| // Copyright 2018 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "VkPipeline.hpp" |
| #include "VkPipelineLayout.hpp" |
| #include "VkShaderModule.hpp" |
| #include "VkRenderPass.hpp" |
| #include "Pipeline/ComputeProgram.hpp" |
| #include "Pipeline/SpirvShader.hpp" |
| |
| #include "spirv-tools/optimizer.hpp" |
| |
| #include <iostream> |
| |
| namespace |
| { |
| |
| sw::StreamType getStreamType(VkFormat format) |
| { |
| switch(format) |
| { |
| case VK_FORMAT_R8_UNORM: |
| case VK_FORMAT_R8G8_UNORM: |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_R8_UINT: |
| case VK_FORMAT_R8G8_UINT: |
| case VK_FORMAT_R8G8B8A8_UINT: |
| case VK_FORMAT_A8B8G8R8_UNORM_PACK32: |
| case VK_FORMAT_A8B8G8R8_UINT_PACK32: |
| return sw::STREAMTYPE_BYTE; |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| return sw::STREAMTYPE_COLOR; |
| case VK_FORMAT_R8_SNORM: |
| case VK_FORMAT_R8_SINT: |
| case VK_FORMAT_R8G8_SNORM: |
| case VK_FORMAT_R8G8_SINT: |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_R8G8B8A8_SINT: |
| case VK_FORMAT_A8B8G8R8_SNORM_PACK32: |
| case VK_FORMAT_A8B8G8R8_SINT_PACK32: |
| return sw::STREAMTYPE_SBYTE; |
| case VK_FORMAT_A2B10G10R10_UNORM_PACK32: |
| return sw::STREAMTYPE_2_10_10_10_UINT; |
| case VK_FORMAT_R16_UNORM: |
| case VK_FORMAT_R16_UINT: |
| case VK_FORMAT_R16G16_UNORM: |
| case VK_FORMAT_R16G16_UINT: |
| case VK_FORMAT_R16G16B16A16_UNORM: |
| case VK_FORMAT_R16G16B16A16_UINT: |
| return sw::STREAMTYPE_USHORT; |
| case VK_FORMAT_R16_SNORM: |
| case VK_FORMAT_R16_SINT: |
| case VK_FORMAT_R16G16_SNORM: |
| case VK_FORMAT_R16G16_SINT: |
| case VK_FORMAT_R16G16B16A16_SNORM: |
| case VK_FORMAT_R16G16B16A16_SINT: |
| return sw::STREAMTYPE_SHORT; |
| case VK_FORMAT_R16_SFLOAT: |
| case VK_FORMAT_R16G16_SFLOAT: |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| return sw::STREAMTYPE_HALF; |
| case VK_FORMAT_R32_UINT: |
| case VK_FORMAT_R32G32_UINT: |
| case VK_FORMAT_R32G32B32_UINT: |
| case VK_FORMAT_R32G32B32A32_UINT: |
| return sw::STREAMTYPE_UINT; |
| case VK_FORMAT_R32_SINT: |
| case VK_FORMAT_R32G32_SINT: |
| case VK_FORMAT_R32G32B32_SINT: |
| case VK_FORMAT_R32G32B32A32_SINT: |
| return sw::STREAMTYPE_INT; |
| case VK_FORMAT_R32_SFLOAT: |
| case VK_FORMAT_R32G32_SFLOAT: |
| case VK_FORMAT_R32G32B32_SFLOAT: |
| case VK_FORMAT_R32G32B32A32_SFLOAT: |
| return sw::STREAMTYPE_FLOAT; |
| default: |
| UNIMPLEMENTED("format"); |
| } |
| |
| return sw::STREAMTYPE_BYTE; |
| } |
| |
| uint32_t getNumberOfChannels(VkFormat format) |
| { |
| switch(format) |
| { |
| case VK_FORMAT_R8_UNORM: |
| case VK_FORMAT_R8_SNORM: |
| case VK_FORMAT_R8_UINT: |
| case VK_FORMAT_R8_SINT: |
| case VK_FORMAT_R16_UNORM: |
| case VK_FORMAT_R16_SNORM: |
| case VK_FORMAT_R16_UINT: |
| case VK_FORMAT_R16_SINT: |
| case VK_FORMAT_R16_SFLOAT: |
| case VK_FORMAT_R32_UINT: |
| case VK_FORMAT_R32_SINT: |
| case VK_FORMAT_R32_SFLOAT: |
| return 1; |
| case VK_FORMAT_R8G8_UNORM: |
| case VK_FORMAT_R8G8_SNORM: |
| case VK_FORMAT_R8G8_UINT: |
| case VK_FORMAT_R8G8_SINT: |
| case VK_FORMAT_R16G16_UNORM: |
| case VK_FORMAT_R16G16_SNORM: |
| case VK_FORMAT_R16G16_UINT: |
| case VK_FORMAT_R16G16_SINT: |
| case VK_FORMAT_R16G16_SFLOAT: |
| case VK_FORMAT_R32G32_UINT: |
| case VK_FORMAT_R32G32_SINT: |
| case VK_FORMAT_R32G32_SFLOAT: |
| return 2; |
| case VK_FORMAT_R32G32B32_UINT: |
| case VK_FORMAT_R32G32B32_SINT: |
| case VK_FORMAT_R32G32B32_SFLOAT: |
| return 3; |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_R8G8B8A8_UINT: |
| case VK_FORMAT_R8G8B8A8_SINT: |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_A8B8G8R8_UNORM_PACK32: |
| case VK_FORMAT_A8B8G8R8_SNORM_PACK32: |
| case VK_FORMAT_A8B8G8R8_UINT_PACK32: |
| case VK_FORMAT_A8B8G8R8_SINT_PACK32: |
| case VK_FORMAT_A2B10G10R10_UNORM_PACK32: |
| case VK_FORMAT_R16G16B16A16_UNORM: |
| case VK_FORMAT_R16G16B16A16_SNORM: |
| case VK_FORMAT_R16G16B16A16_UINT: |
| case VK_FORMAT_R16G16B16A16_SINT: |
| case VK_FORMAT_R16G16B16A16_SFLOAT: |
| case VK_FORMAT_R32G32B32A32_UINT: |
| case VK_FORMAT_R32G32B32A32_SINT: |
| case VK_FORMAT_R32G32B32A32_SFLOAT: |
| return 4; |
| default: |
| UNIMPLEMENTED("format"); |
| } |
| |
| return 0; |
| } |
| |
| // preprocessSpirv applies and freezes specializations into constants, inlines |
| // all functions and performs constant folding. |
| std::vector<uint32_t> preprocessSpirv( |
| std::vector<uint32_t> const &code, |
| VkSpecializationInfo const *specializationInfo) |
| { |
| spvtools::Optimizer opt{SPV_ENV_VULKAN_1_1}; |
| |
| opt.SetMessageConsumer([](spv_message_level_t level, const char*, const spv_position_t& p, const char* m) { |
| const char* category = ""; |
| switch (level) |
| { |
| case SPV_MSG_FATAL: category = "FATAL"; break; |
| case SPV_MSG_INTERNAL_ERROR: category = "INTERNAL_ERROR"; break; |
| case SPV_MSG_ERROR: category = "ERROR"; break; |
| case SPV_MSG_WARNING: category = "WARNING"; break; |
| case SPV_MSG_INFO: category = "INFO"; break; |
| case SPV_MSG_DEBUG: category = "DEBUG"; break; |
| } |
| vk::trace("%s: %d:%d %s", category, int(p.line), int(p.column), m); |
| }); |
| |
| |
| opt.RegisterPass(spvtools::CreateDeadBranchElimPass()); // Required for MergeReturnPass |
| opt.RegisterPass(spvtools::CreateMergeReturnPass()); |
| opt.RegisterPass(spvtools::CreateInlineExhaustivePass()); |
| opt.RegisterPass(spvtools::CreateEliminateDeadFunctionsPass()); |
| |
| // If the pipeline uses specialization, apply the specializations before freezing |
| if (specializationInfo) |
| { |
| std::unordered_map<uint32_t, std::vector<uint32_t>> specializations; |
| for (auto i = 0u; i < specializationInfo->mapEntryCount; ++i) |
| { |
| auto const &e = specializationInfo->pMapEntries[i]; |
| auto value_ptr = |
| static_cast<uint32_t const *>(specializationInfo->pData) + e.offset / sizeof(uint32_t); |
| specializations.emplace(e.constantID, |
| std::vector<uint32_t>{value_ptr, value_ptr + e.size / sizeof(uint32_t)}); |
| } |
| opt.RegisterPass(spvtools::CreateSetSpecConstantDefaultValuePass(specializations)); |
| } |
| // Freeze specialization constants into normal constants, and propagate through |
| opt.RegisterPass(spvtools::CreateFreezeSpecConstantValuePass()); |
| opt.RegisterPass(spvtools::CreateFoldSpecConstantOpAndCompositePass()); |
| |
| // Basic optimization passes to primarily address glslang's love of loads & |
| // stores. Significantly reduces time spent in LLVM passes and codegen. |
| opt.RegisterPass(spvtools::CreateLocalAccessChainConvertPass()); |
| opt.RegisterPass(spvtools::CreateLocalSingleBlockLoadStoreElimPass()); |
| opt.RegisterPass(spvtools::CreateLocalSingleStoreElimPass()); |
| opt.RegisterPass(spvtools::CreateBlockMergePass()); |
| opt.RegisterPass(spvtools::CreateLocalMultiStoreElimPass()); |
| opt.RegisterPass(spvtools::CreateSSARewritePass()); |
| |
| std::vector<uint32_t> optimized; |
| opt.Run(code.data(), code.size(), &optimized); |
| |
| if (false) { |
| spvtools::SpirvTools core(SPV_ENV_VULKAN_1_1); |
| std::string preOpt; |
| core.Disassemble(code, &preOpt, SPV_BINARY_TO_TEXT_OPTION_NONE); |
| std::string postOpt; |
| core.Disassemble(optimized, &postOpt, SPV_BINARY_TO_TEXT_OPTION_NONE); |
| std::cout << "PRE-OPT: " << preOpt << std::endl |
| << "POST-OPT: " << postOpt << std::endl; |
| } |
| |
| return optimized; |
| } |
| |
| } // anonymous namespace |
| |
| namespace vk |
| { |
| |
| Pipeline::Pipeline(PipelineLayout const *layout) : layout(layout) {} |
| |
| GraphicsPipeline::GraphicsPipeline(const VkGraphicsPipelineCreateInfo* pCreateInfo, void* mem) |
| : Pipeline(Cast(pCreateInfo->layout)) |
| { |
| if(((pCreateInfo->flags & |
| ~(VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT | |
| VK_PIPELINE_CREATE_DERIVATIVE_BIT | |
| VK_PIPELINE_CREATE_ALLOW_DERIVATIVES_BIT)) != 0) || |
| (pCreateInfo->pTessellationState != nullptr)) |
| { |
| UNIMPLEMENTED("pCreateInfo settings"); |
| } |
| |
| if(pCreateInfo->pDynamicState) |
| { |
| for(uint32_t i = 0; i < pCreateInfo->pDynamicState->dynamicStateCount; i++) |
| { |
| VkDynamicState dynamicState = pCreateInfo->pDynamicState->pDynamicStates[i]; |
| switch(dynamicState) |
| { |
| case VK_DYNAMIC_STATE_VIEWPORT: |
| case VK_DYNAMIC_STATE_SCISSOR: |
| case VK_DYNAMIC_STATE_LINE_WIDTH: |
| case VK_DYNAMIC_STATE_DEPTH_BIAS: |
| case VK_DYNAMIC_STATE_BLEND_CONSTANTS: |
| case VK_DYNAMIC_STATE_DEPTH_BOUNDS: |
| case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: |
| case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: |
| case VK_DYNAMIC_STATE_STENCIL_REFERENCE: |
| ASSERT(dynamicState < (sizeof(dynamicStateFlags) * 8)); |
| dynamicStateFlags |= (1 << dynamicState); |
| break; |
| default: |
| UNIMPLEMENTED("dynamic state"); |
| } |
| } |
| } |
| |
| const VkPipelineVertexInputStateCreateInfo* vertexInputState = pCreateInfo->pVertexInputState; |
| if(vertexInputState->flags != 0) |
| { |
| UNIMPLEMENTED("vertexInputState->flags"); |
| } |
| |
| // Context must always have a PipelineLayout set. |
| context.pipelineLayout = layout; |
| |
| // Temporary in-binding-order representation of buffer strides, to be consumed below |
| // when considering attributes. TODO: unfuse buffers from attributes in backend, is old GL model. |
| uint32_t vertexStrides[MAX_VERTEX_INPUT_BINDINGS]; |
| uint32_t instanceStrides[MAX_VERTEX_INPUT_BINDINGS]; |
| for(uint32_t i = 0; i < vertexInputState->vertexBindingDescriptionCount; i++) |
| { |
| auto const & desc = vertexInputState->pVertexBindingDescriptions[i]; |
| vertexStrides[desc.binding] = desc.inputRate == VK_VERTEX_INPUT_RATE_VERTEX ? desc.stride : 0; |
| instanceStrides[desc.binding] = desc.inputRate == VK_VERTEX_INPUT_RATE_INSTANCE ? desc.stride : 0; |
| } |
| |
| for(uint32_t i = 0; i < vertexInputState->vertexAttributeDescriptionCount; i++) |
| { |
| auto const & desc = vertexInputState->pVertexAttributeDescriptions[i]; |
| sw::Stream& input = context.input[desc.location]; |
| input.count = getNumberOfChannels(desc.format); |
| input.type = getStreamType(desc.format); |
| input.normalized = !vk::Format(desc.format).isNonNormalizedInteger(); |
| input.offset = desc.offset; |
| input.binding = desc.binding; |
| input.vertexStride = vertexStrides[desc.binding]; |
| input.instanceStride = instanceStrides[desc.binding]; |
| } |
| |
| const VkPipelineInputAssemblyStateCreateInfo* assemblyState = pCreateInfo->pInputAssemblyState; |
| if(assemblyState->flags != 0) |
| { |
| UNIMPLEMENTED("pCreateInfo->pInputAssemblyState settings"); |
| } |
| |
| primitiveRestartEnable = assemblyState->primitiveRestartEnable; |
| context.topology = assemblyState->topology; |
| |
| const VkPipelineViewportStateCreateInfo* viewportState = pCreateInfo->pViewportState; |
| if(viewportState) |
| { |
| if((viewportState->flags != 0) || |
| (viewportState->viewportCount != 1) || |
| (viewportState->scissorCount != 1)) |
| { |
| UNIMPLEMENTED("pCreateInfo->pViewportState settings"); |
| } |
| |
| if(!hasDynamicState(VK_DYNAMIC_STATE_SCISSOR)) |
| { |
| scissor = viewportState->pScissors[0]; |
| } |
| |
| if(!hasDynamicState(VK_DYNAMIC_STATE_VIEWPORT)) |
| { |
| viewport = viewportState->pViewports[0]; |
| } |
| } |
| |
| const VkPipelineRasterizationStateCreateInfo* rasterizationState = pCreateInfo->pRasterizationState; |
| if((rasterizationState->flags != 0) || |
| (rasterizationState->depthClampEnable != 0) || |
| (rasterizationState->polygonMode != VK_POLYGON_MODE_FILL)) |
| { |
| UNIMPLEMENTED("pCreateInfo->pRasterizationState settings"); |
| } |
| |
| context.rasterizerDiscard = (rasterizationState->rasterizerDiscardEnable == VK_TRUE); |
| context.cullMode = rasterizationState->cullMode; |
| context.frontFacingCCW = rasterizationState->frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE; |
| context.depthBias = (rasterizationState->depthBiasEnable ? rasterizationState->depthBiasConstantFactor : 0.0f); |
| context.slopeDepthBias = (rasterizationState->depthBiasEnable ? rasterizationState->depthBiasSlopeFactor : 0.0f); |
| |
| const VkPipelineMultisampleStateCreateInfo* multisampleState = pCreateInfo->pMultisampleState; |
| if(multisampleState) |
| { |
| switch (multisampleState->rasterizationSamples) { |
| case VK_SAMPLE_COUNT_1_BIT: |
| context.sampleCount = 1; |
| break; |
| case VK_SAMPLE_COUNT_4_BIT: |
| context.sampleCount = 4; |
| break; |
| default: |
| UNIMPLEMENTED("Unsupported sample count"); |
| } |
| |
| if (multisampleState->pSampleMask) |
| context.sampleMask = multisampleState->pSampleMask[0]; |
| |
| context.alphaToCoverage = (multisampleState->alphaToCoverageEnable == VK_TRUE); |
| |
| if((multisampleState->flags != 0) || |
| (multisampleState->sampleShadingEnable != 0) || |
| (multisampleState->alphaToOneEnable != 0)) |
| { |
| UNIMPLEMENTED("multisampleState"); |
| } |
| } |
| else |
| { |
| context.sampleCount = 1; |
| } |
| |
| const VkPipelineDepthStencilStateCreateInfo* depthStencilState = pCreateInfo->pDepthStencilState; |
| if(depthStencilState) |
| { |
| if((depthStencilState->flags != 0) || |
| (depthStencilState->depthBoundsTestEnable != 0)) |
| { |
| UNIMPLEMENTED("depthStencilState"); |
| } |
| |
| context.depthBoundsTestEnable = (depthStencilState->depthBoundsTestEnable == VK_TRUE); |
| context.depthBufferEnable = (depthStencilState->depthTestEnable == VK_TRUE); |
| context.depthWriteEnable = (depthStencilState->depthWriteEnable == VK_TRUE); |
| context.depthCompareMode = depthStencilState->depthCompareOp; |
| |
| context.stencilEnable = context.twoSidedStencil = (depthStencilState->stencilTestEnable == VK_TRUE); |
| if(context.stencilEnable) |
| { |
| context.frontStencil = depthStencilState->front; |
| context.backStencil = depthStencilState->back; |
| } |
| } |
| |
| const VkPipelineColorBlendStateCreateInfo* colorBlendState = pCreateInfo->pColorBlendState; |
| if(colorBlendState) |
| { |
| if((colorBlendState->flags != 0) || |
| ((colorBlendState->logicOpEnable != 0) && |
| (colorBlendState->attachmentCount > 1))) |
| { |
| UNIMPLEMENTED("colorBlendState"); |
| } |
| |
| if(!hasDynamicState(VK_DYNAMIC_STATE_BLEND_CONSTANTS)) |
| { |
| blendConstants.r = colorBlendState->blendConstants[0]; |
| blendConstants.g = colorBlendState->blendConstants[1]; |
| blendConstants.b = colorBlendState->blendConstants[2]; |
| blendConstants.a = colorBlendState->blendConstants[3]; |
| } |
| |
| if(colorBlendState->attachmentCount == 1) |
| { |
| const VkPipelineColorBlendAttachmentState& attachment = colorBlendState->pAttachments[0]; |
| context.setColorWriteMask(0, attachment.colorWriteMask); |
| context.alphaBlendEnable = (attachment.blendEnable == VK_TRUE); |
| context.separateAlphaBlendEnable = (attachment.alphaBlendOp != attachment.colorBlendOp) || |
| (attachment.dstAlphaBlendFactor != attachment.dstColorBlendFactor) || |
| (attachment.srcAlphaBlendFactor != attachment.srcColorBlendFactor); |
| context.blendOperationStateAlpha = attachment.alphaBlendOp; |
| context.blendOperationState = attachment.colorBlendOp; |
| context.destBlendFactorStateAlpha = attachment.dstAlphaBlendFactor; |
| context.destBlendFactorState = attachment.dstColorBlendFactor; |
| context.sourceBlendFactorStateAlpha = attachment.srcAlphaBlendFactor; |
| context.sourceBlendFactorState = attachment.srcColorBlendFactor; |
| } |
| } |
| } |
| |
| void GraphicsPipeline::destroyPipeline(const VkAllocationCallbacks* pAllocator) |
| { |
| delete vertexShader; |
| delete fragmentShader; |
| } |
| |
| size_t GraphicsPipeline::ComputeRequiredAllocationSize(const VkGraphicsPipelineCreateInfo* pCreateInfo) |
| { |
| return 0; |
| } |
| |
| void GraphicsPipeline::compileShaders(const VkAllocationCallbacks* pAllocator, const VkGraphicsPipelineCreateInfo* pCreateInfo) |
| { |
| for (auto pStage = pCreateInfo->pStages; pStage != pCreateInfo->pStages + pCreateInfo->stageCount; pStage++) |
| { |
| if (pStage->flags != 0) |
| { |
| UNIMPLEMENTED("pStage->flags"); |
| } |
| |
| auto module = Cast(pStage->module); |
| auto code = preprocessSpirv(module->getCode(), pStage->pSpecializationInfo); |
| |
| // FIXME (b/119409619): use an allocator here so we can control all memory allocations |
| // TODO: also pass in any pipeline state which will affect shader compilation |
| auto spirvShader = new sw::SpirvShader{pStage, code, Cast(pCreateInfo->renderPass), pCreateInfo->subpass}; |
| |
| switch (pStage->stage) |
| { |
| case VK_SHADER_STAGE_VERTEX_BIT: |
| ASSERT(vertexShader == nullptr); |
| context.vertexShader = vertexShader = spirvShader; |
| break; |
| |
| case VK_SHADER_STAGE_FRAGMENT_BIT: |
| ASSERT(fragmentShader == nullptr); |
| context.pixelShader = fragmentShader = spirvShader; |
| break; |
| |
| default: |
| UNIMPLEMENTED("Unsupported stage"); |
| } |
| } |
| } |
| |
| uint32_t GraphicsPipeline::computePrimitiveCount(uint32_t vertexCount) const |
| { |
| switch(context.topology) |
| { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| return vertexCount; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| return vertexCount / 2; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| return vertexCount - 1; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| return vertexCount / 3; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| return vertexCount - 2; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| return vertexCount - 2; |
| default: |
| UNIMPLEMENTED("context.topology %d", int(context.topology)); |
| } |
| |
| return 0; |
| } |
| |
| const sw::Context& GraphicsPipeline::getContext() const |
| { |
| return context; |
| } |
| |
| const VkRect2D& GraphicsPipeline::getScissor() const |
| { |
| return scissor; |
| } |
| |
| const VkViewport& GraphicsPipeline::getViewport() const |
| { |
| return viewport; |
| } |
| |
| const sw::Color<float>& GraphicsPipeline::getBlendConstants() const |
| { |
| return blendConstants; |
| } |
| |
| bool GraphicsPipeline::hasDynamicState(VkDynamicState dynamicState) const |
| { |
| return (dynamicStateFlags & (1 << dynamicState)) != 0; |
| } |
| |
| ComputePipeline::ComputePipeline(const VkComputePipelineCreateInfo* pCreateInfo, void* mem) |
| : Pipeline(Cast(pCreateInfo->layout)) |
| { |
| } |
| |
| void ComputePipeline::destroyPipeline(const VkAllocationCallbacks* pAllocator) |
| { |
| delete shader; |
| delete program; |
| } |
| |
| size_t ComputePipeline::ComputeRequiredAllocationSize(const VkComputePipelineCreateInfo* pCreateInfo) |
| { |
| return 0; |
| } |
| |
| void ComputePipeline::compileShaders(const VkAllocationCallbacks* pAllocator, const VkComputePipelineCreateInfo* pCreateInfo) |
| { |
| auto module = Cast(pCreateInfo->stage.module); |
| |
| auto code = preprocessSpirv(module->getCode(), pCreateInfo->stage.pSpecializationInfo); |
| |
| ASSERT_OR_RETURN(code.size() > 0); |
| |
| ASSERT(shader == nullptr); |
| |
| // FIXME(b/119409619): use allocator. |
| shader = new sw::SpirvShader(&pCreateInfo->stage, code, nullptr, 0); |
| vk::DescriptorSet::Bindings descriptorSets; // FIXME(b/129523279): Delay code generation until invoke time. |
| program = new sw::ComputeProgram(shader, layout, descriptorSets); |
| program->generate(); |
| program->finalize(); |
| } |
| |
| void ComputePipeline::run(uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ, |
| vk::DescriptorSet::Bindings const &descriptorSets, |
| vk::DescriptorSet::DynamicOffsets const &descriptorDynamicOffsets, |
| sw::PushConstantStorage const &pushConstants) |
| { |
| ASSERT_OR_RETURN(program != nullptr); |
| program->run( |
| descriptorSets, descriptorDynamicOffsets, pushConstants, |
| groupCountX, groupCountY, groupCountZ); |
| } |
| |
| } // namespace vk |