| //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a pass that splits the constant pool up into 'islands' |
| // which are scattered through-out the function. This is required due to the |
| // limited pc-relative displacements that ARM has. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "arm-cp-islands" |
| #include "ARM.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMInstrInfo.h" |
| #include "Thumb2InstrInfo.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/CommandLine.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumCPEs, "Number of constpool entries"); |
| STATISTIC(NumSplit, "Number of uncond branches inserted"); |
| STATISTIC(NumCBrFixed, "Number of cond branches fixed"); |
| STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); |
| STATISTIC(NumTBs, "Number of table branches generated"); |
| STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); |
| STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); |
| STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); |
| STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); |
| STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); |
| |
| |
| static cl::opt<bool> |
| AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), |
| cl::desc("Adjust basic block layout to better use TB[BH]")); |
| |
| namespace { |
| /// ARMConstantIslands - Due to limited PC-relative displacements, ARM |
| /// requires constant pool entries to be scattered among the instructions |
| /// inside a function. To do this, it completely ignores the normal LLVM |
| /// constant pool; instead, it places constants wherever it feels like with |
| /// special instructions. |
| /// |
| /// The terminology used in this pass includes: |
| /// Islands - Clumps of constants placed in the function. |
| /// Water - Potential places where an island could be formed. |
| /// CPE - A constant pool entry that has been placed somewhere, which |
| /// tracks a list of users. |
| class ARMConstantIslands : public MachineFunctionPass { |
| /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed |
| /// by MBB Number. The two-byte pads required for Thumb alignment are |
| /// counted as part of the following block (i.e., the offset and size for |
| /// a padded block will both be ==2 mod 4). |
| std::vector<unsigned> BBSizes; |
| |
| /// BBOffsets - the offset of each MBB in bytes, starting from 0. |
| /// The two-byte pads required for Thumb alignment are counted as part of |
| /// the following block. |
| std::vector<unsigned> BBOffsets; |
| |
| /// WaterList - A sorted list of basic blocks where islands could be placed |
| /// (i.e. blocks that don't fall through to the following block, due |
| /// to a return, unreachable, or unconditional branch). |
| std::vector<MachineBasicBlock*> WaterList; |
| |
| /// NewWaterList - The subset of WaterList that was created since the |
| /// previous iteration by inserting unconditional branches. |
| SmallSet<MachineBasicBlock*, 4> NewWaterList; |
| |
| typedef std::vector<MachineBasicBlock*>::iterator water_iterator; |
| |
| /// CPUser - One user of a constant pool, keeping the machine instruction |
| /// pointer, the constant pool being referenced, and the max displacement |
| /// allowed from the instruction to the CP. The HighWaterMark records the |
| /// highest basic block where a new CPEntry can be placed. To ensure this |
| /// pass terminates, the CP entries are initially placed at the end of the |
| /// function and then move monotonically to lower addresses. The |
| /// exception to this rule is when the current CP entry for a particular |
| /// CPUser is out of range, but there is another CP entry for the same |
| /// constant value in range. We want to use the existing in-range CP |
| /// entry, but if it later moves out of range, the search for new water |
| /// should resume where it left off. The HighWaterMark is used to record |
| /// that point. |
| struct CPUser { |
| MachineInstr *MI; |
| MachineInstr *CPEMI; |
| MachineBasicBlock *HighWaterMark; |
| unsigned MaxDisp; |
| bool NegOk; |
| bool IsSoImm; |
| CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, |
| bool neg, bool soimm) |
| : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { |
| HighWaterMark = CPEMI->getParent(); |
| } |
| }; |
| |
| /// CPUsers - Keep track of all of the machine instructions that use various |
| /// constant pools and their max displacement. |
| std::vector<CPUser> CPUsers; |
| |
| /// CPEntry - One per constant pool entry, keeping the machine instruction |
| /// pointer, the constpool index, and the number of CPUser's which |
| /// reference this entry. |
| struct CPEntry { |
| MachineInstr *CPEMI; |
| unsigned CPI; |
| unsigned RefCount; |
| CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) |
| : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} |
| }; |
| |
| /// CPEntries - Keep track of all of the constant pool entry machine |
| /// instructions. For each original constpool index (i.e. those that |
| /// existed upon entry to this pass), it keeps a vector of entries. |
| /// Original elements are cloned as we go along; the clones are |
| /// put in the vector of the original element, but have distinct CPIs. |
| std::vector<std::vector<CPEntry> > CPEntries; |
| |
| /// ImmBranch - One per immediate branch, keeping the machine instruction |
| /// pointer, conditional or unconditional, the max displacement, |
| /// and (if isCond is true) the corresponding unconditional branch |
| /// opcode. |
| struct ImmBranch { |
| MachineInstr *MI; |
| unsigned MaxDisp : 31; |
| bool isCond : 1; |
| int UncondBr; |
| ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr) |
| : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} |
| }; |
| |
| /// ImmBranches - Keep track of all the immediate branch instructions. |
| /// |
| std::vector<ImmBranch> ImmBranches; |
| |
| /// PushPopMIs - Keep track of all the Thumb push / pop instructions. |
| /// |
| SmallVector<MachineInstr*, 4> PushPopMIs; |
| |
| /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. |
| SmallVector<MachineInstr*, 4> T2JumpTables; |
| |
| /// HasFarJump - True if any far jump instruction has been emitted during |
| /// the branch fix up pass. |
| bool HasFarJump; |
| |
| /// HasInlineAsm - True if the function contains inline assembly. |
| bool HasInlineAsm; |
| |
| const ARMInstrInfo *TII; |
| const ARMSubtarget *STI; |
| ARMFunctionInfo *AFI; |
| bool isThumb; |
| bool isThumb1; |
| bool isThumb2; |
| public: |
| static char ID; |
| ARMConstantIslands() : MachineFunctionPass(ID) {} |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| virtual const char *getPassName() const { |
| return "ARM constant island placement and branch shortening pass"; |
| } |
| |
| private: |
| void DoInitialPlacement(MachineFunction &MF, |
| std::vector<MachineInstr*> &CPEMIs); |
| CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); |
| void JumpTableFunctionScan(MachineFunction &MF); |
| void InitialFunctionScan(MachineFunction &MF, |
| const std::vector<MachineInstr*> &CPEMIs); |
| MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI); |
| void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB); |
| void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta); |
| bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI); |
| int LookForExistingCPEntry(CPUser& U, unsigned UserOffset); |
| bool LookForWater(CPUser&U, unsigned UserOffset, water_iterator &WaterIter); |
| void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset, |
| MachineBasicBlock *&NewMBB); |
| bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex); |
| void RemoveDeadCPEMI(MachineInstr *CPEMI); |
| bool RemoveUnusedCPEntries(); |
| bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset, |
| MachineInstr *CPEMI, unsigned Disp, bool NegOk, |
| bool DoDump = false); |
| bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water, |
| CPUser &U); |
| bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset, |
| unsigned Disp, bool NegativeOK, bool IsSoImm = false); |
| bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp); |
| bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br); |
| bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br); |
| bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br); |
| bool UndoLRSpillRestore(); |
| bool OptimizeThumb2Instructions(MachineFunction &MF); |
| bool OptimizeThumb2Branches(MachineFunction &MF); |
| bool ReorderThumb2JumpTables(MachineFunction &MF); |
| bool OptimizeThumb2JumpTables(MachineFunction &MF); |
| MachineBasicBlock *AdjustJTTargetBlockForward(MachineBasicBlock *BB, |
| MachineBasicBlock *JTBB); |
| |
| unsigned GetOffsetOf(MachineInstr *MI) const; |
| void dumpBBs(); |
| void verify(MachineFunction &MF); |
| }; |
| char ARMConstantIslands::ID = 0; |
| } |
| |
| /// verify - check BBOffsets, BBSizes, alignment of islands |
| void ARMConstantIslands::verify(MachineFunction &MF) { |
| assert(BBOffsets.size() == BBSizes.size()); |
| for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i) |
| assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]); |
| if (!isThumb) |
| return; |
| #ifndef NDEBUG |
| for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock *MBB = MBBI; |
| if (!MBB->empty() && |
| MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { |
| unsigned MBBId = MBB->getNumber(); |
| assert(HasInlineAsm || |
| (BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) || |
| (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0)); |
| } |
| } |
| for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { |
| CPUser &U = CPUsers[i]; |
| unsigned UserOffset = GetOffsetOf(U.MI) + (isThumb ? 4 : 8); |
| unsigned CPEOffset = GetOffsetOf(U.CPEMI); |
| unsigned Disp = UserOffset < CPEOffset ? CPEOffset - UserOffset : |
| UserOffset - CPEOffset; |
| assert(Disp <= U.MaxDisp || "Constant pool entry out of range!"); |
| } |
| #endif |
| } |
| |
| /// print block size and offset information - debugging |
| void ARMConstantIslands::dumpBBs() { |
| for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) { |
| DEBUG(errs() << "block " << J << " offset " << BBOffsets[J] |
| << " size " << BBSizes[J] << "\n"); |
| } |
| } |
| |
| /// createARMConstantIslandPass - returns an instance of the constpool |
| /// island pass. |
| FunctionPass *llvm::createARMConstantIslandPass() { |
| return new ARMConstantIslands(); |
| } |
| |
| bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) { |
| MachineConstantPool &MCP = *MF.getConstantPool(); |
| |
| TII = (const ARMInstrInfo*)MF.getTarget().getInstrInfo(); |
| AFI = MF.getInfo<ARMFunctionInfo>(); |
| STI = &MF.getTarget().getSubtarget<ARMSubtarget>(); |
| |
| isThumb = AFI->isThumbFunction(); |
| isThumb1 = AFI->isThumb1OnlyFunction(); |
| isThumb2 = AFI->isThumb2Function(); |
| |
| HasFarJump = false; |
| HasInlineAsm = false; |
| |
| // Renumber all of the machine basic blocks in the function, guaranteeing that |
| // the numbers agree with the position of the block in the function. |
| MF.RenumberBlocks(); |
| |
| // Try to reorder and otherwise adjust the block layout to make good use |
| // of the TB[BH] instructions. |
| bool MadeChange = false; |
| if (isThumb2 && AdjustJumpTableBlocks) { |
| JumpTableFunctionScan(MF); |
| MadeChange |= ReorderThumb2JumpTables(MF); |
| // Data is out of date, so clear it. It'll be re-computed later. |
| T2JumpTables.clear(); |
| // Blocks may have shifted around. Keep the numbering up to date. |
| MF.RenumberBlocks(); |
| } |
| |
| // Thumb1 functions containing constant pools get 4-byte alignment. |
| // This is so we can keep exact track of where the alignment padding goes. |
| |
| // ARM and Thumb2 functions need to be 4-byte aligned. |
| if (!isThumb1) |
| MF.EnsureAlignment(2); // 2 = log2(4) |
| |
| // Perform the initial placement of the constant pool entries. To start with, |
| // we put them all at the end of the function. |
| std::vector<MachineInstr*> CPEMIs; |
| if (!MCP.isEmpty()) { |
| DoInitialPlacement(MF, CPEMIs); |
| if (isThumb1) |
| MF.EnsureAlignment(2); // 2 = log2(4) |
| } |
| |
| /// The next UID to take is the first unused one. |
| AFI->initPICLabelUId(CPEMIs.size()); |
| |
| // Do the initial scan of the function, building up information about the |
| // sizes of each block, the location of all the water, and finding all of the |
| // constant pool users. |
| InitialFunctionScan(MF, CPEMIs); |
| CPEMIs.clear(); |
| DEBUG(dumpBBs()); |
| |
| |
| /// Remove dead constant pool entries. |
| MadeChange |= RemoveUnusedCPEntries(); |
| |
| // Iteratively place constant pool entries and fix up branches until there |
| // is no change. |
| unsigned NoCPIters = 0, NoBRIters = 0; |
| while (true) { |
| bool CPChange = false; |
| for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) |
| CPChange |= HandleConstantPoolUser(MF, i); |
| if (CPChange && ++NoCPIters > 30) |
| llvm_unreachable("Constant Island pass failed to converge!"); |
| DEBUG(dumpBBs()); |
| |
| // Clear NewWaterList now. If we split a block for branches, it should |
| // appear as "new water" for the next iteration of constant pool placement. |
| NewWaterList.clear(); |
| |
| bool BRChange = false; |
| for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) |
| BRChange |= FixUpImmediateBr(MF, ImmBranches[i]); |
| if (BRChange && ++NoBRIters > 30) |
| llvm_unreachable("Branch Fix Up pass failed to converge!"); |
| DEBUG(dumpBBs()); |
| |
| if (!CPChange && !BRChange) |
| break; |
| MadeChange = true; |
| } |
| |
| // Shrink 32-bit Thumb2 branch, load, and store instructions. |
| if (isThumb2 && !STI->prefers32BitThumb()) |
| MadeChange |= OptimizeThumb2Instructions(MF); |
| |
| // After a while, this might be made debug-only, but it is not expensive. |
| verify(MF); |
| |
| // If LR has been forced spilled and no far jump (i.e. BL) has been issued, |
| // undo the spill / restore of LR if possible. |
| if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) |
| MadeChange |= UndoLRSpillRestore(); |
| |
| // Save the mapping between original and cloned constpool entries. |
| for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { |
| for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { |
| const CPEntry & CPE = CPEntries[i][j]; |
| AFI->recordCPEClone(i, CPE.CPI); |
| } |
| } |
| |
| DEBUG(errs() << '\n'; dumpBBs()); |
| |
| BBSizes.clear(); |
| BBOffsets.clear(); |
| WaterList.clear(); |
| CPUsers.clear(); |
| CPEntries.clear(); |
| ImmBranches.clear(); |
| PushPopMIs.clear(); |
| T2JumpTables.clear(); |
| |
| return MadeChange; |
| } |
| |
| /// DoInitialPlacement - Perform the initial placement of the constant pool |
| /// entries. To start with, we put them all at the end of the function. |
| void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF, |
| std::vector<MachineInstr*> &CPEMIs) { |
| // Create the basic block to hold the CPE's. |
| MachineBasicBlock *BB = MF.CreateMachineBasicBlock(); |
| MF.push_back(BB); |
| |
| // Add all of the constants from the constant pool to the end block, use an |
| // identity mapping of CPI's to CPE's. |
| const std::vector<MachineConstantPoolEntry> &CPs = |
| MF.getConstantPool()->getConstants(); |
| |
| const TargetData &TD = *MF.getTarget().getTargetData(); |
| for (unsigned i = 0, e = CPs.size(); i != e; ++i) { |
| unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); |
| // Verify that all constant pool entries are a multiple of 4 bytes. If not, |
| // we would have to pad them out or something so that instructions stay |
| // aligned. |
| assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!"); |
| MachineInstr *CPEMI = |
| BuildMI(BB, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) |
| .addImm(i).addConstantPoolIndex(i).addImm(Size); |
| CPEMIs.push_back(CPEMI); |
| |
| // Add a new CPEntry, but no corresponding CPUser yet. |
| std::vector<CPEntry> CPEs; |
| CPEs.push_back(CPEntry(CPEMI, i)); |
| CPEntries.push_back(CPEs); |
| ++NumCPEs; |
| DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i |
| << "\n"); |
| } |
| } |
| |
| /// BBHasFallthrough - Return true if the specified basic block can fallthrough |
| /// into the block immediately after it. |
| static bool BBHasFallthrough(MachineBasicBlock *MBB) { |
| // Get the next machine basic block in the function. |
| MachineFunction::iterator MBBI = MBB; |
| // Can't fall off end of function. |
| if (llvm::next(MBBI) == MBB->getParent()->end()) |
| return false; |
| |
| MachineBasicBlock *NextBB = llvm::next(MBBI); |
| for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), |
| E = MBB->succ_end(); I != E; ++I) |
| if (*I == NextBB) |
| return true; |
| |
| return false; |
| } |
| |
| /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, |
| /// look up the corresponding CPEntry. |
| ARMConstantIslands::CPEntry |
| *ARMConstantIslands::findConstPoolEntry(unsigned CPI, |
| const MachineInstr *CPEMI) { |
| std::vector<CPEntry> &CPEs = CPEntries[CPI]; |
| // Number of entries per constpool index should be small, just do a |
| // linear search. |
| for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { |
| if (CPEs[i].CPEMI == CPEMI) |
| return &CPEs[i]; |
| } |
| return NULL; |
| } |
| |
| /// JumpTableFunctionScan - Do a scan of the function, building up |
| /// information about the sizes of each block and the locations of all |
| /// the jump tables. |
| void ARMConstantIslands::JumpTableFunctionScan(MachineFunction &MF) { |
| for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock &MBB = *MBBI; |
| |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); |
| I != E; ++I) |
| if (I->getDesc().isBranch() && I->getOpcode() == ARM::t2BR_JT) |
| T2JumpTables.push_back(I); |
| } |
| } |
| |
| /// InitialFunctionScan - Do the initial scan of the function, building up |
| /// information about the sizes of each block, the location of all the water, |
| /// and finding all of the constant pool users. |
| void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF, |
| const std::vector<MachineInstr*> &CPEMIs) { |
| // First thing, see if the function has any inline assembly in it. If so, |
| // we have to be conservative about alignment assumptions, as we don't |
| // know for sure the size of any instructions in the inline assembly. |
| for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock &MBB = *MBBI; |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); |
| I != E; ++I) |
| if (I->getOpcode() == ARM::INLINEASM) |
| HasInlineAsm = true; |
| } |
| |
| // Now go back through the instructions and build up our data structures. |
| unsigned Offset = 0; |
| for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end(); |
| MBBI != E; ++MBBI) { |
| MachineBasicBlock &MBB = *MBBI; |
| |
| // If this block doesn't fall through into the next MBB, then this is |
| // 'water' that a constant pool island could be placed. |
| if (!BBHasFallthrough(&MBB)) |
| WaterList.push_back(&MBB); |
| |
| unsigned MBBSize = 0; |
| for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); |
| I != E; ++I) { |
| if (I->isDebugValue()) |
| continue; |
| // Add instruction size to MBBSize. |
| MBBSize += TII->GetInstSizeInBytes(I); |
| |
| int Opc = I->getOpcode(); |
| if (I->getDesc().isBranch()) { |
| bool isCond = false; |
| unsigned Bits = 0; |
| unsigned Scale = 1; |
| int UOpc = Opc; |
| switch (Opc) { |
| default: |
| continue; // Ignore other JT branches |
| case ARM::tBR_JTr: |
| // A Thumb1 table jump may involve padding; for the offsets to |
| // be right, functions containing these must be 4-byte aligned. |
| // tBR_JTr expands to a mov pc followed by .align 2 and then the jump |
| // table entries. So this code checks whether offset of tBR_JTr + 2 |
| // is aligned. That is held in Offset+MBBSize, which already has |
| // 2 added in for the size of the mov pc instruction. |
| MF.EnsureAlignment(2U); |
| if ((Offset+MBBSize)%4 != 0 || HasInlineAsm) |
| // FIXME: Add a pseudo ALIGN instruction instead. |
| MBBSize += 2; // padding |
| continue; // Does not get an entry in ImmBranches |
| case ARM::t2BR_JT: |
| T2JumpTables.push_back(I); |
| continue; // Does not get an entry in ImmBranches |
| case ARM::Bcc: |
| isCond = true; |
| UOpc = ARM::B; |
| // Fallthrough |
| case ARM::B: |
| Bits = 24; |
| Scale = 4; |
| break; |
| case ARM::tBcc: |
| isCond = true; |
| UOpc = ARM::tB; |
| Bits = 8; |
| Scale = 2; |
| break; |
| case ARM::tB: |
| Bits = 11; |
| Scale = 2; |
| break; |
| case ARM::t2Bcc: |
| isCond = true; |
| UOpc = ARM::t2B; |
| Bits = 20; |
| Scale = 2; |
| break; |
| case ARM::t2B: |
| Bits = 24; |
| Scale = 2; |
| break; |
| } |
| |
| // Record this immediate branch. |
| unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; |
| ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc)); |
| } |
| |
| if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) |
| PushPopMIs.push_back(I); |
| |
| if (Opc == ARM::CONSTPOOL_ENTRY) |
| continue; |
| |
| // Scan the instructions for constant pool operands. |
| for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op) |
| if (I->getOperand(op).isCPI()) { |
| // We found one. The addressing mode tells us the max displacement |
| // from the PC that this instruction permits. |
| |
| // Basic size info comes from the TSFlags field. |
| unsigned Bits = 0; |
| unsigned Scale = 1; |
| bool NegOk = false; |
| bool IsSoImm = false; |
| |
| switch (Opc) { |
| default: |
| llvm_unreachable("Unknown addressing mode for CP reference!"); |
| break; |
| |
| // Taking the address of a CP entry. |
| case ARM::LEApcrel: |
| // This takes a SoImm, which is 8 bit immediate rotated. We'll |
| // pretend the maximum offset is 255 * 4. Since each instruction |
| // 4 byte wide, this is always correct. We'll check for other |
| // displacements that fits in a SoImm as well. |
| Bits = 8; |
| Scale = 4; |
| NegOk = true; |
| IsSoImm = true; |
| break; |
| case ARM::t2LEApcrel: |
| Bits = 12; |
| NegOk = true; |
| break; |
| case ARM::tLEApcrel: |
| Bits = 8; |
| Scale = 4; |
| break; |
| |
| case ARM::LDRi12: |
| case ARM::LDRcp: |
| case ARM::t2LDRpci: |
| Bits = 12; // +-offset_12 |
| NegOk = true; |
| break; |
| |
| case ARM::tLDRpci: |
| Bits = 8; |
| Scale = 4; // +(offset_8*4) |
| break; |
| |
| case ARM::VLDRD: |
| case ARM::VLDRS: |
| Bits = 8; |
| Scale = 4; // +-(offset_8*4) |
| NegOk = true; |
| break; |
| } |
| |
| // Remember that this is a user of a CP entry. |
| unsigned CPI = I->getOperand(op).getIndex(); |
| MachineInstr *CPEMI = CPEMIs[CPI]; |
| unsigned MaxOffs = ((1 << Bits)-1) * Scale; |
| CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm)); |
| |
| // Increment corresponding CPEntry reference count. |
| CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); |
| assert(CPE && "Cannot find a corresponding CPEntry!"); |
| CPE->RefCount++; |
| |
| // Instructions can only use one CP entry, don't bother scanning the |
| // rest of the operands. |
| break; |
| } |
| } |
| |
| // In thumb mode, if this block is a constpool island, we may need padding |
| // so it's aligned on 4 byte boundary. |
| if (isThumb && |
| !MBB.empty() && |
| MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY && |
| ((Offset%4) != 0 || HasInlineAsm)) |
| MBBSize += 2; |
| |
| BBSizes.push_back(MBBSize); |
| BBOffsets.push_back(Offset); |
| Offset += MBBSize; |
| } |
| } |
| |
| /// GetOffsetOf - Return the current offset of the specified machine instruction |
| /// from the start of the function. This offset changes as stuff is moved |
| /// around inside the function. |
| unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const { |
| MachineBasicBlock *MBB = MI->getParent(); |
| |
| // The offset is composed of two things: the sum of the sizes of all MBB's |
| // before this instruction's block, and the offset from the start of the block |
| // it is in. |
| unsigned Offset = BBOffsets[MBB->getNumber()]; |
| |
| // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has |
| // alignment padding, and compensate if so. |
| if (isThumb && |
| MI->getOpcode() == ARM::CONSTPOOL_ENTRY && |
| (Offset%4 != 0 || HasInlineAsm)) |
| Offset += 2; |
| |
| // Sum instructions before MI in MBB. |
| for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) { |
| assert(I != MBB->end() && "Didn't find MI in its own basic block?"); |
| if (&*I == MI) return Offset; |
| Offset += TII->GetInstSizeInBytes(I); |
| } |
| } |
| |
| /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB |
| /// ID. |
| static bool CompareMBBNumbers(const MachineBasicBlock *LHS, |
| const MachineBasicBlock *RHS) { |
| return LHS->getNumber() < RHS->getNumber(); |
| } |
| |
| /// UpdateForInsertedWaterBlock - When a block is newly inserted into the |
| /// machine function, it upsets all of the block numbers. Renumber the blocks |
| /// and update the arrays that parallel this numbering. |
| void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) { |
| // Renumber the MBB's to keep them consecutive. |
| NewBB->getParent()->RenumberBlocks(NewBB); |
| |
| // Insert a size into BBSizes to align it properly with the (newly |
| // renumbered) block numbers. |
| BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); |
| |
| // Likewise for BBOffsets. |
| BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); |
| |
| // Next, update WaterList. Specifically, we need to add NewMBB as having |
| // available water after it. |
| water_iterator IP = |
| std::lower_bound(WaterList.begin(), WaterList.end(), NewBB, |
| CompareMBBNumbers); |
| WaterList.insert(IP, NewBB); |
| } |
| |
| |
| /// Split the basic block containing MI into two blocks, which are joined by |
| /// an unconditional branch. Update data structures and renumber blocks to |
| /// account for this change and returns the newly created block. |
| MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) { |
| MachineBasicBlock *OrigBB = MI->getParent(); |
| MachineFunction &MF = *OrigBB->getParent(); |
| |
| // Create a new MBB for the code after the OrigBB. |
| MachineBasicBlock *NewBB = |
| MF.CreateMachineBasicBlock(OrigBB->getBasicBlock()); |
| MachineFunction::iterator MBBI = OrigBB; ++MBBI; |
| MF.insert(MBBI, NewBB); |
| |
| // Splice the instructions starting with MI over to NewBB. |
| NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); |
| |
| // Add an unconditional branch from OrigBB to NewBB. |
| // Note the new unconditional branch is not being recorded. |
| // There doesn't seem to be meaningful DebugInfo available; this doesn't |
| // correspond to anything in the source. |
| unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; |
| if (!isThumb) |
| BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); |
| else |
| BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB) |
| .addImm(ARMCC::AL).addReg(0); |
| ++NumSplit; |
| |
| // Update the CFG. All succs of OrigBB are now succs of NewBB. |
| while (!OrigBB->succ_empty()) { |
| MachineBasicBlock *Succ = *OrigBB->succ_begin(); |
| OrigBB->removeSuccessor(Succ); |
| NewBB->addSuccessor(Succ); |
| |
| // This pass should be run after register allocation, so there should be no |
| // PHI nodes to update. |
| assert((Succ->empty() || !Succ->begin()->isPHI()) |
| && "PHI nodes should be eliminated by now!"); |
| } |
| |
| // OrigBB branches to NewBB. |
| OrigBB->addSuccessor(NewBB); |
| |
| // Update internal data structures to account for the newly inserted MBB. |
| // This is almost the same as UpdateForInsertedWaterBlock, except that |
| // the Water goes after OrigBB, not NewBB. |
| MF.RenumberBlocks(NewBB); |
| |
| // Insert a size into BBSizes to align it properly with the (newly |
| // renumbered) block numbers. |
| BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0); |
| |
| // Likewise for BBOffsets. |
| BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0); |
| |
| // Next, update WaterList. Specifically, we need to add OrigMBB as having |
| // available water after it (but not if it's already there, which happens |
| // when splitting before a conditional branch that is followed by an |
| // unconditional branch - in that case we want to insert NewBB). |
| water_iterator IP = |
| std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB, |
| CompareMBBNumbers); |
| MachineBasicBlock* WaterBB = *IP; |
| if (WaterBB == OrigBB) |
| WaterList.insert(llvm::next(IP), NewBB); |
| else |
| WaterList.insert(IP, OrigBB); |
| NewWaterList.insert(OrigBB); |
| |
| unsigned OrigBBI = OrigBB->getNumber(); |
| unsigned NewBBI = NewBB->getNumber(); |
| |
| int delta = isThumb1 ? 2 : 4; |
| |
| // Figure out how large the OrigBB is. As the first half of the original |
| // block, it cannot contain a tablejump. The size includes |
| // the new jump we added. (It should be possible to do this without |
| // recounting everything, but it's very confusing, and this is rarely |
| // executed.) |
| unsigned OrigBBSize = 0; |
| for (MachineBasicBlock::iterator I = OrigBB->begin(), E = OrigBB->end(); |
| I != E; ++I) |
| OrigBBSize += TII->GetInstSizeInBytes(I); |
| BBSizes[OrigBBI] = OrigBBSize; |
| |
| // ...and adjust BBOffsets for NewBB accordingly. |
| BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI]; |
| |
| // Figure out how large the NewMBB is. As the second half of the original |
| // block, it may contain a tablejump. |
| unsigned NewBBSize = 0; |
| for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end(); |
| I != E; ++I) |
| NewBBSize += TII->GetInstSizeInBytes(I); |
| // Set the size of NewBB in BBSizes. It does not include any padding now. |
| BBSizes[NewBBI] = NewBBSize; |
| |
| MachineInstr* ThumbJTMI = prior(NewBB->end()); |
| if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { |
| // We've added another 2-byte instruction before this tablejump, which |
| // means we will always need padding if we didn't before, and vice versa. |
| |
| // The original offset of the jump instruction was: |
| unsigned OrigOffset = BBOffsets[OrigBBI] + BBSizes[OrigBBI] - delta; |
| if (OrigOffset%4 == 0) { |
| // We had padding before and now we don't. No net change in code size. |
| delta = 0; |
| } else { |
| // We didn't have padding before and now we do. |
| BBSizes[NewBBI] += 2; |
| delta = 4; |
| } |
| } |
| |
| // All BBOffsets following these blocks must be modified. |
| if (delta) |
| AdjustBBOffsetsAfter(NewBB, delta); |
| |
| return NewBB; |
| } |
| |
| /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool |
| /// reference) is within MaxDisp of TrialOffset (a proposed location of a |
| /// constant pool entry). |
| bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset, |
| unsigned TrialOffset, unsigned MaxDisp, |
| bool NegativeOK, bool IsSoImm) { |
| // On Thumb offsets==2 mod 4 are rounded down by the hardware for |
| // purposes of the displacement computation; compensate for that here. |
| // Effectively, the valid range of displacements is 2 bytes smaller for such |
| // references. |
| unsigned TotalAdj = 0; |
| if (isThumb && UserOffset%4 !=0) { |
| UserOffset -= 2; |
| TotalAdj = 2; |
| } |
| // CPEs will be rounded up to a multiple of 4. |
| if (isThumb && TrialOffset%4 != 0) { |
| TrialOffset += 2; |
| TotalAdj += 2; |
| } |
| |
| // In Thumb2 mode, later branch adjustments can shift instructions up and |
| // cause alignment change. In the worst case scenario this can cause the |
| // user's effective address to be subtracted by 2 and the CPE's address to |
| // be plus 2. |
| if (isThumb2 && TotalAdj != 4) |
| MaxDisp -= (4 - TotalAdj); |
| |
| if (UserOffset <= TrialOffset) { |
| // User before the Trial. |
| if (TrialOffset - UserOffset <= MaxDisp) |
| return true; |
| // FIXME: Make use full range of soimm values. |
| } else if (NegativeOK) { |
| if (UserOffset - TrialOffset <= MaxDisp) |
| return true; |
| // FIXME: Make use full range of soimm values. |
| } |
| return false; |
| } |
| |
| /// WaterIsInRange - Returns true if a CPE placed after the specified |
| /// Water (a basic block) will be in range for the specific MI. |
| |
| bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset, |
| MachineBasicBlock* Water, CPUser &U) { |
| unsigned MaxDisp = U.MaxDisp; |
| unsigned CPEOffset = BBOffsets[Water->getNumber()] + |
| BBSizes[Water->getNumber()]; |
| |
| // If the CPE is to be inserted before the instruction, that will raise |
| // the offset of the instruction. |
| if (CPEOffset < UserOffset) |
| UserOffset += U.CPEMI->getOperand(2).getImm(); |
| |
| return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm); |
| } |
| |
| /// CPEIsInRange - Returns true if the distance between specific MI and |
| /// specific ConstPool entry instruction can fit in MI's displacement field. |
| bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset, |
| MachineInstr *CPEMI, unsigned MaxDisp, |
| bool NegOk, bool DoDump) { |
| unsigned CPEOffset = GetOffsetOf(CPEMI); |
| assert((CPEOffset%4 == 0 || HasInlineAsm) && "Misaligned CPE"); |
| |
| if (DoDump) { |
| DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm() |
| << " max delta=" << MaxDisp |
| << " insn address=" << UserOffset |
| << " CPE address=" << CPEOffset |
| << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI); |
| } |
| |
| return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk); |
| } |
| |
| #ifndef NDEBUG |
| /// BBIsJumpedOver - Return true of the specified basic block's only predecessor |
| /// unconditionally branches to its only successor. |
| static bool BBIsJumpedOver(MachineBasicBlock *MBB) { |
| if (MBB->pred_size() != 1 || MBB->succ_size() != 1) |
| return false; |
| |
| MachineBasicBlock *Succ = *MBB->succ_begin(); |
| MachineBasicBlock *Pred = *MBB->pred_begin(); |
| MachineInstr *PredMI = &Pred->back(); |
| if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB |
| || PredMI->getOpcode() == ARM::t2B) |
| return PredMI->getOperand(0).getMBB() == Succ; |
| return false; |
| } |
| #endif // NDEBUG |
| |
| void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB, |
| int delta) { |
| MachineFunction::iterator MBBI = BB; MBBI = llvm::next(MBBI); |
| for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs(); |
| i < e; ++i) { |
| BBOffsets[i] += delta; |
| // If some existing blocks have padding, adjust the padding as needed, a |
| // bit tricky. delta can be negative so don't use % on that. |
| if (!isThumb) |
| continue; |
| MachineBasicBlock *MBB = MBBI; |
| if (!MBB->empty() && !HasInlineAsm) { |
| // Constant pool entries require padding. |
| if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) { |
| unsigned OldOffset = BBOffsets[i] - delta; |
| if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) { |
| // add new padding |
| BBSizes[i] += 2; |
| delta += 2; |
| } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) { |
| // remove existing padding |
| BBSizes[i] -= 2; |
| delta -= 2; |
| } |
| } |
| // Thumb1 jump tables require padding. They should be at the end; |
| // following unconditional branches are removed by AnalyzeBranch. |
| // tBR_JTr expands to a mov pc followed by .align 2 and then the jump |
| // table entries. So this code checks whether offset of tBR_JTr |
| // is aligned; if it is, the offset of the jump table following the |
| // instruction will not be aligned, and we need padding. |
| MachineInstr *ThumbJTMI = prior(MBB->end()); |
| if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) { |
| unsigned NewMIOffset = GetOffsetOf(ThumbJTMI); |
| unsigned OldMIOffset = NewMIOffset - delta; |
| if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) { |
| // remove existing padding |
| BBSizes[i] -= 2; |
| delta -= 2; |
| } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) { |
| // add new padding |
| BBSizes[i] += 2; |
| delta += 2; |
| } |
| } |
| if (delta==0) |
| return; |
| } |
| MBBI = llvm::next(MBBI); |
| } |
| } |
| |
| /// DecrementOldEntry - find the constant pool entry with index CPI |
| /// and instruction CPEMI, and decrement its refcount. If the refcount |
| /// becomes 0 remove the entry and instruction. Returns true if we removed |
| /// the entry, false if we didn't. |
| |
| bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) { |
| // Find the old entry. Eliminate it if it is no longer used. |
| CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); |
| assert(CPE && "Unexpected!"); |
| if (--CPE->RefCount == 0) { |
| RemoveDeadCPEMI(CPEMI); |
| CPE->CPEMI = NULL; |
| --NumCPEs; |
| return true; |
| } |
| return false; |
| } |
| |
| /// LookForCPEntryInRange - see if the currently referenced CPE is in range; |
| /// if not, see if an in-range clone of the CPE is in range, and if so, |
| /// change the data structures so the user references the clone. Returns: |
| /// 0 = no existing entry found |
| /// 1 = entry found, and there were no code insertions or deletions |
| /// 2 = entry found, and there were code insertions or deletions |
| int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset) |
| { |
| MachineInstr *UserMI = U.MI; |
| MachineInstr *CPEMI = U.CPEMI; |
| |
| // Check to see if the CPE is already in-range. |
| if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) { |
| DEBUG(errs() << "In range\n"); |
| return 1; |
| } |
| |
| // No. Look for previously created clones of the CPE that are in range. |
| unsigned CPI = CPEMI->getOperand(1).getIndex(); |
| std::vector<CPEntry> &CPEs = CPEntries[CPI]; |
| for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { |
| // We already tried this one |
| if (CPEs[i].CPEMI == CPEMI) |
| continue; |
| // Removing CPEs can leave empty entries, skip |
| if (CPEs[i].CPEMI == NULL) |
| continue; |
| if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) { |
| DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#" |
| << CPEs[i].CPI << "\n"); |
| // Point the CPUser node to the replacement |
| U.CPEMI = CPEs[i].CPEMI; |
| // Change the CPI in the instruction operand to refer to the clone. |
| for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) |
| if (UserMI->getOperand(j).isCPI()) { |
| UserMI->getOperand(j).setIndex(CPEs[i].CPI); |
| break; |
| } |
| // Adjust the refcount of the clone... |
| CPEs[i].RefCount++; |
| // ...and the original. If we didn't remove the old entry, none of the |
| // addresses changed, so we don't need another pass. |
| return DecrementOldEntry(CPI, CPEMI) ? 2 : 1; |
| } |
| } |
| return 0; |
| } |
| |
| /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in |
| /// the specific unconditional branch instruction. |
| static inline unsigned getUnconditionalBrDisp(int Opc) { |
| switch (Opc) { |
| case ARM::tB: |
| return ((1<<10)-1)*2; |
| case ARM::t2B: |
| return ((1<<23)-1)*2; |
| default: |
| break; |
| } |
| |
| return ((1<<23)-1)*4; |
| } |
| |
| /// LookForWater - Look for an existing entry in the WaterList in which |
| /// we can place the CPE referenced from U so it's within range of U's MI. |
| /// Returns true if found, false if not. If it returns true, WaterIter |
| /// is set to the WaterList entry. For Thumb, prefer water that will not |
| /// introduce padding to water that will. To ensure that this pass |
| /// terminates, the CPE location for a particular CPUser is only allowed to |
| /// move to a lower address, so search backward from the end of the list and |
| /// prefer the first water that is in range. |
| bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset, |
| water_iterator &WaterIter) { |
| if (WaterList.empty()) |
| return false; |
| |
| bool FoundWaterThatWouldPad = false; |
| water_iterator IPThatWouldPad; |
| for (water_iterator IP = prior(WaterList.end()), |
| B = WaterList.begin();; --IP) { |
| MachineBasicBlock* WaterBB = *IP; |
| // Check if water is in range and is either at a lower address than the |
| // current "high water mark" or a new water block that was created since |
| // the previous iteration by inserting an unconditional branch. In the |
| // latter case, we want to allow resetting the high water mark back to |
| // this new water since we haven't seen it before. Inserting branches |
| // should be relatively uncommon and when it does happen, we want to be |
| // sure to take advantage of it for all the CPEs near that block, so that |
| // we don't insert more branches than necessary. |
| if (WaterIsInRange(UserOffset, WaterBB, U) && |
| (WaterBB->getNumber() < U.HighWaterMark->getNumber() || |
| NewWaterList.count(WaterBB))) { |
| unsigned WBBId = WaterBB->getNumber(); |
| if (isThumb && |
| (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) { |
| // This is valid Water, but would introduce padding. Remember |
| // it in case we don't find any Water that doesn't do this. |
| if (!FoundWaterThatWouldPad) { |
| FoundWaterThatWouldPad = true; |
| IPThatWouldPad = IP; |
| } |
| } else { |
| WaterIter = IP; |
| return true; |
| } |
| } |
| if (IP == B) |
| break; |
| } |
| if (FoundWaterThatWouldPad) { |
| WaterIter = IPThatWouldPad; |
| return true; |
| } |
| return false; |
| } |
| |
| /// CreateNewWater - No existing WaterList entry will work for |
| /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the |
| /// block is used if in range, and the conditional branch munged so control |
| /// flow is correct. Otherwise the block is split to create a hole with an |
| /// unconditional branch around it. In either case NewMBB is set to a |
| /// block following which the new island can be inserted (the WaterList |
| /// is not adjusted). |
| void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex, |
| unsigned UserOffset, |
| MachineBasicBlock *&NewMBB) { |
| CPUser &U = CPUsers[CPUserIndex]; |
| MachineInstr *UserMI = U.MI; |
| MachineInstr *CPEMI = U.CPEMI; |
| MachineBasicBlock *UserMBB = UserMI->getParent(); |
| unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] + |
| BBSizes[UserMBB->getNumber()]; |
| assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]); |
| |
| // If the block does not end in an unconditional branch already, and if the |
| // end of the block is within range, make new water there. (The addition |
| // below is for the unconditional branch we will be adding: 4 bytes on ARM + |
| // Thumb2, 2 on Thumb1. Possible Thumb1 alignment padding is allowed for |
| // inside OffsetIsInRange. |
| if (BBHasFallthrough(UserMBB) && |
| OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4), |
| U.MaxDisp, U.NegOk, U.IsSoImm)) { |
| DEBUG(errs() << "Split at end of block\n"); |
| if (&UserMBB->back() == UserMI) |
| assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!"); |
| NewMBB = llvm::next(MachineFunction::iterator(UserMBB)); |
| // Add an unconditional branch from UserMBB to fallthrough block. |
| // Record it for branch lengthening; this new branch will not get out of |
| // range, but if the preceding conditional branch is out of range, the |
| // targets will be exchanged, and the altered branch may be out of |
| // range, so the machinery has to know about it. |
| int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; |
| if (!isThumb) |
| BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); |
| else |
| BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB) |
| .addImm(ARMCC::AL).addReg(0); |
| unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); |
| ImmBranches.push_back(ImmBranch(&UserMBB->back(), |
| MaxDisp, false, UncondBr)); |
| int delta = isThumb1 ? 2 : 4; |
| BBSizes[UserMBB->getNumber()] += delta; |
| AdjustBBOffsetsAfter(UserMBB, delta); |
| } else { |
| // What a big block. Find a place within the block to split it. |
| // This is a little tricky on Thumb1 since instructions are 2 bytes |
| // and constant pool entries are 4 bytes: if instruction I references |
| // island CPE, and instruction I+1 references CPE', it will |
| // not work well to put CPE as far forward as possible, since then |
| // CPE' cannot immediately follow it (that location is 2 bytes |
| // farther away from I+1 than CPE was from I) and we'd need to create |
| // a new island. So, we make a first guess, then walk through the |
| // instructions between the one currently being looked at and the |
| // possible insertion point, and make sure any other instructions |
| // that reference CPEs will be able to use the same island area; |
| // if not, we back up the insertion point. |
| |
| // The 4 in the following is for the unconditional branch we'll be |
| // inserting (allows for long branch on Thumb1). Alignment of the |
| // island is handled inside OffsetIsInRange. |
| unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4; |
| // This could point off the end of the block if we've already got |
| // constant pool entries following this block; only the last one is |
| // in the water list. Back past any possible branches (allow for a |
| // conditional and a maximally long unconditional). |
| if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1]) |
| BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] - |
| (isThumb1 ? 6 : 8); |
| unsigned EndInsertOffset = BaseInsertOffset + |
| CPEMI->getOperand(2).getImm(); |
| MachineBasicBlock::iterator MI = UserMI; |
| ++MI; |
| unsigned CPUIndex = CPUserIndex+1; |
| unsigned NumCPUsers = CPUsers.size(); |
| MachineInstr *LastIT = 0; |
| for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI); |
| Offset < BaseInsertOffset; |
| Offset += TII->GetInstSizeInBytes(MI), |
| MI = llvm::next(MI)) { |
| if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) { |
| CPUser &U = CPUsers[CPUIndex]; |
| if (!OffsetIsInRange(Offset, EndInsertOffset, |
| U.MaxDisp, U.NegOk, U.IsSoImm)) { |
| BaseInsertOffset -= (isThumb1 ? 2 : 4); |
| EndInsertOffset -= (isThumb1 ? 2 : 4); |
| } |
| // This is overly conservative, as we don't account for CPEMIs |
| // being reused within the block, but it doesn't matter much. |
| EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm(); |
| CPUIndex++; |
| } |
| |
| // Remember the last IT instruction. |
| if (MI->getOpcode() == ARM::t2IT) |
| LastIT = MI; |
| } |
| |
| DEBUG(errs() << "Split in middle of big block\n"); |
| --MI; |
| |
| // Avoid splitting an IT block. |
| if (LastIT) { |
| unsigned PredReg = 0; |
| ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg); |
| if (CC != ARMCC::AL) |
| MI = LastIT; |
| } |
| NewMBB = SplitBlockBeforeInstr(MI); |
| } |
| } |
| |
| /// HandleConstantPoolUser - Analyze the specified user, checking to see if it |
| /// is out-of-range. If so, pick up the constant pool value and move it some |
| /// place in-range. Return true if we changed any addresses (thus must run |
| /// another pass of branch lengthening), false otherwise. |
| bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF, |
| unsigned CPUserIndex) { |
| CPUser &U = CPUsers[CPUserIndex]; |
| MachineInstr *UserMI = U.MI; |
| MachineInstr *CPEMI = U.CPEMI; |
| unsigned CPI = CPEMI->getOperand(1).getIndex(); |
| unsigned Size = CPEMI->getOperand(2).getImm(); |
| // Compute this only once, it's expensive. The 4 or 8 is the value the |
| // hardware keeps in the PC. |
| unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8); |
| |
| // See if the current entry is within range, or there is a clone of it |
| // in range. |
| int result = LookForExistingCPEntry(U, UserOffset); |
| if (result==1) return false; |
| else if (result==2) return true; |
| |
| // No existing clone of this CPE is within range. |
| // We will be generating a new clone. Get a UID for it. |
| unsigned ID = AFI->createPICLabelUId(); |
| |
| // Look for water where we can place this CPE. |
| MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock(); |
| MachineBasicBlock *NewMBB; |
| water_iterator IP; |
| if (LookForWater(U, UserOffset, IP)) { |
| DEBUG(errs() << "found water in range\n"); |
| MachineBasicBlock *WaterBB = *IP; |
| |
| // If the original WaterList entry was "new water" on this iteration, |
| // propagate that to the new island. This is just keeping NewWaterList |
| // updated to match the WaterList, which will be updated below. |
| if (NewWaterList.count(WaterBB)) { |
| NewWaterList.erase(WaterBB); |
| NewWaterList.insert(NewIsland); |
| } |
| // The new CPE goes before the following block (NewMBB). |
| NewMBB = llvm::next(MachineFunction::iterator(WaterBB)); |
| |
| } else { |
| // No water found. |
| DEBUG(errs() << "No water found\n"); |
| CreateNewWater(CPUserIndex, UserOffset, NewMBB); |
| |
| // SplitBlockBeforeInstr adds to WaterList, which is important when it is |
| // called while handling branches so that the water will be seen on the |
| // next iteration for constant pools, but in this context, we don't want |
| // it. Check for this so it will be removed from the WaterList. |
| // Also remove any entry from NewWaterList. |
| MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB)); |
| IP = std::find(WaterList.begin(), WaterList.end(), WaterBB); |
| if (IP != WaterList.end()) |
| NewWaterList.erase(WaterBB); |
| |
| // We are adding new water. Update NewWaterList. |
| NewWaterList.insert(NewIsland); |
| } |
| |
| // Remove the original WaterList entry; we want subsequent insertions in |
| // this vicinity to go after the one we're about to insert. This |
| // considerably reduces the number of times we have to move the same CPE |
| // more than once and is also important to ensure the algorithm terminates. |
| if (IP != WaterList.end()) |
| WaterList.erase(IP); |
| |
| // Okay, we know we can put an island before NewMBB now, do it! |
| MF.insert(NewMBB, NewIsland); |
| |
| // Update internal data structures to account for the newly inserted MBB. |
| UpdateForInsertedWaterBlock(NewIsland); |
| |
| // Decrement the old entry, and remove it if refcount becomes 0. |
| DecrementOldEntry(CPI, CPEMI); |
| |
| // Now that we have an island to add the CPE to, clone the original CPE and |
| // add it to the island. |
| U.HighWaterMark = NewIsland; |
| U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) |
| .addImm(ID).addConstantPoolIndex(CPI).addImm(Size); |
| CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); |
| ++NumCPEs; |
| |
| BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()]; |
| // Compensate for .align 2 in thumb mode. |
| if (isThumb && (BBOffsets[NewIsland->getNumber()]%4 != 0 || HasInlineAsm)) |
| Size += 2; |
| // Increase the size of the island block to account for the new entry. |
| BBSizes[NewIsland->getNumber()] += Size; |
| AdjustBBOffsetsAfter(NewIsland, Size); |
| |
| // Finally, change the CPI in the instruction operand to be ID. |
| for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) |
| if (UserMI->getOperand(i).isCPI()) { |
| UserMI->getOperand(i).setIndex(ID); |
| break; |
| } |
| |
| DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI |
| << '\t' << *UserMI); |
| |
| return true; |
| } |
| |
| /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update |
| /// sizes and offsets of impacted basic blocks. |
| void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) { |
| MachineBasicBlock *CPEBB = CPEMI->getParent(); |
| unsigned Size = CPEMI->getOperand(2).getImm(); |
| CPEMI->eraseFromParent(); |
| BBSizes[CPEBB->getNumber()] -= Size; |
| // All succeeding offsets have the current size value added in, fix this. |
| if (CPEBB->empty()) { |
| // In thumb1 mode, the size of island may be padded by two to compensate for |
| // the alignment requirement. Then it will now be 2 when the block is |
| // empty, so fix this. |
| // All succeeding offsets have the current size value added in, fix this. |
| if (BBSizes[CPEBB->getNumber()] != 0) { |
| Size += BBSizes[CPEBB->getNumber()]; |
| BBSizes[CPEBB->getNumber()] = 0; |
| } |
| } |
| AdjustBBOffsetsAfter(CPEBB, -Size); |
| // An island has only one predecessor BB and one successor BB. Check if |
| // this BB's predecessor jumps directly to this BB's successor. This |
| // shouldn't happen currently. |
| assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); |
| // FIXME: remove the empty blocks after all the work is done? |
| } |
| |
| /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts |
| /// are zero. |
| bool ARMConstantIslands::RemoveUnusedCPEntries() { |
| unsigned MadeChange = false; |
| for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { |
| std::vector<CPEntry> &CPEs = CPEntries[i]; |
| for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { |
| if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { |
| RemoveDeadCPEMI(CPEs[j].CPEMI); |
| CPEs[j].CPEMI = NULL; |
| MadeChange = true; |
| } |
| } |
| } |
| return MadeChange; |
| } |
| |
| /// BBIsInRange - Returns true if the distance between specific MI and |
| /// specific BB can fit in MI's displacement field. |
| bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB, |
| unsigned MaxDisp) { |
| unsigned PCAdj = isThumb ? 4 : 8; |
| unsigned BrOffset = GetOffsetOf(MI) + PCAdj; |
| unsigned DestOffset = BBOffsets[DestBB->getNumber()]; |
| |
| DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber() |
| << " from BB#" << MI->getParent()->getNumber() |
| << " max delta=" << MaxDisp |
| << " from " << GetOffsetOf(MI) << " to " << DestOffset |
| << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); |
| |
| if (BrOffset <= DestOffset) { |
| // Branch before the Dest. |
| if (DestOffset-BrOffset <= MaxDisp) |
| return true; |
| } else { |
| if (BrOffset-DestOffset <= MaxDisp) |
| return true; |
| } |
| return false; |
| } |
| |
| /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far |
| /// away to fit in its displacement field. |
| bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) { |
| MachineInstr *MI = Br.MI; |
| MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); |
| |
| // Check to see if the DestBB is already in-range. |
| if (BBIsInRange(MI, DestBB, Br.MaxDisp)) |
| return false; |
| |
| if (!Br.isCond) |
| return FixUpUnconditionalBr(MF, Br); |
| return FixUpConditionalBr(MF, Br); |
| } |
| |
| /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is |
| /// too far away to fit in its displacement field. If the LR register has been |
| /// spilled in the epilogue, then we can use BL to implement a far jump. |
| /// Otherwise, add an intermediate branch instruction to a branch. |
| bool |
| ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) { |
| MachineInstr *MI = Br.MI; |
| MachineBasicBlock *MBB = MI->getParent(); |
| if (!isThumb1) |
| llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!"); |
| |
| // Use BL to implement far jump. |
| Br.MaxDisp = (1 << 21) * 2; |
| MI->setDesc(TII->get(ARM::tBfar)); |
| BBSizes[MBB->getNumber()] += 2; |
| AdjustBBOffsetsAfter(MBB, 2); |
| HasFarJump = true; |
| ++NumUBrFixed; |
| |
| DEBUG(errs() << " Changed B to long jump " << *MI); |
| |
| return true; |
| } |
| |
| /// FixUpConditionalBr - Fix up a conditional branch whose destination is too |
| /// far away to fit in its displacement field. It is converted to an inverse |
| /// conditional branch + an unconditional branch to the destination. |
| bool |
| ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) { |
| MachineInstr *MI = Br.MI; |
| MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); |
| |
| // Add an unconditional branch to the destination and invert the branch |
| // condition to jump over it: |
| // blt L1 |
| // => |
| // bge L2 |
| // b L1 |
| // L2: |
| ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); |
| CC = ARMCC::getOppositeCondition(CC); |
| unsigned CCReg = MI->getOperand(2).getReg(); |
| |
| // If the branch is at the end of its MBB and that has a fall-through block, |
| // direct the updated conditional branch to the fall-through block. Otherwise, |
| // split the MBB before the next instruction. |
| MachineBasicBlock *MBB = MI->getParent(); |
| MachineInstr *BMI = &MBB->back(); |
| bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); |
| |
| ++NumCBrFixed; |
| if (BMI != MI) { |
| if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && |
| BMI->getOpcode() == Br.UncondBr) { |
| // Last MI in the BB is an unconditional branch. Can we simply invert the |
| // condition and swap destinations: |
| // beq L1 |
| // b L2 |
| // => |
| // bne L2 |
| // b L1 |
| MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); |
| if (BBIsInRange(MI, NewDest, Br.MaxDisp)) { |
| DEBUG(errs() << " Invert Bcc condition and swap its destination with " |
| << *BMI); |
| BMI->getOperand(0).setMBB(DestBB); |
| MI->getOperand(0).setMBB(NewDest); |
| MI->getOperand(1).setImm(CC); |
| return true; |
| } |
| } |
| } |
| |
| if (NeedSplit) { |
| SplitBlockBeforeInstr(MI); |
| // No need for the branch to the next block. We're adding an unconditional |
| // branch to the destination. |
| int delta = TII->GetInstSizeInBytes(&MBB->back()); |
| BBSizes[MBB->getNumber()] -= delta; |
| MachineBasicBlock* SplitBB = llvm::next(MachineFunction::iterator(MBB)); |
| AdjustBBOffsetsAfter(SplitBB, -delta); |
| MBB->back().eraseFromParent(); |
| // BBOffsets[SplitBB] is wrong temporarily, fixed below |
| } |
| MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); |
| |
| DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber() |
| << " also invert condition and change dest. to BB#" |
| << NextBB->getNumber() << "\n"); |
| |
| // Insert a new conditional branch and a new unconditional branch. |
| // Also update the ImmBranch as well as adding a new entry for the new branch. |
| BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) |
| .addMBB(NextBB).addImm(CC).addReg(CCReg); |
| Br.MI = &MBB->back(); |
| BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); |
| if (isThumb) |
| BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB) |
| .addImm(ARMCC::AL).addReg(0); |
| else |
| BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); |
| BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back()); |
| unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); |
| ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); |
| |
| // Remove the old conditional branch. It may or may not still be in MBB. |
| BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI); |
| MI->eraseFromParent(); |
| |
| // The net size change is an addition of one unconditional branch. |
| int delta = TII->GetInstSizeInBytes(&MBB->back()); |
| AdjustBBOffsetsAfter(MBB, delta); |
| return true; |
| } |
| |
| /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills |
| /// LR / restores LR to pc. FIXME: This is done here because it's only possible |
| /// to do this if tBfar is not used. |
| bool ARMConstantIslands::UndoLRSpillRestore() { |
| bool MadeChange = false; |
| for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { |
| MachineInstr *MI = PushPopMIs[i]; |
| // First two operands are predicates. |
| if (MI->getOpcode() == ARM::tPOP_RET && |
| MI->getOperand(2).getReg() == ARM::PC && |
| MI->getNumExplicitOperands() == 3) { |
| // Create the new insn and copy the predicate from the old. |
| BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) |
| .addOperand(MI->getOperand(0)) |
| .addOperand(MI->getOperand(1)); |
| MI->eraseFromParent(); |
| MadeChange = true; |
| } |
| } |
| return MadeChange; |
| } |
| |
| bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) { |
| bool MadeChange = false; |
| |
| // Shrink ADR and LDR from constantpool. |
| for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { |
| CPUser &U = CPUsers[i]; |
| unsigned Opcode = U.MI->getOpcode(); |
| unsigned NewOpc = 0; |
| unsigned Scale = 1; |
| unsigned Bits = 0; |
| switch (Opcode) { |
| default: break; |
| case ARM::t2LEApcrel: |
| if (isARMLowRegister(U.MI->getOperand(0).getReg())) { |
| NewOpc = ARM::tLEApcrel; |
| Bits = 8; |
| Scale = 4; |
| } |
| break; |
| case ARM::t2LDRpci: |
| if (isARMLowRegister(U.MI->getOperand(0).getReg())) { |
| NewOpc = ARM::tLDRpci; |
| Bits = 8; |
| Scale = 4; |
| } |
| break; |
| } |
| |
| if (!NewOpc) |
| continue; |
| |
| unsigned UserOffset = GetOffsetOf(U.MI) + 4; |
| unsigned MaxOffs = ((1 << Bits) - 1) * Scale; |
| // FIXME: Check if offset is multiple of scale if scale is not 4. |
| if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { |
| U.MI->setDesc(TII->get(NewOpc)); |
| MachineBasicBlock *MBB = U.MI->getParent(); |
| BBSizes[MBB->getNumber()] -= 2; |
| AdjustBBOffsetsAfter(MBB, -2); |
| ++NumT2CPShrunk; |
| MadeChange = true; |
| } |
| } |
| |
| MadeChange |= OptimizeThumb2Branches(MF); |
| MadeChange |= OptimizeThumb2JumpTables(MF); |
| return MadeChange; |
| } |
| |
| bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) { |
| bool MadeChange = false; |
| |
| for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) { |
| ImmBranch &Br = ImmBranches[i]; |
| unsigned Opcode = Br.MI->getOpcode(); |
| unsigned NewOpc = 0; |
| unsigned Scale = 1; |
| unsigned Bits = 0; |
| switch (Opcode) { |
| default: break; |
| case ARM::t2B: |
| NewOpc = ARM::tB; |
| Bits = 11; |
| Scale = 2; |
| break; |
| case ARM::t2Bcc: { |
| NewOpc = ARM::tBcc; |
| Bits = 8; |
| Scale = 2; |
| break; |
| } |
| } |
| if (NewOpc) { |
| unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; |
| MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); |
| if (BBIsInRange(Br.MI, DestBB, MaxOffs)) { |
| Br.MI->setDesc(TII->get(NewOpc)); |
| MachineBasicBlock *MBB = Br.MI->getParent(); |
| BBSizes[MBB->getNumber()] -= 2; |
| AdjustBBOffsetsAfter(MBB, -2); |
| ++NumT2BrShrunk; |
| MadeChange = true; |
| } |
| } |
| |
| Opcode = Br.MI->getOpcode(); |
| if (Opcode != ARM::tBcc) |
| continue; |
| |
| NewOpc = 0; |
| unsigned PredReg = 0; |
| ARMCC::CondCodes Pred = llvm::getInstrPredicate(Br.MI, PredReg); |
| if (Pred == ARMCC::EQ) |
| NewOpc = ARM::tCBZ; |
| else if (Pred == ARMCC::NE) |
| NewOpc = ARM::tCBNZ; |
| if (!NewOpc) |
| continue; |
| MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); |
| // Check if the distance is within 126. Subtract starting offset by 2 |
| // because the cmp will be eliminated. |
| unsigned BrOffset = GetOffsetOf(Br.MI) + 4 - 2; |
| unsigned DestOffset = BBOffsets[DestBB->getNumber()]; |
| if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) { |
| MachineBasicBlock::iterator CmpMI = Br.MI; |
| if (CmpMI != Br.MI->getParent()->begin()) { |
| --CmpMI; |
| if (CmpMI->getOpcode() == ARM::tCMPi8) { |
| unsigned Reg = CmpMI->getOperand(0).getReg(); |
| Pred = llvm::getInstrPredicate(CmpMI, PredReg); |
| if (Pred == ARMCC::AL && |
| CmpMI->getOperand(1).getImm() == 0 && |
| isARMLowRegister(Reg)) { |
| MachineBasicBlock *MBB = Br.MI->getParent(); |
| MachineInstr *NewBR = |
| BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc)) |
| .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags()); |
| CmpMI->eraseFromParent(); |
| Br.MI->eraseFromParent(); |
| Br.MI = NewBR; |
| BBSizes[MBB->getNumber()] -= 2; |
| AdjustBBOffsetsAfter(MBB, -2); |
| ++NumCBZ; |
| MadeChange = true; |
| } |
| } |
| } |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller |
| /// jumptables when it's possible. |
| bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) { |
| bool MadeChange = false; |
| |
| // FIXME: After the tables are shrunk, can we get rid some of the |
| // constantpool tables? |
| MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); |
| if (MJTI == 0) return false; |
| |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { |
| MachineInstr *MI = T2JumpTables[i]; |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumOps = MCID.getNumOperands(); |
| unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2); |
| MachineOperand JTOP = MI->getOperand(JTOpIdx); |
| unsigned JTI = JTOP.getIndex(); |
| assert(JTI < JT.size()); |
| |
| bool ByteOk = true; |
| bool HalfWordOk = true; |
| unsigned JTOffset = GetOffsetOf(MI) + 4; |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { |
| MachineBasicBlock *MBB = JTBBs[j]; |
| unsigned DstOffset = BBOffsets[MBB->getNumber()]; |
| // Negative offset is not ok. FIXME: We should change BB layout to make |
| // sure all the branches are forward. |
| if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) |
| ByteOk = false; |
| unsigned TBHLimit = ((1<<16)-1)*2; |
| if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) |
| HalfWordOk = false; |
| if (!ByteOk && !HalfWordOk) |
| break; |
| } |
| |
| if (ByteOk || HalfWordOk) { |
| MachineBasicBlock *MBB = MI->getParent(); |
| unsigned BaseReg = MI->getOperand(0).getReg(); |
| bool BaseRegKill = MI->getOperand(0).isKill(); |
| if (!BaseRegKill) |
| continue; |
| unsigned IdxReg = MI->getOperand(1).getReg(); |
| bool IdxRegKill = MI->getOperand(1).isKill(); |
| |
| // Scan backwards to find the instruction that defines the base |
| // register. Due to post-RA scheduling, we can't count on it |
| // immediately preceding the branch instruction. |
| MachineBasicBlock::iterator PrevI = MI; |
| MachineBasicBlock::iterator B = MBB->begin(); |
| while (PrevI != B && !PrevI->definesRegister(BaseReg)) |
| --PrevI; |
| |
| // If for some reason we didn't find it, we can't do anything, so |
| // just skip this one. |
| if (!PrevI->definesRegister(BaseReg)) |
| continue; |
| |
| MachineInstr *AddrMI = PrevI; |
| bool OptOk = true; |
| // Examine the instruction that calculates the jumptable entry address. |
| // Make sure it only defines the base register and kills any uses |
| // other than the index register. |
| for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) { |
| const MachineOperand &MO = AddrMI->getOperand(k); |
| if (!MO.isReg() || !MO.getReg()) |
| continue; |
| if (MO.isDef() && MO.getReg() != BaseReg) { |
| OptOk = false; |
| break; |
| } |
| if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) { |
| OptOk = false; |
| break; |
| } |
| } |
| if (!OptOk) |
| continue; |
| |
| // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction |
| // that gave us the initial base register definition. |
| for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI) |
| ; |
| |
| // The instruction should be a tLEApcrel or t2LEApcrelJT; we want |
| // to delete it as well. |
| MachineInstr *LeaMI = PrevI; |
| if ((LeaMI->getOpcode() != ARM::tLEApcrelJT && |
| LeaMI->getOpcode() != ARM::t2LEApcrelJT) || |
| LeaMI->getOperand(0).getReg() != BaseReg) |
| OptOk = false; |
| |
| if (!OptOk) |
| continue; |
| |
| unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; |
| MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc)) |
| .addReg(IdxReg, getKillRegState(IdxRegKill)) |
| .addJumpTableIndex(JTI, JTOP.getTargetFlags()) |
| .addImm(MI->getOperand(JTOpIdx+1).getImm()); |
| // FIXME: Insert an "ALIGN" instruction to ensure the next instruction |
| // is 2-byte aligned. For now, asm printer will fix it up. |
| unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI); |
| unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI); |
| OrigSize += TII->GetInstSizeInBytes(LeaMI); |
| OrigSize += TII->GetInstSizeInBytes(MI); |
| |
| AddrMI->eraseFromParent(); |
| LeaMI->eraseFromParent(); |
| MI->eraseFromParent(); |
| |
| int delta = OrigSize - NewSize; |
| BBSizes[MBB->getNumber()] -= delta; |
| AdjustBBOffsetsAfter(MBB, -delta); |
| |
| ++NumTBs; |
| MadeChange = true; |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| /// ReorderThumb2JumpTables - Adjust the function's block layout to ensure that |
| /// jump tables always branch forwards, since that's what tbb and tbh need. |
| bool ARMConstantIslands::ReorderThumb2JumpTables(MachineFunction &MF) { |
| bool MadeChange = false; |
| |
| MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); |
| if (MJTI == 0) return false; |
| |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { |
| MachineInstr *MI = T2JumpTables[i]; |
| const MCInstrDesc &MCID = MI->getDesc(); |
| unsigned NumOps = MCID.getNumOperands(); |
| unsigned JTOpIdx = NumOps - (MCID.isPredicable() ? 3 : 2); |
| MachineOperand JTOP = MI->getOperand(JTOpIdx); |
| unsigned JTI = JTOP.getIndex(); |
| assert(JTI < JT.size()); |
| |
| // We prefer if target blocks for the jump table come after the jump |
| // instruction so we can use TB[BH]. Loop through the target blocks |
| // and try to adjust them such that that's true. |
| int JTNumber = MI->getParent()->getNumber(); |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { |
| MachineBasicBlock *MBB = JTBBs[j]; |
| int DTNumber = MBB->getNumber(); |
| |
| if (DTNumber < JTNumber) { |
| // The destination precedes the switch. Try to move the block forward |
| // so we have a positive offset. |
| MachineBasicBlock *NewBB = |
| AdjustJTTargetBlockForward(MBB, MI->getParent()); |
| if (NewBB) |
| MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); |
| MadeChange = true; |
| } |
| } |
| } |
| |
| return MadeChange; |
| } |
| |
| MachineBasicBlock *ARMConstantIslands:: |
| AdjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) |
| { |
| MachineFunction &MF = *BB->getParent(); |
| |
| // If the destination block is terminated by an unconditional branch, |
| // try to move it; otherwise, create a new block following the jump |
| // table that branches back to the actual target. This is a very simple |
| // heuristic. FIXME: We can definitely improve it. |
| MachineBasicBlock *TBB = 0, *FBB = 0; |
| SmallVector<MachineOperand, 4> Cond; |
| SmallVector<MachineOperand, 4> CondPrior; |
| MachineFunction::iterator BBi = BB; |
| MachineFunction::iterator OldPrior = prior(BBi); |
| |
| // If the block terminator isn't analyzable, don't try to move the block |
| bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond); |
| |
| // If the block ends in an unconditional branch, move it. The prior block |
| // has to have an analyzable terminator for us to move this one. Be paranoid |
| // and make sure we're not trying to move the entry block of the function. |
| if (!B && Cond.empty() && BB != MF.begin() && |
| !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { |
| BB->moveAfter(JTBB); |
| OldPrior->updateTerminator(); |
| BB->updateTerminator(); |
| // Update numbering to account for the block being moved. |
| MF.RenumberBlocks(); |
| ++NumJTMoved; |
| return NULL; |
| } |
| |
| // Create a new MBB for the code after the jump BB. |
| MachineBasicBlock *NewBB = |
| MF.CreateMachineBasicBlock(JTBB->getBasicBlock()); |
| MachineFunction::iterator MBBI = JTBB; ++MBBI; |
| MF.insert(MBBI, NewBB); |
| |
| // Add an unconditional branch from NewBB to BB. |
| // There doesn't seem to be meaningful DebugInfo available; this doesn't |
| // correspond directly to anything in the source. |
| assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?"); |
| BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB) |
| .addImm(ARMCC::AL).addReg(0); |
| |
| // Update internal data structures to account for the newly inserted MBB. |
| MF.RenumberBlocks(NewBB); |
| |
| // Update the CFG. |
| NewBB->addSuccessor(BB); |
| JTBB->removeSuccessor(BB); |
| JTBB->addSuccessor(NewBB); |
| |
| ++NumJTInserted; |
| return NewBB; |
| } |