |
| // Don't apply the profitability check |
| return SelectRegShifterOperand(N, A, B, C, false); |
| } |
| bool SelectShiftImmShifterOperand(SDValue N, SDValue &A, |
| SDValue &B) { |
| // Don't apply the profitability check |
| return SelectImmShifterOperand(N, A, B, false); |
| } |
| |
| bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm); |
| bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc); |
| |
| AddrMode2Type SelectAddrMode2Worker(SDValue N, SDValue &Base, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrMode2Base(SDValue N, SDValue &Base, SDValue &Offset, |
| SDValue &Opc) { |
| return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_BASE; |
| } |
| |
| bool SelectAddrMode2ShOp(SDValue N, SDValue &Base, SDValue &Offset, |
| SDValue &Opc) { |
| return SelectAddrMode2Worker(N, Base, Offset, Opc) == AM2_SHOP; |
| } |
| |
| bool SelectAddrMode2(SDValue N, SDValue &Base, SDValue &Offset, |
| SDValue &Opc) { |
| SelectAddrMode2Worker(N, Base, Offset, Opc); |
| // return SelectAddrMode2ShOp(N, Base, Offset, Opc); |
| // This always matches one way or another. |
| return true; |
| } |
| |
| bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrOffsetNone(SDValue N, SDValue &Base); |
| bool SelectAddrMode3(SDValue N, SDValue &Base, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrMode3Offset(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc); |
| bool SelectAddrMode5(SDValue N, SDValue &Base, |
| SDValue &Offset); |
| bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align); |
| bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset); |
| |
| bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label); |
| |
| // Thumb Addressing Modes: |
| bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset); |
| bool SelectThumbAddrModeRI(SDValue N, SDValue &Base, SDValue &Offset, |
| unsigned Scale); |
| bool SelectThumbAddrModeRI5S1(SDValue N, SDValue &Base, SDValue &Offset); |
| bool SelectThumbAddrModeRI5S2(SDValue N, SDValue &Base, SDValue &Offset); |
| bool SelectThumbAddrModeRI5S4(SDValue N, SDValue &Base, SDValue &Offset); |
| bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm); |
| |
| // Thumb 2 Addressing Modes: |
| bool SelectT2ShifterOperandReg(SDValue N, |
| SDValue &BaseReg, SDValue &Opc); |
| bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm); |
| bool SelectT2AddrModeImm8(SDValue N, SDValue &Base, |
| SDValue &OffImm); |
| bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, |
| SDValue &OffImm); |
| bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base, |
| SDValue &OffReg, SDValue &ShImm); |
| |
| inline bool is_so_imm(unsigned Imm) const { |
| return ARM_AM::getSOImmVal(Imm) != -1; |
| } |
| |
| inline bool is_so_imm_not(unsigned Imm) const { |
| return ARM_AM::getSOImmVal(~Imm) != -1; |
| } |
| |
| inline bool is_t2_so_imm(unsigned Imm) const { |
| return ARM_AM::getT2SOImmVal(Imm) != -1; |
| } |
| |
| inline bool is_t2_so_imm_not(unsigned Imm) const { |
| return ARM_AM::getT2SOImmVal(~Imm) != -1; |
| } |
| |
| // Include the pieces autogenerated from the target description. |
| #include "ARMGenDAGISel.inc" |
| |
| private: |
| /// SelectARMIndexedLoad - Indexed (pre/post inc/dec) load matching code for |
| /// ARM. |
| SDNode *SelectARMIndexedLoad(SDNode *N); |
| SDNode *SelectT2IndexedLoad(SDNode *N); |
| |
| /// SelectVLD - Select NEON load intrinsics. NumVecs should be |
| /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for |
| /// loads of D registers and even subregs and odd subregs of Q registers. |
| /// For NumVecs <= 2, QOpcodes1 is not used. |
| SDNode *SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs, |
| unsigned *DOpcodes, |
| unsigned *QOpcodes0, unsigned *QOpcodes1); |
| |
| /// SelectVST - Select NEON store intrinsics. NumVecs should |
| /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for |
| /// stores of D registers and even subregs and odd subregs of Q registers. |
| /// For NumVecs <= 2, QOpcodes1 is not used. |
| SDNode *SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs, |
| unsigned *DOpcodes, |
| unsigned *QOpcodes0, unsigned *QOpcodes1); |
| |
| /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should |
| /// be 2, 3 or 4. The opcode arrays specify the instructions used for |
| /// load/store of D registers and Q registers. |
| SDNode *SelectVLDSTLane(SDNode *N, bool IsLoad, |
| bool isUpdating, unsigned NumVecs, |
| unsigned *DOpcodes, unsigned *QOpcodes); |
| |
| /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs |
| /// should be 2, 3 or 4. The opcode array specifies the instructions used |
| /// for loading D registers. (Q registers are not supported.) |
| SDNode *SelectVLDDup(SDNode *N, bool isUpdating, unsigned NumVecs, |
| unsigned *Opcodes); |
| |
| /// SelectVTBL - Select NEON VTBL and VTBX intrinsics. NumVecs should be 2, |
| /// 3 or 4. These are custom-selected so that a REG_SEQUENCE can be |
| /// generated to force the table registers to be consecutive. |
| SDNode *SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, unsigned Opc); |
| |
| /// SelectV6T2BitfieldExtractOp - Select SBFX/UBFX instructions for ARM. |
| SDNode *SelectV6T2BitfieldExtractOp(SDNode *N, bool isSigned); |
| |
| /// SelectCMOVOp - Select CMOV instructions for ARM. |
| SDNode *SelectCMOVOp(SDNode *N); |
| SDNode *SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, |
| ARMCC::CondCodes CCVal, SDValue CCR, |
| SDValue InFlag); |
| SDNode *SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, |
| ARMCC::CondCodes CCVal, SDValue CCR, |
| SDValue InFlag); |
| SDNode *SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, |
| ARMCC::CondCodes CCVal, SDValue CCR, |
| SDValue InFlag); |
| SDNode *SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, |
| ARMCC::CondCodes CCVal, SDValue CCR, |
| SDValue InFlag); |
| |
| // Select special operations if node forms integer ABS pattern |
| SDNode *SelectABSOp(SDNode *N); |
| |
| SDNode *SelectConcatVector(SDNode *N); |
| |
| SDNode *SelectAtomic64(SDNode *Node, unsigned Opc); |
| |
| /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for |
| /// inline asm expressions. |
| virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op, |
| char ConstraintCode, |
| std::vector<SDValue> &OutOps); |
| |
| // Form pairs of consecutive S, D, or Q registers. |
| SDNode *PairSRegs(EVT VT, SDValue V0, SDValue V1); |
| SDNode *PairDRegs(EVT VT, SDValue V0, SDValue V1); |
| SDNode *PairQRegs(EVT VT, SDValue V0, SDValue V1); |
| |
| // Form sequences of 4 consecutive S, D, or Q registers. |
| SDNode *QuadSRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| SDNode *QuadDRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| SDNode *QuadQRegs(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3); |
| |
| // Get the alignment operand for a NEON VLD or VST instruction. |
| SDValue GetVLDSTAlign(SDValue Align, unsigned NumVecs, bool is64BitVector); |
| }; |
| } |
| |
| /// isInt32Immediate - This method tests to see if the node is a 32-bit constant |
| /// operand. If so Imm will receive the 32-bit value. |
| static bool isInt32Immediate(SDNode *N, unsigned &Imm) { |
| if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) { |
| Imm = cast<ConstantSDNode>(N)->getZExtValue(); |
| return true; |
| } |
| return false; |
| } |
| |
| // isInt32Immediate - This method tests to see if a constant operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isInt32Immediate(SDValue N, unsigned &Imm) { |
| return isInt32Immediate(N.getNode(), Imm); |
| } |
| |
| // isOpcWithIntImmediate - This method tests to see if the node is a specific |
| // opcode and that it has a immediate integer right operand. |
| // If so Imm will receive the 32 bit value. |
| static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) { |
| return N->getOpcode() == Opc && |
| isInt32Immediate(N->getOperand(1).getNode(), Imm); |
| } |
| |
| /// \brief Check whether a particular node is a constant value representable as |
| /// (N * Scale) where (N in [\arg RangeMin, \arg RangeMax). |
| /// |
| /// \param ScaledConstant [out] - On success, the pre-scaled constant value. |
| static bool isScaledConstantInRange(SDValue Node, int Scale, |
| int RangeMin, int RangeMax, |
| int &ScaledConstant) { |
| assert(Scale > 0 && "Invalid scale!"); |
| |
| // Check that this is a constant. |
| const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node); |
| if (!C) |
| return false; |
| |
| ScaledConstant = (int) C->getZExtValue(); |
| if ((ScaledConstant % Scale) != 0) |
| return false; |
| |
| ScaledConstant /= Scale; |
| return ScaledConstant >= RangeMin && ScaledConstant < RangeMax; |
| } |
| |
| /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS |
| /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at |
| /// least on current ARM implementations) which should be avoidded. |
| bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const { |
| if (OptLevel == CodeGenOpt::None) |
| return true; |
| |
| if (!CheckVMLxHazard) |
| return true; |
| |
| if (!Subtarget->isCortexA8() && !Subtarget->isCortexA9()) |
| return true; |
| |
| if (!N->hasOneUse()) |
| return false; |
| |
| SDNode *Use = *N->use_begin(); |
| if (Use->getOpcode() == ISD::CopyToReg) |
| return true; |
| if (Use->isMachineOpcode()) { |
| const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode()); |
| if (MCID.mayStore()) |
| return true; |
| unsigned Opcode = MCID.getOpcode(); |
| if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD) |
| return true; |
| // vmlx feeding into another vmlx. We actually want to unfold |
| // the use later in the MLxExpansion pass. e.g. |
| // vmla |
| // vmla (stall 8 cycles) |
| // |
| // vmul (5 cycles) |
| // vadd (5 cycles) |
| // vmla |
| // This adds up to about 18 - 19 cycles. |
| // |
| // vmla |
| // vmul (stall 4 cycles) |
| // vadd adds up to about 14 cycles. |
| return TII->isFpMLxInstruction(Opcode); |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift, |
| ARM_AM::ShiftOpc ShOpcVal, |
| unsigned ShAmt) { |
| if (!Subtarget->isCortexA9()) |
| return true; |
| if (Shift.hasOneUse()) |
| return true; |
| // R << 2 is free. |
| return ShOpcVal == ARM_AM::lsl && ShAmt == 2; |
| } |
| |
| bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N, |
| SDValue &BaseReg, |
| SDValue &Opc, |
| bool CheckProfitability) { |
| if (DisableShifterOp) |
| return false; |
| |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); |
| |
| // Don't match base register only case. That is matched to a separate |
| // lower complexity pattern with explicit register operand. |
| if (ShOpcVal == ARM_AM::no_shift) return false; |
| |
| BaseReg = N.getOperand(0); |
| unsigned ShImmVal = 0; |
| ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!RHS) return false; |
| ShImmVal = RHS->getZExtValue() & 31; |
| Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), |
| MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N, |
| SDValue &BaseReg, |
| SDValue &ShReg, |
| SDValue &Opc, |
| bool CheckProfitability) { |
| if (DisableShifterOp) |
| return false; |
| |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); |
| |
| // Don't match base register only case. That is matched to a separate |
| // lower complexity pattern with explicit register operand. |
| if (ShOpcVal == ARM_AM::no_shift) return false; |
| |
| BaseReg = N.getOperand(0); |
| unsigned ShImmVal = 0; |
| ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (RHS) return false; |
| |
| ShReg = N.getOperand(1); |
| if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal)) |
| return false; |
| Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal), |
| MVT::i32); |
| return true; |
| } |
| |
| |
| bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N, |
| SDValue &Base, |
| SDValue &OffImm) { |
| // Match simple R + imm12 operands. |
| |
| // Base only. |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| !CurDAG->isBaseWithConstantOffset(N)) { |
| if (N.getOpcode() == ISD::FrameIndex) { |
| // Match frame index. |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| if (N.getOpcode() == ARMISD::Wrapper && |
| !(Subtarget->useMovt() && |
| N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { |
| Base = N.getOperand(0); |
| } else |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (N.getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| |
| if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } |
| OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); |
| return true; |
| } |
| } |
| |
| // Base only. |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| |
| |
| bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, |
| SDValue &Opc) { |
| if (N.getOpcode() == ISD::MUL && |
| (!Subtarget->isCortexA9() || N.hasOneUse())) { |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| // X * [3,5,9] -> X + X * [2,4,8] etc. |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC & 1) { |
| RHSC = RHSC & ~1; |
| ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| if (RHSC < 0) { |
| AddSub = ARM_AM::sub; |
| RHSC = - RHSC; |
| } |
| if (isPowerOf2_32(RHSC)) { |
| unsigned ShAmt = Log2_32(RHSC); |
| Base = Offset = N.getOperand(0); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, |
| ARM_AM::lsl), |
| MVT::i32); |
| return true; |
| } |
| } |
| } |
| } |
| |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| // ISD::OR that is equivalent to an ISD::ADD. |
| !CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| // Leave simple R +/- imm12 operands for LDRi12 |
| if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) { |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1, |
| -0x1000+1, 0x1000, RHSC)) // 12 bits. |
| return false; |
| } |
| |
| // Otherwise this is R +/- [possibly shifted] R. |
| ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add; |
| ARM_AM::ShiftOpc ShOpcVal = |
| ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode()); |
| unsigned ShAmt = 0; |
| |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| |
| if (ShOpcVal != ARM_AM::no_shift) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| // it. |
| if (ConstantSDNode *Sh = |
| dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt)) |
| Offset = N.getOperand(1).getOperand(0); |
| else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| |
| // Try matching (R shl C) + (R). |
| if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift && |
| !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) { |
| ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode()); |
| if (ShOpcVal != ARM_AM::no_shift) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't |
| // fold it. |
| if (ConstantSDNode *Sh = |
| dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) { |
| Offset = N.getOperand(0).getOperand(0); |
| Base = N.getOperand(1); |
| } else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| } |
| |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), |
| MVT::i32); |
| return true; |
| } |
| |
| |
| |
| |
| //----- |
| |
| AddrMode2Type ARMDAGToDAGISel::SelectAddrMode2Worker(SDValue N, |
| SDValue &Base, |
| SDValue &Offset, |
| SDValue &Opc) { |
| if (N.getOpcode() == ISD::MUL && |
| (!Subtarget->isCortexA9() || N.hasOneUse())) { |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| // X * [3,5,9] -> X + X * [2,4,8] etc. |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC & 1) { |
| RHSC = RHSC & ~1; |
| ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| if (RHSC < 0) { |
| AddSub = ARM_AM::sub; |
| RHSC = - RHSC; |
| } |
| if (isPowerOf2_32(RHSC)) { |
| unsigned ShAmt = Log2_32(RHSC); |
| Base = Offset = N.getOperand(0); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, |
| ARM_AM::lsl), |
| MVT::i32); |
| return AM2_SHOP; |
| } |
| } |
| } |
| } |
| |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| // ISD::OR that is equivalent to an ADD. |
| !CurDAG->isBaseWithConstantOffset(N)) { |
| Base = N; |
| if (N.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } else if (N.getOpcode() == ARMISD::Wrapper && |
| !(Subtarget->useMovt() && |
| N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { |
| Base = N.getOperand(0); |
| } |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0, |
| ARM_AM::no_shift), |
| MVT::i32); |
| return AM2_BASE; |
| } |
| |
| // Match simple R +/- imm12 operands. |
| if (N.getOpcode() != ISD::SUB) { |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1, |
| -0x1000+1, 0x1000, RHSC)) { // 12 bits. |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| |
| ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| if (RHSC < 0) { |
| AddSub = ARM_AM::sub; |
| RHSC = - RHSC; |
| } |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, RHSC, |
| ARM_AM::no_shift), |
| MVT::i32); |
| return AM2_BASE; |
| } |
| } |
| |
| if (Subtarget->isCortexA9() && !N.hasOneUse()) { |
| // Compute R +/- (R << N) and reuse it. |
| Base = N; |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(ARM_AM::add, 0, |
| ARM_AM::no_shift), |
| MVT::i32); |
| return AM2_BASE; |
| } |
| |
| // Otherwise this is R +/- [possibly shifted] R. |
| ARM_AM::AddrOpc AddSub = N.getOpcode() != ISD::SUB ? ARM_AM::add:ARM_AM::sub; |
| ARM_AM::ShiftOpc ShOpcVal = |
| ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode()); |
| unsigned ShAmt = 0; |
| |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| |
| if (ShOpcVal != ARM_AM::no_shift) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| // it. |
| if (ConstantSDNode *Sh = |
| dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt)) |
| Offset = N.getOperand(1).getOperand(0); |
| else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| |
| // Try matching (R shl C) + (R). |
| if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift && |
| !(Subtarget->isCortexA9() || N.getOperand(0).hasOneUse())) { |
| ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode()); |
| if (ShOpcVal != ARM_AM::no_shift) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't |
| // fold it. |
| if (ConstantSDNode *Sh = |
| dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) { |
| Offset = N.getOperand(0).getOperand(0); |
| Base = N.getOperand(1); |
| } else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| } |
| |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), |
| MVT::i32); |
| return AM2_SHOP; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc) { |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| ? ARM_AM::add : ARM_AM::sub; |
| int Val; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) |
| return false; |
| |
| Offset = N; |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); |
| unsigned ShAmt = 0; |
| if (ShOpcVal != ARM_AM::no_shift) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| // it. |
| if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (isShifterOpProfitable(N, ShOpcVal, ShAmt)) |
| Offset = N.getOperand(0); |
| else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal), |
| MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc) { |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| ? ARM_AM::add : ARM_AM::sub; |
| int Val; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits. |
| if (AddSub == ARM_AM::sub) Val *= -1; |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(Val, MVT::i32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc) { |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| ? ARM_AM::add : ARM_AM::sub; |
| int Val; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits. |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val, |
| ARM_AM::no_shift), |
| MVT::i32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) { |
| Base = N; |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N, |
| SDValue &Base, SDValue &Offset, |
| SDValue &Opc) { |
| if (N.getOpcode() == ISD::SUB) { |
| // X - C is canonicalize to X + -C, no need to handle it here. |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0),MVT::i32); |
| return true; |
| } |
| |
| if (!CurDAG->isBaseWithConstantOffset(N)) { |
| Base = N; |
| if (N.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0),MVT::i32); |
| return true; |
| } |
| |
| // If the RHS is +/- imm8, fold into addr mode. |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1, |
| -256 + 1, 256, RHSC)) { // 8 bits. |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| |
| ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| if (RHSC < 0) { |
| AddSub = ARM_AM::sub; |
| RHSC = -RHSC; |
| } |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC),MVT::i32); |
| return true; |
| } |
| |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N, |
| SDValue &Offset, SDValue &Opc) { |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC) |
| ? ARM_AM::add : ARM_AM::sub; |
| int Val; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits. |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), MVT::i32); |
| return true; |
| } |
| |
| Offset = N; |
| Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N, |
| SDValue &Base, SDValue &Offset) { |
| if (!CurDAG->isBaseWithConstantOffset(N)) { |
| Base = N; |
| if (N.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } else if (N.getOpcode() == ARMISD::Wrapper && |
| !(Subtarget->useMovt() && |
| N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { |
| Base = N.getOperand(0); |
| } |
| Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), |
| MVT::i32); |
| return true; |
| } |
| |
| // If the RHS is +/- imm8, fold into addr mode. |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, |
| -256 + 1, 256, RHSC)) { |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } |
| |
| ARM_AM::AddrOpc AddSub = ARM_AM::add; |
| if (RHSC < 0) { |
| AddSub = ARM_AM::sub; |
| RHSC = -RHSC; |
| } |
| Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC), |
| MVT::i32); |
| return true; |
| } |
| |
| Base = N; |
| Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0), |
| MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr, |
| SDValue &Align) { |
| Addr = N; |
| |
| unsigned Alignment = 0; |
| if (LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(Parent)) { |
| // This case occurs only for VLD1-lane/dup and VST1-lane instructions. |
| // The maximum alignment is equal to the memory size being referenced. |
| unsigned LSNAlign = LSN->getAlignment(); |
| unsigned MemSize = LSN->getMemoryVT().getSizeInBits() / 8; |
| if (LSNAlign > MemSize && MemSize > 1) |
| Alignment = MemSize; |
| } else { |
| // All other uses of addrmode6 are for intrinsics. For now just record |
| // the raw alignment value; it will be refined later based on the legal |
| // alignment operands for the intrinsic. |
| Alignment = cast<MemIntrinsicSDNode>(Parent)->getAlignment(); |
| } |
| |
| Align = CurDAG->getTargetConstant(Alignment, MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N, |
| SDValue &Offset) { |
| LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op); |
| ISD::MemIndexedMode AM = LdSt->getAddressingMode(); |
| if (AM != ISD::POST_INC) |
| return false; |
| Offset = N; |
| if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) { |
| if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits()) |
| Offset = CurDAG->getRegister(0, MVT::i32); |
| } |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N, |
| SDValue &Offset, SDValue &Label) { |
| if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) { |
| Offset = N.getOperand(0); |
| SDValue N1 = N.getOperand(1); |
| Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(), |
| MVT::i32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Thumb Addressing Modes |
| //===----------------------------------------------------------------------===// |
| |
| bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N, |
| SDValue &Base, SDValue &Offset){ |
| if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) { |
| ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N); |
| if (!NC || !NC->isNullValue()) |
| return false; |
| |
| Base = Offset = N; |
| return true; |
| } |
| |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| return true; |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeRI(SDValue N, SDValue &Base, |
| SDValue &Offset, unsigned Scale) { |
| if (Scale == 4) { |
| SDValue TmpBase, TmpOffImm; |
| if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm)) |
| return false; // We want to select tLDRspi / tSTRspi instead. |
| |
| if (N.getOpcode() == ARMISD::Wrapper && |
| N.getOperand(0).getOpcode() == ISD::TargetConstantPool) |
| return false; // We want to select tLDRpci instead. |
| } |
| |
| if (!CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| // Thumb does not have [sp, r] address mode. |
| RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); |
| RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1)); |
| if ((LHSR && LHSR->getReg() == ARM::SP) || |
| (RHSR && RHSR->getReg() == ARM::SP)) |
| return false; |
| |
| // FIXME: Why do we explicitly check for a match here and then return false? |
| // Presumably to allow something else to match, but shouldn't this be |
| // documented? |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) |
| return false; |
| |
| Base = N.getOperand(0); |
| Offset = N.getOperand(1); |
| return true; |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeRI5S1(SDValue N, |
| SDValue &Base, |
| SDValue &Offset) { |
| return SelectThumbAddrModeRI(N, Base, Offset, 1); |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeRI5S2(SDValue N, |
| SDValue &Base, |
| SDValue &Offset) { |
| return SelectThumbAddrModeRI(N, Base, Offset, 2); |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeRI5S4(SDValue N, |
| SDValue &Base, |
| SDValue &Offset) { |
| return SelectThumbAddrModeRI(N, Base, Offset, 4); |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, |
| SDValue &Base, SDValue &OffImm) { |
| if (Scale == 4) { |
| SDValue TmpBase, TmpOffImm; |
| if (SelectThumbAddrModeSP(N, TmpBase, TmpOffImm)) |
| return false; // We want to select tLDRspi / tSTRspi instead. |
| |
| if (N.getOpcode() == ARMISD::Wrapper && |
| N.getOperand(0).getOpcode() == ISD::TargetConstantPool) |
| return false; // We want to select tLDRpci instead. |
| } |
| |
| if (!CurDAG->isBaseWithConstantOffset(N)) { |
| if (N.getOpcode() == ARMISD::Wrapper && |
| !(Subtarget->useMovt() && |
| N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { |
| Base = N.getOperand(0); |
| } else { |
| Base = N; |
| } |
| |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); |
| RegisterSDNode *RHSR = dyn_cast<RegisterSDNode>(N.getOperand(1)); |
| if ((LHSR && LHSR->getReg() == ARM::SP) || |
| (RHSR && RHSR->getReg() == ARM::SP)) { |
| ConstantSDNode *LHS = dyn_cast<ConstantSDNode>(N.getOperand(0)); |
| ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| unsigned LHSC = LHS ? LHS->getZExtValue() : 0; |
| unsigned RHSC = RHS ? RHS->getZExtValue() : 0; |
| |
| // Thumb does not have [sp, #imm5] address mode for non-zero imm5. |
| if (LHSC != 0 || RHSC != 0) return false; |
| |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| // If the RHS is + imm5 * scale, fold into addr mode. |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) { |
| Base = N.getOperand(0); |
| OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); |
| return true; |
| } |
| |
| Base = N.getOperand(0); |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base, |
| SDValue &OffImm) { |
| return SelectThumbAddrModeImm5S(N, 4, Base, OffImm); |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base, |
| SDValue &OffImm) { |
| return SelectThumbAddrModeImm5S(N, 2, Base, OffImm); |
| } |
| |
| bool |
| ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base, |
| SDValue &OffImm) { |
| return SelectThumbAddrModeImm5S(N, 1, Base, OffImm); |
| } |
| |
| bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N, |
| SDValue &Base, SDValue &OffImm) { |
| if (N.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| if (!CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| RegisterSDNode *LHSR = dyn_cast<RegisterSDNode>(N.getOperand(0)); |
| if (N.getOperand(0).getOpcode() == ISD::FrameIndex || |
| (LHSR && LHSR->getReg() == ARM::SP)) { |
| // If the RHS is + imm8 * scale, fold into addr mode. |
| int RHSC; |
| if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) { |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } |
| OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Thumb 2 Addressing Modes |
| //===----------------------------------------------------------------------===// |
| |
| |
| bool ARMDAGToDAGISel::SelectT2ShifterOperandReg(SDValue N, SDValue &BaseReg, |
| SDValue &Opc) { |
| if (DisableShifterOp) |
| return false; |
| |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode()); |
| |
| // Don't match base register only case. That is matched to a separate |
| // lower complexity pattern with explicit register operand. |
| if (ShOpcVal == ARM_AM::no_shift) return false; |
| |
| BaseReg = N.getOperand(0); |
| unsigned ShImmVal = 0; |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| ShImmVal = RHS->getZExtValue() & 31; |
| Opc = getI32Imm(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N, |
| SDValue &Base, SDValue &OffImm) { |
| // Match simple R + imm12 operands. |
| |
| // Base only. |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| !CurDAG->isBaseWithConstantOffset(N)) { |
| if (N.getOpcode() == ISD::FrameIndex) { |
| // Match frame index. |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| if (N.getOpcode() == ARMISD::Wrapper && |
| !(Subtarget->useMovt() && |
| N.getOperand(0).getOpcode() == ISD::TargetGlobalAddress)) { |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::TargetConstantPool) |
| return false; // We want to select t2LDRpci instead. |
| } else |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| if (SelectT2AddrModeImm8(N, Base, OffImm)) |
| // Let t2LDRi8 handle (R - imm8). |
| return false; |
| |
| int RHSC = (int)RHS->getZExtValue(); |
| if (N.getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| |
| if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned) |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } |
| OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); |
| return true; |
| } |
| } |
| |
| // Base only. |
| Base = N; |
| OffImm = CurDAG->getTargetConstant(0, MVT::i32); |
| return true; |
| } |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N, |
| SDValue &Base, SDValue &OffImm) { |
| // Match simple R - imm8 operands. |
| if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB && |
| !CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| int RHSC = (int)RHS->getSExtValue(); |
| if (N.getOpcode() == ISD::SUB) |
| RHSC = -RHSC; |
| |
| if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative) |
| Base = N.getOperand(0); |
| if (Base.getOpcode() == ISD::FrameIndex) { |
| int FI = cast<FrameIndexSDNode>(Base)->getIndex(); |
| Base = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| } |
| OffImm = CurDAG->getTargetConstant(RHSC, MVT::i32); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N, |
| SDValue &OffImm){ |
| unsigned Opcode = Op->getOpcode(); |
| ISD::MemIndexedMode AM = (Opcode == ISD::LOAD) |
| ? cast<LoadSDNode>(Op)->getAddressingMode() |
| : cast<StoreSDNode>(Op)->getAddressingMode(); |
| int RHSC; |
| if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits. |
| OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC)) |
| ? CurDAG->getTargetConstant(RHSC, MVT::i32) |
| : CurDAG->getTargetConstant(-RHSC, MVT::i32); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N, |
| SDValue &Base, |
| SDValue &OffReg, SDValue &ShImm) { |
| // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12. |
| if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) |
| return false; |
| |
| // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8. |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned) |
| return false; |
| else if (RHSC < 0 && RHSC >= -255) // 8 bits |
| return false; |
| } |
| |
| // Look for (R + R) or (R + (R << [1,2,3])). |
| unsigned ShAmt = 0; |
| Base = N.getOperand(0); |
| OffReg = N.getOperand(1); |
| |
| // Swap if it is ((R << c) + R). |
| ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode()); |
| if (ShOpcVal != ARM_AM::lsl) { |
| ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode()); |
| if (ShOpcVal == ARM_AM::lsl) |
| std::swap(Base, OffReg); |
| } |
| |
| if (ShOpcVal == ARM_AM::lsl) { |
| // Check to see if the RHS of the shift is a constant, if not, we can't fold |
| // it. |
| if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) { |
| ShAmt = Sh->getZExtValue(); |
| if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt)) |
| OffReg = OffReg.getOperand(0); |
| else { |
| ShAmt = 0; |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } else { |
| ShOpcVal = ARM_AM::no_shift; |
| } |
| } |
| |
| ShImm = CurDAG->getTargetConstant(ShAmt, MVT::i32); |
| |
| return true; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| |
| /// getAL - Returns a ARMCC::AL immediate node. |
| static inline SDValue getAL(SelectionDAG *CurDAG) { |
| return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, MVT::i32); |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectARMIndexedLoad(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| if (AM == ISD::UNINDEXED) |
| return NULL; |
| |
| EVT LoadedVT = LD->getMemoryVT(); |
| SDValue Offset, AMOpc; |
| bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); |
| unsigned Opcode = 0; |
| bool Match = false; |
| if (LoadedVT == MVT::i32 && isPre && |
| SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) { |
| Opcode = ARM::LDR_PRE_IMM; |
| Match = true; |
| } else if (LoadedVT == MVT::i32 && !isPre && |
| SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) { |
| Opcode = ARM::LDR_POST_IMM; |
| Match = true; |
| } else if (LoadedVT == MVT::i32 && |
| SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) { |
| Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG; |
| Match = true; |
| |
| } else if (LoadedVT == MVT::i16 && |
| SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = (LD->getExtensionType() == ISD::SEXTLOAD) |
| ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST) |
| : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST); |
| } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) { |
| if (LD->getExtensionType() == ISD::SEXTLOAD) { |
| if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST; |
| } |
| } else { |
| if (isPre && |
| SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = ARM::LDRB_PRE_IMM; |
| } else if (!isPre && |
| SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = ARM::LDRB_POST_IMM; |
| } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) { |
| Match = true; |
| Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG; |
| } |
| } |
| } |
| |
| if (Match) { |
| if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) { |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[]= { Base, AMOpc, getAL(CurDAG), |
| CurDAG->getRegister(0, MVT::i32), Chain }; |
| return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, |
| MVT::i32, MVT::Other, Ops, 5); |
| } else { |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG), |
| CurDAG->getRegister(0, MVT::i32), Chain }; |
| return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, |
| MVT::i32, MVT::Other, Ops, 6); |
| } |
| } |
| |
| return NULL; |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectT2IndexedLoad(SDNode *N) { |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| if (AM == ISD::UNINDEXED) |
| return NULL; |
| |
| EVT LoadedVT = LD->getMemoryVT(); |
| bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD; |
| SDValue Offset; |
| bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC); |
| unsigned Opcode = 0; |
| bool Match = false; |
| if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) { |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| case MVT::i32: |
| Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST; |
| break; |
| case MVT::i16: |
| if (isSExtLd) |
| Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST; |
| else |
| Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST; |
| break; |
| case MVT::i8: |
| case MVT::i1: |
| if (isSExtLd) |
| Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST; |
| else |
| Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST; |
| break; |
| default: |
| return NULL; |
| } |
| Match = true; |
| } |
| |
| if (Match) { |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Ops[]= { Base, Offset, getAL(CurDAG), |
| CurDAG->getRegister(0, MVT::i32), Chain }; |
| return CurDAG->getMachineNode(Opcode, N->getDebugLoc(), MVT::i32, MVT::i32, |
| MVT::Other, Ops, 5); |
| } |
| |
| return NULL; |
| } |
| |
| /// PairSRegs - Form a D register from a pair of S registers. |
| /// |
| SDNode *ARMDAGToDAGISel::PairSRegs(EVT VT, SDValue V0, SDValue V1) { |
| DebugLoc dl = V0.getNode()->getDebugLoc(); |
| SDValue RegClass = |
| CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5); |
| } |
| |
| /// PairDRegs - Form a quad register from a pair of D registers. |
| /// |
| SDNode *ARMDAGToDAGISel::PairDRegs(EVT VT, SDValue V0, SDValue V1) { |
| DebugLoc dl = V0.getNode()->getDebugLoc(); |
| SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5); |
| } |
| |
| /// PairQRegs - Form 4 consecutive D registers from a pair of Q registers. |
| /// |
| SDNode *ARMDAGToDAGISel::PairQRegs(EVT VT, SDValue V0, SDValue V1) { |
| DebugLoc dl = V0.getNode()->getDebugLoc(); |
| SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 5); |
| } |
| |
| /// QuadSRegs - Form 4 consecutive S registers. |
| /// |
| SDNode *ARMDAGToDAGISel::QuadSRegs(EVT VT, SDValue V0, SDValue V1, |
| SDValue V2, SDValue V3) { |
| DebugLoc dl = V0.getNode()->getDebugLoc(); |
| SDValue RegClass = |
| CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, MVT::i32); |
| SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, MVT::i32); |
| SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| V2, SubReg2, V3, SubReg3 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9); |
| } |
| |
| /// QuadDRegs - Form 4 consecutive D registers. |
| /// |
| SDNode *ARMDAGToDAGISel::QuadDRegs(EVT VT, SDValue V0, SDValue V1, |
| SDValue V2, SDValue V3) { |
| DebugLoc dl = V0.getNode()->getDebugLoc(); |
| SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, MVT::i32); |
| SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, MVT::i32); |
| SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| V2, SubReg2, V3, SubReg3 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9); |
| } |
| |
| /// QuadQRegs - Form 4 consecutive Q registers. |
| /// |
| SDNode *ARMDAGToDAGISel::QuadQRegs(EVT VT, SDValue V0, SDValue V1, |
| SDValue V2, SDValue V3) { |
| DebugLoc dl = V0.getNode()->getDebugLoc(); |
| SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, MVT::i32); |
| SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, MVT::i32); |
| SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, MVT::i32); |
| SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, MVT::i32); |
| SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, MVT::i32); |
| const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1, |
| V2, SubReg2, V3, SubReg3 }; |
| return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops, 9); |
| } |
| |
| /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand |
| /// of a NEON VLD or VST instruction. The supported values depend on the |
| /// number of registers being loaded. |
| SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, unsigned NumVecs, |
| bool is64BitVector) { |
| unsigned NumRegs = NumVecs; |
| if (!is64BitVector && NumVecs < 3) |
| NumRegs *= 2; |
| |
| unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); |
| if (Alignment >= 32 && NumRegs == 4) |
| Alignment = 32; |
| else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4)) |
| Alignment = 16; |
| else if (Alignment >= 8) |
| Alignment = 8; |
| else |
| Alignment = 0; |
| |
| return CurDAG->getTargetConstant(Alignment, MVT::i32); |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs, |
| unsigned *DOpcodes, unsigned *QOpcodes0, |
| unsigned *QOpcodes1) { |
| assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range"); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| SDValue MemAddr, Align; |
| unsigned AddrOpIdx = isUpdating ? 1 : 2; |
| if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) |
| return NULL; |
| |
| SDValue Chain = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| bool is64BitVector = VT.is64BitVector(); |
| Align = GetVLDSTAlign(Align, NumVecs, is64BitVector); |
| |
| unsigned OpcodeIndex; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("unhandled vld type"); |
| // Double-register operations: |
| case MVT::v8i8: OpcodeIndex = 0; break; |
| case MVT::v4i16: OpcodeIndex = 1; break; |
| case MVT::v2f32: |
| case MVT::v2i32: OpcodeIndex = 2; break; |
| case MVT::v1i64: OpcodeIndex = 3; break; |
| // Quad-register operations: |
| case MVT::v16i8: OpcodeIndex = 0; break; |
| case MVT::v8i16: OpcodeIndex = 1; break; |
| case MVT::v4f32: |
| case MVT::v4i32: OpcodeIndex = 2; break; |
| case MVT::v2i64: OpcodeIndex = 3; |
| assert(NumVecs == 1 && "v2i64 type only supported for VLD1"); |
| break; |
| } |
| |
| EVT ResTy; |
| if (NumVecs == 1) |
| ResTy = VT; |
| else { |
| unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| if (!is64BitVector) |
| ResTyElts *= 2; |
| ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts); |
| } |
| std::vector<EVT> ResTys; |
| ResTys.push_back(ResTy); |
| if (isUpdating) |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| SDValue Pred = getAL(CurDAG); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| SDNode *VLd; |
| SmallVector<SDValue, 7> Ops; |
| |
| // Double registers and VLD1/VLD2 quad registers are directly supported. |
| if (is64BitVector || NumVecs <= 2) { |
| unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| QOpcodes0[OpcodeIndex]); |
| Ops.push_back(MemAddr); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc); |
| } |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size()); |
| |
| } else { |
| // Otherwise, quad registers are loaded with two separate instructions, |
| // where one loads the even registers and the other loads the odd registers. |
| EVT AddrTy = MemAddr.getValueType(); |
| |
| // Load the even subregs. This is always an updating load, so that it |
| // provides the address to the second load for the odd subregs. |
| SDValue ImplDef = |
| SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0); |
| const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain }; |
| SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, |
| ResTy, AddrTy, MVT::Other, OpsA, 7); |
| Chain = SDValue(VLdA, 2); |
| |
| // Load the odd subregs. |
| Ops.push_back(SDValue(VLdA, 1)); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| assert(isa<ConstantSDNode>(Inc.getNode()) && |
| "only constant post-increment update allowed for VLD3/4"); |
| (void)Inc; |
| Ops.push_back(Reg0); |
| } |
| Ops.push_back(SDValue(VLdA, 0)); |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, |
| Ops.data(), Ops.size()); |
| } |
| |
| // Transfer memoperands. |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(VLd)->setMemRefs(MemOp, MemOp + 1); |
| |
| if (NumVecs == 1) |
| return VLd; |
| |
| // Extract out the subregisters. |
| SDValue SuperReg = SDValue(VLd, 0); |
| assert(ARM::dsub_7 == ARM::dsub_0+7 && |
| ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering"); |
| unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0); |
| for (unsigned Vec = 0; Vec < NumVecs; ++Vec) |
| ReplaceUses(SDValue(N, Vec), |
| CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg)); |
| ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1)); |
| if (isUpdating) |
| ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2)); |
| return NULL; |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs, |
| unsigned *DOpcodes, unsigned *QOpcodes0, |
| unsigned *QOpcodes1) { |
| assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range"); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| SDValue MemAddr, Align; |
| unsigned AddrOpIdx = isUpdating ? 1 : 2; |
| unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1) |
| if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) |
| return NULL; |
| |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| |
| SDValue Chain = N->getOperand(0); |
| EVT VT = N->getOperand(Vec0Idx).getValueType(); |
| bool is64BitVector = VT.is64BitVector(); |
| Align = GetVLDSTAlign(Align, NumVecs, is64BitVector); |
| |
| unsigned OpcodeIndex; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("unhandled vst type"); |
| // Double-register operations: |
| case MVT::v8i8: OpcodeIndex = 0; break; |
| case MVT::v4i16: OpcodeIndex = 1; break; |
| case MVT::v2f32: |
| case MVT::v2i32: OpcodeIndex = 2; break; |
| case MVT::v1i64: OpcodeIndex = 3; break; |
| // Quad-register operations: |
| case MVT::v16i8: OpcodeIndex = 0; break; |
| case MVT::v8i16: OpcodeIndex = 1; break; |
| case MVT::v4f32: |
| case MVT::v4i32: OpcodeIndex = 2; break; |
| case MVT::v2i64: OpcodeIndex = 3; |
| assert(NumVecs == 1 && "v2i64 type only supported for VST1"); |
| break; |
| } |
| |
| std::vector<EVT> ResTys; |
| if (isUpdating) |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| SDValue Pred = getAL(CurDAG); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| SmallVector<SDValue, 7> Ops; |
| |
| // Double registers and VST1/VST2 quad registers are directly supported. |
| if (is64BitVector || NumVecs <= 2) { |
| SDValue SrcReg; |
| if (NumVecs == 1) { |
| SrcReg = N->getOperand(Vec0Idx); |
| } else if (is64BitVector) { |
| // Form a REG_SEQUENCE to force register allocation. |
| SDValue V0 = N->getOperand(Vec0Idx + 0); |
| SDValue V1 = N->getOperand(Vec0Idx + 1); |
| if (NumVecs == 2) |
| SrcReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); |
| else { |
| SDValue V2 = N->getOperand(Vec0Idx + 2); |
| // If it's a vst3, form a quad D-register and leave the last part as |
| // an undef. |
| SDValue V3 = (NumVecs == 3) |
| ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0) |
| : N->getOperand(Vec0Idx + 3); |
| SrcReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); |
| } |
| } else { |
| // Form a QQ register. |
| SDValue Q0 = N->getOperand(Vec0Idx); |
| SDValue Q1 = N->getOperand(Vec0Idx + 1); |
| SrcReg = SDValue(PairQRegs(MVT::v4i64, Q0, Q1), 0); |
| } |
| |
| unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| QOpcodes0[OpcodeIndex]); |
| Ops.push_back(MemAddr); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc); |
| } |
| Ops.push_back(SrcReg); |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| SDNode *VSt = |
| CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size()); |
| |
| // Transfer memoperands. |
| cast<MachineSDNode>(VSt)->setMemRefs(MemOp, MemOp + 1); |
| |
| return VSt; |
| } |
| |
| // Otherwise, quad registers are stored with two separate instructions, |
| // where one stores the even registers and the other stores the odd registers. |
| |
| // Form the QQQQ REG_SEQUENCE. |
| SDValue V0 = N->getOperand(Vec0Idx + 0); |
| SDValue V1 = N->getOperand(Vec0Idx + 1); |
| SDValue V2 = N->getOperand(Vec0Idx + 2); |
| SDValue V3 = (NumVecs == 3) |
| ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) |
| : N->getOperand(Vec0Idx + 3); |
| SDValue RegSeq = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0); |
| |
| // Store the even D registers. This is always an updating store, so that it |
| // provides the address to the second store for the odd subregs. |
| const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain }; |
| SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, |
| MemAddr.getValueType(), |
| MVT::Other, OpsA, 7); |
| cast<MachineSDNode>(VStA)->setMemRefs(MemOp, MemOp + 1); |
| Chain = SDValue(VStA, 1); |
| |
| // Store the odd D registers. |
| Ops.push_back(SDValue(VStA, 0)); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| assert(isa<ConstantSDNode>(Inc.getNode()) && |
| "only constant post-increment update allowed for VST3/4"); |
| (void)Inc; |
| Ops.push_back(Reg0); |
| } |
| Ops.push_back(RegSeq); |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, |
| Ops.data(), Ops.size()); |
| cast<MachineSDNode>(VStB)->setMemRefs(MemOp, MemOp + 1); |
| return VStB; |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, |
| bool isUpdating, unsigned NumVecs, |
| unsigned *DOpcodes, |
| unsigned *QOpcodes) { |
| assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range"); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| SDValue MemAddr, Align; |
| unsigned AddrOpIdx = isUpdating ? 1 : 2; |
| unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1) |
| if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align)) |
| return NULL; |
| |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| |
| SDValue Chain = N->getOperand(0); |
| unsigned Lane = |
| cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue(); |
| EVT VT = N->getOperand(Vec0Idx).getValueType(); |
| bool is64BitVector = VT.is64BitVector(); |
| |
| unsigned Alignment = 0; |
| if (NumVecs != 3) { |
| Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); |
| unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8; |
| if (Alignment > NumBytes) |
| Alignment = NumBytes; |
| if (Alignment < 8 && Alignment < NumBytes) |
| Alignment = 0; |
| // Alignment must be a power of two; make sure of that. |
| Alignment = (Alignment & -Alignment); |
| if (Alignment == 1) |
| Alignment = 0; |
| } |
| Align = CurDAG->getTargetConstant(Alignment, MVT::i32); |
| |
| unsigned OpcodeIndex; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("unhandled vld/vst lane type"); |
| // Double-register operations: |
| case MVT::v8i8: OpcodeIndex = 0; break; |
| case MVT::v4i16: OpcodeIndex = 1; break; |
| case MVT::v2f32: |
| case MVT::v2i32: OpcodeIndex = 2; break; |
| // Quad-register operations: |
| case MVT::v8i16: OpcodeIndex = 0; break; |
| case MVT::v4f32: |
| case MVT::v4i32: OpcodeIndex = 1; break; |
| } |
| |
| std::vector<EVT> ResTys; |
| if (IsLoad) { |
| unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| if (!is64BitVector) |
| ResTyElts *= 2; |
| ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), |
| MVT::i64, ResTyElts)); |
| } |
| if (isUpdating) |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| SDValue Pred = getAL(CurDAG); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(MemAddr); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(AddrOpIdx + 1); |
| Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc); |
| } |
| |
| SDValue SuperReg; |
| SDValue V0 = N->getOperand(Vec0Idx + 0); |
| SDValue V1 = N->getOperand(Vec0Idx + 1); |
| if (NumVecs == 2) { |
| if (is64BitVector) |
| SuperReg = SDValue(PairDRegs(MVT::v2i64, V0, V1), 0); |
| else |
| SuperReg = SDValue(PairQRegs(MVT::v4i64, V0, V1), 0); |
| } else { |
| SDValue V2 = N->getOperand(Vec0Idx + 2); |
| SDValue V3 = (NumVecs == 3) |
| ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) |
| : N->getOperand(Vec0Idx + 3); |
| if (is64BitVector) |
| SuperReg = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); |
| else |
| SuperReg = SDValue(QuadQRegs(MVT::v8i64, V0, V1, V2, V3), 0); |
| } |
| Ops.push_back(SuperReg); |
| Ops.push_back(getI32Imm(Lane)); |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| |
| unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] : |
| QOpcodes[OpcodeIndex]); |
| SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, |
| Ops.data(), Ops.size()); |
| cast<MachineSDNode>(VLdLn)->setMemRefs(MemOp, MemOp + 1); |
| if (!IsLoad) |
| return VLdLn; |
| |
| // Extract the subregisters. |
| SuperReg = SDValue(VLdLn, 0); |
| assert(ARM::dsub_7 == ARM::dsub_0+7 && |
| ARM::qsub_3 == ARM::qsub_0+3 && "Unexpected subreg numbering"); |
| unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0; |
| for (unsigned Vec = 0; Vec < NumVecs; ++Vec) |
| ReplaceUses(SDValue(N, Vec), |
| CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg)); |
| ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1)); |
| if (isUpdating) |
| ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2)); |
| return NULL; |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool isUpdating, |
| unsigned NumVecs, unsigned *Opcodes) { |
| assert(NumVecs >=2 && NumVecs <= 4 && "VLDDup NumVecs out-of-range"); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| SDValue MemAddr, Align; |
| if (!SelectAddrMode6(N, N->getOperand(1), MemAddr, Align)) |
| return NULL; |
| |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| |
| SDValue Chain = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| unsigned Alignment = 0; |
| if (NumVecs != 3) { |
| Alignment = cast<ConstantSDNode>(Align)->getZExtValue(); |
| unsigned NumBytes = NumVecs * VT.getVectorElementType().getSizeInBits()/8; |
| if (Alignment > NumBytes) |
| Alignment = NumBytes; |
| if (Alignment < 8 && Alignment < NumBytes) |
| Alignment = 0; |
| // Alignment must be a power of two; make sure of that. |
| Alignment = (Alignment & -Alignment); |
| if (Alignment == 1) |
| Alignment = 0; |
| } |
| Align = CurDAG->getTargetConstant(Alignment, MVT::i32); |
| |
| unsigned OpcodeIndex; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("unhandled vld-dup type"); |
| case MVT::v8i8: OpcodeIndex = 0; break; |
| case MVT::v4i16: OpcodeIndex = 1; break; |
| case MVT::v2f32: |
| case MVT::v2i32: OpcodeIndex = 2; break; |
| } |
| |
| SDValue Pred = getAL(CurDAG); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| SDValue SuperReg; |
| unsigned Opc = Opcodes[OpcodeIndex]; |
| SmallVector<SDValue, 6> Ops; |
| Ops.push_back(MemAddr); |
| Ops.push_back(Align); |
| if (isUpdating) { |
| SDValue Inc = N->getOperand(2); |
| Ops.push_back(isa<ConstantSDNode>(Inc.getNode()) ? Reg0 : Inc); |
| } |
| Ops.push_back(Pred); |
| Ops.push_back(Reg0); |
| Ops.push_back(Chain); |
| |
| unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs; |
| std::vector<EVT> ResTys; |
| ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(), MVT::i64,ResTyElts)); |
| if (isUpdating) |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| SDNode *VLdDup = |
| CurDAG->getMachineNode(Opc, dl, ResTys, Ops.data(), Ops.size()); |
| cast<MachineSDNode>(VLdDup)->setMemRefs(MemOp, MemOp + 1); |
| SuperReg = SDValue(VLdDup, 0); |
| |
| // Extract the subregisters. |
| assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering"); |
| unsigned SubIdx = ARM::dsub_0; |
| for (unsigned Vec = 0; Vec < NumVecs; ++Vec) |
| ReplaceUses(SDValue(N, Vec), |
| CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg)); |
| ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1)); |
| if (isUpdating) |
| ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2)); |
| return NULL; |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectVTBL(SDNode *N, bool IsExt, unsigned NumVecs, |
| unsigned Opc) { |
| assert(NumVecs >= 2 && NumVecs <= 4 && "VTBL NumVecs out-of-range"); |
| DebugLoc dl = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| unsigned FirstTblReg = IsExt ? 2 : 1; |
| |
| // Form a REG_SEQUENCE to force register allocation. |
| SDValue RegSeq; |
| SDValue V0 = N->getOperand(FirstTblReg + 0); |
| SDValue V1 = N->getOperand(FirstTblReg + 1); |
| if (NumVecs == 2) |
| RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0); |
| else { |
| SDValue V2 = N->getOperand(FirstTblReg + 2); |
| // If it's a vtbl3, form a quad D-register and leave the last part as |
| // an undef. |
| SDValue V3 = (NumVecs == 3) |
| ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0) |
| : N->getOperand(FirstTblReg + 3); |
| RegSeq = SDValue(QuadDRegs(MVT::v4i64, V0, V1, V2, V3), 0); |
| } |
| |
| SmallVector<SDValue, 6> Ops; |
| if (IsExt) |
| Ops.push_back(N->getOperand(1)); |
| Ops.push_back(RegSeq); |
| Ops.push_back(N->getOperand(FirstTblReg + NumVecs)); |
| Ops.push_back(getAL(CurDAG)); // predicate |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // predicate register |
| return CurDAG->getMachineNode(Opc, dl, VT, Ops.data(), Ops.size()); |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectV6T2BitfieldExtractOp(SDNode *N, |
| bool isSigned) { |
| if (!Subtarget->hasV6T2Ops()) |
| return NULL; |
| |
| unsigned Opc = isSigned ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX) |
| : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX); |
| |
| |
| // For unsigned extracts, check for a shift right and mask |
| unsigned And_imm = 0; |
| if (N->getOpcode() == ISD::AND) { |
| if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) { |
| |
| // The immediate is a mask of the low bits iff imm & (imm+1) == 0 |
| if (And_imm & (And_imm + 1)) |
| return NULL; |
| |
| unsigned Srl_imm = 0; |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, |
| Srl_imm)) { |
| assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); |
| |
| // Note: The width operand is encoded as width-1. |
| unsigned Width = CountTrailingOnes_32(And_imm) - 1; |
| unsigned LSB = Srl_imm; |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| CurDAG->getTargetConstant(LSB, MVT::i32), |
| CurDAG->getTargetConstant(Width, MVT::i32), |
| getAL(CurDAG), Reg0 }; |
| return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); |
| } |
| } |
| return NULL; |
| } |
| |
| // Otherwise, we're looking for a shift of a shift |
| unsigned Shl_imm = 0; |
| if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) { |
| assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!"); |
| unsigned Srl_imm = 0; |
| if (isInt32Immediate(N->getOperand(1), Srl_imm)) { |
| assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!"); |
| // Note: The width operand is encoded as width-1. |
| unsigned Width = 32 - Srl_imm - 1; |
| int LSB = Srl_imm - Shl_imm; |
| if (LSB < 0) |
| return NULL; |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { N->getOperand(0).getOperand(0), |
| CurDAG->getTargetConstant(LSB, MVT::i32), |
| CurDAG->getTargetConstant(Width, MVT::i32), |
| getAL(CurDAG), Reg0 }; |
| return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); |
| } |
| } |
| return NULL; |
| } |
| |
| SDNode *ARMDAGToDAGISel:: |
| SelectT2CMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, |
| ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { |
| SDValue CPTmp0; |
| SDValue CPTmp1; |
| if (SelectT2ShifterOperandReg(TrueVal, CPTmp0, CPTmp1)) { |
| unsigned SOVal = cast<ConstantSDNode>(CPTmp1)->getZExtValue(); |
| unsigned SOShOp = ARM_AM::getSORegShOp(SOVal); |
| unsigned Opc = 0; |
| switch (SOShOp) { |
| case ARM_AM::lsl: Opc = ARM::t2MOVCClsl; break; |
| case ARM_AM::lsr: Opc = ARM::t2MOVCClsr; break; |
| case ARM_AM::asr: Opc = ARM::t2MOVCCasr; break; |
| case ARM_AM::ror: Opc = ARM::t2MOVCCror; break; |
| default: |
| llvm_unreachable("Unknown so_reg opcode!"); |
| break; |
| } |
| SDValue SOShImm = |
| CurDAG->getTargetConstant(ARM_AM::getSORegOffset(SOVal), MVT::i32); |
| SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); |
| SDValue Ops[] = { FalseVal, CPTmp0, SOShImm, CC, CCR, InFlag }; |
| return CurDAG->SelectNodeTo(N, Opc, MVT::i32,Ops, 6); |
| } |
| return 0; |
| } |
| |
| SDNode *ARMDAGToDAGISel:: |
| SelectARMCMOVShiftOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, |
| ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { |
| SDValue CPTmp0; |
| SDValue CPTmp1; |
| SDValue CPTmp2; |
| if (SelectImmShifterOperand(TrueVal, CPTmp0, CPTmp2)) { |
| SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); |
| SDValue Ops[] = { FalseVal, CPTmp0, CPTmp2, CC, CCR, InFlag }; |
| return CurDAG->SelectNodeTo(N, ARM::MOVCCsi, MVT::i32, Ops, 6); |
| } |
| |
| if (SelectRegShifterOperand(TrueVal, CPTmp0, CPTmp1, CPTmp2)) { |
| SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); |
| SDValue Ops[] = { FalseVal, CPTmp0, CPTmp1, CPTmp2, CC, CCR, InFlag }; |
| return CurDAG->SelectNodeTo(N, ARM::MOVCCsr, MVT::i32, Ops, 7); |
| } |
| return 0; |
| } |
| |
| SDNode *ARMDAGToDAGISel:: |
| SelectT2CMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, |
| ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { |
| ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal); |
| if (!T) |
| return 0; |
| |
| unsigned Opc = 0; |
| unsigned TrueImm = T->getZExtValue(); |
| if (is_t2_so_imm(TrueImm)) { |
| Opc = ARM::t2MOVCCi; |
| } else if (TrueImm <= 0xffff) { |
| Opc = ARM::t2MOVCCi16; |
| } else if (is_t2_so_imm_not(TrueImm)) { |
| TrueImm = ~TrueImm; |
| Opc = ARM::t2MVNCCi; |
| } else if (TrueVal.getNode()->hasOneUse() && Subtarget->hasV6T2Ops()) { |
| // Large immediate. |
| Opc = ARM::t2MOVCCi32imm; |
| } |
| |
| if (Opc) { |
| SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32); |
| SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); |
| SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; |
| return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); |
| } |
| |
| return 0; |
| } |
| |
| SDNode *ARMDAGToDAGISel:: |
| SelectARMCMOVImmOp(SDNode *N, SDValue FalseVal, SDValue TrueVal, |
| ARMCC::CondCodes CCVal, SDValue CCR, SDValue InFlag) { |
| ConstantSDNode *T = dyn_cast<ConstantSDNode>(TrueVal); |
| if (!T) |
| return 0; |
| |
| unsigned Opc = 0; |
| unsigned TrueImm = T->getZExtValue(); |
| bool isSoImm = is_so_imm(TrueImm); |
| if (isSoImm) { |
| Opc = ARM::MOVCCi; |
| } else if (Subtarget->hasV6T2Ops() && TrueImm <= 0xffff) { |
| Opc = ARM::MOVCCi16; |
| } else if (is_so_imm_not(TrueImm)) { |
| TrueImm = ~TrueImm; |
| Opc = ARM::MVNCCi; |
| } else if (TrueVal.getNode()->hasOneUse() && |
| (Subtarget->hasV6T2Ops() || ARM_AM::isSOImmTwoPartVal(TrueImm))) { |
| // Large immediate. |
| Opc = ARM::MOVCCi32imm; |
| } |
| |
| if (Opc) { |
| SDValue True = CurDAG->getTargetConstant(TrueImm, MVT::i32); |
| SDValue CC = CurDAG->getTargetConstant(CCVal, MVT::i32); |
| SDValue Ops[] = { FalseVal, True, CC, CCR, InFlag }; |
| return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); |
| } |
| |
| return 0; |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectCMOVOp(SDNode *N) { |
| EVT VT = N->getValueType(0); |
| SDValue FalseVal = N->getOperand(0); |
| SDValue TrueVal = N->getOperand(1); |
| SDValue CC = N->getOperand(2); |
| SDValue CCR = N->getOperand(3); |
| SDValue InFlag = N->getOperand(4); |
| assert(CC.getOpcode() == ISD::Constant); |
| assert(CCR.getOpcode() == ISD::Register); |
| ARMCC::CondCodes CCVal = |
| (ARMCC::CondCodes)cast<ConstantSDNode>(CC)->getZExtValue(); |
| |
| if (!Subtarget->isThumb1Only() && VT == MVT::i32) { |
| // Pattern: (ARMcmov:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) |
| // Emits: (MOVCCs:i32 GPR:i32:$false, so_reg:i32:$true, (imm:i32):$cc) |
| // Pattern complexity = 18 cost = 1 size = 0 |
| SDValue CPTmp0; |
| SDValue CPTmp1; |
| SDValue CPTmp2; |
| if (Subtarget->isThumb()) { |
| SDNode *Res = SelectT2CMOVShiftOp(N, FalseVal, TrueVal, |
| CCVal, CCR, InFlag); |
| if (!Res) |
| Res = SelectT2CMOVShiftOp(N, TrueVal, FalseVal, |
| ARMCC::getOppositeCondition(CCVal), CCR, InFlag); |
| if (Res) |
| return Res; |
| } else { |
| SDNode *Res = SelectARMCMOVShiftOp(N, FalseVal, TrueVal, |
| CCVal, CCR, InFlag); |
| if (!Res) |
| Res = SelectARMCMOVShiftOp(N, TrueVal, FalseVal, |
| ARMCC::getOppositeCondition(CCVal), CCR, InFlag); |
| if (Res) |
| return Res; |
| } |
| |
| // Pattern: (ARMcmov:i32 GPR:i32:$false, |
| // (imm:i32)<<P:Pred_so_imm>>:$true, |
| // (imm:i32):$cc) |
| // Emits: (MOVCCi:i32 GPR:i32:$false, |
| // (so_imm:i32 (imm:i32):$true), (imm:i32):$cc) |
| // Pattern complexity = 10 cost = 1 size = 0 |
| if (Subtarget->isThumb()) { |
| SDNode *Res = SelectT2CMOVImmOp(N, FalseVal, TrueVal, |
| CCVal, CCR, InFlag); |
| if (!Res) |
| Res = SelectT2CMOVImmOp(N, TrueVal, FalseVal, |
| ARMCC::getOppositeCondition(CCVal), CCR, InFlag); |
| if (Res) |
| return Res; |
| } else { |
| SDNode *Res = SelectARMCMOVImmOp(N, FalseVal, TrueVal, |
| CCVal, CCR, InFlag); |
| if (!Res) |
| Res = SelectARMCMOVImmOp(N, TrueVal, FalseVal, |
| ARMCC::getOppositeCondition(CCVal), CCR, InFlag); |
| if (Res) |
| return Res; |
| } |
| } |
| |
| // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) |
| // Emits: (MOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) |
| // Pattern complexity = 6 cost = 1 size = 0 |
| // |
| // Pattern: (ARMcmov:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) |
| // Emits: (tMOVCCr:i32 GPR:i32:$false, GPR:i32:$true, (imm:i32):$cc) |
| // Pattern complexity = 6 cost = 11 size = 0 |
| // |
| // Also VMOVScc and VMOVDcc. |
| SDValue Tmp2 = CurDAG->getTargetConstant(CCVal, MVT::i32); |
| SDValue Ops[] = { FalseVal, TrueVal, Tmp2, CCR, InFlag }; |
| unsigned Opc = 0; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: assert(false && "Illegal conditional move type!"); |
| break; |
| case MVT::i32: |
| Opc = Subtarget->isThumb() |
| ? (Subtarget->hasThumb2() ? ARM::t2MOVCCr : ARM::tMOVCCr_pseudo) |
| : ARM::MOVCCr; |
| break; |
| case MVT::f32: |
| Opc = ARM::VMOVScc; |
| break; |
| case MVT::f64: |
| Opc = ARM::VMOVDcc; |
| break; |
| } |
| return CurDAG->SelectNodeTo(N, Opc, VT, Ops, 5); |
| } |
| |
| /// Target-specific DAG combining for ISD::XOR. |
| /// Target-independent combining lowers SELECT_CC nodes of the form |
| /// select_cc setg[ge] X, 0, X, -X |
| /// select_cc setgt X, -1, X, -X |
| /// select_cc setl[te] X, 0, -X, X |
| /// select_cc setlt X, 1, -X, X |
| /// which represent Integer ABS into: |
| /// Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| /// ARM instruction selection detects the latter and matches it to |
| /// ARM::ABS or ARM::t2ABS machine node. |
| SDNode *ARMDAGToDAGISel::SelectABSOp(SDNode *N){ |
| SDValue XORSrc0 = N->getOperand(0); |
| SDValue XORSrc1 = N->getOperand(1); |
| DebugLoc DL = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| |
| if (DisableARMIntABS) |
| return NULL; |
| |
| if (Subtarget->isThumb1Only()) |
| return NULL; |
| |
| if (XORSrc0.getOpcode() != ISD::ADD || |
| XORSrc1.getOpcode() != ISD::SRA) |
| return NULL; |
| |
| SDValue ADDSrc0 = XORSrc0.getOperand(0); |
| SDValue ADDSrc1 = XORSrc0.getOperand(1); |
| SDValue SRASrc0 = XORSrc1.getOperand(0); |
| SDValue SRASrc1 = XORSrc1.getOperand(1); |
| ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1); |
| EVT XType = SRASrc0.getValueType(); |
| unsigned Size = XType.getSizeInBits() - 1; |
| |
| if (ADDSrc1 == XORSrc1 && |
| ADDSrc0 == SRASrc0 && |
| XType.isInteger() && |
| SRAConstant != NULL && |
| Size == SRAConstant->getZExtValue()) { |
| |
| unsigned Opcode = ARM::ABS; |
| if (Subtarget->isThumb2()) |
| Opcode = ARM::t2ABS; |
| |
| return CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0); |
| } |
| |
| return NULL; |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectConcatVector(SDNode *N) { |
| // The only time a CONCAT_VECTORS operation can have legal types is when |
| // two 64-bit vectors are concatenated to a 128-bit vector. |
| EVT VT = N->getValueType(0); |
| if (!VT.is128BitVector() || N->getNumOperands() != 2) |
| llvm_unreachable("unexpected CONCAT_VECTORS"); |
| return PairDRegs(VT, N->getOperand(0), N->getOperand(1)); |
| } |
| |
| SDNode *ARMDAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) { |
| SmallVector<SDValue, 6> Ops; |
| Ops.push_back(Node->getOperand(1)); // Ptr |
| Ops.push_back(Node->getOperand(2)); // Low part of Val1 |
| Ops.push_back(Node->getOperand(3)); // High part of Val1 |
| if (Opc == ARM::ATOMCMPXCHG6432) { |
| Ops.push_back(Node->getOperand(4)); // Low part of Val2 |
| Ops.push_back(Node->getOperand(5)); // High part of Val2 |
| } |
| Ops.push_back(Node->getOperand(0)); // Chain |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemSDNode>(Node)->getMemOperand(); |
| SDNode *ResNode = CurDAG->getMachineNode(Opc, Node->getDebugLoc(), |
| MVT::i32, MVT::i32, MVT::Other, |
| Ops.data() ,Ops.size()); |
| cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1); |
| return ResNode; |
| } |
| |
| SDNode *ARMDAGToDAGISel::Select(SDNode *N) { |
| DebugLoc dl = N->getDebugLoc(); |
| |
| if (N->isMachineOpcode()) |
| return NULL; // Already selected. |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::XOR: { |
| // Select special operations if XOR node forms integer ABS pattern |
| SDNode *ResNode = SelectABSOp(N); |
| if (ResNode) |
| return ResNode; |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::Constant: { |
| unsigned Val = cast<ConstantSDNode>(N)->getZExtValue(); |
| bool UseCP = true; |
| if (Subtarget->hasThumb2()) |
| // Thumb2-aware targets have the MOVT instruction, so all immediates can |
| // be done with MOV + MOVT, at worst. |
| UseCP = 0; |
| else { |
| if (Subtarget->isThumb()) { |
| UseCP = (Val > 255 && // MOV |
| ~Val > 255 && // MOV + MVN |
| !ARM_AM::isThumbImmShiftedVal(Val)); // MOV + LSL |
| } else |
| UseCP = (ARM_AM::getSOImmVal(Val) == -1 && // MOV |
| ARM_AM::getSOImmVal(~Val) == -1 && // MVN |
| !ARM_AM::isSOImmTwoPartVal(Val)); // two instrs. |
| } |
| |
| if (UseCP) { |
| SDValue CPIdx = |
| CurDAG->getTargetConstantPool(ConstantInt::get( |
| Type::getInt32Ty(*CurDAG->getContext()), Val), |
| TLI.getPointerTy()); |
| |
| SDNode *ResNode; |
| if (Subtarget->isThumb1Only()) { |
| SDValue Pred = getAL(CurDAG); |
| SDValue PredReg = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { CPIdx, Pred, PredReg, CurDAG->getEntryNode() }; |
| ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other, |
| Ops, 4); |
| } else { |
| SDValue Ops[] = { |
| CPIdx, |
| CurDAG->getTargetConstant(0, MVT::i32), |
| getAL(CurDAG), |
| CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getEntryNode() |
| }; |
| ResNode=CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other, |
| Ops, 5); |
| } |
| ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0)); |
| return NULL; |
| } |
| |
| // Other cases are autogenerated. |
| break; |
| } |
| case ISD::FrameIndex: { |
| // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm. |
| int FI = cast<FrameIndexSDNode>(N)->getIndex(); |
| SDValue TFI = CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy()); |
| if (Subtarget->isThumb1Only()) { |
| SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32), |
| getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; |
| return CurDAG->SelectNodeTo(N, ARM::tADDrSPi, MVT::i32, Ops, 4); |
| } else { |
| unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ? |
| ARM::t2ADDri : ARM::ADDri); |
| SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, MVT::i32), |
| getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| return CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops, 5); |
| } |
| } |
| case ISD::SRL: |
| if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false)) |
| return I; |
| break; |
| case ISD::SRA: |
| if (SDNode *I = SelectV6T2BitfieldExtractOp(N, true)) |
| return I; |
| break; |
| case ISD::MUL: |
| if (Subtarget->isThumb1Only()) |
| break; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { |
| unsigned RHSV = C->getZExtValue(); |
| if (!RHSV) break; |
| if (isPowerOf2_32(RHSV-1)) { // 2^n+1? |
| unsigned ShImm = Log2_32(RHSV-1); |
| if (ShImm >= 32) |
| break; |
| SDValue V = N->getOperand(0); |
| ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); |
| SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; |
| return CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops, 6); |
| } else { |
| SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; |
| return CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops, 7); |
| } |
| } |
| if (isPowerOf2_32(RHSV+1)) { // 2^n-1? |
| unsigned ShImm = Log2_32(RHSV+1); |
| if (ShImm >= 32) |
| break; |
| SDValue V = N->getOperand(0); |
| ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm); |
| SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, MVT::i32); |
| SDValue Reg0 = CurDAG->getRegister(0, MVT::i32); |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; |
| return CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops, 6); |
| } else { |
| SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG), Reg0, Reg0 }; |
| return CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops, 7); |
| } |
| } |
| } |
| break; |
| case ISD::AND: { |
| // Check for unsigned bitfield extract |
| if (SDNode *I = SelectV6T2BitfieldExtractOp(N, false)) |
| return I; |
| |
| // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits |
| // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits |
| // are entirely contributed by c2 and lower 16-bits are entirely contributed |
| // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)). |
| // Select it to: "movt x, ((c1 & 0xffff) >> 16) |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32) |
| break; |
| unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2()) |
| ? ARM::t2MOVTi16 |
| : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0); |
| if (!Opc) |
| break; |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| if (!N1C) |
| break; |
| if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) { |
| SDValue N2 = N0.getOperand(1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); |
| if (!N2C) |
| break; |
| unsigned N1CVal = N1C->getZExtValue(); |
| unsigned N2CVal = N2C->getZExtValue(); |
| if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) && |
| (N1CVal & 0xffffU) == 0xffffU && |
| (N2CVal & 0xffffU) == 0x0U) { |
| SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16, |
| MVT::i32); |
| SDValue Ops[] = { N0.getOperand(0), Imm16, |
| getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; |
| return CurDAG->getMachineNode(Opc, dl, VT, Ops, 4); |
| } |
| } |
| break; |
| } |
| case ARMISD::VMOVRRD: |
| return CurDAG->getMachineNode(ARM::VMOVRRD, dl, MVT::i32, MVT::i32, |
| N->getOperand(0), getAL(CurDAG), |
| CurDAG->getRegister(0, MVT::i32)); |
| case ISD::UMUL_LOHI: { |
| if (Subtarget->isThumb1Only()) |
| break; |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), |
| getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| return CurDAG->getMachineNode(ARM::t2UMULL, dl, MVT::i32, MVT::i32,Ops,4); |
| } else { |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), |
| getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| return CurDAG->getMachineNode(Subtarget->hasV6Ops() ? |
| ARM::UMULL : ARM::UMULLv5, |
| dl, MVT::i32, MVT::i32, Ops, 5); |
| } |
| } |
| case ISD::SMUL_LOHI: { |
| if (Subtarget->isThumb1Only()) |
| break; |
| if (Subtarget->isThumb()) { |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), |
| getAL(CurDAG), CurDAG->getRegister(0, MVT::i32) }; |
| return CurDAG->getMachineNode(ARM::t2SMULL, dl, MVT::i32, MVT::i32,Ops,4); |
| } else { |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), |
| getAL(CurDAG), CurDAG->getRegister(0, MVT::i32), |
| CurDAG->getRegister(0, MVT::i32) }; |
| return CurDAG->getMachineNode(Subtarget->hasV6Ops() ? |
| ARM::SMULL : ARM::SMULLv5, |
| dl, MVT::i32, MVT::i32, Ops, 5); |
| } |
| } |
| case ISD::LOAD: { |
| SDNode *ResNode = 0; |
| if (Subtarget->isThumb() && Subtarget->hasThumb2()) |
| ResNode = SelectT2IndexedLoad(N); |
| else |
| ResNode = SelectARMIndexedLoad(N); |
| if (ResNode) |
| return ResNode; |
| // Other cases are autogenerated. |
| break; |
| } |
| case ARMISD::BRCOND: { |
| // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc) |
| // Pattern complexity = 6 cost = 1 size = 0 |
| |
| // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc) |
| // Pattern complexity = 6 cost = 1 size = 0 |
| |
| // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc) |
| // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc) |
| // Pattern complexity = 6 cost = 1 size = 0 |
| |
| unsigned Opc = Subtarget->isThumb() ? |
| ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc; |
| SDValue Chain = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| SDValue N2 = N->getOperand(2); |
| SDValue N3 = N->getOperand(3); |
| SDValue InFlag = N->getOperand(4); |
| assert(N1.getOpcode() == ISD::BasicBlock); |
| assert(N2.getOpcode() == ISD::Constant); |
| assert(N3.getOpcode() == ISD::Register); |
| |
| SDValue Tmp2 = CurDAG->getTargetConstant(((unsigned) |
| cast<ConstantSDNode>(N2)->getZExtValue()), |
| MVT::i32); |
| SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag }; |
| SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, |
| MVT::Glue, Ops, 5); |
| Chain = SDValue(ResNode, 0); |
| if (N->getNumValues() == 2) { |
| InFlag = SDValue(ResNode, 1); |
| ReplaceUses(SDValue(N, 1), InFlag); |
| } |
| ReplaceUses(SDValue(N, 0), |
| SDValue(Chain.getNode(), Chain.getResNo())); |
| return NULL; |
| } |
| case ARMISD::CMOV: |
| return SelectCMOVOp(N); |
| case ARMISD::VZIP: { |
| unsigned Opc = 0; |
| EVT VT = N->getValueType(0); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return NULL; |
| case MVT::v8i8: Opc = ARM::VZIPd8; break; |
| case MVT::v4i16: Opc = ARM::VZIPd16; break; |
| case MVT::v2f32: |
| case MVT::v2i32: Opc = ARM::VZIPd32; break; |
| case MVT::v16i8: Opc = ARM::VZIPq8; break; |
| case MVT::v8i16: Opc = ARM::VZIPq16; break; |
| case MVT::v4f32: |
| case MVT::v4i32: Opc = ARM::VZIPq32; break; |
| } |
| SDValue Pred = getAL(CurDAG); |
| SDValue PredReg = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; |
| return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); |
| } |
| case ARMISD::VUZP: { |
| unsigned Opc = 0; |
| EVT VT = N->getValueType(0); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return NULL; |
| case MVT::v8i8: Opc = ARM::VUZPd8; break; |
| case MVT::v4i16: Opc = ARM::VUZPd16; break; |
| case MVT::v2f32: |
| case MVT::v2i32: Opc = ARM::VUZPd32; break; |
| case MVT::v16i8: Opc = ARM::VUZPq8; break; |
| case MVT::v8i16: Opc = ARM::VUZPq16; break; |
| case MVT::v4f32: |
| case MVT::v4i32: Opc = ARM::VUZPq32; break; |
| } |
| SDValue Pred = getAL(CurDAG); |
| SDValue PredReg = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; |
| return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); |
| } |
| case ARMISD::VTRN: { |
| unsigned Opc = 0; |
| EVT VT = N->getValueType(0); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return NULL; |
| case MVT::v8i8: Opc = ARM::VTRNd8; break; |
| case MVT::v4i16: Opc = ARM::VTRNd16; break; |
| case MVT::v2f32: |
| case MVT::v2i32: Opc = ARM::VTRNd32; break; |
| case MVT::v16i8: Opc = ARM::VTRNq8; break; |
| case MVT::v8i16: Opc = ARM::VTRNq16; break; |
| case MVT::v4f32: |
| case MVT::v4i32: Opc = ARM::VTRNq32; break; |
| } |
| SDValue Pred = getAL(CurDAG); |
| SDValue PredReg = CurDAG->getRegister(0, MVT::i32); |
| SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg }; |
| return CurDAG->getMachineNode(Opc, dl, VT, VT, Ops, 4); |
| } |
| case ARMISD::BUILD_VECTOR: { |
| EVT VecVT = N->getValueType(0); |
| EVT EltVT = VecVT.getVectorElementType(); |
| unsigned NumElts = VecVT.getVectorNumElements(); |
| if (EltVT == MVT::f64) { |
| assert(NumElts == 2 && "unexpected type for BUILD_VECTOR"); |
| return PairDRegs(VecVT, N->getOperand(0), N->getOperand(1)); |
| } |
| assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR"); |
| if (NumElts == 2) |
| return PairSRegs(VecVT, N->getOperand(0), N->getOperand(1)); |
| assert(NumElts == 4 && "unexpected type for BUILD_VECTOR"); |
| return QuadSRegs(VecVT, N->getOperand(0), N->getOperand(1), |
| N->getOperand(2), N->getOperand(3)); |
| } |
| |
| case ARMISD::VLD2DUP: { |
| unsigned Opcodes[] = { ARM::VLD2DUPd8Pseudo, ARM::VLD2DUPd16Pseudo, |
| ARM::VLD2DUPd32Pseudo }; |
| return SelectVLDDup(N, false, 2, Opcodes); |
| } |
| |
| case ARMISD::VLD3DUP: { |
| unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo, ARM::VLD3DUPd16Pseudo, |
| ARM::VLD3DUPd32Pseudo }; |
| return SelectVLDDup(N, false, 3, Opcodes); |
| } |
| |
| case ARMISD::VLD4DUP: { |
| unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo, ARM::VLD4DUPd16Pseudo, |
| ARM::VLD4DUPd32Pseudo }; |
| return SelectVLDDup(N, false, 4, Opcodes); |
| } |
| |
| case ARMISD::VLD2DUP_UPD: { |
| unsigned Opcodes[] = { ARM::VLD2DUPd8Pseudo_UPD, ARM::VLD2DUPd16Pseudo_UPD, |
| ARM::VLD2DUPd32Pseudo_UPD }; |
| return SelectVLDDup(N, true, 2, Opcodes); |
| } |
| |
| case ARMISD::VLD3DUP_UPD: { |
| unsigned Opcodes[] = { ARM::VLD3DUPd8Pseudo_UPD, ARM::VLD3DUPd16Pseudo_UPD, |
| ARM::VLD3DUPd32Pseudo_UPD }; |
| return SelectVLDDup(N, true, 3, Opcodes); |
| } |
| |
| case ARMISD::VLD4DUP_UPD: { |
| unsigned Opcodes[] = { ARM::VLD4DUPd8Pseudo_UPD, ARM::VLD4DUPd16Pseudo_UPD, |
| ARM::VLD4DUPd32Pseudo_UPD }; |
| return SelectVLDDup(N, true, 4, Opcodes); |
| } |
| |
| case ARMISD::VLD1_UPD: { |
| unsigned DOpcodes[] = { ARM::VLD1d8_UPD, ARM::VLD1d16_UPD, |
| ARM::VLD1d32_UPD, ARM::VLD1d64_UPD }; |
| unsigned QOpcodes[] = { ARM::VLD1q8Pseudo_UPD, ARM::VLD1q16Pseudo_UPD, |
| ARM::VLD1q32Pseudo_UPD, ARM::VLD1q64Pseudo_UPD }; |
| return SelectVLD(N, true, 1, DOpcodes, QOpcodes, 0); |
| } |
| |
| case ARMISD::VLD2_UPD: { |
| unsigned DOpcodes[] = { ARM::VLD2d8Pseudo_UPD, ARM::VLD2d16Pseudo_UPD, |
| ARM::VLD2d32Pseudo_UPD, ARM::VLD1q64Pseudo_UPD }; |
| unsigned QOpcodes[] = { ARM::VLD2q8Pseudo_UPD, ARM::VLD2q16Pseudo_UPD, |
| ARM::VLD2q32Pseudo_UPD }; |
| return SelectVLD(N, true, 2, DOpcodes, QOpcodes, 0); |
| } |
| |
| case ARMISD::VLD3_UPD: { |
| unsigned DOpcodes[] = { ARM::VLD3d8Pseudo_UPD, ARM::VLD3d16Pseudo_UPD, |
| ARM::VLD3d32Pseudo_UPD, ARM::VLD1d64TPseudo_UPD }; |
| unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD, |
| ARM::VLD3q16Pseudo_UPD, |
| ARM::VLD3q32Pseudo_UPD }; |
| unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD, |
| ARM::VLD3q16oddPseudo_UPD, |
| ARM::VLD3q32oddPseudo_UPD }; |
| return SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| } |
| |
| case ARMISD::VLD4_UPD: { |
| unsigned DOpcodes[] = { ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD, |
| ARM::VLD4d32Pseudo_UPD, ARM::VLD1d64QPseudo_UPD }; |
| unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD, |
| ARM::VLD4q16Pseudo_UPD, |
| ARM::VLD4q32Pseudo_UPD }; |
| unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo_UPD, |
| ARM::VLD4q16oddPseudo_UPD, |
| ARM::VLD4q32oddPseudo_UPD }; |
| return SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| } |
| |
| case ARMISD::VLD2LN_UPD: { |
| unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD, ARM::VLD2LNd16Pseudo_UPD, |
| ARM::VLD2LNd32Pseudo_UPD }; |
| unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD, |
| ARM::VLD2LNq32Pseudo_UPD }; |
| return SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes); |
| } |
| |
| case ARMISD::VLD3LN_UPD: { |
| unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD, ARM::VLD3LNd16Pseudo_UPD, |
| ARM::VLD3LNd32Pseudo_UPD }; |
| unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD, |
| ARM::VLD3LNq32Pseudo_UPD }; |
| return SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes); |
| } |
| |
| case ARMISD::VLD4LN_UPD: { |
| unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD, ARM::VLD4LNd16Pseudo_UPD, |
| ARM::VLD4LNd32Pseudo_UPD }; |
| unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD, |
| ARM::VLD4LNq32Pseudo_UPD }; |
| return SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes); |
| } |
| |
| case ARMISD::VST1_UPD: { |
| unsigned DOpcodes[] = { ARM::VST1d8_UPD, ARM::VST1d16_UPD, |
| ARM::VST1d32_UPD, ARM::VST1d64_UPD }; |
| unsigned QOpcodes[] = { ARM::VST1q8Pseudo_UPD, ARM::VST1q16Pseudo_UPD, |
| ARM::VST1q32Pseudo_UPD, ARM::VST1q64Pseudo_UPD }; |
| return SelectVST(N, true, 1, DOpcodes, QOpcodes, 0); |
| } |
| |
| case ARMISD::VST2_UPD: { |
| unsigned DOpcodes[] = { ARM::VST2d8Pseudo_UPD, ARM::VST2d16Pseudo_UPD, |
| ARM::VST2d32Pseudo_UPD, ARM::VST1q64Pseudo_UPD }; |
| unsigned QOpcodes[] = { ARM::VST2q8Pseudo_UPD, ARM::VST2q16Pseudo_UPD, |
| ARM::VST2q32Pseudo_UPD }; |
| return SelectVST(N, true, 2, DOpcodes, QOpcodes, 0); |
| } |
| |
| case ARMISD::VST3_UPD: { |
| unsigned DOpcodes[] = { ARM::VST3d8Pseudo_UPD, ARM::VST3d16Pseudo_UPD, |
| ARM::VST3d32Pseudo_UPD, ARM::VST1d64TPseudo_UPD }; |
| unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD, |
| ARM::VST3q16Pseudo_UPD, |
| ARM::VST3q32Pseudo_UPD }; |
| unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD, |
| ARM::VST3q16oddPseudo_UPD, |
| ARM::VST3q32oddPseudo_UPD }; |
| return SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| } |
| |
| case ARMISD::VST4_UPD: { |
| unsigned DOpcodes[] = { ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD, |
| ARM::VST4d32Pseudo_UPD, ARM::VST1d64QPseudo_UPD }; |
| unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD, |
| ARM::VST4q16Pseudo_UPD, |
| ARM::VST4q32Pseudo_UPD }; |
| unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo_UPD, |
| ARM::VST4q16oddPseudo_UPD, |
| ARM::VST4q32oddPseudo_UPD }; |
| return SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| } |
| |
| case ARMISD::VST2LN_UPD: { |
| unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD, ARM::VST2LNd16Pseudo_UPD, |
| ARM::VST2LNd32Pseudo_UPD }; |
| unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD, |
| ARM::VST2LNq32Pseudo_UPD }; |
| return SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes); |
| } |
| |
| case ARMISD::VST3LN_UPD: { |
| unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD, ARM::VST3LNd16Pseudo_UPD, |
| ARM::VST3LNd32Pseudo_UPD }; |
| unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD, |
| ARM::VST3LNq32Pseudo_UPD }; |
| return SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes); |
| } |
| |
| case ARMISD::VST4LN_UPD: { |
| unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD, ARM::VST4LNd16Pseudo_UPD, |
| ARM::VST4LNd32Pseudo_UPD }; |
| unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD, |
| ARM::VST4LNq32Pseudo_UPD }; |
| return SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes); |
| } |
| |
| case ISD::INTRINSIC_VOID: |
| case ISD::INTRINSIC_W_CHAIN: { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| switch (IntNo) { |
| default: |
| break; |
| |
| case Intrinsic::arm_ldrexd: { |
| SDValue MemAddr = N->getOperand(2); |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue Chain = N->getOperand(0); |
| |
| unsigned NewOpc = ARM::LDREXD; |
| if (Subtarget->isThumb() && Subtarget->hasThumb2()) |
| NewOpc = ARM::t2LDREXD; |
| |
| // arm_ldrexd returns a i64 value in {i32, i32} |
| std::vector<EVT> ResTys; |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| // place arguments in the right order |
| SmallVector<SDValue, 7> Ops; |
| Ops.push_back(MemAddr); |
| Ops.push_back(getAL(CurDAG)); |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); |
| Ops.push_back(Chain); |
| SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(), |
| Ops.size()); |
| // Transfer memoperands. |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(Ld)->setMemRefs(MemOp, MemOp + 1); |
| |
| // Until there's support for specifing explicit register constraints |
| // like the use of even/odd register pair, hardcode ldrexd to always |
| // use the pair [R0, R1] to hold the load result. |
| Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R0, |
| SDValue(Ld, 0), SDValue(0,0)); |
| Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R1, |
| SDValue(Ld, 1), Chain.getValue(1)); |
| |
| // Remap uses. |
| SDValue Glue = Chain.getValue(1); |
| if (!SDValue(N, 0).use_empty()) { |
| SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, |
| ARM::R0, MVT::i32, Glue); |
| Glue = Result.getValue(2); |
| ReplaceUses(SDValue(N, 0), Result); |
| } |
| if (!SDValue(N, 1).use_empty()) { |
| SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, |
| ARM::R1, MVT::i32, Glue); |
| Glue = Result.getValue(2); |
| ReplaceUses(SDValue(N, 1), Result); |
| } |
| |
| ReplaceUses(SDValue(N, 2), SDValue(Ld, 2)); |
| return NULL; |
| } |
| |
| case Intrinsic::arm_strexd: { |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue Chain = N->getOperand(0); |
| SDValue Val0 = N->getOperand(2); |
| SDValue Val1 = N->getOperand(3); |
| SDValue MemAddr = N->getOperand(4); |
| |
| // Until there's support for specifing explicit register constraints |
| // like the use of even/odd register pair, hardcode strexd to always |
| // use the pair [R2, R3] to hold the i64 (i32, i32) value to be stored. |
| Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ARM::R2, Val0, |
| SDValue(0, 0)); |
| Chain = CurDAG->getCopyToReg(Chain, dl, ARM::R3, Val1, Chain.getValue(1)); |
| |
| SDValue Glue = Chain.getValue(1); |
| Val0 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, |
| ARM::R2, MVT::i32, Glue); |
| Glue = Val0.getValue(1); |
| Val1 = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, |
| ARM::R3, MVT::i32, Glue); |
| |
| // Store exclusive double return a i32 value which is the return status |
| // of the issued store. |
| std::vector<EVT> ResTys; |
| ResTys.push_back(MVT::i32); |
| ResTys.push_back(MVT::Other); |
| |
| // place arguments in the right order |
| SmallVector<SDValue, 7> Ops; |
| Ops.push_back(Val0); |
| Ops.push_back(Val1); |
| Ops.push_back(MemAddr); |
| Ops.push_back(getAL(CurDAG)); |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); |
| Ops.push_back(Chain); |
| |
| unsigned NewOpc = ARM::STREXD; |
| if (Subtarget->isThumb() && Subtarget->hasThumb2()) |
| NewOpc = ARM::t2STREXD; |
| |
| SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops.data(), |
| Ops.size()); |
| // Transfer memoperands. |
| MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1); |
| MemOp[0] = cast<MemIntrinsicSDNode>(N)->getMemOperand(); |
| cast<MachineSDNode>(St)->setMemRefs(MemOp, MemOp + 1); |
| |
| return St; |
| } |
| |
| case Intrinsic::arm_neon_vld1: { |
| unsigned DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16, |
| ARM::VLD1d32, ARM::VLD1d64 }; |
| unsigned QOpcodes[] = { ARM::VLD1q8Pseudo, ARM::VLD1q16Pseudo, |
| ARM::VLD1q32Pseudo, ARM::VLD1q64Pseudo }; |
| return SelectVLD(N, false, 1, DOpcodes, QOpcodes, 0); |
| } |
| |
| case Intrinsic::arm_neon_vld2: { |
| unsigned DOpcodes[] = { ARM::VLD2d8Pseudo, ARM::VLD2d16Pseudo, |
| ARM::VLD2d32Pseudo, ARM::VLD1q64Pseudo }; |
| unsigned QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo, |
| ARM::VLD2q32Pseudo }; |
| return SelectVLD(N, false, 2, DOpcodes, QOpcodes, 0); |
| } |
| |
| case Intrinsic::arm_neon_vld3: { |
| unsigned DOpcodes[] = { ARM::VLD3d8Pseudo, ARM::VLD3d16Pseudo, |
| ARM::VLD3d32Pseudo, ARM::VLD1d64TPseudo }; |
| unsigned QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD, |
| ARM::VLD3q16Pseudo_UPD, |
| ARM::VLD3q32Pseudo_UPD }; |
| unsigned QOpcodes1[] = { ARM::VLD3q8oddPseudo, |
| ARM::VLD3q16oddPseudo, |
| ARM::VLD3q32oddPseudo }; |
| return SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| } |
| |
| case Intrinsic::arm_neon_vld4: { |
| unsigned DOpcodes[] = { ARM::VLD4d8Pseudo, ARM::VLD4d16Pseudo, |
| ARM::VLD4d32Pseudo, ARM::VLD1d64QPseudo }; |
| unsigned QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD, |
| ARM::VLD4q16Pseudo_UPD, |
| ARM::VLD4q32Pseudo_UPD }; |
| unsigned QOpcodes1[] = { ARM::VLD4q8oddPseudo, |
| ARM::VLD4q16oddPseudo, |
| ARM::VLD4q32oddPseudo }; |
| return SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| } |
| |
| case Intrinsic::arm_neon_vld2lane: { |
| unsigned DOpcodes[] = { ARM::VLD2LNd8Pseudo, ARM::VLD2LNd16Pseudo, |
| ARM::VLD2LNd32Pseudo }; |
| unsigned QOpcodes[] = { ARM::VLD2LNq16Pseudo, ARM::VLD2LNq32Pseudo }; |
| return SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes); |
| } |
| |
| case Intrinsic::arm_neon_vld3lane: { |
| unsigned DOpcodes[] = { ARM::VLD3LNd8Pseudo, ARM::VLD3LNd16Pseudo, |
| ARM::VLD3LNd32Pseudo }; |
| unsigned QOpcodes[] = { ARM::VLD3LNq16Pseudo, ARM::VLD3LNq32Pseudo }; |
| return SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes); |
| } |
| |
| case Intrinsic::arm_neon_vld4lane: { |
| unsigned DOpcodes[] = { ARM::VLD4LNd8Pseudo, ARM::VLD4LNd16Pseudo, |
| ARM::VLD4LNd32Pseudo }; |
| unsigned QOpcodes[] = { ARM::VLD4LNq16Pseudo, ARM::VLD4LNq32Pseudo }; |
| return SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes); |
| } |
| |
| case Intrinsic::arm_neon_vst1: { |
| unsigned DOpcodes[] = { ARM::VST1d8, ARM::VST1d16, |
| ARM::VST1d32, ARM::VST1d64 }; |
| unsigned QOpcodes[] = { ARM::VST1q8Pseudo, ARM::VST1q16Pseudo, |
| ARM::VST1q32Pseudo, ARM::VST1q64Pseudo }; |
| return SelectVST(N, false, 1, DOpcodes, QOpcodes, 0); |
| } |
| |
| case Intrinsic::arm_neon_vst2: { |
| unsigned DOpcodes[] = { ARM::VST2d8Pseudo, ARM::VST2d16Pseudo, |
| ARM::VST2d32Pseudo, ARM::VST1q64Pseudo }; |
| unsigned QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo, |
| ARM::VST2q32Pseudo }; |
| return SelectVST(N, false, 2, DOpcodes, QOpcodes, 0); |
| } |
| |
| case Intrinsic::arm_neon_vst3: { |
| unsigned DOpcodes[] = { ARM::VST3d8Pseudo, ARM::VST3d16Pseudo, |
| ARM::VST3d32Pseudo, ARM::VST1d64TPseudo }; |
| unsigned QOpcodes0[] = { ARM::VST3q8Pseudo_UPD, |
| ARM::VST3q16Pseudo_UPD, |
| ARM::VST3q32Pseudo_UPD }; |
| unsigned QOpcodes1[] = { ARM::VST3q8oddPseudo, |
| ARM::VST3q16oddPseudo, |
| ARM::VST3q32oddPseudo }; |
| return SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1); |
| } |
| |
| case Intrinsic::arm_neon_vst4: { |
| unsigned DOpcodes[] = { ARM::VST4d8Pseudo, ARM::VST4d16Pseudo, |
| ARM::VST4d32Pseudo, ARM::VST1d64QPseudo }; |
| unsigned QOpcodes0[] = { ARM::VST4q8Pseudo_UPD, |
| ARM::VST4q16Pseudo_UPD, |
| ARM::VST4q32Pseudo_UPD }; |
| unsigned QOpcodes1[] = { ARM::VST4q8oddPseudo, |
| ARM::VST4q16oddPseudo, |
| ARM::VST4q32oddPseudo }; |
| return SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1); |
| } |
| |
| case Intrinsic::arm_neon_vst2lane: { |
| unsigned DOpcodes[] = { ARM::VST2LNd8Pseudo, ARM::VST2LNd16Pseudo, |
| ARM::VST2LNd32Pseudo }; |
| unsigned QOpcodes[] = { ARM::VST2LNq16Pseudo, ARM::VST2LNq32Pseudo }; |
| return SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes); |
| } |
| |
| case Intrinsic::arm_neon_vst3lane: { |
| unsigned DOpcodes[] = { ARM::VST3LNd8Pseudo, ARM::VST3LNd16Pseudo, |
| ARM::VST3LNd32Pseudo }; |
| unsigned QOpcodes[] = { ARM::VST3LNq16Pseudo, ARM::VST3LNq32Pseudo }; |
| return SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes); |
| } |
| |
| case Intrinsic::arm_neon_vst4lane: { |
| unsigned DOpcodes[] = { ARM::VST4LNd8Pseudo, ARM::VST4LNd16Pseudo, |
| ARM::VST4LNd32Pseudo }; |
| unsigned QOpcodes[] = { ARM::VST4LNq16Pseudo, ARM::VST4LNq32Pseudo }; |
| return SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes); |
| } |
| } |
| break; |
| } |
| |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IntNo) { |
| default: |
| break; |
| |
| case Intrinsic::arm_neon_vtbl2: |
| return SelectVTBL(N, false, 2, ARM::VTBL2Pseudo); |
| case Intrinsic::arm_neon_vtbl3: |
| return SelectVTBL(N, false, 3, ARM::VTBL3Pseudo); |
| case Intrinsic::arm_neon_vtbl4: |
| return SelectVTBL(N, false, 4, ARM::VTBL4Pseudo); |
| |
| case Intrinsic::arm_neon_vtbx2: |
| return SelectVTBL(N, true, 2, ARM::VTBX2Pseudo); |
| case Intrinsic::arm_neon_vtbx3: |
| return SelectVTBL(N, true, 3, ARM::VTBX3Pseudo); |
| case Intrinsic::arm_neon_vtbx4: |
| return SelectVTBL(N, true, 4, ARM::VTBX4Pseudo); |
| } |
| break; |
| } |
| |
| case ARMISD::VTBL1: { |
| DebugLoc dl = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| SmallVector<SDValue, 6> Ops; |
| |
| Ops.push_back(N->getOperand(0)); |
| Ops.push_back(N->getOperand(1)); |
| Ops.push_back(getAL(CurDAG)); // Predicate |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register |
| return CurDAG->getMachineNode(ARM::VTBL1, dl, VT, Ops.data(), Ops.size()); |
| } |
| case ARMISD::VTBL2: { |
| DebugLoc dl = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| |
| // Form a REG_SEQUENCE to force register allocation. |
| SDValue V0 = N->getOperand(0); |
| SDValue V1 = N->getOperand(1); |
| SDValue RegSeq = SDValue(PairDRegs(MVT::v16i8, V0, V1), 0); |
| |
| SmallVector<SDValue, 6> Ops; |
| Ops.push_back(RegSeq); |
| Ops.push_back(N->getOperand(2)); |
| Ops.push_back(getAL(CurDAG)); // Predicate |
| Ops.push_back(CurDAG->getRegister(0, MVT::i32)); // Predicate Register |
| return CurDAG->getMachineNode(ARM::VTBL2Pseudo, dl, VT, |
| Ops.data(), Ops.size()); |
| } |
| |
| case ISD::CONCAT_VECTORS: |
| return SelectConcatVector(N); |
| |
| case ARMISD::ATOMOR64_DAG: |
| return SelectAtomic64(N, ARM::ATOMOR6432); |
| case ARMISD::ATOMXOR64_DAG: |
| return SelectAtomic64(N, ARM::ATOMXOR6432); |
| case ARMISD::ATOMADD64_DAG: |
| return SelectAtomic64(N, ARM::ATOMADD6432); |
| case ARMISD::ATOMSUB64_DAG: |
| return SelectAtomic64(N, ARM::ATOMSUB6432); |
| case ARMISD::ATOMNAND64_DAG: |
| return SelectAtomic64(N, ARM::ATOMNAND6432); |
| case ARMISD::ATOMAND64_DAG: |
| return SelectAtomic64(N, ARM::ATOMAND6432); |
| case ARMISD::ATOMSWAP64_DAG: |
| return SelectAtomic64(N, ARM::ATOMSWAP6432); |
| case ARMISD::ATOMCMPXCHG64_DAG: |
| return SelectAtomic64(N, ARM::ATOMCMPXCHG6432); |
| } |
| |
| return SelectCode(N); |
| } |
| |
| bool ARMDAGToDAGISel:: |
| SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode, |
| std::vector<SDValue> &OutOps) { |
| assert(ConstraintCode == 'm' && "unexpected asm memory constraint"); |
| // Require the address to be in a register. That is safe for all ARM |
| // variants and it is hard to do anything much smarter without knowing |
| // how the operand is used. |
| OutOps.push_back(Op); |
| return false; |
| } |
| |
| /// createARMISelDag - This pass converts a legalized DAG into a |
| /// ARM-specific DAG, ready for instruction scheduling. |
| /// |
| FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new ARMDAGToDAGISel(TM, OptLevel); |
| } |