| //===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AArch64 specific subclass of TargetSubtarget. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64Subtarget.h" |
| |
| #include "AArch64.h" |
| #include "AArch64CallLowering.h" |
| #include "AArch64InstrInfo.h" |
| #include "AArch64LegalizerInfo.h" |
| #include "AArch64PBQPRegAlloc.h" |
| #include "AArch64RegisterBankInfo.h" |
| #include "AArch64TargetMachine.h" |
| #include "MCTargetDesc/AArch64AddressingModes.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/Support/TargetParser.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "aarch64-subtarget" |
| |
| #define GET_SUBTARGETINFO_CTOR |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #include "AArch64GenSubtargetInfo.inc" |
| |
| static cl::opt<bool> |
| EnableEarlyIfConvert("aarch64-early-ifcvt", cl::desc("Enable the early if " |
| "converter pass"), cl::init(true), cl::Hidden); |
| |
| // If OS supports TBI, use this flag to enable it. |
| static cl::opt<bool> |
| UseAddressTopByteIgnored("aarch64-use-tbi", cl::desc("Assume that top byte of " |
| "an address is ignored"), cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> |
| UseNonLazyBind("aarch64-enable-nonlazybind", |
| cl::desc("Call nonlazybind functions via direct GOT load"), |
| cl::init(false), cl::Hidden); |
| |
| AArch64Subtarget & |
| AArch64Subtarget::initializeSubtargetDependencies(StringRef FS, |
| StringRef CPUString) { |
| // Determine default and user-specified characteristics |
| |
| if (CPUString.empty()) |
| CPUString = "generic"; |
| |
| ParseSubtargetFeatures(CPUString, FS); |
| initializeProperties(); |
| |
| return *this; |
| } |
| |
| void AArch64Subtarget::initializeProperties() { |
| // Initialize CPU specific properties. We should add a tablegen feature for |
| // this in the future so we can specify it together with the subtarget |
| // features. |
| switch (ARMProcFamily) { |
| case Others: |
| break; |
| case CortexA35: |
| break; |
| case CortexA53: |
| PrefFunctionLogAlignment = 3; |
| break; |
| case CortexA55: |
| break; |
| case CortexA57: |
| MaxInterleaveFactor = 4; |
| PrefFunctionLogAlignment = 4; |
| break; |
| case CortexA65: |
| PrefFunctionLogAlignment = 3; |
| break; |
| case CortexA72: |
| case CortexA73: |
| case CortexA75: |
| case CortexA76: |
| PrefFunctionLogAlignment = 4; |
| break; |
| case AppleA7: |
| case AppleA10: |
| case AppleA11: |
| case AppleA12: |
| case AppleA13: |
| CacheLineSize = 64; |
| PrefetchDistance = 280; |
| MinPrefetchStride = 2048; |
| MaxPrefetchIterationsAhead = 3; |
| break; |
| case ExynosM3: |
| MaxInterleaveFactor = 4; |
| MaxJumpTableSize = 20; |
| PrefFunctionLogAlignment = 5; |
| PrefLoopLogAlignment = 4; |
| break; |
| case Falkor: |
| MaxInterleaveFactor = 4; |
| // FIXME: remove this to enable 64-bit SLP if performance looks good. |
| MinVectorRegisterBitWidth = 128; |
| CacheLineSize = 128; |
| PrefetchDistance = 820; |
| MinPrefetchStride = 2048; |
| MaxPrefetchIterationsAhead = 8; |
| break; |
| case Kryo: |
| MaxInterleaveFactor = 4; |
| VectorInsertExtractBaseCost = 2; |
| CacheLineSize = 128; |
| PrefetchDistance = 740; |
| MinPrefetchStride = 1024; |
| MaxPrefetchIterationsAhead = 11; |
| // FIXME: remove this to enable 64-bit SLP if performance looks good. |
| MinVectorRegisterBitWidth = 128; |
| break; |
| case NeoverseE1: |
| PrefFunctionLogAlignment = 3; |
| break; |
| case NeoverseN1: |
| PrefFunctionLogAlignment = 4; |
| break; |
| case Saphira: |
| MaxInterleaveFactor = 4; |
| // FIXME: remove this to enable 64-bit SLP if performance looks good. |
| MinVectorRegisterBitWidth = 128; |
| break; |
| case ThunderX2T99: |
| CacheLineSize = 64; |
| PrefFunctionLogAlignment = 3; |
| PrefLoopLogAlignment = 2; |
| MaxInterleaveFactor = 4; |
| PrefetchDistance = 128; |
| MinPrefetchStride = 1024; |
| MaxPrefetchIterationsAhead = 4; |
| // FIXME: remove this to enable 64-bit SLP if performance looks good. |
| MinVectorRegisterBitWidth = 128; |
| break; |
| case ThunderX: |
| case ThunderXT88: |
| case ThunderXT81: |
| case ThunderXT83: |
| CacheLineSize = 128; |
| PrefFunctionLogAlignment = 3; |
| PrefLoopLogAlignment = 2; |
| // FIXME: remove this to enable 64-bit SLP if performance looks good. |
| MinVectorRegisterBitWidth = 128; |
| break; |
| case TSV110: |
| CacheLineSize = 64; |
| PrefFunctionLogAlignment = 4; |
| PrefLoopLogAlignment = 2; |
| break; |
| } |
| } |
| |
| AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU, |
| const std::string &FS, |
| const TargetMachine &TM, bool LittleEndian) |
| : AArch64GenSubtargetInfo(TT, CPU, FS), |
| ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()), |
| CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()), |
| IsLittle(LittleEndian), |
| TargetTriple(TT), FrameLowering(), |
| InstrInfo(initializeSubtargetDependencies(FS, CPU)), TSInfo(), |
| TLInfo(TM, *this) { |
| if (AArch64::isX18ReservedByDefault(TT)) |
| ReserveXRegister.set(18); |
| |
| CallLoweringInfo.reset(new AArch64CallLowering(*getTargetLowering())); |
| Legalizer.reset(new AArch64LegalizerInfo(*this)); |
| |
| auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo()); |
| |
| // FIXME: At this point, we can't rely on Subtarget having RBI. |
| // It's awkward to mix passing RBI and the Subtarget; should we pass |
| // TII/TRI as well? |
| InstSelector.reset(createAArch64InstructionSelector( |
| *static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI)); |
| |
| RegBankInfo.reset(RBI); |
| } |
| |
| const CallLowering *AArch64Subtarget::getCallLowering() const { |
| return CallLoweringInfo.get(); |
| } |
| |
| InstructionSelector *AArch64Subtarget::getInstructionSelector() const { |
| return InstSelector.get(); |
| } |
| |
| const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const { |
| return Legalizer.get(); |
| } |
| |
| const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const { |
| return RegBankInfo.get(); |
| } |
| |
| /// Find the target operand flags that describe how a global value should be |
| /// referenced for the current subtarget. |
| unsigned |
| AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV, |
| const TargetMachine &TM) const { |
| // MachO large model always goes via a GOT, simply to get a single 8-byte |
| // absolute relocation on all global addresses. |
| if (TM.getCodeModel() == CodeModel::Large && isTargetMachO()) |
| return AArch64II::MO_GOT; |
| |
| if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) { |
| if (GV->hasDLLImportStorageClass()) |
| return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT; |
| if (getTargetTriple().isOSWindows()) |
| return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB; |
| return AArch64II::MO_GOT; |
| } |
| |
| // The small code model's direct accesses use ADRP, which cannot |
| // necessarily produce the value 0 (if the code is above 4GB). |
| // Same for the tiny code model, where we have a pc relative LDR. |
| if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) && |
| GV->hasExternalWeakLinkage()) |
| return AArch64II::MO_GOT; |
| |
| // References to tagged globals are marked with MO_NC | MO_TAGGED to indicate |
| // that their nominal addresses are tagged and outside of the code model. In |
| // AArch64ExpandPseudo::expandMI we emit an additional instruction to set the |
| // tag if necessary based on MO_TAGGED. |
| if (AllowTaggedGlobals && !isa<FunctionType>(GV->getValueType())) |
| return AArch64II::MO_NC | AArch64II::MO_TAGGED; |
| |
| return AArch64II::MO_NO_FLAG; |
| } |
| |
| unsigned AArch64Subtarget::classifyGlobalFunctionReference( |
| const GlobalValue *GV, const TargetMachine &TM) const { |
| // MachO large model always goes via a GOT, because we don't have the |
| // relocations available to do anything else.. |
| if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() && |
| !GV->hasInternalLinkage()) |
| return AArch64II::MO_GOT; |
| |
| // NonLazyBind goes via GOT unless we know it's available locally. |
| auto *F = dyn_cast<Function>(GV); |
| if (UseNonLazyBind && F && F->hasFnAttribute(Attribute::NonLazyBind) && |
| !TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) |
| return AArch64II::MO_GOT; |
| |
| // Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB. |
| if (getTargetTriple().isOSWindows()) |
| return ClassifyGlobalReference(GV, TM); |
| |
| return AArch64II::MO_NO_FLAG; |
| } |
| |
| void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, |
| unsigned NumRegionInstrs) const { |
| // LNT run (at least on Cyclone) showed reasonably significant gains for |
| // bi-directional scheduling. 253.perlbmk. |
| Policy.OnlyTopDown = false; |
| Policy.OnlyBottomUp = false; |
| // Enabling or Disabling the latency heuristic is a close call: It seems to |
| // help nearly no benchmark on out-of-order architectures, on the other hand |
| // it regresses register pressure on a few benchmarking. |
| Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic; |
| } |
| |
| bool AArch64Subtarget::enableEarlyIfConversion() const { |
| return EnableEarlyIfConvert; |
| } |
| |
| bool AArch64Subtarget::supportsAddressTopByteIgnored() const { |
| if (!UseAddressTopByteIgnored) |
| return false; |
| |
| if (TargetTriple.isiOS()) { |
| unsigned Major, Minor, Micro; |
| TargetTriple.getiOSVersion(Major, Minor, Micro); |
| return Major >= 8; |
| } |
| |
| return false; |
| } |
| |
| std::unique_ptr<PBQPRAConstraint> |
| AArch64Subtarget::getCustomPBQPConstraints() const { |
| return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr; |
| } |
| |
| void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const { |
| // We usually compute max call frame size after ISel. Do the computation now |
| // if the .mir file didn't specify it. Note that this will probably give you |
| // bogus values after PEI has eliminated the callframe setup/destroy pseudo |
| // instructions, specify explicitly if you need it to be correct. |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| if (!MFI.isMaxCallFrameSizeComputed()) |
| MFI.computeMaxCallFrameSize(MF); |
| } |