| /****************************************************************************** |
| |
| @File PVRTVector.cpp |
| |
| @Title PVRTVector |
| |
| @Version |
| |
| @Copyright Copyright (c) Imagination Technologies Limited. |
| |
| @Platform ANSI compatible |
| |
| @Description Vector and matrix mathematics library |
| |
| ******************************************************************************/ |
| |
| #include "PVRTVector.h" |
| |
| #include <math.h> |
| |
| /*!*************************************************************************** |
| ** PVRTVec2 2 component vector |
| ****************************************************************************/ |
| |
| /*!*************************************************************************** |
| @Function PVRTVec2 |
| @Input v3Vec a Vec3 |
| @Description Constructor from a Vec3 |
| *****************************************************************************/ |
| PVRTVec2::PVRTVec2(const PVRTVec3& vec3) |
| { |
| x = vec3.x; y = vec3.y; |
| } |
| |
| /*!*************************************************************************** |
| ** PVRTVec3 3 component vector |
| ****************************************************************************/ |
| |
| /*!*************************************************************************** |
| @Function PVRTVec3 |
| @Input v4Vec a PVRTVec4 |
| @Description Constructor from a PVRTVec4 |
| *****************************************************************************/ |
| PVRTVec3::PVRTVec3(const PVRTVec4& vec4) |
| { |
| x = vec4.x; y = vec4.y; z = vec4.z; |
| } |
| |
| /*!*************************************************************************** |
| @Function * |
| @Input rhs a PVRTMat3 |
| @Returns result of multiplication |
| @Description matrix multiplication operator PVRTVec3 and PVRTMat3 |
| ****************************************************************************/ |
| PVRTVec3 PVRTVec3::operator*(const PVRTMat3& rhs) const |
| { |
| PVRTVec3 out; |
| |
| out.x = VERTTYPEMUL(x,rhs.f[0])+VERTTYPEMUL(y,rhs.f[1])+VERTTYPEMUL(z,rhs.f[2]); |
| out.y = VERTTYPEMUL(x,rhs.f[3])+VERTTYPEMUL(y,rhs.f[4])+VERTTYPEMUL(z,rhs.f[5]); |
| out.z = VERTTYPEMUL(x,rhs.f[6])+VERTTYPEMUL(y,rhs.f[7])+VERTTYPEMUL(z,rhs.f[8]); |
| |
| return out; |
| } |
| |
| /*!*************************************************************************** |
| @Function *= |
| @Input rhs a PVRTMat3 |
| @Returns result of multiplication and assignment |
| @Description matrix multiplication and assignment operator for PVRTVec3 and PVRTMat3 |
| ****************************************************************************/ |
| PVRTVec3& PVRTVec3::operator*=(const PVRTMat3& rhs) |
| { |
| VERTTYPE tx = VERTTYPEMUL(x,rhs.f[0])+VERTTYPEMUL(y,rhs.f[1])+VERTTYPEMUL(z,rhs.f[2]); |
| VERTTYPE ty = VERTTYPEMUL(x,rhs.f[3])+VERTTYPEMUL(y,rhs.f[4])+VERTTYPEMUL(z,rhs.f[5]); |
| z = VERTTYPEMUL(x,rhs.f[6])+VERTTYPEMUL(y,rhs.f[7])+VERTTYPEMUL(z,rhs.f[8]); |
| x = tx; |
| y = ty; |
| |
| return *this; |
| } |
| |
| /*!*************************************************************************** |
| ** PVRTVec4 4 component vector |
| ****************************************************************************/ |
| |
| /*!*************************************************************************** |
| @Function * |
| @Input rhs a PVRTMat4 |
| @Returns result of multiplication |
| @Description matrix multiplication operator PVRTVec4 and PVRTMat4 |
| ****************************************************************************/ |
| PVRTVec4 PVRTVec4::operator*(const PVRTMat4& rhs) const |
| { |
| PVRTVec4 out; |
| out.x = VERTTYPEMUL(x,rhs.f[0])+VERTTYPEMUL(y,rhs.f[1])+VERTTYPEMUL(z,rhs.f[2])+VERTTYPEMUL(w,rhs.f[3]); |
| out.y = VERTTYPEMUL(x,rhs.f[4])+VERTTYPEMUL(y,rhs.f[5])+VERTTYPEMUL(z,rhs.f[6])+VERTTYPEMUL(w,rhs.f[7]); |
| out.z = VERTTYPEMUL(x,rhs.f[8])+VERTTYPEMUL(y,rhs.f[9])+VERTTYPEMUL(z,rhs.f[10])+VERTTYPEMUL(w,rhs.f[11]); |
| out.w = VERTTYPEMUL(x,rhs.f[12])+VERTTYPEMUL(y,rhs.f[13])+VERTTYPEMUL(z,rhs.f[14])+VERTTYPEMUL(w,rhs.f[15]); |
| return out; |
| } |
| |
| /*!*************************************************************************** |
| @Function *= |
| @Input rhs a PVRTMat4 |
| @Returns result of multiplication and assignment |
| @Description matrix multiplication and assignment operator for PVRTVec4 and PVRTMat4 |
| ****************************************************************************/ |
| PVRTVec4& PVRTVec4::operator*=(const PVRTMat4& rhs) |
| { |
| VERTTYPE tx = VERTTYPEMUL(x,rhs.f[0])+VERTTYPEMUL(y,rhs.f[1])+VERTTYPEMUL(z,rhs.f[2])+VERTTYPEMUL(w,rhs.f[3]); |
| VERTTYPE ty = VERTTYPEMUL(x,rhs.f[4])+VERTTYPEMUL(y,rhs.f[5])+VERTTYPEMUL(z,rhs.f[6])+VERTTYPEMUL(w,rhs.f[7]); |
| VERTTYPE tz = VERTTYPEMUL(x,rhs.f[8])+VERTTYPEMUL(y,rhs.f[9])+VERTTYPEMUL(z,rhs.f[10])+VERTTYPEMUL(w,rhs.f[11]); |
| w = VERTTYPEMUL(x,rhs.f[12])+VERTTYPEMUL(y,rhs.f[13])+VERTTYPEMUL(z,rhs.f[14])+VERTTYPEMUL(w,rhs.f[15]); |
| x = tx; |
| y = ty; |
| z = tz; |
| return *this; |
| } |
| |
| /*!*************************************************************************** |
| ** PVRTMat3 3x3 matrix |
| ****************************************************************************/ |
| /*!*************************************************************************** |
| @Function PVRTMat3 |
| @Input mat a PVRTMat4 |
| @Description constructor to form a PVRTMat3 from a PVRTMat4 |
| ****************************************************************************/ |
| PVRTMat3::PVRTMat3(const PVRTMat4& mat) |
| { |
| VERTTYPE *dest = (VERTTYPE*)f, *src = (VERTTYPE*)mat.f; |
| for(int i=0;i<3;i++) |
| { |
| for(int j=0;j<3;j++) |
| { |
| (*dest++) = (*src++); |
| } |
| src++; |
| } |
| } |
| |
| /*!*************************************************************************** |
| @Function RotationX |
| @Input angle the angle of rotation |
| @Returns rotation matrix |
| @Description generates a 3x3 rotation matrix about the X axis |
| ****************************************************************************/ |
| PVRTMat3 PVRTMat3::RotationX(VERTTYPE angle) |
| { |
| PVRTMat4 out; |
| PVRTMatrixRotationX(out,angle); |
| return PVRTMat3(out); |
| } |
| /*!*************************************************************************** |
| @Function RotationY |
| @Input angle the angle of rotation |
| @Returns rotation matrix |
| @Description generates a 3x3 rotation matrix about the Y axis |
| ****************************************************************************/ |
| PVRTMat3 PVRTMat3::RotationY(VERTTYPE angle) |
| { |
| PVRTMat4 out; |
| PVRTMatrixRotationY(out,angle); |
| return PVRTMat3(out); |
| } |
| /*!*************************************************************************** |
| @Function RotationZ |
| @Input angle the angle of rotation |
| @Returns rotation matrix |
| @Description generates a 3x3 rotation matrix about the Z axis |
| ****************************************************************************/ |
| PVRTMat3 PVRTMat3::RotationZ(VERTTYPE angle) |
| { |
| PVRTMat4 out; |
| PVRTMatrixRotationZ(out,angle); |
| return PVRTMat3(out); |
| } |
| |
| |
| /*!*************************************************************************** |
| ** PVRTMat4 4x4 matrix |
| ****************************************************************************/ |
| /*!*************************************************************************** |
| @Function RotationX |
| @Input angle the angle of rotation |
| @Returns rotation matrix |
| @Description generates a 4x4 rotation matrix about the X axis |
| ****************************************************************************/ |
| PVRTMat4 PVRTMat4::RotationX(VERTTYPE angle) |
| { |
| PVRTMat4 out; |
| PVRTMatrixRotationX(out,angle); |
| return out; |
| } |
| /*!*************************************************************************** |
| @Function RotationY |
| @Input angle the angle of rotation |
| @Returns rotation matrix |
| @Description generates a 4x4 rotation matrix about the Y axis |
| ****************************************************************************/ |
| PVRTMat4 PVRTMat4::RotationY(VERTTYPE angle) |
| { |
| PVRTMat4 out; |
| PVRTMatrixRotationY(out,angle); |
| return out; |
| } |
| /*!*************************************************************************** |
| @Function RotationZ |
| @Input angle the angle of rotation |
| @Returns rotation matrix |
| @Description generates a 4x4 rotation matrix about the Z axis |
| ****************************************************************************/ |
| PVRTMat4 PVRTMat4::RotationZ(VERTTYPE angle) |
| { |
| PVRTMat4 out; |
| PVRTMatrixRotationZ(out,angle); |
| return out; |
| } |
| |
| /*!*************************************************************************** |
| @Function * |
| @Input rhs another PVRTMat4 |
| @Returns result of multiplication |
| @Description Matrix multiplication of two 4x4 matrices. |
| *****************************************************************************/ |
| PVRTMat4 PVRTMat4::operator*(const PVRTMat4& rhs) const |
| { |
| PVRTMat4 out; |
| // col 1 |
| out.f[0] = VERTTYPEMUL(f[0],rhs.f[0])+VERTTYPEMUL(f[4],rhs.f[1])+VERTTYPEMUL(f[8],rhs.f[2])+VERTTYPEMUL(f[12],rhs.f[3]); |
| out.f[1] = VERTTYPEMUL(f[1],rhs.f[0])+VERTTYPEMUL(f[5],rhs.f[1])+VERTTYPEMUL(f[9],rhs.f[2])+VERTTYPEMUL(f[13],rhs.f[3]); |
| out.f[2] = VERTTYPEMUL(f[2],rhs.f[0])+VERTTYPEMUL(f[6],rhs.f[1])+VERTTYPEMUL(f[10],rhs.f[2])+VERTTYPEMUL(f[14],rhs.f[3]); |
| out.f[3] = VERTTYPEMUL(f[3],rhs.f[0])+VERTTYPEMUL(f[7],rhs.f[1])+VERTTYPEMUL(f[11],rhs.f[2])+VERTTYPEMUL(f[15],rhs.f[3]); |
| |
| // col 2 |
| out.f[4] = VERTTYPEMUL(f[0],rhs.f[4])+VERTTYPEMUL(f[4],rhs.f[5])+VERTTYPEMUL(f[8],rhs.f[6])+VERTTYPEMUL(f[12],rhs.f[7]); |
| out.f[5] = VERTTYPEMUL(f[1],rhs.f[4])+VERTTYPEMUL(f[5],rhs.f[5])+VERTTYPEMUL(f[9],rhs.f[6])+VERTTYPEMUL(f[13],rhs.f[7]); |
| out.f[6] = VERTTYPEMUL(f[2],rhs.f[4])+VERTTYPEMUL(f[6],rhs.f[5])+VERTTYPEMUL(f[10],rhs.f[6])+VERTTYPEMUL(f[14],rhs.f[7]); |
| out.f[7] = VERTTYPEMUL(f[3],rhs.f[4])+VERTTYPEMUL(f[7],rhs.f[5])+VERTTYPEMUL(f[11],rhs.f[6])+VERTTYPEMUL(f[15],rhs.f[7]); |
| |
| // col3 |
| out.f[8] = VERTTYPEMUL(f[0],rhs.f[8])+VERTTYPEMUL(f[4],rhs.f[9])+VERTTYPEMUL(f[8],rhs.f[10])+VERTTYPEMUL(f[12],rhs.f[11]); |
| out.f[9] = VERTTYPEMUL(f[1],rhs.f[8])+VERTTYPEMUL(f[5],rhs.f[9])+VERTTYPEMUL(f[9],rhs.f[10])+VERTTYPEMUL(f[13],rhs.f[11]); |
| out.f[10] = VERTTYPEMUL(f[2],rhs.f[8])+VERTTYPEMUL(f[6],rhs.f[9])+VERTTYPEMUL(f[10],rhs.f[10])+VERTTYPEMUL(f[14],rhs.f[11]); |
| out.f[11] = VERTTYPEMUL(f[3],rhs.f[8])+VERTTYPEMUL(f[7],rhs.f[9])+VERTTYPEMUL(f[11],rhs.f[10])+VERTTYPEMUL(f[15],rhs.f[11]); |
| |
| // col3 |
| out.f[12] = VERTTYPEMUL(f[0],rhs.f[12])+VERTTYPEMUL(f[4],rhs.f[13])+VERTTYPEMUL(f[8],rhs.f[14])+VERTTYPEMUL(f[12],rhs.f[15]); |
| out.f[13] = VERTTYPEMUL(f[1],rhs.f[12])+VERTTYPEMUL(f[5],rhs.f[13])+VERTTYPEMUL(f[9],rhs.f[14])+VERTTYPEMUL(f[13],rhs.f[15]); |
| out.f[14] = VERTTYPEMUL(f[2],rhs.f[12])+VERTTYPEMUL(f[6],rhs.f[13])+VERTTYPEMUL(f[10],rhs.f[14])+VERTTYPEMUL(f[14],rhs.f[15]); |
| out.f[15] = VERTTYPEMUL(f[3],rhs.f[12])+VERTTYPEMUL(f[7],rhs.f[13])+VERTTYPEMUL(f[11],rhs.f[14])+VERTTYPEMUL(f[15],rhs.f[15]); |
| return out; |
| } |
| |
| |
| /*!*************************************************************************** |
| @Function inverse |
| @Returns inverse mat4 |
| @Description Calculates multiplicative inverse of this matrix |
| The matrix must be of the form : |
| A 0 |
| C 1 |
| Where A is a 3x3 matrix and C is a 1x3 matrix. |
| *****************************************************************************/ |
| PVRTMat4 PVRTMat4::inverse() const |
| { |
| PVRTMat4 out; |
| VERTTYPE det_1; |
| VERTTYPE pos, neg, temp; |
| |
| /* Calculate the determinant of submatrix A and determine if the |
| the matrix is singular as limited by the double precision |
| floating-point data representation. */ |
| pos = neg = f2vt(0.0); |
| temp = VERTTYPEMUL(VERTTYPEMUL(f[ 0], f[ 5]), f[10]); |
| if (temp >= 0) pos += temp; else neg += temp; |
| temp = VERTTYPEMUL(VERTTYPEMUL(f[ 4], f[ 9]), f[ 2]); |
| if (temp >= 0) pos += temp; else neg += temp; |
| temp = VERTTYPEMUL(VERTTYPEMUL(f[ 8], f[ 1]), f[ 6]); |
| if (temp >= 0) pos += temp; else neg += temp; |
| temp = VERTTYPEMUL(VERTTYPEMUL(-f[ 8], f[ 5]), f[ 2]); |
| if (temp >= 0) pos += temp; else neg += temp; |
| temp = VERTTYPEMUL(VERTTYPEMUL(-f[ 4], f[ 1]), f[10]); |
| if (temp >= 0) pos += temp; else neg += temp; |
| temp = VERTTYPEMUL(VERTTYPEMUL(-f[ 0], f[ 9]), f[ 6]); |
| if (temp >= 0) pos += temp; else neg += temp; |
| det_1 = pos + neg; |
| |
| /* Is the submatrix A singular? */ |
| if (det_1 == f2vt(0.0)) //|| (VERTTYPEABS(det_1 / (pos - neg)) < 1.0e-15) |
| { |
| /* Matrix M has no inverse */ |
| _RPT0(_CRT_WARN, "Matrix has no inverse : singular matrix\n"); |
| } |
| else |
| { |
| /* Calculate inverse(A) = adj(A) / det(A) */ |
| //det_1 = 1.0 / det_1; |
| det_1 = VERTTYPEDIV(f2vt(1.0f), det_1); |
| out.f[ 0] = VERTTYPEMUL(( VERTTYPEMUL(f[ 5], f[10]) - VERTTYPEMUL(f[ 9], f[ 6]) ), det_1); |
| out.f[ 1] = - VERTTYPEMUL(( VERTTYPEMUL(f[ 1], f[10]) - VERTTYPEMUL(f[ 9], f[ 2]) ), det_1); |
| out.f[ 2] = VERTTYPEMUL(( VERTTYPEMUL(f[ 1], f[ 6]) - VERTTYPEMUL(f[ 5], f[ 2]) ), det_1); |
| out.f[ 4] = - VERTTYPEMUL(( VERTTYPEMUL(f[ 4], f[10]) - VERTTYPEMUL(f[ 8], f[ 6]) ), det_1); |
| out.f[ 5] = VERTTYPEMUL(( VERTTYPEMUL(f[ 0], f[10]) - VERTTYPEMUL(f[ 8], f[ 2]) ), det_1); |
| out.f[ 6] = - VERTTYPEMUL(( VERTTYPEMUL(f[ 0], f[ 6]) - VERTTYPEMUL(f[ 4], f[ 2]) ), det_1); |
| out.f[ 8] = VERTTYPEMUL(( VERTTYPEMUL(f[ 4], f[ 9]) - VERTTYPEMUL(f[ 8], f[ 5]) ), det_1); |
| out.f[ 9] = - VERTTYPEMUL(( VERTTYPEMUL(f[ 0], f[ 9]) - VERTTYPEMUL(f[ 8], f[ 1]) ), det_1); |
| out.f[10] = VERTTYPEMUL(( VERTTYPEMUL(f[ 0], f[ 5]) - VERTTYPEMUL(f[ 4], f[ 1]) ), det_1); |
| |
| /* Calculate -C * inverse(A) */ |
| out.f[12] = - ( VERTTYPEMUL(f[12], out.f[ 0]) + VERTTYPEMUL(f[13], out.f[ 4]) + VERTTYPEMUL(f[14], out.f[ 8]) ); |
| out.f[13] = - ( VERTTYPEMUL(f[12], out.f[ 1]) + VERTTYPEMUL(f[13], out.f[ 5]) + VERTTYPEMUL(f[14], out.f[ 9]) ); |
| out.f[14] = - ( VERTTYPEMUL(f[12], out.f[ 2]) + VERTTYPEMUL(f[13], out.f[ 6]) + VERTTYPEMUL(f[14], out.f[10]) ); |
| |
| /* Fill in last row */ |
| out.f[ 3] = f2vt(0.0f); |
| out.f[ 7] = f2vt(0.0f); |
| out.f[11] = f2vt(0.0f); |
| out.f[15] = f2vt(1.0f); |
| } |
| |
| return out; |
| } |
| |
| /*!*************************************************************************** |
| @Function PVRTLinearEqSolve |
| @Input pSrc 2D array of floats. 4 Eq linear problem is 5x4 |
| matrix, constants in first column |
| @Input nCnt Number of equations to solve |
| @Output pRes Result |
| @Description Solves 'nCnt' simultaneous equations of 'nCnt' variables. |
| pRes should be an array large enough to contain the |
| results: the values of the 'nCnt' variables. |
| This fn recursively uses Gaussian Elimination. |
| *****************************************************************************/ |
| void PVRTLinearEqSolve(VERTTYPE * const pRes, VERTTYPE ** const pSrc, const int nCnt) |
| { |
| int i, j, k; |
| VERTTYPE f; |
| |
| if (nCnt == 1) |
| { |
| _ASSERT(pSrc[0][1] != 0); |
| pRes[0] = VERTTYPEDIV(pSrc[0][0], pSrc[0][1]); |
| return; |
| } |
| |
| // Loop backwards in an attempt avoid the need to swap rows |
| i = nCnt; |
| while(i) |
| { |
| --i; |
| |
| if(pSrc[i][nCnt] != f2vt(0.0f)) |
| { |
| // Row i can be used to zero the other rows; let's move it to the bottom |
| if(i != (nCnt-1)) |
| { |
| for(j = 0; j <= nCnt; ++j) |
| { |
| // Swap the two values |
| f = pSrc[nCnt-1][j]; |
| pSrc[nCnt-1][j] = pSrc[i][j]; |
| pSrc[i][j] = f; |
| } |
| } |
| |
| // Now zero the last columns of the top rows |
| for(j = 0; j < (nCnt-1); ++j) |
| { |
| _ASSERT(pSrc[nCnt-1][nCnt] != f2vt(0.0f)); |
| f = VERTTYPEDIV(pSrc[j][nCnt], pSrc[nCnt-1][nCnt]); |
| |
| // No need to actually calculate a zero for the final column |
| for(k = 0; k < nCnt; ++k) |
| { |
| pSrc[j][k] -= VERTTYPEMUL(f, pSrc[nCnt-1][k]); |
| } |
| } |
| |
| break; |
| } |
| } |
| |
| // Solve the top-left sub matrix |
| PVRTLinearEqSolve(pRes, pSrc, nCnt - 1); |
| |
| // Now calc the solution for the bottom row |
| f = pSrc[nCnt-1][0]; |
| for(k = 1; k < nCnt; ++k) |
| { |
| f -= VERTTYPEMUL(pSrc[nCnt-1][k], pRes[k-1]); |
| } |
| _ASSERT(pSrc[nCnt-1][nCnt] != f2vt(0)); |
| f = VERTTYPEDIV(f, pSrc[nCnt-1][nCnt]); |
| pRes[nCnt-1] = f; |
| } |
| |
| /***************************************************************************** |
| End of file (PVRTVector.cpp) |
| *****************************************************************************/ |
| |