| //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SelectionDAG::LegalizeVectors method. |
| // |
| // The vector legalizer looks for vector operations which might need to be |
| // scalarized and legalizes them. This is a separate step from Legalize because |
| // scalarizing can introduce illegal types. For example, suppose we have an |
| // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition |
| // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the |
| // operation, which introduces nodes with the illegal type i64 which must be |
| // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC; |
| // the operation must be unrolled, which introduces nodes with the illegal |
| // type i8 which must be promoted. |
| // |
| // This does not legalize vector manipulations like ISD::BUILD_VECTOR, |
| // or operations that happen to take a vector which are custom-lowered; |
| // the legalization for such operations never produces nodes |
| // with illegal types, so it's okay to put off legalizing them until |
| // SelectionDAG::Legalize runs. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Target/TargetLowering.h" |
| using namespace llvm; |
| |
| namespace { |
| class VectorLegalizer { |
| SelectionDAG& DAG; |
| const TargetLowering &TLI; |
| bool Changed; // Keep track of whether anything changed |
| |
| /// LegalizedNodes - For nodes that are of legal width, and that have more |
| /// than one use, this map indicates what regularized operand to use. This |
| /// allows us to avoid legalizing the same thing more than once. |
| DenseMap<SDValue, SDValue> LegalizedNodes; |
| |
| // Adds a node to the translation cache |
| void AddLegalizedOperand(SDValue From, SDValue To) { |
| LegalizedNodes.insert(std::make_pair(From, To)); |
| // If someone requests legalization of the new node, return itself. |
| if (From != To) |
| LegalizedNodes.insert(std::make_pair(To, To)); |
| } |
| |
| // Legalizes the given node |
| SDValue LegalizeOp(SDValue Op); |
| // Assuming the node is legal, "legalize" the results |
| SDValue TranslateLegalizeResults(SDValue Op, SDValue Result); |
| // Implements unrolling a VSETCC. |
| SDValue UnrollVSETCC(SDValue Op); |
| // Implements expansion for FNEG; falls back to UnrollVectorOp if FSUB |
| // isn't legal. |
| // Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if |
| // SINT_TO_FLOAT and SHR on vectors isn't legal. |
| SDValue ExpandUINT_TO_FLOAT(SDValue Op); |
| // Implement vselect in terms of XOR, AND, OR when blend is not supported |
| // by the target. |
| SDValue ExpandVSELECT(SDValue Op); |
| SDValue ExpandFNEG(SDValue Op); |
| // Implements vector promotion; this is essentially just bitcasting the |
| // operands to a different type and bitcasting the result back to the |
| // original type. |
| SDValue PromoteVectorOp(SDValue Op); |
| |
| public: |
| bool Run(); |
| VectorLegalizer(SelectionDAG& dag) : |
| DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {} |
| }; |
| |
| bool VectorLegalizer::Run() { |
| // The legalize process is inherently a bottom-up recursive process (users |
| // legalize their uses before themselves). Given infinite stack space, we |
| // could just start legalizing on the root and traverse the whole graph. In |
| // practice however, this causes us to run out of stack space on large basic |
| // blocks. To avoid this problem, compute an ordering of the nodes where each |
| // node is only legalized after all of its operands are legalized. |
| DAG.AssignTopologicalOrder(); |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I) |
| LegalizeOp(SDValue(I, 0)); |
| |
| // Finally, it's possible the root changed. Get the new root. |
| SDValue OldRoot = DAG.getRoot(); |
| assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?"); |
| DAG.setRoot(LegalizedNodes[OldRoot]); |
| |
| LegalizedNodes.clear(); |
| |
| // Remove dead nodes now. |
| DAG.RemoveDeadNodes(); |
| |
| return Changed; |
| } |
| |
| SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) { |
| // Generic legalization: just pass the operand through. |
| for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i) |
| AddLegalizedOperand(Op.getValue(i), Result.getValue(i)); |
| return Result.getValue(Op.getResNo()); |
| } |
| |
| SDValue VectorLegalizer::LegalizeOp(SDValue Op) { |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op); |
| if (I != LegalizedNodes.end()) return I->second; |
| |
| SDNode* Node = Op.getNode(); |
| |
| // Legalize the operands |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) |
| Ops.push_back(LegalizeOp(Node->getOperand(i))); |
| |
| SDValue Result = |
| SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops.data(), Ops.size()), 0); |
| |
| bool HasVectorValue = false; |
| for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end(); |
| J != E; |
| ++J) |
| HasVectorValue |= J->isVector(); |
| if (!HasVectorValue) |
| return TranslateLegalizeResults(Op, Result); |
| |
| EVT QueryType; |
| switch (Op.getOpcode()) { |
| default: |
| return TranslateLegalizeResults(Op, Result); |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::MUL: |
| case ISD::SDIV: |
| case ISD::UDIV: |
| case ISD::SREM: |
| case ISD::UREM: |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: |
| case ISD::ROTL: |
| case ISD::ROTR: |
| case ISD::CTTZ: |
| case ISD::CTLZ: |
| case ISD::CTPOP: |
| case ISD::SELECT: |
| case ISD::VSELECT: |
| case ISD::SELECT_CC: |
| case ISD::SETCC: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| case ISD::TRUNCATE: |
| case ISD::SIGN_EXTEND: |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: |
| case ISD::FNEG: |
| case ISD::FABS: |
| case ISD::FSQRT: |
| case ISD::FSIN: |
| case ISD::FCOS: |
| case ISD::FPOWI: |
| case ISD::FPOW: |
| case ISD::FLOG: |
| case ISD::FLOG2: |
| case ISD::FLOG10: |
| case ISD::FEXP: |
| case ISD::FEXP2: |
| case ISD::FCEIL: |
| case ISD::FTRUNC: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| case ISD::FFLOOR: |
| case ISD::SIGN_EXTEND_INREG: |
| QueryType = Node->getValueType(0); |
| break; |
| case ISD::FP_ROUND_INREG: |
| QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT(); |
| break; |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: |
| QueryType = Node->getOperand(0).getValueType(); |
| break; |
| } |
| |
| switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) { |
| case TargetLowering::Promote: |
| // "Promote" the operation by bitcasting |
| Result = PromoteVectorOp(Op); |
| Changed = true; |
| break; |
| case TargetLowering::Legal: break; |
| case TargetLowering::Custom: { |
| SDValue Tmp1 = TLI.LowerOperation(Op, DAG); |
| if (Tmp1.getNode()) { |
| Result = Tmp1; |
| break; |
| } |
| // FALL THROUGH |
| } |
| case TargetLowering::Expand: |
| if (Node->getOpcode() == ISD::VSELECT) |
| Result = ExpandVSELECT(Op); |
| else if (Node->getOpcode() == ISD::UINT_TO_FP) |
| Result = ExpandUINT_TO_FLOAT(Op); |
| else if (Node->getOpcode() == ISD::FNEG) |
| Result = ExpandFNEG(Op); |
| else if (Node->getOpcode() == ISD::SETCC) |
| Result = UnrollVSETCC(Op); |
| else |
| Result = DAG.UnrollVectorOp(Op.getNode()); |
| break; |
| } |
| |
| // Make sure that the generated code is itself legal. |
| if (Result != Op) { |
| Result = LegalizeOp(Result); |
| Changed = true; |
| } |
| |
| // Note that LegalizeOp may be reentered even from single-use nodes, which |
| // means that we always must cache transformed nodes. |
| AddLegalizedOperand(Op, Result); |
| return Result; |
| } |
| |
| SDValue VectorLegalizer::PromoteVectorOp(SDValue Op) { |
| // Vector "promotion" is basically just bitcasting and doing the operation |
| // in a different type. For example, x86 promotes ISD::AND on v2i32 to |
| // v1i64. |
| EVT VT = Op.getValueType(); |
| assert(Op.getNode()->getNumValues() == 1 && |
| "Can't promote a vector with multiple results!"); |
| EVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT); |
| DebugLoc dl = Op.getDebugLoc(); |
| SmallVector<SDValue, 4> Operands(Op.getNumOperands()); |
| |
| for (unsigned j = 0; j != Op.getNumOperands(); ++j) { |
| if (Op.getOperand(j).getValueType().isVector()) |
| Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j)); |
| else |
| Operands[j] = Op.getOperand(j); |
| } |
| |
| Op = DAG.getNode(Op.getOpcode(), dl, NVT, &Operands[0], Operands.size()); |
| |
| return DAG.getNode(ISD::BITCAST, dl, VT, Op); |
| } |
| |
| SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) { |
| // Implement VSELECT in terms of XOR, AND, OR |
| // on platforms which do not support blend natively. |
| EVT VT = Op.getOperand(0).getValueType(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| SDValue Mask = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue Op2 = Op.getOperand(2); |
| |
| // If we can't even use the basic vector operations of |
| // AND,OR,XOR, we will have to scalarize the op. |
| if (!TLI.isOperationLegalOrCustom(ISD::AND, VT) || |
| !TLI.isOperationLegalOrCustom(ISD::XOR, VT) || |
| !TLI.isOperationLegalOrCustom(ISD::OR, VT)) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| assert(VT.getSizeInBits() == Op.getOperand(1).getValueType().getSizeInBits() |
| && "Invalid mask size"); |
| // Bitcast the operands to be the same type as the mask. |
| // This is needed when we select between FP types because |
| // the mask is a vector of integers. |
| Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1); |
| Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2); |
| |
| SDValue AllOnes = DAG.getConstant( |
| APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT); |
| SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes); |
| |
| Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask); |
| Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask); |
| return DAG.getNode(ISD::OR, DL, VT, Op1, Op2); |
| } |
| |
| SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) { |
| EVT VT = Op.getOperand(0).getValueType(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| // Make sure that the SINT_TO_FP and SRL instructions are available. |
| if (!TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, VT) || |
| !TLI.isOperationLegalOrCustom(ISD::SRL, VT)) |
| return DAG.UnrollVectorOp(Op.getNode()); |
| |
| EVT SVT = VT.getScalarType(); |
| assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) && |
| "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide"); |
| |
| unsigned BW = SVT.getSizeInBits(); |
| SDValue HalfWord = DAG.getConstant(BW/2, VT); |
| |
| // Constants to clear the upper part of the word. |
| // Notice that we can also use SHL+SHR, but using a constant is slightly |
| // faster on x86. |
| uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF; |
| SDValue HalfWordMask = DAG.getConstant(HWMask, VT); |
| |
| // Two to the power of half-word-size. |
| SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType()); |
| |
| // Clear upper part of LO, lower HI |
| SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord); |
| SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask); |
| |
| // Convert hi and lo to floats |
| // Convert the hi part back to the upper values |
| SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI); |
| fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW); |
| SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO); |
| |
| // Add the two halves |
| return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO); |
| } |
| |
| |
| SDValue VectorLegalizer::ExpandFNEG(SDValue Op) { |
| if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) { |
| SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType()); |
| return DAG.getNode(ISD::FSUB, Op.getDebugLoc(), Op.getValueType(), |
| Zero, Op.getOperand(0)); |
| } |
| return DAG.UnrollVectorOp(Op.getNode()); |
| } |
| |
| SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) { |
| EVT VT = Op.getValueType(); |
| unsigned NumElems = VT.getVectorNumElements(); |
| EVT EltVT = VT.getVectorElementType(); |
| SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2); |
| EVT TmpEltVT = LHS.getValueType().getVectorElementType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SmallVector<SDValue, 8> Ops(NumElems); |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS, |
| DAG.getIntPtrConstant(i)); |
| SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS, |
| DAG.getIntPtrConstant(i)); |
| Ops[i] = DAG.getNode(ISD::SETCC, dl, TLI.getSetCCResultType(TmpEltVT), |
| LHSElem, RHSElem, CC); |
| Ops[i] = DAG.getNode(ISD::SELECT, dl, EltVT, Ops[i], |
| DAG.getConstant(APInt::getAllOnesValue |
| (EltVT.getSizeInBits()), EltVT), |
| DAG.getConstant(0, EltVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], NumElems); |
| } |
| |
| } |
| |
| bool SelectionDAG::LegalizeVectors() { |
| return VectorLegalizer(*this).Run(); |
| } |