| //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===// | 
 | // | 
 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
 | // See https://llvm.org/LICENSE.txt for license information. | 
 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass looks for safe point where the prologue and epilogue can be | 
 | // inserted. | 
 | // The safe point for the prologue (resp. epilogue) is called Save | 
 | // (resp. Restore). | 
 | // A point is safe for prologue (resp. epilogue) if and only if | 
 | // it 1) dominates (resp. post-dominates) all the frame related operations and | 
 | // between 2) two executions of the Save (resp. Restore) point there is an | 
 | // execution of the Restore (resp. Save) point. | 
 | // | 
 | // For instance, the following points are safe: | 
 | // for (int i = 0; i < 10; ++i) { | 
 | //   Save | 
 | //   ... | 
 | //   Restore | 
 | // } | 
 | // Indeed, the execution looks like Save -> Restore -> Save -> Restore ... | 
 | // And the following points are not: | 
 | // for (int i = 0; i < 10; ++i) { | 
 | //   Save | 
 | //   ... | 
 | // } | 
 | // for (int i = 0; i < 10; ++i) { | 
 | //   ... | 
 | //   Restore | 
 | // } | 
 | // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore. | 
 | // | 
 | // This pass also ensures that the safe points are 3) cheaper than the regular | 
 | // entry and exits blocks. | 
 | // | 
 | // Property #1 is ensured via the use of MachineDominatorTree and | 
 | // MachinePostDominatorTree. | 
 | // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both | 
 | // points must be in the same loop. | 
 | // Property #3 is ensured via the MachineBlockFrequencyInfo. | 
 | // | 
 | // If this pass found points matching all these properties, then | 
 | // MachineFrameInfo is updated with this information. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/ADT/PostOrderIterator.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/CFG.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" | 
 | #include "llvm/CodeGen/MachinePostDominators.h" | 
 | #include "llvm/CodeGen/RegisterClassInfo.h" | 
 | #include "llvm/CodeGen/RegisterScavenging.h" | 
 | #include "llvm/CodeGen/TargetFrameLowering.h" | 
 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
 | #include "llvm/CodeGen/TargetLowering.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
 | #include "llvm/IR/Attributes.h" | 
 | #include "llvm/IR/Function.h" | 
 | #include "llvm/InitializePasses.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <memory> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "shrink-wrap" | 
 |  | 
 | STATISTIC(NumFunc, "Number of functions"); | 
 | STATISTIC(NumCandidates, "Number of shrink-wrapping candidates"); | 
 | STATISTIC(NumCandidatesDropped, | 
 |           "Number of shrink-wrapping candidates dropped because of frequency"); | 
 |  | 
 | static cl::opt<cl::boolOrDefault> | 
 | EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden, | 
 |                     cl::desc("enable the shrink-wrapping pass")); | 
 |  | 
 | namespace { | 
 |  | 
 | /// Class to determine where the safe point to insert the | 
 | /// prologue and epilogue are. | 
 | /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the | 
 | /// shrink-wrapping term for prologue/epilogue placement, this pass | 
 | /// does not rely on expensive data-flow analysis. Instead we use the | 
 | /// dominance properties and loop information to decide which point | 
 | /// are safe for such insertion. | 
 | class ShrinkWrap : public MachineFunctionPass { | 
 |   /// Hold callee-saved information. | 
 |   RegisterClassInfo RCI; | 
 |   MachineDominatorTree *MDT; | 
 |   MachinePostDominatorTree *MPDT; | 
 |  | 
 |   /// Current safe point found for the prologue. | 
 |   /// The prologue will be inserted before the first instruction | 
 |   /// in this basic block. | 
 |   MachineBasicBlock *Save; | 
 |  | 
 |   /// Current safe point found for the epilogue. | 
 |   /// The epilogue will be inserted before the first terminator instruction | 
 |   /// in this basic block. | 
 |   MachineBasicBlock *Restore; | 
 |  | 
 |   /// Hold the information of the basic block frequency. | 
 |   /// Use to check the profitability of the new points. | 
 |   MachineBlockFrequencyInfo *MBFI; | 
 |  | 
 |   /// Hold the loop information. Used to determine if Save and Restore | 
 |   /// are in the same loop. | 
 |   MachineLoopInfo *MLI; | 
 |  | 
 |   // Emit remarks. | 
 |   MachineOptimizationRemarkEmitter *ORE = nullptr; | 
 |  | 
 |   /// Frequency of the Entry block. | 
 |   uint64_t EntryFreq; | 
 |  | 
 |   /// Current opcode for frame setup. | 
 |   unsigned FrameSetupOpcode; | 
 |  | 
 |   /// Current opcode for frame destroy. | 
 |   unsigned FrameDestroyOpcode; | 
 |  | 
 |   /// Stack pointer register, used by llvm.{savestack,restorestack} | 
 |   unsigned SP; | 
 |  | 
 |   /// Entry block. | 
 |   const MachineBasicBlock *Entry; | 
 |  | 
 |   using SetOfRegs = SmallSetVector<unsigned, 16>; | 
 |  | 
 |   /// Registers that need to be saved for the current function. | 
 |   mutable SetOfRegs CurrentCSRs; | 
 |  | 
 |   /// Current MachineFunction. | 
 |   MachineFunction *MachineFunc; | 
 |  | 
 |   /// Check if \p MI uses or defines a callee-saved register or | 
 |   /// a frame index. If this is the case, this means \p MI must happen | 
 |   /// after Save and before Restore. | 
 |   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const; | 
 |  | 
 |   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const { | 
 |     if (CurrentCSRs.empty()) { | 
 |       BitVector SavedRegs; | 
 |       const TargetFrameLowering *TFI = | 
 |           MachineFunc->getSubtarget().getFrameLowering(); | 
 |  | 
 |       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS); | 
 |  | 
 |       for (int Reg = SavedRegs.find_first(); Reg != -1; | 
 |            Reg = SavedRegs.find_next(Reg)) | 
 |         CurrentCSRs.insert((unsigned)Reg); | 
 |     } | 
 |     return CurrentCSRs; | 
 |   } | 
 |  | 
 |   /// Update the Save and Restore points such that \p MBB is in | 
 |   /// the region that is dominated by Save and post-dominated by Restore | 
 |   /// and Save and Restore still match the safe point definition. | 
 |   /// Such point may not exist and Save and/or Restore may be null after | 
 |   /// this call. | 
 |   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS); | 
 |  | 
 |   /// Initialize the pass for \p MF. | 
 |   void init(MachineFunction &MF) { | 
 |     RCI.runOnMachineFunction(MF); | 
 |     MDT = &getAnalysis<MachineDominatorTree>(); | 
 |     MPDT = &getAnalysis<MachinePostDominatorTree>(); | 
 |     Save = nullptr; | 
 |     Restore = nullptr; | 
 |     MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); | 
 |     MLI = &getAnalysis<MachineLoopInfo>(); | 
 |     ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); | 
 |     EntryFreq = MBFI->getEntryFreq(); | 
 |     const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); | 
 |     const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); | 
 |     FrameSetupOpcode = TII.getCallFrameSetupOpcode(); | 
 |     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode(); | 
 |     SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore(); | 
 |     Entry = &MF.front(); | 
 |     CurrentCSRs.clear(); | 
 |     MachineFunc = &MF; | 
 |  | 
 |     ++NumFunc; | 
 |   } | 
 |  | 
 |   /// Check whether or not Save and Restore points are still interesting for | 
 |   /// shrink-wrapping. | 
 |   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; } | 
 |  | 
 |   /// Check if shrink wrapping is enabled for this target and function. | 
 |   static bool isShrinkWrapEnabled(const MachineFunction &MF); | 
 |  | 
 | public: | 
 |   static char ID; | 
 |  | 
 |   ShrinkWrap() : MachineFunctionPass(ID) { | 
 |     initializeShrinkWrapPass(*PassRegistry::getPassRegistry()); | 
 |   } | 
 |  | 
 |   void getAnalysisUsage(AnalysisUsage &AU) const override { | 
 |     AU.setPreservesAll(); | 
 |     AU.addRequired<MachineBlockFrequencyInfo>(); | 
 |     AU.addRequired<MachineDominatorTree>(); | 
 |     AU.addRequired<MachinePostDominatorTree>(); | 
 |     AU.addRequired<MachineLoopInfo>(); | 
 |     AU.addRequired<MachineOptimizationRemarkEmitterPass>(); | 
 |     MachineFunctionPass::getAnalysisUsage(AU); | 
 |   } | 
 |  | 
 |   MachineFunctionProperties getRequiredProperties() const override { | 
 |     return MachineFunctionProperties().set( | 
 |       MachineFunctionProperties::Property::NoVRegs); | 
 |   } | 
 |  | 
 |   StringRef getPassName() const override { return "Shrink Wrapping analysis"; } | 
 |  | 
 |   /// Perform the shrink-wrapping analysis and update | 
 |   /// the MachineFrameInfo attached to \p MF with the results. | 
 |   bool runOnMachineFunction(MachineFunction &MF) override; | 
 | }; | 
 |  | 
 | } // end anonymous namespace | 
 |  | 
 | char ShrinkWrap::ID = 0; | 
 |  | 
 | char &llvm::ShrinkWrapID = ShrinkWrap::ID; | 
 |  | 
 | INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
 | INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
 | INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) | 
 | INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false) | 
 |  | 
 | bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, | 
 |                                  RegScavenger *RS) const { | 
 |   // This prevents premature stack popping when occurs a indirect stack | 
 |   // access. It is overly aggressive for the moment. | 
 |   // TODO: - Obvious non-stack loads and store, such as global values, | 
 |   //         are known to not access the stack. | 
 |   //       - Further, data dependency and alias analysis can validate | 
 |   //         that load and stores never derive from the stack pointer. | 
 |   if (MI.mayLoadOrStore()) | 
 |     return true; | 
 |  | 
 |   if (MI.getOpcode() == FrameSetupOpcode || | 
 |       MI.getOpcode() == FrameDestroyOpcode) { | 
 |     LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n'); | 
 |     return true; | 
 |   } | 
 |   for (const MachineOperand &MO : MI.operands()) { | 
 |     bool UseOrDefCSR = false; | 
 |     if (MO.isReg()) { | 
 |       // Ignore instructions like DBG_VALUE which don't read/def the register. | 
 |       if (!MO.isDef() && !MO.readsReg()) | 
 |         continue; | 
 |       Register PhysReg = MO.getReg(); | 
 |       if (!PhysReg) | 
 |         continue; | 
 |       assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!"); | 
 |       // The stack pointer is not normally described as a callee-saved register | 
 |       // in calling convention definitions, so we need to watch for it | 
 |       // separately. An SP mentioned by a call instruction, we can ignore, | 
 |       // though, as it's harmless and we do not want to effectively disable tail | 
 |       // calls by forcing the restore point to post-dominate them. | 
 |       UseOrDefCSR = (!MI.isCall() && PhysReg == SP) || | 
 |                     RCI.getLastCalleeSavedAlias(PhysReg); | 
 |     } else if (MO.isRegMask()) { | 
 |       // Check if this regmask clobbers any of the CSRs. | 
 |       for (unsigned Reg : getCurrentCSRs(RS)) { | 
 |         if (MO.clobbersPhysReg(Reg)) { | 
 |           UseOrDefCSR = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |     // Skip FrameIndex operands in DBG_VALUE instructions. | 
 |     if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) { | 
 |       LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI(" | 
 |                         << MO.isFI() << "): " << MI << '\n'); | 
 |       return true; | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// Helper function to find the immediate (post) dominator. | 
 | template <typename ListOfBBs, typename DominanceAnalysis> | 
 | static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs, | 
 |                                    DominanceAnalysis &Dom) { | 
 |   MachineBasicBlock *IDom = &Block; | 
 |   for (MachineBasicBlock *BB : BBs) { | 
 |     IDom = Dom.findNearestCommonDominator(IDom, BB); | 
 |     if (!IDom) | 
 |       break; | 
 |   } | 
 |   if (IDom == &Block) | 
 |     return nullptr; | 
 |   return IDom; | 
 | } | 
 |  | 
 | void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB, | 
 |                                          RegScavenger *RS) { | 
 |   // Get rid of the easy cases first. | 
 |   if (!Save) | 
 |     Save = &MBB; | 
 |   else | 
 |     Save = MDT->findNearestCommonDominator(Save, &MBB); | 
 |  | 
 |   if (!Save) { | 
 |     LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n"); | 
 |     return; | 
 |   } | 
 |  | 
 |   if (!Restore) | 
 |     Restore = &MBB; | 
 |   else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it | 
 |                                 // means the block never returns. If that's the | 
 |                                 // case, we don't want to call | 
 |                                 // `findNearestCommonDominator`, which will | 
 |                                 // return `Restore`. | 
 |     Restore = MPDT->findNearestCommonDominator(Restore, &MBB); | 
 |   else | 
 |     Restore = nullptr; // Abort, we can't find a restore point in this case. | 
 |  | 
 |   // Make sure we would be able to insert the restore code before the | 
 |   // terminator. | 
 |   if (Restore == &MBB) { | 
 |     for (const MachineInstr &Terminator : MBB.terminators()) { | 
 |       if (!useOrDefCSROrFI(Terminator, RS)) | 
 |         continue; | 
 |       // One of the terminator needs to happen before the restore point. | 
 |       if (MBB.succ_empty()) { | 
 |         Restore = nullptr; // Abort, we can't find a restore point in this case. | 
 |         break; | 
 |       } | 
 |       // Look for a restore point that post-dominates all the successors. | 
 |       // The immediate post-dominator is what we are looking for. | 
 |       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!Restore) { | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "Restore point needs to be spanned on several blocks\n"); | 
 |     return; | 
 |   } | 
 |  | 
 |   // Make sure Save and Restore are suitable for shrink-wrapping: | 
 |   // 1. all path from Save needs to lead to Restore before exiting. | 
 |   // 2. all path to Restore needs to go through Save from Entry. | 
 |   // We achieve that by making sure that: | 
 |   // A. Save dominates Restore. | 
 |   // B. Restore post-dominates Save. | 
 |   // C. Save and Restore are in the same loop. | 
 |   bool SaveDominatesRestore = false; | 
 |   bool RestorePostDominatesSave = false; | 
 |   while (Save && Restore && | 
 |          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) || | 
 |           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) || | 
 |           // Post-dominance is not enough in loops to ensure that all uses/defs | 
 |           // are after the prologue and before the epilogue at runtime. | 
 |           // E.g., | 
 |           // while(1) { | 
 |           //  Save | 
 |           //  Restore | 
 |           //   if (...) | 
 |           //     break; | 
 |           //  use/def CSRs | 
 |           // } | 
 |           // All the uses/defs of CSRs are dominated by Save and post-dominated | 
 |           // by Restore. However, the CSRs uses are still reachable after | 
 |           // Restore and before Save are executed. | 
 |           // | 
 |           // For now, just push the restore/save points outside of loops. | 
 |           // FIXME: Refine the criteria to still find interesting cases | 
 |           // for loops. | 
 |           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { | 
 |     // Fix (A). | 
 |     if (!SaveDominatesRestore) { | 
 |       Save = MDT->findNearestCommonDominator(Save, Restore); | 
 |       continue; | 
 |     } | 
 |     // Fix (B). | 
 |     if (!RestorePostDominatesSave) | 
 |       Restore = MPDT->findNearestCommonDominator(Restore, Save); | 
 |  | 
 |     // Fix (C). | 
 |     if (Save && Restore && | 
 |         (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) { | 
 |       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) { | 
 |         // Push Save outside of this loop if immediate dominator is different | 
 |         // from save block. If immediate dominator is not different, bail out. | 
 |         Save = FindIDom<>(*Save, Save->predecessors(), *MDT); | 
 |         if (!Save) | 
 |           break; | 
 |       } else { | 
 |         // If the loop does not exit, there is no point in looking | 
 |         // for a post-dominator outside the loop. | 
 |         SmallVector<MachineBasicBlock*, 4> ExitBlocks; | 
 |         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks); | 
 |         // Push Restore outside of this loop. | 
 |         // Look for the immediate post-dominator of the loop exits. | 
 |         MachineBasicBlock *IPdom = Restore; | 
 |         for (MachineBasicBlock *LoopExitBB: ExitBlocks) { | 
 |           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT); | 
 |           if (!IPdom) | 
 |             break; | 
 |         } | 
 |         // If the immediate post-dominator is not in a less nested loop, | 
 |         // then we are stuck in a program with an infinite loop. | 
 |         // In that case, we will not find a safe point, hence, bail out. | 
 |         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore)) | 
 |           Restore = IPdom; | 
 |         else { | 
 |           Restore = nullptr; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE, | 
 |                               StringRef RemarkName, StringRef RemarkMessage, | 
 |                               const DiagnosticLocation &Loc, | 
 |                               const MachineBasicBlock *MBB) { | 
 |   ORE->emit([&]() { | 
 |     return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB) | 
 |            << RemarkMessage; | 
 |   }); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << RemarkMessage << '\n'); | 
 |   return false; | 
 | } | 
 |  | 
 | bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) { | 
 |   if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF)) | 
 |     return false; | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); | 
 |  | 
 |   init(MF); | 
 |  | 
 |   ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin()); | 
 |   if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) { | 
 |     // If MF is irreducible, a block may be in a loop without | 
 |     // MachineLoopInfo reporting it. I.e., we may use the | 
 |     // post-dominance property in loops, which lead to incorrect | 
 |     // results. Moreover, we may miss that the prologue and | 
 |     // epilogue are not in the same loop, leading to unbalanced | 
 |     // construction/deconstruction of the stack frame. | 
 |     return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG", | 
 |                              "Irreducible CFGs are not supported yet.", | 
 |                              MF.getFunction().getSubprogram(), &MF.front()); | 
 |   } | 
 |  | 
 |   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
 |   std::unique_ptr<RegScavenger> RS( | 
 |       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr); | 
 |  | 
 |   for (MachineBasicBlock &MBB : MF) { | 
 |     LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' | 
 |                       << MBB.getName() << '\n'); | 
 |  | 
 |     if (MBB.isEHFuncletEntry()) | 
 |       return giveUpWithRemarks(ORE, "UnsupportedEHFunclets", | 
 |                                "EH Funclets are not supported yet.", | 
 |                                MBB.front().getDebugLoc(), &MBB); | 
 |  | 
 |     if (MBB.isEHPad()) { | 
 |       // Push the prologue and epilogue outside of | 
 |       // the region that may throw by making sure | 
 |       // that all the landing pads are at least at the | 
 |       // boundary of the save and restore points. | 
 |       // The problem with exceptions is that the throw | 
 |       // is not properly modeled and in particular, a | 
 |       // basic block can jump out from the middle. | 
 |       updateSaveRestorePoints(MBB, RS.get()); | 
 |       if (!ArePointsInteresting()) { | 
 |         LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n"); | 
 |         return false; | 
 |       } | 
 |       continue; | 
 |     } | 
 |  | 
 |     for (const MachineInstr &MI : MBB) { | 
 |       if (!useOrDefCSROrFI(MI, RS.get())) | 
 |         continue; | 
 |       // Save (resp. restore) point must dominate (resp. post dominate) | 
 |       // MI. Look for the proper basic block for those. | 
 |       updateSaveRestorePoints(MBB, RS.get()); | 
 |       // If we are at a point where we cannot improve the placement of | 
 |       // save/restore instructions, just give up. | 
 |       if (!ArePointsInteresting()) { | 
 |         LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n"); | 
 |         return false; | 
 |       } | 
 |       // No need to look for other instructions, this basic block | 
 |       // will already be part of the handled region. | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (!ArePointsInteresting()) { | 
 |     // If the points are not interesting at this point, then they must be null | 
 |     // because it means we did not encounter any frame/CSR related code. | 
 |     // Otherwise, we would have returned from the previous loop. | 
 |     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!"); | 
 |     LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n"); | 
 |     return false; | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq | 
 |                     << '\n'); | 
 |  | 
 |   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); | 
 |   do { | 
 |     LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: " | 
 |                       << Save->getNumber() << ' ' << Save->getName() << ' ' | 
 |                       << MBFI->getBlockFreq(Save).getFrequency() | 
 |                       << "\nRestore: " << Restore->getNumber() << ' ' | 
 |                       << Restore->getName() << ' ' | 
 |                       << MBFI->getBlockFreq(Restore).getFrequency() << '\n'); | 
 |  | 
 |     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false; | 
 |     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) && | 
 |          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) && | 
 |         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) && | 
 |          TFI->canUseAsEpilogue(*Restore))) | 
 |       break; | 
 |     LLVM_DEBUG( | 
 |         dbgs() << "New points are too expensive or invalid for the target\n"); | 
 |     MachineBasicBlock *NewBB; | 
 |     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) { | 
 |       Save = FindIDom<>(*Save, Save->predecessors(), *MDT); | 
 |       if (!Save) | 
 |         break; | 
 |       NewBB = Save; | 
 |     } else { | 
 |       // Restore is expensive. | 
 |       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT); | 
 |       if (!Restore) | 
 |         break; | 
 |       NewBB = Restore; | 
 |     } | 
 |     updateSaveRestorePoints(*NewBB, RS.get()); | 
 |   } while (Save && Restore); | 
 |  | 
 |   if (!ArePointsInteresting()) { | 
 |     ++NumCandidatesDropped; | 
 |     return false; | 
 |   } | 
 |  | 
 |   LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " | 
 |                     << Save->getNumber() << ' ' << Save->getName() | 
 |                     << "\nRestore: " << Restore->getNumber() << ' ' | 
 |                     << Restore->getName() << '\n'); | 
 |  | 
 |   MachineFrameInfo &MFI = MF.getFrameInfo(); | 
 |   MFI.setSavePoint(Save); | 
 |   MFI.setRestorePoint(Restore); | 
 |   ++NumCandidates; | 
 |   return false; | 
 | } | 
 |  | 
 | bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) { | 
 |   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); | 
 |  | 
 |   switch (EnableShrinkWrapOpt) { | 
 |   case cl::BOU_UNSET: | 
 |     return TFI->enableShrinkWrapping(MF) && | 
 |            // Windows with CFI has some limitations that make it impossible | 
 |            // to use shrink-wrapping. | 
 |            !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && | 
 |            // Sanitizers look at the value of the stack at the location | 
 |            // of the crash. Since a crash can happen anywhere, the | 
 |            // frame must be lowered before anything else happen for the | 
 |            // sanitizers to be able to get a correct stack frame. | 
 |            !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) || | 
 |              MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) || | 
 |              MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) || | 
 |              MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress)); | 
 |   // If EnableShrinkWrap is set, it takes precedence on whatever the | 
 |   // target sets. The rational is that we assume we want to test | 
 |   // something related to shrink-wrapping. | 
 |   case cl::BOU_TRUE: | 
 |     return true; | 
 |   case cl::BOU_FALSE: | 
 |     return false; | 
 |   } | 
 |   llvm_unreachable("Invalid shrink-wrapping state"); | 
 | } |