| //===-- llvm/ADT/FoldingSet.h - Uniquing Hash Set ---------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a hash set that can be used to remove duplication of nodes |
| // in a graph. This code was originally created by Chris Lattner for use with |
| // SelectionDAGCSEMap, but was isolated to provide use across the llvm code set. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_FOLDINGSET_H |
| #define LLVM_ADT_FOLDINGSET_H |
| |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/Support/Allocator.h" |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <utility> |
| |
| namespace llvm { |
| |
| /// This folding set used for two purposes: |
| /// 1. Given information about a node we want to create, look up the unique |
| /// instance of the node in the set. If the node already exists, return |
| /// it, otherwise return the bucket it should be inserted into. |
| /// 2. Given a node that has already been created, remove it from the set. |
| /// |
| /// This class is implemented as a single-link chained hash table, where the |
| /// "buckets" are actually the nodes themselves (the next pointer is in the |
| /// node). The last node points back to the bucket to simplify node removal. |
| /// |
| /// Any node that is to be included in the folding set must be a subclass of |
| /// FoldingSetNode. The node class must also define a Profile method used to |
| /// establish the unique bits of data for the node. The Profile method is |
| /// passed a FoldingSetNodeID object which is used to gather the bits. Just |
| /// call one of the Add* functions defined in the FoldingSetImpl::NodeID class. |
| /// NOTE: That the folding set does not own the nodes and it is the |
| /// responsibility of the user to dispose of the nodes. |
| /// |
| /// Eg. |
| /// class MyNode : public FoldingSetNode { |
| /// private: |
| /// std::string Name; |
| /// unsigned Value; |
| /// public: |
| /// MyNode(const char *N, unsigned V) : Name(N), Value(V) {} |
| /// ... |
| /// void Profile(FoldingSetNodeID &ID) const { |
| /// ID.AddString(Name); |
| /// ID.AddInteger(Value); |
| /// } |
| /// ... |
| /// }; |
| /// |
| /// To define the folding set itself use the FoldingSet template; |
| /// |
| /// Eg. |
| /// FoldingSet<MyNode> MyFoldingSet; |
| /// |
| /// Four public methods are available to manipulate the folding set; |
| /// |
| /// 1) If you have an existing node that you want add to the set but unsure |
| /// that the node might already exist then call; |
| /// |
| /// MyNode *M = MyFoldingSet.GetOrInsertNode(N); |
| /// |
| /// If The result is equal to the input then the node has been inserted. |
| /// Otherwise, the result is the node existing in the folding set, and the |
| /// input can be discarded (use the result instead.) |
| /// |
| /// 2) If you are ready to construct a node but want to check if it already |
| /// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to |
| /// check; |
| /// |
| /// FoldingSetNodeID ID; |
| /// ID.AddString(Name); |
| /// ID.AddInteger(Value); |
| /// void *InsertPoint; |
| /// |
| /// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint); |
| /// |
| /// If found then M with be non-NULL, else InsertPoint will point to where it |
| /// should be inserted using InsertNode. |
| /// |
| /// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new |
| /// node with FindNodeOrInsertPos; |
| /// |
| /// InsertNode(N, InsertPoint); |
| /// |
| /// 4) Finally, if you want to remove a node from the folding set call; |
| /// |
| /// bool WasRemoved = RemoveNode(N); |
| /// |
| /// The result indicates whether the node existed in the folding set. |
| |
| class FoldingSetNodeID; |
| class StringRef; |
| |
| //===----------------------------------------------------------------------===// |
| /// FoldingSetImpl - Implements the folding set functionality. The main |
| /// structure is an array of buckets. Each bucket is indexed by the hash of |
| /// the nodes it contains. The bucket itself points to the nodes contained |
| /// in the bucket via a singly linked list. The last node in the list points |
| /// back to the bucket to facilitate node removal. |
| /// |
| class FoldingSetImpl { |
| virtual void anchor(); // Out of line virtual method. |
| |
| protected: |
| /// Buckets - Array of bucket chains. |
| /// |
| void **Buckets; |
| |
| /// NumBuckets - Length of the Buckets array. Always a power of 2. |
| /// |
| unsigned NumBuckets; |
| |
| /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes |
| /// is greater than twice the number of buckets. |
| unsigned NumNodes; |
| |
| explicit FoldingSetImpl(unsigned Log2InitSize = 6); |
| FoldingSetImpl(FoldingSetImpl &&Arg); |
| FoldingSetImpl &operator=(FoldingSetImpl &&RHS); |
| ~FoldingSetImpl(); |
| |
| public: |
| //===--------------------------------------------------------------------===// |
| /// Node - This class is used to maintain the singly linked bucket list in |
| /// a folding set. |
| /// |
| class Node { |
| private: |
| // NextInFoldingSetBucket - next link in the bucket list. |
| void *NextInFoldingSetBucket; |
| |
| public: |
| Node() : NextInFoldingSetBucket(nullptr) {} |
| |
| // Accessors |
| void *getNextInBucket() const { return NextInFoldingSetBucket; } |
| void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; } |
| }; |
| |
| /// clear - Remove all nodes from the folding set. |
| void clear(); |
| |
| /// RemoveNode - Remove a node from the folding set, returning true if one |
| /// was removed or false if the node was not in the folding set. |
| bool RemoveNode(Node *N); |
| |
| /// GetOrInsertNode - If there is an existing simple Node exactly |
| /// equal to the specified node, return it. Otherwise, insert 'N' and return |
| /// it instead. |
| Node *GetOrInsertNode(Node *N); |
| |
| /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
| /// return it. If not, return the insertion token that will make insertion |
| /// faster. |
| Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); |
| |
| /// InsertNode - Insert the specified node into the folding set, knowing that |
| /// it is not already in the folding set. InsertPos must be obtained from |
| /// FindNodeOrInsertPos. |
| void InsertNode(Node *N, void *InsertPos); |
| |
| /// InsertNode - Insert the specified node into the folding set, knowing that |
| /// it is not already in the folding set. |
| void InsertNode(Node *N) { |
| Node *Inserted = GetOrInsertNode(N); |
| (void)Inserted; |
| assert(Inserted == N && "Node already inserted!"); |
| } |
| |
| /// size - Returns the number of nodes in the folding set. |
| unsigned size() const { return NumNodes; } |
| |
| /// empty - Returns true if there are no nodes in the folding set. |
| bool empty() const { return NumNodes == 0; } |
| |
| /// reserve - Increase the number of buckets such that adding the |
| /// EltCount-th node won't cause a rebucket operation. reserve is permitted |
| /// to allocate more space than requested by EltCount. |
| void reserve(unsigned EltCount); |
| |
| /// capacity - Returns the number of nodes permitted in the folding set |
| /// before a rebucket operation is performed. |
| unsigned capacity() { |
| // We allow a load factor of up to 2.0, |
| // so that means our capacity is NumBuckets * 2 |
| return NumBuckets * 2; |
| } |
| |
| private: |
| /// GrowHashTable - Double the size of the hash table and rehash everything. |
| void GrowHashTable(); |
| |
| /// GrowBucketCount - resize the hash table and rehash everything. |
| /// NewBucketCount must be a power of two, and must be greater than the old |
| /// bucket count. |
| void GrowBucketCount(unsigned NewBucketCount); |
| |
| protected: |
| /// GetNodeProfile - Instantiations of the FoldingSet template implement |
| /// this function to gather data bits for the given node. |
| virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0; |
| |
| /// NodeEquals - Instantiations of the FoldingSet template implement |
| /// this function to compare the given node with the given ID. |
| virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, |
| FoldingSetNodeID &TempID) const=0; |
| |
| /// ComputeNodeHash - Instantiations of the FoldingSet template implement |
| /// this function to compute a hash value for the given node. |
| virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0; |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| |
| /// DefaultFoldingSetTrait - This class provides default implementations |
| /// for FoldingSetTrait implementations. |
| /// |
| template<typename T> struct DefaultFoldingSetTrait { |
| static void Profile(const T &X, FoldingSetNodeID &ID) { |
| X.Profile(ID); |
| } |
| static void Profile(T &X, FoldingSetNodeID &ID) { |
| X.Profile(ID); |
| } |
| |
| // Equals - Test if the profile for X would match ID, using TempID |
| // to compute a temporary ID if necessary. The default implementation |
| // just calls Profile and does a regular comparison. Implementations |
| // can override this to provide more efficient implementations. |
| static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, |
| FoldingSetNodeID &TempID); |
| |
| // ComputeHash - Compute a hash value for X, using TempID to |
| // compute a temporary ID if necessary. The default implementation |
| // just calls Profile and does a regular hash computation. |
| // Implementations can override this to provide more efficient |
| // implementations. |
| static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID); |
| }; |
| |
| /// FoldingSetTrait - This trait class is used to define behavior of how |
| /// to "profile" (in the FoldingSet parlance) an object of a given type. |
| /// The default behavior is to invoke a 'Profile' method on an object, but |
| /// through template specialization the behavior can be tailored for specific |
| /// types. Combined with the FoldingSetNodeWrapper class, one can add objects |
| /// to FoldingSets that were not originally designed to have that behavior. |
| template<typename T> struct FoldingSetTrait |
| : public DefaultFoldingSetTrait<T> {}; |
| |
| /// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but |
| /// for ContextualFoldingSets. |
| template<typename T, typename Ctx> |
| struct DefaultContextualFoldingSetTrait { |
| static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) { |
| X.Profile(ID, Context); |
| } |
| |
| static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash, |
| FoldingSetNodeID &TempID, Ctx Context); |
| static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID, |
| Ctx Context); |
| }; |
| |
| /// ContextualFoldingSetTrait - Like FoldingSetTrait, but for |
| /// ContextualFoldingSets. |
| template<typename T, typename Ctx> struct ContextualFoldingSetTrait |
| : public DefaultContextualFoldingSetTrait<T, Ctx> {}; |
| |
| //===--------------------------------------------------------------------===// |
| /// FoldingSetNodeIDRef - This class describes a reference to an interned |
| /// FoldingSetNodeID, which can be a useful to store node id data rather |
| /// than using plain FoldingSetNodeIDs, since the 32-element SmallVector |
| /// is often much larger than necessary, and the possibility of heap |
| /// allocation means it requires a non-trivial destructor call. |
| class FoldingSetNodeIDRef { |
| const unsigned *Data = nullptr; |
| size_t Size = 0; |
| |
| public: |
| FoldingSetNodeIDRef() = default; |
| FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {} |
| |
| /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef, |
| /// used to lookup the node in the FoldingSetImpl. |
| unsigned ComputeHash() const; |
| |
| bool operator==(FoldingSetNodeIDRef) const; |
| |
| bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); } |
| |
| /// Used to compare the "ordering" of two nodes as defined by the |
| /// profiled bits and their ordering defined by memcmp(). |
| bool operator<(FoldingSetNodeIDRef) const; |
| |
| const unsigned *getData() const { return Data; } |
| size_t getSize() const { return Size; } |
| }; |
| |
| //===--------------------------------------------------------------------===// |
| /// FoldingSetNodeID - This class is used to gather all the unique data bits of |
| /// a node. When all the bits are gathered this class is used to produce a |
| /// hash value for the node. |
| /// |
| class FoldingSetNodeID { |
| /// Bits - Vector of all the data bits that make the node unique. |
| /// Use a SmallVector to avoid a heap allocation in the common case. |
| SmallVector<unsigned, 32> Bits; |
| |
| public: |
| FoldingSetNodeID() = default; |
| |
| FoldingSetNodeID(FoldingSetNodeIDRef Ref) |
| : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {} |
| |
| /// Add* - Add various data types to Bit data. |
| /// |
| void AddPointer(const void *Ptr); |
| void AddInteger(signed I); |
| void AddInteger(unsigned I); |
| void AddInteger(long I); |
| void AddInteger(unsigned long I); |
| void AddInteger(long long I); |
| void AddInteger(unsigned long long I); |
| void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); } |
| void AddString(StringRef String); |
| void AddNodeID(const FoldingSetNodeID &ID); |
| |
| template <typename T> |
| inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); } |
| |
| /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID |
| /// object to be used to compute a new profile. |
| inline void clear() { Bits.clear(); } |
| |
| /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used |
| /// to lookup the node in the FoldingSetImpl. |
| unsigned ComputeHash() const; |
| |
| /// operator== - Used to compare two nodes to each other. |
| /// |
| bool operator==(const FoldingSetNodeID &RHS) const; |
| bool operator==(const FoldingSetNodeIDRef RHS) const; |
| |
| bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); } |
| bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);} |
| |
| /// Used to compare the "ordering" of two nodes as defined by the |
| /// profiled bits and their ordering defined by memcmp(). |
| bool operator<(const FoldingSetNodeID &RHS) const; |
| bool operator<(const FoldingSetNodeIDRef RHS) const; |
| |
| /// Intern - Copy this node's data to a memory region allocated from the |
| /// given allocator and return a FoldingSetNodeIDRef describing the |
| /// interned data. |
| FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const; |
| }; |
| |
| // Convenience type to hide the implementation of the folding set. |
| typedef FoldingSetImpl::Node FoldingSetNode; |
| template<class T> class FoldingSetIterator; |
| template<class T> class FoldingSetBucketIterator; |
| |
| // Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which |
| // require the definition of FoldingSetNodeID. |
| template<typename T> |
| inline bool |
| DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID, |
| unsigned /*IDHash*/, |
| FoldingSetNodeID &TempID) { |
| FoldingSetTrait<T>::Profile(X, TempID); |
| return TempID == ID; |
| } |
| template<typename T> |
| inline unsigned |
| DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) { |
| FoldingSetTrait<T>::Profile(X, TempID); |
| return TempID.ComputeHash(); |
| } |
| template<typename T, typename Ctx> |
| inline bool |
| DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X, |
| const FoldingSetNodeID &ID, |
| unsigned /*IDHash*/, |
| FoldingSetNodeID &TempID, |
| Ctx Context) { |
| ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); |
| return TempID == ID; |
| } |
| template<typename T, typename Ctx> |
| inline unsigned |
| DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X, |
| FoldingSetNodeID &TempID, |
| Ctx Context) { |
| ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context); |
| return TempID.ComputeHash(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| /// FoldingSet - This template class is used to instantiate a specialized |
| /// implementation of the folding set to the node class T. T must be a |
| /// subclass of FoldingSetNode and implement a Profile function. |
| /// |
| /// Note that this set type is movable and move-assignable. However, its |
| /// moved-from state is not a valid state for anything other than |
| /// move-assigning and destroying. This is primarily to enable movable APIs |
| /// that incorporate these objects. |
| template <class T> class FoldingSet final : public FoldingSetImpl { |
| private: |
| /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a |
| /// way to convert nodes into a unique specifier. |
| void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override { |
| T *TN = static_cast<T *>(N); |
| FoldingSetTrait<T>::Profile(*TN, ID); |
| } |
| |
| /// NodeEquals - Instantiations may optionally provide a way to compare a |
| /// node with a specified ID. |
| bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash, |
| FoldingSetNodeID &TempID) const override { |
| T *TN = static_cast<T *>(N); |
| return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID); |
| } |
| |
| /// ComputeNodeHash - Instantiations may optionally provide a way to compute a |
| /// hash value directly from a node. |
| unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override { |
| T *TN = static_cast<T *>(N); |
| return FoldingSetTrait<T>::ComputeHash(*TN, TempID); |
| } |
| |
| public: |
| explicit FoldingSet(unsigned Log2InitSize = 6) |
| : FoldingSetImpl(Log2InitSize) {} |
| |
| FoldingSet(FoldingSet &&Arg) : FoldingSetImpl(std::move(Arg)) {} |
| FoldingSet &operator=(FoldingSet &&RHS) { |
| (void)FoldingSetImpl::operator=(std::move(RHS)); |
| return *this; |
| } |
| |
| typedef FoldingSetIterator<T> iterator; |
| iterator begin() { return iterator(Buckets); } |
| iterator end() { return iterator(Buckets+NumBuckets); } |
| |
| typedef FoldingSetIterator<const T> const_iterator; |
| const_iterator begin() const { return const_iterator(Buckets); } |
| const_iterator end() const { return const_iterator(Buckets+NumBuckets); } |
| |
| typedef FoldingSetBucketIterator<T> bucket_iterator; |
| |
| bucket_iterator bucket_begin(unsigned hash) { |
| return bucket_iterator(Buckets + (hash & (NumBuckets-1))); |
| } |
| |
| bucket_iterator bucket_end(unsigned hash) { |
| return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); |
| } |
| |
| /// GetOrInsertNode - If there is an existing simple Node exactly |
| /// equal to the specified node, return it. Otherwise, insert 'N' and |
| /// return it instead. |
| T *GetOrInsertNode(Node *N) { |
| return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); |
| } |
| |
| /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
| /// return it. If not, return the insertion token that will make insertion |
| /// faster. |
| T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { |
| return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// ContextualFoldingSet - This template class is a further refinement |
| /// of FoldingSet which provides a context argument when calling |
| /// Profile on its nodes. Currently, that argument is fixed at |
| /// initialization time. |
| /// |
| /// T must be a subclass of FoldingSetNode and implement a Profile |
| /// function with signature |
| /// void Profile(FoldingSetNodeID &, Ctx); |
| template <class T, class Ctx> |
| class ContextualFoldingSet final : public FoldingSetImpl { |
| // Unfortunately, this can't derive from FoldingSet<T> because the |
| // construction vtable for FoldingSet<T> requires |
| // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn |
| // requires a single-argument T::Profile(). |
| |
| private: |
| Ctx Context; |
| |
| /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a |
| /// way to convert nodes into a unique specifier. |
| void GetNodeProfile(FoldingSetImpl::Node *N, |
| FoldingSetNodeID &ID) const override { |
| T *TN = static_cast<T *>(N); |
| ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context); |
| } |
| |
| bool NodeEquals(FoldingSetImpl::Node *N, const FoldingSetNodeID &ID, |
| unsigned IDHash, FoldingSetNodeID &TempID) const override { |
| T *TN = static_cast<T *>(N); |
| return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID, |
| Context); |
| } |
| |
| unsigned ComputeNodeHash(FoldingSetImpl::Node *N, |
| FoldingSetNodeID &TempID) const override { |
| T *TN = static_cast<T *>(N); |
| return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context); |
| } |
| |
| public: |
| explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6) |
| : FoldingSetImpl(Log2InitSize), Context(Context) |
| {} |
| |
| Ctx getContext() const { return Context; } |
| |
| typedef FoldingSetIterator<T> iterator; |
| iterator begin() { return iterator(Buckets); } |
| iterator end() { return iterator(Buckets+NumBuckets); } |
| |
| typedef FoldingSetIterator<const T> const_iterator; |
| const_iterator begin() const { return const_iterator(Buckets); } |
| const_iterator end() const { return const_iterator(Buckets+NumBuckets); } |
| |
| typedef FoldingSetBucketIterator<T> bucket_iterator; |
| |
| bucket_iterator bucket_begin(unsigned hash) { |
| return bucket_iterator(Buckets + (hash & (NumBuckets-1))); |
| } |
| |
| bucket_iterator bucket_end(unsigned hash) { |
| return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true); |
| } |
| |
| /// GetOrInsertNode - If there is an existing simple Node exactly |
| /// equal to the specified node, return it. Otherwise, insert 'N' |
| /// and return it instead. |
| T *GetOrInsertNode(Node *N) { |
| return static_cast<T *>(FoldingSetImpl::GetOrInsertNode(N)); |
| } |
| |
| /// FindNodeOrInsertPos - Look up the node specified by ID. If it |
| /// exists, return it. If not, return the insertion token that will |
| /// make insertion faster. |
| T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { |
| return static_cast<T *>(FoldingSetImpl::FindNodeOrInsertPos(ID, InsertPos)); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// FoldingSetVector - This template class combines a FoldingSet and a vector |
| /// to provide the interface of FoldingSet but with deterministic iteration |
| /// order based on the insertion order. T must be a subclass of FoldingSetNode |
| /// and implement a Profile function. |
| template <class T, class VectorT = SmallVector<T*, 8>> |
| class FoldingSetVector { |
| FoldingSet<T> Set; |
| VectorT Vector; |
| |
| public: |
| explicit FoldingSetVector(unsigned Log2InitSize = 6) |
| : Set(Log2InitSize) { |
| } |
| |
| typedef pointee_iterator<typename VectorT::iterator> iterator; |
| iterator begin() { return Vector.begin(); } |
| iterator end() { return Vector.end(); } |
| |
| typedef pointee_iterator<typename VectorT::const_iterator> const_iterator; |
| const_iterator begin() const { return Vector.begin(); } |
| const_iterator end() const { return Vector.end(); } |
| |
| /// clear - Remove all nodes from the folding set. |
| void clear() { Set.clear(); Vector.clear(); } |
| |
| /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists, |
| /// return it. If not, return the insertion token that will make insertion |
| /// faster. |
| T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) { |
| return Set.FindNodeOrInsertPos(ID, InsertPos); |
| } |
| |
| /// GetOrInsertNode - If there is an existing simple Node exactly |
| /// equal to the specified node, return it. Otherwise, insert 'N' and |
| /// return it instead. |
| T *GetOrInsertNode(T *N) { |
| T *Result = Set.GetOrInsertNode(N); |
| if (Result == N) Vector.push_back(N); |
| return Result; |
| } |
| |
| /// InsertNode - Insert the specified node into the folding set, knowing that |
| /// it is not already in the folding set. InsertPos must be obtained from |
| /// FindNodeOrInsertPos. |
| void InsertNode(T *N, void *InsertPos) { |
| Set.InsertNode(N, InsertPos); |
| Vector.push_back(N); |
| } |
| |
| /// InsertNode - Insert the specified node into the folding set, knowing that |
| /// it is not already in the folding set. |
| void InsertNode(T *N) { |
| Set.InsertNode(N); |
| Vector.push_back(N); |
| } |
| |
| /// size - Returns the number of nodes in the folding set. |
| unsigned size() const { return Set.size(); } |
| |
| /// empty - Returns true if there are no nodes in the folding set. |
| bool empty() const { return Set.empty(); } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// FoldingSetIteratorImpl - This is the common iterator support shared by all |
| /// folding sets, which knows how to walk the folding set hash table. |
| class FoldingSetIteratorImpl { |
| protected: |
| FoldingSetNode *NodePtr; |
| |
| FoldingSetIteratorImpl(void **Bucket); |
| |
| void advance(); |
| |
| public: |
| bool operator==(const FoldingSetIteratorImpl &RHS) const { |
| return NodePtr == RHS.NodePtr; |
| } |
| bool operator!=(const FoldingSetIteratorImpl &RHS) const { |
| return NodePtr != RHS.NodePtr; |
| } |
| }; |
| |
| template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl { |
| public: |
| explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {} |
| |
| T &operator*() const { |
| return *static_cast<T*>(NodePtr); |
| } |
| |
| T *operator->() const { |
| return static_cast<T*>(NodePtr); |
| } |
| |
| inline FoldingSetIterator &operator++() { // Preincrement |
| advance(); |
| return *this; |
| } |
| FoldingSetIterator operator++(int) { // Postincrement |
| FoldingSetIterator tmp = *this; ++*this; return tmp; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// FoldingSetBucketIteratorImpl - This is the common bucket iterator support |
| /// shared by all folding sets, which knows how to walk a particular bucket |
| /// of a folding set hash table. |
| |
| class FoldingSetBucketIteratorImpl { |
| protected: |
| void *Ptr; |
| |
| explicit FoldingSetBucketIteratorImpl(void **Bucket); |
| |
| FoldingSetBucketIteratorImpl(void **Bucket, bool) |
| : Ptr(Bucket) {} |
| |
| void advance() { |
| void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket(); |
| uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1; |
| Ptr = reinterpret_cast<void*>(x); |
| } |
| |
| public: |
| bool operator==(const FoldingSetBucketIteratorImpl &RHS) const { |
| return Ptr == RHS.Ptr; |
| } |
| bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const { |
| return Ptr != RHS.Ptr; |
| } |
| }; |
| |
| template <class T> |
| class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl { |
| public: |
| explicit FoldingSetBucketIterator(void **Bucket) : |
| FoldingSetBucketIteratorImpl(Bucket) {} |
| |
| FoldingSetBucketIterator(void **Bucket, bool) : |
| FoldingSetBucketIteratorImpl(Bucket, true) {} |
| |
| T &operator*() const { return *static_cast<T*>(Ptr); } |
| T *operator->() const { return static_cast<T*>(Ptr); } |
| |
| inline FoldingSetBucketIterator &operator++() { // Preincrement |
| advance(); |
| return *this; |
| } |
| FoldingSetBucketIterator operator++(int) { // Postincrement |
| FoldingSetBucketIterator tmp = *this; ++*this; return tmp; |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary |
| /// types in an enclosing object so that they can be inserted into FoldingSets. |
| template <typename T> |
| class FoldingSetNodeWrapper : public FoldingSetNode { |
| T data; |
| |
| public: |
| template <typename... Ts> |
| explicit FoldingSetNodeWrapper(Ts &&... Args) |
| : data(std::forward<Ts>(Args)...) {} |
| |
| void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); } |
| |
| T &getValue() { return data; } |
| const T &getValue() const { return data; } |
| |
| operator T&() { return data; } |
| operator const T&() const { return data; } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| /// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores |
| /// a FoldingSetNodeID value rather than requiring the node to recompute it |
| /// each time it is needed. This trades space for speed (which can be |
| /// significant if the ID is long), and it also permits nodes to drop |
| /// information that would otherwise only be required for recomputing an ID. |
| class FastFoldingSetNode : public FoldingSetNode { |
| FoldingSetNodeID FastID; |
| |
| protected: |
| explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {} |
| |
| public: |
| void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Partial specializations of FoldingSetTrait. |
| |
| template<typename T> struct FoldingSetTrait<T*> { |
| static inline void Profile(T *X, FoldingSetNodeID &ID) { |
| ID.AddPointer(X); |
| } |
| }; |
| template <typename T1, typename T2> |
| struct FoldingSetTrait<std::pair<T1, T2>> { |
| static inline void Profile(const std::pair<T1, T2> &P, |
| FoldingSetNodeID &ID) { |
| ID.Add(P.first); |
| ID.Add(P.second); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_FOLDINGSET_H |