| //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a linear scan register allocator. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| #include "LiveDebugVariables.h" |
| #include "LiveRangeEdit.h" |
| #include "VirtRegMap.h" |
| #include "VirtRegRewriter.h" |
| #include "RegisterClassInfo.h" |
| #include "Spiller.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Function.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/ADT/EquivalenceClasses.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <queue> |
| #include <memory> |
| #include <cmath> |
| |
| using namespace llvm; |
| |
| STATISTIC(NumIters , "Number of iterations performed"); |
| STATISTIC(NumBacktracks, "Number of times we had to backtrack"); |
| STATISTIC(NumCoalesce, "Number of copies coalesced"); |
| STATISTIC(NumDowngrade, "Number of registers downgraded"); |
| |
| static cl::opt<bool> |
| NewHeuristic("new-spilling-heuristic", |
| cl::desc("Use new spilling heuristic"), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> |
| TrivCoalesceEnds("trivial-coalesce-ends", |
| cl::desc("Attempt trivial coalescing of interval ends"), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> |
| AvoidWAWHazard("avoid-waw-hazard", |
| cl::desc("Avoid write-write hazards for some register classes"), |
| cl::init(false), cl::Hidden); |
| |
| static RegisterRegAlloc |
| linearscanRegAlloc("linearscan", "linear scan register allocator", |
| createLinearScanRegisterAllocator); |
| |
| namespace { |
| // When we allocate a register, add it to a fixed-size queue of |
| // registers to skip in subsequent allocations. This trades a small |
| // amount of register pressure and increased spills for flexibility in |
| // the post-pass scheduler. |
| // |
| // Note that in a the number of registers used for reloading spills |
| // will be one greater than the value of this option. |
| // |
| // One big limitation of this is that it doesn't differentiate between |
| // different register classes. So on x86-64, if there is xmm register |
| // pressure, it can caused fewer GPRs to be held in the queue. |
| static cl::opt<unsigned> |
| NumRecentlyUsedRegs("linearscan-skip-count", |
| cl::desc("Number of registers for linearscan to remember" |
| "to skip."), |
| cl::init(0), |
| cl::Hidden); |
| |
| struct RALinScan : public MachineFunctionPass { |
| static char ID; |
| RALinScan() : MachineFunctionPass(ID) { |
| initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); |
| initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); |
| initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); |
| initializeRegisterCoalescerPass( |
| *PassRegistry::getPassRegistry()); |
| initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); |
| initializeLiveStacksPass(*PassRegistry::getPassRegistry()); |
| initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); |
| initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); |
| initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); |
| initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); |
| |
| // Initialize the queue to record recently-used registers. |
| if (NumRecentlyUsedRegs > 0) |
| RecentRegs.resize(NumRecentlyUsedRegs, 0); |
| RecentNext = RecentRegs.begin(); |
| avoidWAW_ = 0; |
| } |
| |
| typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr; |
| typedef SmallVector<IntervalPtr, 32> IntervalPtrs; |
| private: |
| /// RelatedRegClasses - This structure is built the first time a function is |
| /// compiled, and keeps track of which register classes have registers that |
| /// belong to multiple classes or have aliases that are in other classes. |
| EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses; |
| DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg; |
| |
| // NextReloadMap - For each register in the map, it maps to the another |
| // register which is defined by a reload from the same stack slot and |
| // both reloads are in the same basic block. |
| DenseMap<unsigned, unsigned> NextReloadMap; |
| |
| // DowngradedRegs - A set of registers which are being "downgraded", i.e. |
| // un-favored for allocation. |
| SmallSet<unsigned, 8> DowngradedRegs; |
| |
| // DowngradeMap - A map from virtual registers to physical registers being |
| // downgraded for the virtual registers. |
| DenseMap<unsigned, unsigned> DowngradeMap; |
| |
| MachineFunction* mf_; |
| MachineRegisterInfo* mri_; |
| const TargetMachine* tm_; |
| const TargetRegisterInfo* tri_; |
| const TargetInstrInfo* tii_; |
| BitVector allocatableRegs_; |
| BitVector reservedRegs_; |
| LiveIntervals* li_; |
| MachineLoopInfo *loopInfo; |
| RegisterClassInfo RegClassInfo; |
| |
| /// handled_ - Intervals are added to the handled_ set in the order of their |
| /// start value. This is uses for backtracking. |
| std::vector<LiveInterval*> handled_; |
| |
| /// fixed_ - Intervals that correspond to machine registers. |
| /// |
| IntervalPtrs fixed_; |
| |
| /// active_ - Intervals that are currently being processed, and which have a |
| /// live range active for the current point. |
| IntervalPtrs active_; |
| |
| /// inactive_ - Intervals that are currently being processed, but which have |
| /// a hold at the current point. |
| IntervalPtrs inactive_; |
| |
| typedef std::priority_queue<LiveInterval*, |
| SmallVector<LiveInterval*, 64>, |
| greater_ptr<LiveInterval> > IntervalHeap; |
| IntervalHeap unhandled_; |
| |
| /// regUse_ - Tracks register usage. |
| SmallVector<unsigned, 32> regUse_; |
| SmallVector<unsigned, 32> regUseBackUp_; |
| |
| /// vrm_ - Tracks register assignments. |
| VirtRegMap* vrm_; |
| |
| std::auto_ptr<VirtRegRewriter> rewriter_; |
| |
| std::auto_ptr<Spiller> spiller_; |
| |
| // The queue of recently-used registers. |
| SmallVector<unsigned, 4> RecentRegs; |
| SmallVector<unsigned, 4>::iterator RecentNext; |
| |
| // Last write-after-write register written. |
| unsigned avoidWAW_; |
| |
| // Record that we just picked this register. |
| void recordRecentlyUsed(unsigned reg) { |
| assert(reg != 0 && "Recently used register is NOREG!"); |
| if (!RecentRegs.empty()) { |
| *RecentNext++ = reg; |
| if (RecentNext == RecentRegs.end()) |
| RecentNext = RecentRegs.begin(); |
| } |
| } |
| |
| public: |
| virtual const char* getPassName() const { |
| return "Linear Scan Register Allocator"; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<SlotIndexes>(); |
| if (StrongPHIElim) |
| AU.addRequiredID(StrongPHIEliminationID); |
| // Make sure PassManager knows which analyses to make available |
| // to coalescing and which analyses coalescing invalidates. |
| AU.addRequiredTransitiveID(RegisterCoalescerPassID); |
| AU.addRequired<CalculateSpillWeights>(); |
| AU.addRequiredID(LiveStacksID); |
| AU.addPreservedID(LiveStacksID); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addRequired<VirtRegMap>(); |
| AU.addPreserved<VirtRegMap>(); |
| AU.addRequired<LiveDebugVariables>(); |
| AU.addPreserved<LiveDebugVariables>(); |
| AU.addRequiredID(MachineDominatorsID); |
| AU.addPreservedID(MachineDominatorsID); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// runOnMachineFunction - register allocate the whole function |
| bool runOnMachineFunction(MachineFunction&); |
| |
| // Determine if we skip this register due to its being recently used. |
| bool isRecentlyUsed(unsigned reg) const { |
| return reg == avoidWAW_ || |
| std::find(RecentRegs.begin(), RecentRegs.end(), reg) != RecentRegs.end(); |
| } |
| |
| private: |
| /// linearScan - the linear scan algorithm |
| void linearScan(); |
| |
| /// initIntervalSets - initialize the interval sets. |
| /// |
| void initIntervalSets(); |
| |
| /// processActiveIntervals - expire old intervals and move non-overlapping |
| /// ones to the inactive list. |
| void processActiveIntervals(SlotIndex CurPoint); |
| |
| /// processInactiveIntervals - expire old intervals and move overlapping |
| /// ones to the active list. |
| void processInactiveIntervals(SlotIndex CurPoint); |
| |
| /// hasNextReloadInterval - Return the next liveinterval that's being |
| /// defined by a reload from the same SS as the specified one. |
| LiveInterval *hasNextReloadInterval(LiveInterval *cur); |
| |
| /// DowngradeRegister - Downgrade a register for allocation. |
| void DowngradeRegister(LiveInterval *li, unsigned Reg); |
| |
| /// UpgradeRegister - Upgrade a register for allocation. |
| void UpgradeRegister(unsigned Reg); |
| |
| /// assignRegOrStackSlotAtInterval - assign a register if one |
| /// is available, or spill. |
| void assignRegOrStackSlotAtInterval(LiveInterval* cur); |
| |
| void updateSpillWeights(std::vector<float> &Weights, |
| unsigned reg, float weight, |
| const TargetRegisterClass *RC); |
| |
| /// findIntervalsToSpill - Determine the intervals to spill for the |
| /// specified interval. It's passed the physical registers whose spill |
| /// weight is the lowest among all the registers whose live intervals |
| /// conflict with the interval. |
| void findIntervalsToSpill(LiveInterval *cur, |
| std::vector<std::pair<unsigned,float> > &Candidates, |
| unsigned NumCands, |
| SmallVector<LiveInterval*, 8> &SpillIntervals); |
| |
| /// attemptTrivialCoalescing - If a simple interval is defined by a copy, |
| /// try to allocate the definition to the same register as the source, |
| /// if the register is not defined during the life time of the interval. |
| /// This eliminates a copy, and is used to coalesce copies which were not |
| /// coalesced away before allocation either due to dest and src being in |
| /// different register classes or because the coalescer was overly |
| /// conservative. |
| unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg); |
| |
| /// |
| /// Register usage / availability tracking helpers. |
| /// |
| |
| void initRegUses() { |
| regUse_.resize(tri_->getNumRegs(), 0); |
| regUseBackUp_.resize(tri_->getNumRegs(), 0); |
| } |
| |
| void finalizeRegUses() { |
| #ifndef NDEBUG |
| // Verify all the registers are "freed". |
| bool Error = false; |
| for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) { |
| if (regUse_[i] != 0) { |
| dbgs() << tri_->getName(i) << " is still in use!\n"; |
| Error = true; |
| } |
| } |
| if (Error) |
| llvm_unreachable(0); |
| #endif |
| regUse_.clear(); |
| regUseBackUp_.clear(); |
| } |
| |
| void addRegUse(unsigned physReg) { |
| assert(TargetRegisterInfo::isPhysicalRegister(physReg) && |
| "should be physical register!"); |
| ++regUse_[physReg]; |
| for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) |
| ++regUse_[*as]; |
| } |
| |
| void delRegUse(unsigned physReg) { |
| assert(TargetRegisterInfo::isPhysicalRegister(physReg) && |
| "should be physical register!"); |
| assert(regUse_[physReg] != 0); |
| --regUse_[physReg]; |
| for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) { |
| assert(regUse_[*as] != 0); |
| --regUse_[*as]; |
| } |
| } |
| |
| bool isRegAvail(unsigned physReg) const { |
| assert(TargetRegisterInfo::isPhysicalRegister(physReg) && |
| "should be physical register!"); |
| return regUse_[physReg] == 0; |
| } |
| |
| void backUpRegUses() { |
| regUseBackUp_ = regUse_; |
| } |
| |
| void restoreRegUses() { |
| regUse_ = regUseBackUp_; |
| } |
| |
| /// |
| /// Register handling helpers. |
| /// |
| |
| /// getFreePhysReg - return a free physical register for this virtual |
| /// register interval if we have one, otherwise return 0. |
| unsigned getFreePhysReg(LiveInterval* cur); |
| unsigned getFreePhysReg(LiveInterval* cur, |
| const TargetRegisterClass *RC, |
| unsigned MaxInactiveCount, |
| SmallVector<unsigned, 256> &inactiveCounts, |
| bool SkipDGRegs); |
| |
| /// getFirstNonReservedPhysReg - return the first non-reserved physical |
| /// register in the register class. |
| unsigned getFirstNonReservedPhysReg(const TargetRegisterClass *RC) { |
| ArrayRef<unsigned> O = RegClassInfo.getOrder(RC); |
| assert(!O.empty() && "All registers reserved?!"); |
| return O.front(); |
| } |
| |
| void ComputeRelatedRegClasses(); |
| |
| template <typename ItTy> |
| void printIntervals(const char* const str, ItTy i, ItTy e) const { |
| DEBUG({ |
| if (str) |
| dbgs() << str << " intervals:\n"; |
| |
| for (; i != e; ++i) { |
| dbgs() << '\t' << *i->first << " -> "; |
| |
| unsigned reg = i->first->reg; |
| if (TargetRegisterInfo::isVirtualRegister(reg)) |
| reg = vrm_->getPhys(reg); |
| |
| dbgs() << tri_->getName(reg) << '\n'; |
| } |
| }); |
| } |
| }; |
| char RALinScan::ID = 0; |
| } |
| |
| INITIALIZE_PASS_BEGIN(RALinScan, "linearscan-regalloc", |
| "Linear Scan Register Allocator", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_DEPENDENCY(StrongPHIElimination) |
| INITIALIZE_PASS_DEPENDENCY(CalculateSpillWeights) |
| INITIALIZE_PASS_DEPENDENCY(LiveStacks) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(VirtRegMap) |
| INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| INITIALIZE_PASS_END(RALinScan, "linearscan-regalloc", |
| "Linear Scan Register Allocator", false, false) |
| |
| void RALinScan::ComputeRelatedRegClasses() { |
| // First pass, add all reg classes to the union, and determine at least one |
| // reg class that each register is in. |
| bool HasAliases = false; |
| for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(), |
| E = tri_->regclass_end(); RCI != E; ++RCI) { |
| RelatedRegClasses.insert(*RCI); |
| for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end(); |
| I != E; ++I) { |
| HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0; |
| |
| const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I]; |
| if (PRC) { |
| // Already processed this register. Just make sure we know that |
| // multiple register classes share a register. |
| RelatedRegClasses.unionSets(PRC, *RCI); |
| } else { |
| PRC = *RCI; |
| } |
| } |
| } |
| |
| // Second pass, now that we know conservatively what register classes each reg |
| // belongs to, add info about aliases. We don't need to do this for targets |
| // without register aliases. |
| if (HasAliases) |
| for (DenseMap<unsigned, const TargetRegisterClass*>::iterator |
| I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end(); |
| I != E; ++I) |
| for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) { |
| const TargetRegisterClass *AliasClass = |
| OneClassForEachPhysReg.lookup(*AS); |
| if (AliasClass) |
| RelatedRegClasses.unionSets(I->second, AliasClass); |
| } |
| } |
| |
| /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try |
| /// allocate the definition the same register as the source register if the |
| /// register is not defined during live time of the interval. If the interval is |
| /// killed by a copy, try to use the destination register. This eliminates a |
| /// copy. This is used to coalesce copies which were not coalesced away before |
| /// allocation either due to dest and src being in different register classes or |
| /// because the coalescer was overly conservative. |
| unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) { |
| unsigned Preference = vrm_->getRegAllocPref(cur.reg); |
| if ((Preference && Preference == Reg) || !cur.containsOneValue()) |
| return Reg; |
| |
| // We cannot handle complicated live ranges. Simple linear stuff only. |
| if (cur.ranges.size() != 1) |
| return Reg; |
| |
| const LiveRange &range = cur.ranges.front(); |
| |
| VNInfo *vni = range.valno; |
| if (vni->isUnused() || !vni->def.isValid()) |
| return Reg; |
| |
| unsigned CandReg; |
| { |
| MachineInstr *CopyMI; |
| if ((CopyMI = li_->getInstructionFromIndex(vni->def)) && CopyMI->isCopy()) |
| // Defined by a copy, try to extend SrcReg forward |
| CandReg = CopyMI->getOperand(1).getReg(); |
| else if (TrivCoalesceEnds && |
| (CopyMI = li_->getInstructionFromIndex(range.end.getBaseIndex())) && |
| CopyMI->isCopy() && cur.reg == CopyMI->getOperand(1).getReg()) |
| // Only used by a copy, try to extend DstReg backwards |
| CandReg = CopyMI->getOperand(0).getReg(); |
| else |
| return Reg; |
| |
| // If the target of the copy is a sub-register then don't coalesce. |
| if(CopyMI->getOperand(0).getSubReg()) |
| return Reg; |
| } |
| |
| if (TargetRegisterInfo::isVirtualRegister(CandReg)) { |
| if (!vrm_->isAssignedReg(CandReg)) |
| return Reg; |
| CandReg = vrm_->getPhys(CandReg); |
| } |
| if (Reg == CandReg) |
| return Reg; |
| |
| const TargetRegisterClass *RC = mri_->getRegClass(cur.reg); |
| if (!RC->contains(CandReg)) |
| return Reg; |
| |
| if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg)) |
| return Reg; |
| |
| // Try to coalesce. |
| DEBUG(dbgs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg) |
| << '\n'); |
| vrm_->clearVirt(cur.reg); |
| vrm_->assignVirt2Phys(cur.reg, CandReg); |
| |
| ++NumCoalesce; |
| return CandReg; |
| } |
| |
| bool RALinScan::runOnMachineFunction(MachineFunction &fn) { |
| mf_ = &fn; |
| mri_ = &fn.getRegInfo(); |
| tm_ = &fn.getTarget(); |
| tri_ = tm_->getRegisterInfo(); |
| tii_ = tm_->getInstrInfo(); |
| allocatableRegs_ = tri_->getAllocatableSet(fn); |
| reservedRegs_ = tri_->getReservedRegs(fn); |
| li_ = &getAnalysis<LiveIntervals>(); |
| loopInfo = &getAnalysis<MachineLoopInfo>(); |
| RegClassInfo.runOnMachineFunction(fn); |
| |
| // We don't run the coalescer here because we have no reason to |
| // interact with it. If the coalescer requires interaction, it |
| // won't do anything. If it doesn't require interaction, we assume |
| // it was run as a separate pass. |
| |
| // If this is the first function compiled, compute the related reg classes. |
| if (RelatedRegClasses.empty()) |
| ComputeRelatedRegClasses(); |
| |
| // Also resize register usage trackers. |
| initRegUses(); |
| |
| vrm_ = &getAnalysis<VirtRegMap>(); |
| if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter()); |
| |
| spiller_.reset(createSpiller(*this, *mf_, *vrm_)); |
| |
| initIntervalSets(); |
| |
| linearScan(); |
| |
| // Rewrite spill code and update the PhysRegsUsed set. |
| rewriter_->runOnMachineFunction(*mf_, *vrm_, li_); |
| |
| // Write out new DBG_VALUE instructions. |
| getAnalysis<LiveDebugVariables>().emitDebugValues(vrm_); |
| |
| assert(unhandled_.empty() && "Unhandled live intervals remain!"); |
| |
| finalizeRegUses(); |
| |
| fixed_.clear(); |
| active_.clear(); |
| inactive_.clear(); |
| handled_.clear(); |
| NextReloadMap.clear(); |
| DowngradedRegs.clear(); |
| DowngradeMap.clear(); |
| spiller_.reset(0); |
| |
| return true; |
| } |
| |
| /// initIntervalSets - initialize the interval sets. |
| /// |
| void RALinScan::initIntervalSets() |
| { |
| assert(unhandled_.empty() && fixed_.empty() && |
| active_.empty() && inactive_.empty() && |
| "interval sets should be empty on initialization"); |
| |
| handled_.reserve(li_->getNumIntervals()); |
| |
| for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { |
| if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) { |
| if (!i->second->empty() && allocatableRegs_.test(i->second->reg)) { |
| mri_->setPhysRegUsed(i->second->reg); |
| fixed_.push_back(std::make_pair(i->second, i->second->begin())); |
| } |
| } else { |
| if (i->second->empty()) { |
| assignRegOrStackSlotAtInterval(i->second); |
| } |
| else |
| unhandled_.push(i->second); |
| } |
| } |
| } |
| |
| void RALinScan::linearScan() { |
| // linear scan algorithm |
| DEBUG({ |
| dbgs() << "********** LINEAR SCAN **********\n" |
| << "********** Function: " |
| << mf_->getFunction()->getName() << '\n'; |
| printIntervals("fixed", fixed_.begin(), fixed_.end()); |
| }); |
| |
| while (!unhandled_.empty()) { |
| // pick the interval with the earliest start point |
| LiveInterval* cur = unhandled_.top(); |
| unhandled_.pop(); |
| ++NumIters; |
| DEBUG(dbgs() << "\n*** CURRENT ***: " << *cur << '\n'); |
| |
| assert(!cur->empty() && "Empty interval in unhandled set."); |
| |
| processActiveIntervals(cur->beginIndex()); |
| processInactiveIntervals(cur->beginIndex()); |
| |
| assert(TargetRegisterInfo::isVirtualRegister(cur->reg) && |
| "Can only allocate virtual registers!"); |
| |
| // Allocating a virtual register. try to find a free |
| // physical register or spill an interval (possibly this one) in order to |
| // assign it one. |
| assignRegOrStackSlotAtInterval(cur); |
| |
| DEBUG({ |
| printIntervals("active", active_.begin(), active_.end()); |
| printIntervals("inactive", inactive_.begin(), inactive_.end()); |
| }); |
| } |
| |
| // Expire any remaining active intervals |
| while (!active_.empty()) { |
| IntervalPtr &IP = active_.back(); |
| unsigned reg = IP.first->reg; |
| DEBUG(dbgs() << "\tinterval " << *IP.first << " expired\n"); |
| assert(TargetRegisterInfo::isVirtualRegister(reg) && |
| "Can only allocate virtual registers!"); |
| reg = vrm_->getPhys(reg); |
| delRegUse(reg); |
| active_.pop_back(); |
| } |
| |
| // Expire any remaining inactive intervals |
| DEBUG({ |
| for (IntervalPtrs::reverse_iterator |
| i = inactive_.rbegin(); i != inactive_.rend(); ++i) |
| dbgs() << "\tinterval " << *i->first << " expired\n"; |
| }); |
| inactive_.clear(); |
| |
| // Add live-ins to every BB except for entry. Also perform trivial coalescing. |
| MachineFunction::iterator EntryMBB = mf_->begin(); |
| SmallVector<MachineBasicBlock*, 8> LiveInMBBs; |
| for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { |
| LiveInterval &cur = *i->second; |
| unsigned Reg = 0; |
| bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg); |
| if (isPhys) |
| Reg = cur.reg; |
| else if (vrm_->isAssignedReg(cur.reg)) |
| Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg)); |
| if (!Reg) |
| continue; |
| // Ignore splited live intervals. |
| if (!isPhys && vrm_->getPreSplitReg(cur.reg)) |
| continue; |
| |
| for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end(); |
| I != E; ++I) { |
| const LiveRange &LR = *I; |
| if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) { |
| for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i) |
| if (LiveInMBBs[i] != EntryMBB) { |
| assert(TargetRegisterInfo::isPhysicalRegister(Reg) && |
| "Adding a virtual register to livein set?"); |
| LiveInMBBs[i]->addLiveIn(Reg); |
| } |
| LiveInMBBs.clear(); |
| } |
| } |
| } |
| |
| DEBUG(dbgs() << *vrm_); |
| |
| // Look for physical registers that end up not being allocated even though |
| // register allocator had to spill other registers in its register class. |
| if (!vrm_->FindUnusedRegisters(li_)) |
| return; |
| } |
| |
| /// processActiveIntervals - expire old intervals and move non-overlapping ones |
| /// to the inactive list. |
| void RALinScan::processActiveIntervals(SlotIndex CurPoint) |
| { |
| DEBUG(dbgs() << "\tprocessing active intervals:\n"); |
| |
| for (unsigned i = 0, e = active_.size(); i != e; ++i) { |
| LiveInterval *Interval = active_[i].first; |
| LiveInterval::iterator IntervalPos = active_[i].second; |
| unsigned reg = Interval->reg; |
| |
| IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); |
| |
| if (IntervalPos == Interval->end()) { // Remove expired intervals. |
| DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n"); |
| assert(TargetRegisterInfo::isVirtualRegister(reg) && |
| "Can only allocate virtual registers!"); |
| reg = vrm_->getPhys(reg); |
| delRegUse(reg); |
| |
| // Pop off the end of the list. |
| active_[i] = active_.back(); |
| active_.pop_back(); |
| --i; --e; |
| |
| } else if (IntervalPos->start > CurPoint) { |
| // Move inactive intervals to inactive list. |
| DEBUG(dbgs() << "\t\tinterval " << *Interval << " inactive\n"); |
| assert(TargetRegisterInfo::isVirtualRegister(reg) && |
| "Can only allocate virtual registers!"); |
| reg = vrm_->getPhys(reg); |
| delRegUse(reg); |
| // add to inactive. |
| inactive_.push_back(std::make_pair(Interval, IntervalPos)); |
| |
| // Pop off the end of the list. |
| active_[i] = active_.back(); |
| active_.pop_back(); |
| --i; --e; |
| } else { |
| // Otherwise, just update the iterator position. |
| active_[i].second = IntervalPos; |
| } |
| } |
| } |
| |
| /// processInactiveIntervals - expire old intervals and move overlapping |
| /// ones to the active list. |
| void RALinScan::processInactiveIntervals(SlotIndex CurPoint) |
| { |
| DEBUG(dbgs() << "\tprocessing inactive intervals:\n"); |
| |
| for (unsigned i = 0, e = inactive_.size(); i != e; ++i) { |
| LiveInterval *Interval = inactive_[i].first; |
| LiveInterval::iterator IntervalPos = inactive_[i].second; |
| unsigned reg = Interval->reg; |
| |
| IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); |
| |
| if (IntervalPos == Interval->end()) { // remove expired intervals. |
| DEBUG(dbgs() << "\t\tinterval " << *Interval << " expired\n"); |
| |
| // Pop off the end of the list. |
| inactive_[i] = inactive_.back(); |
| inactive_.pop_back(); |
| --i; --e; |
| } else if (IntervalPos->start <= CurPoint) { |
| // move re-activated intervals in active list |
| DEBUG(dbgs() << "\t\tinterval " << *Interval << " active\n"); |
| assert(TargetRegisterInfo::isVirtualRegister(reg) && |
| "Can only allocate virtual registers!"); |
| reg = vrm_->getPhys(reg); |
| addRegUse(reg); |
| // add to active |
| active_.push_back(std::make_pair(Interval, IntervalPos)); |
| |
| // Pop off the end of the list. |
| inactive_[i] = inactive_.back(); |
| inactive_.pop_back(); |
| --i; --e; |
| } else { |
| // Otherwise, just update the iterator position. |
| inactive_[i].second = IntervalPos; |
| } |
| } |
| } |
| |
| /// updateSpillWeights - updates the spill weights of the specifed physical |
| /// register and its weight. |
| void RALinScan::updateSpillWeights(std::vector<float> &Weights, |
| unsigned reg, float weight, |
| const TargetRegisterClass *RC) { |
| SmallSet<unsigned, 4> Processed; |
| SmallSet<unsigned, 4> SuperAdded; |
| SmallVector<unsigned, 4> Supers; |
| Weights[reg] += weight; |
| Processed.insert(reg); |
| for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) { |
| Weights[*as] += weight; |
| Processed.insert(*as); |
| if (tri_->isSubRegister(*as, reg) && |
| SuperAdded.insert(*as) && |
| RC->contains(*as)) { |
| Supers.push_back(*as); |
| } |
| } |
| |
| // If the alias is a super-register, and the super-register is in the |
| // register class we are trying to allocate. Then add the weight to all |
| // sub-registers of the super-register even if they are not aliases. |
| // e.g. allocating for GR32, bh is not used, updating bl spill weight. |
| // bl should get the same spill weight otherwise it will be chosen |
| // as a spill candidate since spilling bh doesn't make ebx available. |
| for (unsigned i = 0, e = Supers.size(); i != e; ++i) { |
| for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr) |
| if (!Processed.count(*sr)) |
| Weights[*sr] += weight; |
| } |
| } |
| |
| static |
| RALinScan::IntervalPtrs::iterator |
| FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) { |
| for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); |
| I != E; ++I) |
| if (I->first == LI) return I; |
| return IP.end(); |
| } |
| |
| static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, |
| SlotIndex Point){ |
| for (unsigned i = 0, e = V.size(); i != e; ++i) { |
| RALinScan::IntervalPtr &IP = V[i]; |
| LiveInterval::iterator I = std::upper_bound(IP.first->begin(), |
| IP.second, Point); |
| if (I != IP.first->begin()) --I; |
| IP.second = I; |
| } |
| } |
| |
| /// getConflictWeight - Return the number of conflicts between cur |
| /// live interval and defs and uses of Reg weighted by loop depthes. |
| static |
| float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_, |
| MachineRegisterInfo *mri_, |
| MachineLoopInfo *loopInfo) { |
| float Conflicts = 0; |
| for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg), |
| E = mri_->reg_end(); I != E; ++I) { |
| MachineInstr *MI = &*I; |
| if (cur->liveAt(li_->getInstructionIndex(MI))) { |
| unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent()); |
| Conflicts += std::pow(10.0f, (float)loopDepth); |
| } |
| } |
| return Conflicts; |
| } |
| |
| /// findIntervalsToSpill - Determine the intervals to spill for the |
| /// specified interval. It's passed the physical registers whose spill |
| /// weight is the lowest among all the registers whose live intervals |
| /// conflict with the interval. |
| void RALinScan::findIntervalsToSpill(LiveInterval *cur, |
| std::vector<std::pair<unsigned,float> > &Candidates, |
| unsigned NumCands, |
| SmallVector<LiveInterval*, 8> &SpillIntervals) { |
| // We have figured out the *best* register to spill. But there are other |
| // registers that are pretty good as well (spill weight within 3%). Spill |
| // the one that has fewest defs and uses that conflict with cur. |
| float Conflicts[3] = { 0.0f, 0.0f, 0.0f }; |
| SmallVector<LiveInterval*, 8> SLIs[3]; |
| |
| DEBUG({ |
| dbgs() << "\tConsidering " << NumCands << " candidates: "; |
| for (unsigned i = 0; i != NumCands; ++i) |
| dbgs() << tri_->getName(Candidates[i].first) << " "; |
| dbgs() << "\n"; |
| }); |
| |
| // Calculate the number of conflicts of each candidate. |
| for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { |
| unsigned Reg = i->first->reg; |
| unsigned PhysReg = vrm_->getPhys(Reg); |
| if (!cur->overlapsFrom(*i->first, i->second)) |
| continue; |
| for (unsigned j = 0; j < NumCands; ++j) { |
| unsigned Candidate = Candidates[j].first; |
| if (tri_->regsOverlap(PhysReg, Candidate)) { |
| if (NumCands > 1) |
| Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); |
| SLIs[j].push_back(i->first); |
| } |
| } |
| } |
| |
| for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){ |
| unsigned Reg = i->first->reg; |
| unsigned PhysReg = vrm_->getPhys(Reg); |
| if (!cur->overlapsFrom(*i->first, i->second-1)) |
| continue; |
| for (unsigned j = 0; j < NumCands; ++j) { |
| unsigned Candidate = Candidates[j].first; |
| if (tri_->regsOverlap(PhysReg, Candidate)) { |
| if (NumCands > 1) |
| Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); |
| SLIs[j].push_back(i->first); |
| } |
| } |
| } |
| |
| // Which is the best candidate? |
| unsigned BestCandidate = 0; |
| float MinConflicts = Conflicts[0]; |
| for (unsigned i = 1; i != NumCands; ++i) { |
| if (Conflicts[i] < MinConflicts) { |
| BestCandidate = i; |
| MinConflicts = Conflicts[i]; |
| } |
| } |
| |
| std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(), |
| std::back_inserter(SpillIntervals)); |
| } |
| |
| namespace { |
| struct WeightCompare { |
| private: |
| const RALinScan &Allocator; |
| |
| public: |
| WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {} |
| |
| typedef std::pair<unsigned, float> RegWeightPair; |
| bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const { |
| return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first); |
| } |
| }; |
| } |
| |
| static bool weightsAreClose(float w1, float w2) { |
| if (!NewHeuristic) |
| return false; |
| |
| float diff = w1 - w2; |
| if (diff <= 0.02f) // Within 0.02f |
| return true; |
| return (diff / w2) <= 0.05f; // Within 5%. |
| } |
| |
| LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) { |
| DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg); |
| if (I == NextReloadMap.end()) |
| return 0; |
| return &li_->getInterval(I->second); |
| } |
| |
| void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) { |
| for (const unsigned *AS = tri_->getOverlaps(Reg); *AS; ++AS) { |
| bool isNew = DowngradedRegs.insert(*AS); |
| (void)isNew; // Silence compiler warning. |
| assert(isNew && "Multiple reloads holding the same register?"); |
| DowngradeMap.insert(std::make_pair(li->reg, *AS)); |
| } |
| ++NumDowngrade; |
| } |
| |
| void RALinScan::UpgradeRegister(unsigned Reg) { |
| if (Reg) { |
| DowngradedRegs.erase(Reg); |
| for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) |
| DowngradedRegs.erase(*AS); |
| } |
| } |
| |
| namespace { |
| struct LISorter { |
| bool operator()(LiveInterval* A, LiveInterval* B) { |
| return A->beginIndex() < B->beginIndex(); |
| } |
| }; |
| } |
| |
| /// assignRegOrStackSlotAtInterval - assign a register if one is available, or |
| /// spill. |
| void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) { |
| const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); |
| DEBUG(dbgs() << "\tallocating current interval from " |
| << RC->getName() << ": "); |
| |
| // This is an implicitly defined live interval, just assign any register. |
| if (cur->empty()) { |
| unsigned physReg = vrm_->getRegAllocPref(cur->reg); |
| if (!physReg) |
| physReg = getFirstNonReservedPhysReg(RC); |
| DEBUG(dbgs() << tri_->getName(physReg) << '\n'); |
| // Note the register is not really in use. |
| vrm_->assignVirt2Phys(cur->reg, physReg); |
| return; |
| } |
| |
| backUpRegUses(); |
| |
| std::vector<std::pair<unsigned, float> > SpillWeightsToAdd; |
| SlotIndex StartPosition = cur->beginIndex(); |
| const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); |
| |
| // If start of this live interval is defined by a move instruction and its |
| // source is assigned a physical register that is compatible with the target |
| // register class, then we should try to assign it the same register. |
| // This can happen when the move is from a larger register class to a smaller |
| // one, e.g. X86::mov32to32_. These move instructions are not coalescable. |
| if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) { |
| VNInfo *vni = cur->begin()->valno; |
| if (!vni->isUnused() && vni->def.isValid()) { |
| MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); |
| if (CopyMI && CopyMI->isCopy()) { |
| unsigned DstSubReg = CopyMI->getOperand(0).getSubReg(); |
| unsigned SrcReg = CopyMI->getOperand(1).getReg(); |
| unsigned SrcSubReg = CopyMI->getOperand(1).getSubReg(); |
| unsigned Reg = 0; |
| if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) |
| Reg = SrcReg; |
| else if (vrm_->isAssignedReg(SrcReg)) |
| Reg = vrm_->getPhys(SrcReg); |
| if (Reg) { |
| if (SrcSubReg) |
| Reg = tri_->getSubReg(Reg, SrcSubReg); |
| if (DstSubReg) |
| Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC); |
| if (Reg && allocatableRegs_[Reg] && RC->contains(Reg)) |
| mri_->setRegAllocationHint(cur->reg, 0, Reg); |
| } |
| } |
| } |
| } |
| |
| // For every interval in inactive we overlap with, mark the |
| // register as not free and update spill weights. |
| for (IntervalPtrs::const_iterator i = inactive_.begin(), |
| e = inactive_.end(); i != e; ++i) { |
| unsigned Reg = i->first->reg; |
| assert(TargetRegisterInfo::isVirtualRegister(Reg) && |
| "Can only allocate virtual registers!"); |
| const TargetRegisterClass *RegRC = mri_->getRegClass(Reg); |
| // If this is not in a related reg class to the register we're allocating, |
| // don't check it. |
| if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && |
| cur->overlapsFrom(*i->first, i->second-1)) { |
| Reg = vrm_->getPhys(Reg); |
| addRegUse(Reg); |
| SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight)); |
| } |
| } |
| |
| // Speculatively check to see if we can get a register right now. If not, |
| // we know we won't be able to by adding more constraints. If so, we can |
| // check to see if it is valid. Doing an exhaustive search of the fixed_ list |
| // is very bad (it contains all callee clobbered registers for any functions |
| // with a call), so we want to avoid doing that if possible. |
| unsigned physReg = getFreePhysReg(cur); |
| unsigned BestPhysReg = physReg; |
| if (physReg) { |
| // We got a register. However, if it's in the fixed_ list, we might |
| // conflict with it. Check to see if we conflict with it or any of its |
| // aliases. |
| SmallSet<unsigned, 8> RegAliases; |
| for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS) |
| RegAliases.insert(*AS); |
| |
| bool ConflictsWithFixed = false; |
| for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { |
| IntervalPtr &IP = fixed_[i]; |
| if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) { |
| // Okay, this reg is on the fixed list. Check to see if we actually |
| // conflict. |
| LiveInterval *I = IP.first; |
| if (I->endIndex() > StartPosition) { |
| LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); |
| IP.second = II; |
| if (II != I->begin() && II->start > StartPosition) |
| --II; |
| if (cur->overlapsFrom(*I, II)) { |
| ConflictsWithFixed = true; |
| break; |
| } |
| } |
| } |
| } |
| |
| // Okay, the register picked by our speculative getFreePhysReg call turned |
| // out to be in use. Actually add all of the conflicting fixed registers to |
| // regUse_ so we can do an accurate query. |
| if (ConflictsWithFixed) { |
| // For every interval in fixed we overlap with, mark the register as not |
| // free and update spill weights. |
| for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { |
| IntervalPtr &IP = fixed_[i]; |
| LiveInterval *I = IP.first; |
| |
| const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg]; |
| if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && |
| I->endIndex() > StartPosition) { |
| LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); |
| IP.second = II; |
| if (II != I->begin() && II->start > StartPosition) |
| --II; |
| if (cur->overlapsFrom(*I, II)) { |
| unsigned reg = I->reg; |
| addRegUse(reg); |
| SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight)); |
| } |
| } |
| } |
| |
| // Using the newly updated regUse_ object, which includes conflicts in the |
| // future, see if there are any registers available. |
| physReg = getFreePhysReg(cur); |
| } |
| } |
| |
| // Restore the physical register tracker, removing information about the |
| // future. |
| restoreRegUses(); |
| |
| // If we find a free register, we are done: assign this virtual to |
| // the free physical register and add this interval to the active |
| // list. |
| if (physReg) { |
| DEBUG(dbgs() << tri_->getName(physReg) << '\n'); |
| assert(RC->contains(physReg) && "Invalid candidate"); |
| vrm_->assignVirt2Phys(cur->reg, physReg); |
| addRegUse(physReg); |
| active_.push_back(std::make_pair(cur, cur->begin())); |
| handled_.push_back(cur); |
| |
| // Remember physReg for avoiding a write-after-write hazard in the next |
| // instruction. |
| if (AvoidWAWHazard && |
| tri_->avoidWriteAfterWrite(mri_->getRegClass(cur->reg))) |
| avoidWAW_ = physReg; |
| |
| // "Upgrade" the physical register since it has been allocated. |
| UpgradeRegister(physReg); |
| if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) { |
| // "Downgrade" physReg to try to keep physReg from being allocated until |
| // the next reload from the same SS is allocated. |
| mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg); |
| DowngradeRegister(cur, physReg); |
| } |
| return; |
| } |
| DEBUG(dbgs() << "no free registers\n"); |
| |
| // Compile the spill weights into an array that is better for scanning. |
| std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f); |
| for (std::vector<std::pair<unsigned, float> >::iterator |
| I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I) |
| updateSpillWeights(SpillWeights, I->first, I->second, RC); |
| |
| // for each interval in active, update spill weights. |
| for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); |
| i != e; ++i) { |
| unsigned reg = i->first->reg; |
| assert(TargetRegisterInfo::isVirtualRegister(reg) && |
| "Can only allocate virtual registers!"); |
| reg = vrm_->getPhys(reg); |
| updateSpillWeights(SpillWeights, reg, i->first->weight, RC); |
| } |
| |
| DEBUG(dbgs() << "\tassigning stack slot at interval "<< *cur << ":\n"); |
| |
| // Find a register to spill. |
| float minWeight = HUGE_VALF; |
| unsigned minReg = 0; |
| |
| bool Found = false; |
| std::vector<std::pair<unsigned,float> > RegsWeights; |
| ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC); |
| if (!minReg || SpillWeights[minReg] == HUGE_VALF) |
| for (unsigned i = 0; i != Order.size(); ++i) { |
| unsigned reg = Order[i]; |
| float regWeight = SpillWeights[reg]; |
| // Skip recently allocated registers and reserved registers. |
| if (minWeight > regWeight && !isRecentlyUsed(reg)) |
| Found = true; |
| RegsWeights.push_back(std::make_pair(reg, regWeight)); |
| } |
| |
| // If we didn't find a register that is spillable, try aliases? |
| if (!Found) { |
| for (unsigned i = 0; i != Order.size(); ++i) { |
| unsigned reg = Order[i]; |
| // No need to worry about if the alias register size < regsize of RC. |
| // We are going to spill all registers that alias it anyway. |
| for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) |
| RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as])); |
| } |
| } |
| |
| // Sort all potential spill candidates by weight. |
| std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this)); |
| minReg = RegsWeights[0].first; |
| minWeight = RegsWeights[0].second; |
| if (minWeight == HUGE_VALF) { |
| // All registers must have inf weight. Just grab one! |
| minReg = BestPhysReg ? BestPhysReg : getFirstNonReservedPhysReg(RC); |
| if (cur->weight == HUGE_VALF || |
| li_->getApproximateInstructionCount(*cur) == 0) { |
| // Spill a physical register around defs and uses. |
| if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) { |
| // spillPhysRegAroundRegDefsUses may have invalidated iterator stored |
| // in fixed_. Reset them. |
| for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { |
| IntervalPtr &IP = fixed_[i]; |
| LiveInterval *I = IP.first; |
| if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg)) |
| IP.second = I->advanceTo(I->begin(), StartPosition); |
| } |
| |
| DowngradedRegs.clear(); |
| assignRegOrStackSlotAtInterval(cur); |
| } else { |
| assert(false && "Ran out of registers during register allocation!"); |
| report_fatal_error("Ran out of registers during register allocation!"); |
| } |
| return; |
| } |
| } |
| |
| // Find up to 3 registers to consider as spill candidates. |
| unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1; |
| while (LastCandidate > 1) { |
| if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight)) |
| break; |
| --LastCandidate; |
| } |
| |
| DEBUG({ |
| dbgs() << "\t\tregister(s) with min weight(s): "; |
| |
| for (unsigned i = 0; i != LastCandidate; ++i) |
| dbgs() << tri_->getName(RegsWeights[i].first) |
| << " (" << RegsWeights[i].second << ")\n"; |
| }); |
| |
| // If the current has the minimum weight, we need to spill it and |
| // add any added intervals back to unhandled, and restart |
| // linearscan. |
| if (cur->weight != HUGE_VALF && cur->weight <= minWeight) { |
| DEBUG(dbgs() << "\t\t\tspilling(c): " << *cur << '\n'); |
| SmallVector<LiveInterval*, 8> added; |
| LiveRangeEdit LRE(*cur, added); |
| spiller_->spill(LRE); |
| |
| std::sort(added.begin(), added.end(), LISorter()); |
| if (added.empty()) |
| return; // Early exit if all spills were folded. |
| |
| // Merge added with unhandled. Note that we have already sorted |
| // intervals returned by addIntervalsForSpills by their starting |
| // point. |
| // This also update the NextReloadMap. That is, it adds mapping from a |
| // register defined by a reload from SS to the next reload from SS in the |
| // same basic block. |
| MachineBasicBlock *LastReloadMBB = 0; |
| LiveInterval *LastReload = 0; |
| int LastReloadSS = VirtRegMap::NO_STACK_SLOT; |
| for (unsigned i = 0, e = added.size(); i != e; ++i) { |
| LiveInterval *ReloadLi = added[i]; |
| if (ReloadLi->weight == HUGE_VALF && |
| li_->getApproximateInstructionCount(*ReloadLi) == 0) { |
| SlotIndex ReloadIdx = ReloadLi->beginIndex(); |
| MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); |
| int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); |
| if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { |
| // Last reload of same SS is in the same MBB. We want to try to |
| // allocate both reloads the same register and make sure the reg |
| // isn't clobbered in between if at all possible. |
| assert(LastReload->beginIndex() < ReloadIdx); |
| NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); |
| } |
| LastReloadMBB = ReloadMBB; |
| LastReload = ReloadLi; |
| LastReloadSS = ReloadSS; |
| } |
| unhandled_.push(ReloadLi); |
| } |
| return; |
| } |
| |
| ++NumBacktracks; |
| |
| // Push the current interval back to unhandled since we are going |
| // to re-run at least this iteration. Since we didn't modify it it |
| // should go back right in the front of the list |
| unhandled_.push(cur); |
| |
| assert(TargetRegisterInfo::isPhysicalRegister(minReg) && |
| "did not choose a register to spill?"); |
| |
| // We spill all intervals aliasing the register with |
| // minimum weight, rollback to the interval with the earliest |
| // start point and let the linear scan algorithm run again |
| SmallVector<LiveInterval*, 8> spillIs; |
| |
| // Determine which intervals have to be spilled. |
| findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs); |
| |
| // Set of spilled vregs (used later to rollback properly) |
| SmallSet<unsigned, 8> spilled; |
| |
| // The earliest start of a Spilled interval indicates up to where |
| // in handled we need to roll back |
| assert(!spillIs.empty() && "No spill intervals?"); |
| SlotIndex earliestStart = spillIs[0]->beginIndex(); |
| |
| // Spill live intervals of virtual regs mapped to the physical register we |
| // want to clear (and its aliases). We only spill those that overlap with the |
| // current interval as the rest do not affect its allocation. we also keep |
| // track of the earliest start of all spilled live intervals since this will |
| // mark our rollback point. |
| SmallVector<LiveInterval*, 8> added; |
| while (!spillIs.empty()) { |
| LiveInterval *sli = spillIs.back(); |
| spillIs.pop_back(); |
| DEBUG(dbgs() << "\t\t\tspilling(a): " << *sli << '\n'); |
| if (sli->beginIndex() < earliestStart) |
| earliestStart = sli->beginIndex(); |
| LiveRangeEdit LRE(*sli, added, 0, &spillIs); |
| spiller_->spill(LRE); |
| spilled.insert(sli->reg); |
| } |
| |
| // Include any added intervals in earliestStart. |
| for (unsigned i = 0, e = added.size(); i != e; ++i) { |
| SlotIndex SI = added[i]->beginIndex(); |
| if (SI < earliestStart) |
| earliestStart = SI; |
| } |
| |
| DEBUG(dbgs() << "\t\trolling back to: " << earliestStart << '\n'); |
| |
| // Scan handled in reverse order up to the earliest start of a |
| // spilled live interval and undo each one, restoring the state of |
| // unhandled. |
| while (!handled_.empty()) { |
| LiveInterval* i = handled_.back(); |
| // If this interval starts before t we are done. |
| if (!i->empty() && i->beginIndex() < earliestStart) |
| break; |
| DEBUG(dbgs() << "\t\t\tundo changes for: " << *i << '\n'); |
| handled_.pop_back(); |
| |
| // When undoing a live interval allocation we must know if it is active or |
| // inactive to properly update regUse_ and the VirtRegMap. |
| IntervalPtrs::iterator it; |
| if ((it = FindIntervalInVector(active_, i)) != active_.end()) { |
| active_.erase(it); |
| assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); |
| if (!spilled.count(i->reg)) |
| unhandled_.push(i); |
| delRegUse(vrm_->getPhys(i->reg)); |
| vrm_->clearVirt(i->reg); |
| } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) { |
| inactive_.erase(it); |
| assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); |
| if (!spilled.count(i->reg)) |
| unhandled_.push(i); |
| vrm_->clearVirt(i->reg); |
| } else { |
| assert(TargetRegisterInfo::isVirtualRegister(i->reg) && |
| "Can only allocate virtual registers!"); |
| vrm_->clearVirt(i->reg); |
| unhandled_.push(i); |
| } |
| |
| DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg); |
| if (ii == DowngradeMap.end()) |
| // It interval has a preference, it must be defined by a copy. Clear the |
| // preference now since the source interval allocation may have been |
| // undone as well. |
| mri_->setRegAllocationHint(i->reg, 0, 0); |
| else { |
| UpgradeRegister(ii->second); |
| } |
| } |
| |
| // Rewind the iterators in the active, inactive, and fixed lists back to the |
| // point we reverted to. |
| RevertVectorIteratorsTo(active_, earliestStart); |
| RevertVectorIteratorsTo(inactive_, earliestStart); |
| RevertVectorIteratorsTo(fixed_, earliestStart); |
| |
| // Scan the rest and undo each interval that expired after t and |
| // insert it in active (the next iteration of the algorithm will |
| // put it in inactive if required) |
| for (unsigned i = 0, e = handled_.size(); i != e; ++i) { |
| LiveInterval *HI = handled_[i]; |
| if (!HI->expiredAt(earliestStart) && |
| HI->expiredAt(cur->beginIndex())) { |
| DEBUG(dbgs() << "\t\t\tundo changes for: " << *HI << '\n'); |
| active_.push_back(std::make_pair(HI, HI->begin())); |
| assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg)); |
| addRegUse(vrm_->getPhys(HI->reg)); |
| } |
| } |
| |
| // Merge added with unhandled. |
| // This also update the NextReloadMap. That is, it adds mapping from a |
| // register defined by a reload from SS to the next reload from SS in the |
| // same basic block. |
| MachineBasicBlock *LastReloadMBB = 0; |
| LiveInterval *LastReload = 0; |
| int LastReloadSS = VirtRegMap::NO_STACK_SLOT; |
| std::sort(added.begin(), added.end(), LISorter()); |
| for (unsigned i = 0, e = added.size(); i != e; ++i) { |
| LiveInterval *ReloadLi = added[i]; |
| if (ReloadLi->weight == HUGE_VALF && |
| li_->getApproximateInstructionCount(*ReloadLi) == 0) { |
| SlotIndex ReloadIdx = ReloadLi->beginIndex(); |
| MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); |
| int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); |
| if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { |
| // Last reload of same SS is in the same MBB. We want to try to |
| // allocate both reloads the same register and make sure the reg |
| // isn't clobbered in between if at all possible. |
| assert(LastReload->beginIndex() < ReloadIdx); |
| NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); |
| } |
| LastReloadMBB = ReloadMBB; |
| LastReload = ReloadLi; |
| LastReloadSS = ReloadSS; |
| } |
| unhandled_.push(ReloadLi); |
| } |
| } |
| |
| unsigned RALinScan::getFreePhysReg(LiveInterval* cur, |
| const TargetRegisterClass *RC, |
| unsigned MaxInactiveCount, |
| SmallVector<unsigned, 256> &inactiveCounts, |
| bool SkipDGRegs) { |
| unsigned FreeReg = 0; |
| unsigned FreeRegInactiveCount = 0; |
| |
| std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg); |
| // Resolve second part of the hint (if possible) given the current allocation. |
| unsigned physReg = Hint.second; |
| if (TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg)) |
| physReg = vrm_->getPhys(physReg); |
| |
| ArrayRef<unsigned> Order; |
| if (Hint.first) |
| Order = tri_->getRawAllocationOrder(RC, Hint.first, physReg, *mf_); |
| else |
| Order = RegClassInfo.getOrder(RC); |
| |
| assert(!Order.empty() && "No allocatable register in this register class!"); |
| |
| // Scan for the first available register. |
| for (unsigned i = 0; i != Order.size(); ++i) { |
| unsigned Reg = Order[i]; |
| // Ignore "downgraded" registers. |
| if (SkipDGRegs && DowngradedRegs.count(Reg)) |
| continue; |
| // Skip reserved registers. |
| if (reservedRegs_.test(Reg)) |
| continue; |
| // Skip recently allocated registers. |
| if (isRegAvail(Reg) && (!SkipDGRegs || !isRecentlyUsed(Reg))) { |
| FreeReg = Reg; |
| if (FreeReg < inactiveCounts.size()) |
| FreeRegInactiveCount = inactiveCounts[FreeReg]; |
| else |
| FreeRegInactiveCount = 0; |
| break; |
| } |
| } |
| |
| // If there are no free regs, or if this reg has the max inactive count, |
| // return this register. |
| if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) { |
| // Remember what register we picked so we can skip it next time. |
| if (FreeReg != 0) recordRecentlyUsed(FreeReg); |
| return FreeReg; |
| } |
| |
| // Continue scanning the registers, looking for the one with the highest |
| // inactive count. Alkis found that this reduced register pressure very |
| // slightly on X86 (in rev 1.94 of this file), though this should probably be |
| // reevaluated now. |
| for (unsigned i = 0; i != Order.size(); ++i) { |
| unsigned Reg = Order[i]; |
| // Ignore "downgraded" registers. |
| if (SkipDGRegs && DowngradedRegs.count(Reg)) |
| continue; |
| // Skip reserved registers. |
| if (reservedRegs_.test(Reg)) |
| continue; |
| if (isRegAvail(Reg) && Reg < inactiveCounts.size() && |
| FreeRegInactiveCount < inactiveCounts[Reg] && |
| (!SkipDGRegs || !isRecentlyUsed(Reg))) { |
| FreeReg = Reg; |
| FreeRegInactiveCount = inactiveCounts[Reg]; |
| if (FreeRegInactiveCount == MaxInactiveCount) |
| break; // We found the one with the max inactive count. |
| } |
| } |
| |
| // Remember what register we picked so we can skip it next time. |
| recordRecentlyUsed(FreeReg); |
| |
| return FreeReg; |
| } |
| |
| /// getFreePhysReg - return a free physical register for this virtual register |
| /// interval if we have one, otherwise return 0. |
| unsigned RALinScan::getFreePhysReg(LiveInterval *cur) { |
| SmallVector<unsigned, 256> inactiveCounts; |
| unsigned MaxInactiveCount = 0; |
| |
| const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); |
| const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); |
| |
| for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end(); |
| i != e; ++i) { |
| unsigned reg = i->first->reg; |
| assert(TargetRegisterInfo::isVirtualRegister(reg) && |
| "Can only allocate virtual registers!"); |
| |
| // If this is not in a related reg class to the register we're allocating, |
| // don't check it. |
| const TargetRegisterClass *RegRC = mri_->getRegClass(reg); |
| if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) { |
| reg = vrm_->getPhys(reg); |
| if (inactiveCounts.size() <= reg) |
| inactiveCounts.resize(reg+1); |
| ++inactiveCounts[reg]; |
| MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]); |
| } |
| } |
| |
| // If copy coalescer has assigned a "preferred" register, check if it's |
| // available first. |
| unsigned Preference = vrm_->getRegAllocPref(cur->reg); |
| if (Preference) { |
| DEBUG(dbgs() << "(preferred: " << tri_->getName(Preference) << ") "); |
| if (isRegAvail(Preference) && |
| RC->contains(Preference)) |
| return Preference; |
| } |
| |
| unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, |
| true); |
| if (FreeReg) |
| return FreeReg; |
| return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false); |
| } |
| |
| FunctionPass* llvm::createLinearScanRegisterAllocator() { |
| return new RALinScan(); |
| } |