blob: cbdd7135de4381bc8f1af94a64e8263484a35fba [file] [log] [blame]
//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "X86ISelLowering.h"
#include "Utils/X86ShuffleDecode.h"
#include "X86CallingConv.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86IntrinsicsInfo.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "X86TargetObjectFile.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <bitset>
#include <cctype>
#include <numeric>
using namespace llvm;
#define DEBUG_TYPE "x86-isel"
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<int> ExperimentalPrefLoopAlignment(
"x86-experimental-pref-loop-alignment", cl::init(4),
cl::desc(
"Sets the preferable loop alignment for experiments (as log2 bytes)"
"(the last x86-experimental-pref-loop-alignment bits"
" of the loop header PC will be 0)."),
cl::Hidden);
// Added in 10.0.
static cl::opt<bool> EnableOldKNLABI(
"x86-enable-old-knl-abi", cl::init(false),
cl::desc("Enables passing v32i16 and v64i8 in 2 YMM registers instead of "
"one ZMM register on AVX512F, but not AVX512BW targets."),
cl::Hidden);
static cl::opt<bool> MulConstantOptimization(
"mul-constant-optimization", cl::init(true),
cl::desc("Replace 'mul x, Const' with more effective instructions like "
"SHIFT, LEA, etc."),
cl::Hidden);
static cl::opt<bool> ExperimentalUnorderedISEL(
"x86-experimental-unordered-atomic-isel", cl::init(false),
cl::desc("Use LoadSDNode and StoreSDNode instead of "
"AtomicSDNode for unordered atomic loads and "
"stores respectively."),
cl::Hidden);
/// Call this when the user attempts to do something unsupported, like
/// returning a double without SSE2 enabled on x86_64. This is not fatal, unlike
/// report_fatal_error, so calling code should attempt to recover without
/// crashing.
static void errorUnsupported(SelectionDAG &DAG, const SDLoc &dl,
const char *Msg) {
MachineFunction &MF = DAG.getMachineFunction();
DAG.getContext()->diagnose(
DiagnosticInfoUnsupported(MF.getFunction(), Msg, dl.getDebugLoc()));
}
X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
const X86Subtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87();
X86ScalarSSEf64 = Subtarget.hasSSE2();
X86ScalarSSEf32 = Subtarget.hasSSE1();
MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
// Set up the TargetLowering object.
// X86 is weird. It always uses i8 for shift amounts and setcc results.
setBooleanContents(ZeroOrOneBooleanContent);
// X86-SSE is even stranger. It uses -1 or 0 for vector masks.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// For 64-bit, since we have so many registers, use the ILP scheduler.
// For 32-bit, use the register pressure specific scheduling.
// For Atom, always use ILP scheduling.
if (Subtarget.isAtom())
setSchedulingPreference(Sched::ILP);
else if (Subtarget.is64Bit())
setSchedulingPreference(Sched::ILP);
else
setSchedulingPreference(Sched::RegPressure);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
// Bypass expensive divides and use cheaper ones.
if (TM.getOptLevel() >= CodeGenOpt::Default) {
if (Subtarget.hasSlowDivide32())
addBypassSlowDiv(32, 8);
if (Subtarget.hasSlowDivide64() && Subtarget.is64Bit())
addBypassSlowDiv(64, 32);
}
if (Subtarget.isTargetWindowsMSVC() ||
Subtarget.isTargetWindowsItanium()) {
// Setup Windows compiler runtime calls.
setLibcallName(RTLIB::SDIV_I64, "_alldiv");
setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
setLibcallName(RTLIB::SREM_I64, "_allrem");
setLibcallName(RTLIB::UREM_I64, "_aullrem");
setLibcallName(RTLIB::MUL_I64, "_allmul");
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
}
if (Subtarget.getTargetTriple().isOSMSVCRT()) {
// MSVCRT doesn't have powi; fall back to pow
setLibcallName(RTLIB::POWI_F32, nullptr);
setLibcallName(RTLIB::POWI_F64, nullptr);
}
// If we don't have cmpxchg8b(meaing this is a 386/486), limit atomic size to
// 32 bits so the AtomicExpandPass will expand it so we don't need cmpxchg8b.
// FIXME: Should we be limitting the atomic size on other configs? Default is
// 1024.
if (!Subtarget.hasCmpxchg8b())
setMaxAtomicSizeInBitsSupported(32);
// Set up the register classes.
addRegisterClass(MVT::i8, &X86::GR8RegClass);
addRegisterClass(MVT::i16, &X86::GR16RegClass);
addRegisterClass(MVT::i32, &X86::GR32RegClass);
if (Subtarget.is64Bit())
addRegisterClass(MVT::i64, &X86::GR64RegClass);
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// We don't accept any truncstore of integer registers.
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
setTruncStoreAction(MVT::i32, MVT::i16, Expand);
setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// SETOEQ and SETUNE require checking two conditions.
setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
// Integer absolute.
if (Subtarget.hasCMov()) {
setOperationAction(ISD::ABS , MVT::i16 , Custom);
setOperationAction(ISD::ABS , MVT::i32 , Custom);
}
setOperationAction(ISD::ABS , MVT::i64 , Custom);
// Funnel shifts.
for (auto ShiftOp : {ISD::FSHL, ISD::FSHR}) {
setOperationAction(ShiftOp , MVT::i16 , Custom);
setOperationAction(ShiftOp , MVT::i32 , Custom);
if (Subtarget.is64Bit())
setOperationAction(ShiftOp , MVT::i64 , Custom);
}
if (!Subtarget.useSoftFloat()) {
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
// operation.
setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i8, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i16, Promote);
// We have an algorithm for SSE2, and we turn this into a 64-bit
// FILD or VCVTUSI2SS/SD for other targets.
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
// We have an algorithm for SSE2->double, and we turn this into a
// 64-bit FILD followed by conditional FADD for other targets.
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
// Promote i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
// this operation.
setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i8, Promote);
// SSE has no i16 to fp conversion, only i32. We promote in the handler
// to allow f80 to use i16 and f64 to use i16 with sse1 only
setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i16, Custom);
// f32 and f64 cases are Legal with SSE1/SSE2, f80 case is not
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
// In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
// are Legal, f80 is custom lowered.
setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
// Promote i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
// this operation.
setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
// FIXME: This doesn't generate invalid exception when it should. PR44019.
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i8, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::i16, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i16, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
// In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
// are Legal, f80 is custom lowered.
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
// Handle FP_TO_UINT by promoting the destination to a larger signed
// conversion.
setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
// FIXME: This doesn't generate invalid exception when it should. PR44019.
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i8, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
// FIXME: This doesn't generate invalid exception when it should. PR44019.
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i16, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
}
// Handle address space casts between mixed sized pointers.
setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
// TODO: when we have SSE, these could be more efficient, by using movd/movq.
if (!X86ScalarSSEf64) {
setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
// Without SSE, i64->f64 goes through memory.
setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
}
} else if (!Subtarget.is64Bit())
setOperationAction(ISD::BITCAST , MVT::i64 , Custom);
// Scalar integer divide and remainder are lowered to use operations that
// produce two results, to match the available instructions. This exposes
// the two-result form to trivial CSE, which is able to combine x/y and x%y
// into a single instruction.
//
// Scalar integer multiply-high is also lowered to use two-result
// operations, to match the available instructions. However, plain multiply
// (low) operations are left as Legal, as there are single-result
// instructions for this in x86. Using the two-result multiply instructions
// when both high and low results are needed must be arranged by dagcombine.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
}
setOperationAction(ISD::BR_JT , MVT::Other, Expand);
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128,
MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::BR_CC, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
}
if (Subtarget.is64Bit())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
setOperationAction(ISD::FREM , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f64 , Expand);
setOperationAction(ISD::FREM , MVT::f80 , Expand);
setOperationAction(ISD::FREM , MVT::f128 , Expand);
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
// Promote the i8 variants and force them on up to i32 which has a shorter
// encoding.
setOperationPromotedToType(ISD::CTTZ , MVT::i8 , MVT::i32);
setOperationPromotedToType(ISD::CTTZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
if (!Subtarget.hasBMI()) {
setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Legal);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Legal);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Legal);
}
}
if (Subtarget.hasLZCNT()) {
// When promoting the i8 variants, force them to i32 for a shorter
// encoding.
setOperationPromotedToType(ISD::CTLZ , MVT::i8 , MVT::i32);
setOperationPromotedToType(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
} else {
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
}
}
// Special handling for half-precision floating point conversions.
// If we don't have F16C support, then lower half float conversions
// into library calls.
if (Subtarget.useSoftFloat() || !Subtarget.hasF16C()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
}
// There's never any support for operations beyond MVT::f32.
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f128, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f128, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f80, MVT::f16, Expand);
setTruncStoreAction(MVT::f128, MVT::f16, Expand);
if (Subtarget.hasPOPCNT()) {
setOperationPromotedToType(ISD::CTPOP, MVT::i8, MVT::i32);
} else {
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
if (Subtarget.is64Bit())
setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
else
setOperationAction(ISD::CTPOP , MVT::i64 , Custom);
}
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
if (!Subtarget.hasMOVBE())
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
// X86 wants to expand cmov itself.
for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128 }) {
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
}
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
}
// Custom action for SELECT MMX and expand action for SELECT_CC MMX
setOperationAction(ISD::SELECT, MVT::x86mmx, Custom);
setOperationAction(ISD::SELECT_CC, MVT::x86mmx, Expand);
setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
// NOTE: EH_SJLJ_SETJMP/_LONGJMP are not recommended, since
// LLVM/Clang supports zero-cost DWARF and SEH exception handling.
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
if (TM.Options.ExceptionModel == ExceptionHandling::SjLj)
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
// Darwin ABI issue.
for (auto VT : { MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::ConstantPool , VT, Custom);
setOperationAction(ISD::JumpTable , VT, Custom);
setOperationAction(ISD::GlobalAddress , VT, Custom);
setOperationAction(ISD::GlobalTLSAddress, VT, Custom);
setOperationAction(ISD::ExternalSymbol , VT, Custom);
setOperationAction(ISD::BlockAddress , VT, Custom);
}
// 64-bit shl, sra, srl (iff 32-bit x86)
for (auto VT : { MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::SHL_PARTS, VT, Custom);
setOperationAction(ISD::SRA_PARTS, VT, Custom);
setOperationAction(ISD::SRL_PARTS, VT, Custom);
}
if (Subtarget.hasSSEPrefetch() || Subtarget.has3DNow())
setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
// Expand certain atomics
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
}
if (!Subtarget.is64Bit())
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
if (Subtarget.hasCmpxchg16b()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
}
// FIXME - use subtarget debug flags
if (!Subtarget.isTargetDarwin() && !Subtarget.isTargetELF() &&
!Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64() &&
TM.Options.ExceptionModel != ExceptionHandling::SjLj) {
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
}
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
bool Is64Bit = Subtarget.is64Bit();
setOperationAction(ISD::VAARG, MVT::Other, Is64Bit ? Custom : Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Is64Bit ? Custom : Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
// GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
if (!Subtarget.useSoftFloat() && X86ScalarSSEf64) {
// f32 and f64 use SSE.
// Set up the FP register classes.
addRegisterClass(MVT::f32, Subtarget.hasAVX512() ? &X86::FR32XRegClass
: &X86::FR32RegClass);
addRegisterClass(MVT::f64, Subtarget.hasAVX512() ? &X86::FR64XRegClass
: &X86::FR64RegClass);
// Disable f32->f64 extload as we can only generate this in one instruction
// under optsize. So its easier to pattern match (fpext (load)) for that
// case instead of needing to emit 2 instructions for extload in the
// non-optsize case.
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
for (auto VT : { MVT::f32, MVT::f64 }) {
// Use ANDPD to simulate FABS.
setOperationAction(ISD::FABS, VT, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG, VT, Custom);
// Use ANDPD and ORPD to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
// These might be better off as horizontal vector ops.
setOperationAction(ISD::FADD, VT, Custom);
setOperationAction(ISD::FSUB, VT, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , VT, Expand);
setOperationAction(ISD::FCOS , VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
}
// Lower this to MOVMSK plus an AND.
setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
} else if (!useSoftFloat() && X86ScalarSSEf32 && (UseX87 || Is64Bit)) {
// Use SSE for f32, x87 for f64.
// Set up the FP register classes.
addRegisterClass(MVT::f32, &X86::FR32RegClass);
if (UseX87)
addRegisterClass(MVT::f64, &X86::RFP64RegClass);
// Use ANDPS to simulate FABS.
setOperationAction(ISD::FABS , MVT::f32, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG , MVT::f32, Custom);
if (UseX87)
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
// Use ANDPS and ORPS to simulate FCOPYSIGN.
if (UseX87)
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
if (UseX87) {
// Always expand sin/cos functions even though x87 has an instruction.
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
}
} else if (UseX87) {
// f32 and f64 in x87.
// Set up the FP register classes.
addRegisterClass(MVT::f64, &X86::RFP64RegClass);
addRegisterClass(MVT::f32, &X86::RFP32RegClass);
for (auto VT : { MVT::f32, MVT::f64 }) {
setOperationAction(ISD::UNDEF, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
// Always expand sin/cos functions even though x87 has an instruction.
setOperationAction(ISD::FSIN , VT, Expand);
setOperationAction(ISD::FCOS , VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
}
}
// Expand FP32 immediates into loads from the stack, save special cases.
if (isTypeLegal(MVT::f32)) {
if (UseX87 && (getRegClassFor(MVT::f32) == &X86::RFP32RegClass)) {
addLegalFPImmediate(APFloat(+0.0f)); // FLD0
addLegalFPImmediate(APFloat(+1.0f)); // FLD1
addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
} else // SSE immediates.
addLegalFPImmediate(APFloat(+0.0f)); // xorps
}
// Expand FP64 immediates into loads from the stack, save special cases.
if (isTypeLegal(MVT::f64)) {
if (UseX87 && getRegClassFor(MVT::f64) == &X86::RFP64RegClass) {
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
} else // SSE immediates.
addLegalFPImmediate(APFloat(+0.0)); // xorpd
}
// Handle constrained floating-point operations of scalar.
setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
// We don't support FMA.
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
// f80 always uses X87.
if (UseX87) {
addRegisterClass(MVT::f80, &X86::RFP80RegClass);
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
{
APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended());
addLegalFPImmediate(TmpFlt); // FLD0
TmpFlt.changeSign();
addLegalFPImmediate(TmpFlt); // FLD0/FCHS
bool ignored;
APFloat TmpFlt2(+1.0);
TmpFlt2.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven,
&ignored);
addLegalFPImmediate(TmpFlt2); // FLD1
TmpFlt2.changeSign();
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
}
// Always expand sin/cos functions even though x87 has an instruction.
setOperationAction(ISD::FSIN , MVT::f80, Expand);
setOperationAction(ISD::FCOS , MVT::f80, Expand);
setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
setOperationAction(ISD::FCEIL, MVT::f80, Expand);
setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
setOperationAction(ISD::FRINT, MVT::f80, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
setOperationAction(ISD::FMA, MVT::f80, Expand);
setOperationAction(ISD::LROUND, MVT::f80, Expand);
setOperationAction(ISD::LLROUND, MVT::f80, Expand);
setOperationAction(ISD::LRINT, MVT::f80, Expand);
setOperationAction(ISD::LLRINT, MVT::f80, Expand);
// Handle constrained floating-point operations of scalar.
setOperationAction(ISD::STRICT_FADD , MVT::f80, Legal);
setOperationAction(ISD::STRICT_FSUB , MVT::f80, Legal);
setOperationAction(ISD::STRICT_FMUL , MVT::f80, Legal);
setOperationAction(ISD::STRICT_FDIV , MVT::f80, Legal);
setOperationAction(ISD::STRICT_FSQRT , MVT::f80, Legal);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f80, Legal);
// FIXME: When the target is 64-bit, STRICT_FP_ROUND will be overwritten
// as Custom.
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f80, Legal);
}
// f128 uses xmm registers, but most operations require libcalls.
if (!Subtarget.useSoftFloat() && Subtarget.is64Bit() && Subtarget.hasSSE1()) {
addRegisterClass(MVT::f128, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
addLegalFPImmediate(APFloat::getZero(APFloat::IEEEquad())); // xorps
setOperationAction(ISD::FADD, MVT::f128, LibCall);
setOperationAction(ISD::STRICT_FADD, MVT::f128, LibCall);
setOperationAction(ISD::FSUB, MVT::f128, LibCall);
setOperationAction(ISD::STRICT_FSUB, MVT::f128, LibCall);
setOperationAction(ISD::FDIV, MVT::f128, LibCall);
setOperationAction(ISD::STRICT_FDIV, MVT::f128, LibCall);
setOperationAction(ISD::FMUL, MVT::f128, LibCall);
setOperationAction(ISD::STRICT_FMUL, MVT::f128, LibCall);
setOperationAction(ISD::FMA, MVT::f128, LibCall);
setOperationAction(ISD::STRICT_FMA, MVT::f128, LibCall);
setOperationAction(ISD::FABS, MVT::f128, Custom);
setOperationAction(ISD::FNEG, MVT::f128, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom);
setOperationAction(ISD::FSIN, MVT::f128, LibCall);
setOperationAction(ISD::STRICT_FSIN, MVT::f128, LibCall);
setOperationAction(ISD::FCOS, MVT::f128, LibCall);
setOperationAction(ISD::STRICT_FCOS, MVT::f128, LibCall);
setOperationAction(ISD::FSINCOS, MVT::f128, LibCall);
// No STRICT_FSINCOS
setOperationAction(ISD::FSQRT, MVT::f128, LibCall);
setOperationAction(ISD::STRICT_FSQRT, MVT::f128, LibCall);
setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Custom);
// We need to custom handle any FP_ROUND with an f128 input, but
// LegalizeDAG uses the result type to know when to run a custom handler.
// So we have to list all legal floating point result types here.
if (isTypeLegal(MVT::f32)) {
setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
}
if (isTypeLegal(MVT::f64)) {
setOperationAction(ISD::FP_ROUND, MVT::f64, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom);
}
if (isTypeLegal(MVT::f80)) {
setOperationAction(ISD::FP_ROUND, MVT::f80, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::f80, Custom);
}
setOperationAction(ISD::SETCC, MVT::f128, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f80, Expand);
setTruncStoreAction(MVT::f128, MVT::f32, Expand);
setTruncStoreAction(MVT::f128, MVT::f64, Expand);
setTruncStoreAction(MVT::f128, MVT::f80, Expand);
}
// Always use a library call for pow.
setOperationAction(ISD::FPOW , MVT::f32 , Expand);
setOperationAction(ISD::FPOW , MVT::f64 , Expand);
setOperationAction(ISD::FPOW , MVT::f80 , Expand);
setOperationAction(ISD::FPOW , MVT::f128 , Expand);
setOperationAction(ISD::FLOG, MVT::f80, Expand);
setOperationAction(ISD::FLOG2, MVT::f80, Expand);
setOperationAction(ISD::FLOG10, MVT::f80, Expand);
setOperationAction(ISD::FEXP, MVT::f80, Expand);
setOperationAction(ISD::FEXP2, MVT::f80, Expand);
setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
// Some FP actions are always expanded for vector types.
for (auto VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32,
MVT::v2f64, MVT::v4f64, MVT::v8f64 }) {
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
}
// First set operation action for all vector types to either promote
// (for widening) or expand (for scalarization). Then we will selectively
// turn on ones that can be effectively codegen'd.
for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
setOperationAction(ISD::FMA, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::SETCC, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
setOperationAction(ISD::TRUNCATE, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
setOperationAction(ISD::ANY_EXTEND, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
setTruncStoreAction(InnerVT, VT, Expand);
setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
// N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
// types, we have to deal with them whether we ask for Expansion or not.
// Setting Expand causes its own optimisation problems though, so leave
// them legal.
if (VT.getVectorElementType() == MVT::i1)
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
// EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
// split/scalarized right now.
if (VT.getVectorElementType() == MVT::f16)
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
}
}
// FIXME: In order to prevent SSE instructions being expanded to MMX ones
// with -msoft-float, disable use of MMX as well.
if (!Subtarget.useSoftFloat() && Subtarget.hasMMX()) {
addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
// No operations on x86mmx supported, everything uses intrinsics.
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE1()) {
addRegisterClass(MVT::v4f32, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
setOperationAction(ISD::FABS, MVT::v4f32, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
setOperationAction(ISD::VSELECT, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
setOperationAction(ISD::LOAD, MVT::v2f32, Custom);
setOperationAction(ISD::STORE, MVT::v2f32, Custom);
setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE2()) {
addRegisterClass(MVT::v2f64, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
// FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
// registers cannot be used even for integer operations.
addRegisterClass(MVT::v16i8, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
addRegisterClass(MVT::v8i16, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
addRegisterClass(MVT::v4i32, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
addRegisterClass(MVT::v2i64, Subtarget.hasVLX() ? &X86::VR128XRegClass
: &X86::VR128RegClass);
for (auto VT : { MVT::v2i8, MVT::v4i8, MVT::v8i8,
MVT::v2i16, MVT::v4i16, MVT::v2i32 }) {
setOperationAction(ISD::SDIV, VT, Custom);
setOperationAction(ISD::SREM, VT, Custom);
setOperationAction(ISD::UDIV, VT, Custom);
setOperationAction(ISD::UREM, VT, Custom);
}
setOperationAction(ISD::MUL, MVT::v2i8, Custom);
setOperationAction(ISD::MUL, MVT::v4i8, Custom);
setOperationAction(ISD::MUL, MVT::v8i8, Custom);
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
setOperationAction(ISD::MULHU, MVT::v4i32, Custom);
setOperationAction(ISD::MULHS, MVT::v4i32, Custom);
setOperationAction(ISD::MULHU, MVT::v16i8, Custom);
setOperationAction(ISD::MULHS, MVT::v16i8, Custom);
setOperationAction(ISD::MULHU, MVT::v8i16, Legal);
setOperationAction(ISD::MULHS, MVT::v8i16, Legal);
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
setOperationAction(ISD::FABS, MVT::v2f64, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Custom);
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SMAX, VT, VT == MVT::v8i16 ? Legal : Custom);
setOperationAction(ISD::SMIN, VT, VT == MVT::v8i16 ? Legal : Custom);
setOperationAction(ISD::UMAX, VT, VT == MVT::v16i8 ? Legal : Custom);
setOperationAction(ISD::UMIN, VT, VT == MVT::v16i8 ? Legal : Custom);
}
setOperationAction(ISD::UADDSAT, MVT::v16i8, Legal);
setOperationAction(ISD::SADDSAT, MVT::v16i8, Legal);
setOperationAction(ISD::USUBSAT, MVT::v16i8, Legal);
setOperationAction(ISD::SSUBSAT, MVT::v16i8, Legal);
setOperationAction(ISD::UADDSAT, MVT::v8i16, Legal);
setOperationAction(ISD::SADDSAT, MVT::v8i16, Legal);
setOperationAction(ISD::USUBSAT, MVT::v8i16, Legal);
setOperationAction(ISD::SSUBSAT, MVT::v8i16, Legal);
setOperationAction(ISD::UADDSAT, MVT::v4i32, Custom);
setOperationAction(ISD::USUBSAT, MVT::v4i32, Custom);
setOperationAction(ISD::UADDSAT, MVT::v2i64, Custom);
setOperationAction(ISD::USUBSAT, MVT::v2i64, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::ABS, VT, Custom);
// The condition codes aren't legal in SSE/AVX and under AVX512 we use
// setcc all the way to isel and prefer SETGT in some isel patterns.
setCondCodeAction(ISD::SETLT, VT, Custom);
setCondCodeAction(ISD::SETLE, VT, Custom);
}
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
}
for (auto VT : { MVT::v2f64, MVT::v2i64 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
if (VT == MVT::v2i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
}
// Custom lower v2i64 and v2f64 selects.
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
setOperationAction(ISD::SELECT, MVT::v4i32, Custom);
setOperationAction(ISD::SELECT, MVT::v8i16, Custom);
setOperationAction(ISD::SELECT, MVT::v16i8, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i32, Custom);
// Custom legalize these to avoid over promotion or custom promotion.
for (auto VT : {MVT::v2i8, MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16}) {
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Custom);
}
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Custom);
// Fast v2f32 UINT_TO_FP( v2i32 ) custom conversion.
setOperationAction(ISD::SINT_TO_FP, MVT::v2f32, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f32, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::v2f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::v2f32, Custom);
// We want to legalize this to an f64 load rather than an i64 load on
// 64-bit targets and two 32-bit loads on a 32-bit target. Similar for
// store.
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
setOperationAction(ISD::LOAD, MVT::v4i16, Custom);
setOperationAction(ISD::LOAD, MVT::v8i8, Custom);
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i16, Custom);
setOperationAction(ISD::STORE, MVT::v8i8, Custom);
setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
setOperationAction(ISD::BITCAST, MVT::v8i8, Custom);
if (!Subtarget.hasAVX512())
setOperationAction(ISD::BITCAST, MVT::v16i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v2i32, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
// In the customized shift lowering, the legal v4i32/v2i64 cases
// in AVX2 will be recognized.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
}
setOperationAction(ISD::ROTL, MVT::v4i32, Custom);
setOperationAction(ISD::ROTL, MVT::v8i16, Custom);
// With AVX512, expanding (and promoting the shifts) is better.
if (!Subtarget.hasAVX512())
setOperationAction(ISD::ROTL, MVT::v16i8, Custom);
setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSSE3()) {
setOperationAction(ISD::ABS, MVT::v16i8, Legal);
setOperationAction(ISD::ABS, MVT::v8i16, Legal);
setOperationAction(ISD::ABS, MVT::v4i32, Legal);
setOperationAction(ISD::BITREVERSE, MVT::v16i8, Custom);
setOperationAction(ISD::CTLZ, MVT::v16i8, Custom);
setOperationAction(ISD::CTLZ, MVT::v8i16, Custom);
setOperationAction(ISD::CTLZ, MVT::v4i32, Custom);
setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
// These might be better off as horizontal vector ops.
setOperationAction(ISD::ADD, MVT::i16, Custom);
setOperationAction(ISD::ADD, MVT::i32, Custom);
setOperationAction(ISD::SUB, MVT::i16, Custom);
setOperationAction(ISD::SUB, MVT::i32, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE41()) {
for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
setOperationAction(ISD::FFLOOR, RoundedTy, Legal);
setOperationAction(ISD::STRICT_FFLOOR, RoundedTy, Legal);
setOperationAction(ISD::FCEIL, RoundedTy, Legal);
setOperationAction(ISD::STRICT_FCEIL, RoundedTy, Legal);
setOperationAction(ISD::FTRUNC, RoundedTy, Legal);
setOperationAction(ISD::STRICT_FTRUNC, RoundedTy, Legal);
setOperationAction(ISD::FRINT, RoundedTy, Legal);
setOperationAction(ISD::STRICT_FRINT, RoundedTy, Legal);
setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal);
setOperationAction(ISD::STRICT_FNEARBYINT, RoundedTy, Legal);
}
setOperationAction(ISD::SMAX, MVT::v16i8, Legal);
setOperationAction(ISD::SMAX, MVT::v4i32, Legal);
setOperationAction(ISD::UMAX, MVT::v8i16, Legal);
setOperationAction(ISD::UMAX, MVT::v4i32, Legal);
setOperationAction(ISD::SMIN, MVT::v16i8, Legal);
setOperationAction(ISD::SMIN, MVT::v4i32, Legal);
setOperationAction(ISD::UMIN, MVT::v8i16, Legal);
setOperationAction(ISD::UMIN, MVT::v4i32, Legal);
// FIXME: Do we need to handle scalar-to-vector here?
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
// We directly match byte blends in the backend as they match the VSELECT
// condition form.
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
// SSE41 brings specific instructions for doing vector sign extend even in
// cases where we don't have SRA.
for (auto VT : { MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Legal);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Legal);
}
// SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) {
setLoadExtAction(LoadExtOp, MVT::v8i16, MVT::v8i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i32, MVT::v4i16, Legal);
setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i16, Legal);
setLoadExtAction(LoadExtOp, MVT::v2i64, MVT::v2i32, Legal);
}
// i8 vectors are custom because the source register and source
// source memory operand types are not the same width.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
if (Subtarget.is64Bit() && !Subtarget.hasAVX512()) {
// We need to scalarize v4i64->v432 uint_to_fp using cvtsi2ss, but we can
// do the pre and post work in the vector domain.
setOperationAction(ISD::UINT_TO_FP, MVT::v4i64, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i64, Custom);
// We need to mark SINT_TO_FP as Custom even though we want to expand it
// so that DAG combine doesn't try to turn it into uint_to_fp.
setOperationAction(ISD::SINT_TO_FP, MVT::v4i64, Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i64, Custom);
}
}
if (!Subtarget.useSoftFloat() && Subtarget.hasXOP()) {
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
setOperationAction(ISD::ROTL, VT, Custom);
// XOP can efficiently perform BITREVERSE with VPPERM.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 })
setOperationAction(ISD::BITREVERSE, VT, Custom);
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
setOperationAction(ISD::BITREVERSE, VT, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX()) {
bool HasInt256 = Subtarget.hasInt256();
addRegisterClass(MVT::v32i8, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v16i16, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v8i32, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v8f32, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v4i64, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
addRegisterClass(MVT::v4f64, Subtarget.hasVLX() ? &X86::VR256XRegClass
: &X86::VR256RegClass);
for (auto VT : { MVT::v8f32, MVT::v4f64 }) {
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
setOperationAction(ISD::FRINT, VT, Legal);
setOperationAction(ISD::STRICT_FRINT, VT, Legal);
setOperationAction(ISD::FNEARBYINT, VT, Legal);
setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
}
// (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
// even though v8i16 is a legal type.
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v8i16, MVT::v8i32);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v8i16, MVT::v8i32);
setOperationPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::v8i16, MVT::v8i32);
setOperationPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::v8i16, MVT::v8i32);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v8i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::v4f32, Legal);
setOperationAction(ISD::STRICT_FADD, MVT::v8f32, Legal);
setOperationAction(ISD::STRICT_FADD, MVT::v4f64, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v8f32, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v4f64, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v8f32, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v4f64, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v8f32, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v4f64, Legal);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::v4f64, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v8f32, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v4f64, Legal);
if (!Subtarget.hasAVX512())
setOperationAction(ISD::BITCAST, MVT::v32i1, Custom);
// In the customized shift lowering, the legal v8i32/v4i64 cases
// in AVX2 will be recognized.
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
}
// These types need custom splitting if their input is a 128-bit vector.
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ROTL, MVT::v8i32, Custom);
setOperationAction(ISD::ROTL, MVT::v16i16, Custom);
// With BWI, expanding (and promoting the shifts) is the better.
if (!Subtarget.hasBWI())
setOperationAction(ISD::ROTL, MVT::v32i8, Custom);
setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
setOperationAction(ISD::SELECT, MVT::v8i32, Custom);
setOperationAction(ISD::SELECT, MVT::v16i16, Custom);
setOperationAction(ISD::SELECT, MVT::v32i8, Custom);
setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
for (auto VT : { MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
}
setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
setOperationAction(ISD::BITREVERSE, MVT::v32i8, Custom);
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTLZ, VT, Custom);
// The condition codes aren't legal in SSE/AVX and under AVX512 we use
// setcc all the way to isel and prefer SETGT in some isel patterns.
setCondCodeAction(ISD::SETLT, VT, Custom);
setCondCodeAction(ISD::SETLE, VT, Custom);
}
if (Subtarget.hasAnyFMA()) {
for (auto VT : { MVT::f32, MVT::f64, MVT::v4f32, MVT::v8f32,
MVT::v2f64, MVT::v4f64 }) {
setOperationAction(ISD::FMA, VT, Legal);
setOperationAction(ISD::STRICT_FMA, VT, Legal);
}
}
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::ADD, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SUB, VT, HasInt256 ? Legal : Custom);
}
setOperationAction(ISD::MUL, MVT::v4i64, Custom);
setOperationAction(ISD::MUL, MVT::v8i32, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MUL, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MUL, MVT::v32i8, Custom);
setOperationAction(ISD::MULHU, MVT::v8i32, Custom);
setOperationAction(ISD::MULHS, MVT::v8i32, Custom);
setOperationAction(ISD::MULHU, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MULHS, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MULHU, MVT::v32i8, Custom);
setOperationAction(ISD::MULHS, MVT::v32i8, Custom);
setOperationAction(ISD::ABS, MVT::v4i64, Custom);
setOperationAction(ISD::SMAX, MVT::v4i64, Custom);
setOperationAction(ISD::UMAX, MVT::v4i64, Custom);
setOperationAction(ISD::SMIN, MVT::v4i64, Custom);
setOperationAction(ISD::UMIN, MVT::v4i64, Custom);
setOperationAction(ISD::UADDSAT, MVT::v32i8, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SADDSAT, MVT::v32i8, HasInt256 ? Legal : Custom);
setOperationAction(ISD::USUBSAT, MVT::v32i8, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SSUBSAT, MVT::v32i8, HasInt256 ? Legal : Custom);
setOperationAction(ISD::UADDSAT, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SADDSAT, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::USUBSAT, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SSUBSAT, MVT::v16i16, HasInt256 ? Legal : Custom);
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
setOperationAction(ISD::ABS, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SMAX, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::UMAX, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SMIN, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::UMIN, VT, HasInt256 ? Legal : Custom);
}
for (auto VT : {MVT::v16i16, MVT::v8i32, MVT::v4i64}) {
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
}
if (HasInt256) {
// The custom lowering for UINT_TO_FP for v8i32 becomes interesting
// when we have a 256bit-wide blend with immediate.
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v8i32, Custom);
// AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
for (auto LoadExtOp : { ISD::SEXTLOAD, ISD::ZEXTLOAD }) {
setLoadExtAction(LoadExtOp, MVT::v16i16, MVT::v16i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i8, Legal);
setLoadExtAction(LoadExtOp, MVT::v8i32, MVT::v8i16, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i16, Legal);
setLoadExtAction(LoadExtOp, MVT::v4i64, MVT::v4i32, Legal);
}
}
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) {
setOperationAction(ISD::MLOAD, VT, Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::MSTORE, VT, Legal);
}
// Extract subvector is special because the value type
// (result) is 128-bit but the source is 256-bit wide.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v4f32, MVT::v2f64 }) {
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
}
// Custom lower several nodes for 256-bit types.
for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
MVT::v8f32, MVT::v4f64 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::STORE, VT, Custom);
}
if (HasInt256) {
setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
// Custom legalize 2x32 to get a little better code.
setOperationAction(ISD::MGATHER, MVT::v2f32, Custom);
setOperationAction(ISD::MGATHER, MVT::v2i32, Custom);
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 })
setOperationAction(ISD::MGATHER, VT, Custom);
}
}
// This block controls legalization of the mask vector sizes that are
// available with AVX512. 512-bit vectors are in a separate block controlled
// by useAVX512Regs.
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
addRegisterClass(MVT::v1i1, &X86::VK1RegClass);
addRegisterClass(MVT::v2i1, &X86::VK2RegClass);
addRegisterClass(MVT::v4i1, &X86::VK4RegClass);
addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
setOperationAction(ISD::SELECT, MVT::v1i1, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v1i1, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v1i1, Custom);
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v8i1, MVT::v8i32);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v8i1, MVT::v8i32);
setOperationPromotedToType(ISD::FP_TO_SINT, MVT::v4i1, MVT::v4i32);
setOperationPromotedToType(ISD::FP_TO_UINT, MVT::v4i1, MVT::v4i32);
setOperationPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::v8i1, MVT::v8i32);
setOperationPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::v8i1, MVT::v8i32);
setOperationPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::v4i1, MVT::v4i32);
setOperationPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::v4i1, MVT::v4i32);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i1, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i1, Custom);
// There is no byte sized k-register load or store without AVX512DQ.
if (!Subtarget.hasDQI()) {
setOperationAction(ISD::LOAD, MVT::v1i1, Custom);
setOperationAction(ISD::LOAD, MVT::v2i1, Custom);
setOperationAction(ISD::LOAD, MVT::v4i1, Custom);
setOperationAction(ISD::LOAD, MVT::v8i1, Custom);
setOperationAction(ISD::STORE, MVT::v1i1, Custom);
setOperationAction(ISD::STORE, MVT::v2i1, Custom);
setOperationAction(ISD::STORE, MVT::v4i1, Custom);
setOperationAction(ISD::STORE, MVT::v8i1, Custom);
}
// Extends of v16i1/v8i1/v4i1/v2i1 to 128-bit vectors.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SIGN_EXTEND, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND, VT, Custom);
setOperationAction(ISD::ANY_EXTEND, VT, Custom);
}
for (auto VT : { MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v16i1 }) {
setOperationAction(ISD::ADD, VT, Custom);
setOperationAction(ISD::SUB, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::UADDSAT, VT, Custom);
setOperationAction(ISD::SADDSAT, VT, Custom);
setOperationAction(ISD::USUBSAT, VT, Custom);
setOperationAction(ISD::SSUBSAT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Expand);
}
for (auto VT : { MVT::v1i1, MVT::v2i1, MVT::v4i1, MVT::v8i1 })
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
}
// This block controls legalization for 512-bit operations with 32/64 bit
// elements. 512-bits can be disabled based on prefer-vector-width and
// required-vector-width function attributes.
if (!Subtarget.useSoftFloat() && Subtarget.useAVX512Regs()) {
addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) {
setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i8, Legal);
setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i16, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i8, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i16, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i32, Legal);
}
for (MVT VT : { MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
setOperationAction(ISD::FMA, VT, Legal);
setOperationAction(ISD::STRICT_FMA, VT, Legal);
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
}
for (MVT VT : { MVT::v16i1, MVT::v16i8, MVT::v16i16 }) {
setOperationPromotedToType(ISD::FP_TO_SINT , VT, MVT::v16i32);
setOperationPromotedToType(ISD::FP_TO_UINT , VT, MVT::v16i32);
setOperationPromotedToType(ISD::STRICT_FP_TO_SINT, VT, MVT::v16i32);
setOperationPromotedToType(ISD::STRICT_FP_TO_UINT, VT, MVT::v16i32);
}
setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v16i32, Legal);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v16i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v16i32, Legal);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v16i32, Legal);
setOperationAction(ISD::STRICT_FADD, MVT::v16f32, Legal);
setOperationAction(ISD::STRICT_FADD, MVT::v8f64, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v16f32, Legal);
setOperationAction(ISD::STRICT_FSUB, MVT::v8f64, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v16f32, Legal);
setOperationAction(ISD::STRICT_FMUL, MVT::v8f64, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v16f32, Legal);
setOperationAction(ISD::STRICT_FDIV, MVT::v8f64, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v16f32, Legal);
setOperationAction(ISD::STRICT_FSQRT, MVT::v8f64, Legal);
setOperationAction(ISD::STRICT_FP_EXTEND, MVT::v8f64, Legal);
setOperationAction(ISD::STRICT_FP_ROUND, MVT::v8f32, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal);
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal);
// With 512-bit vectors and no VLX, we prefer to widen MLOAD/MSTORE
// to 512-bit rather than use the AVX2 instructions so that we can use
// k-masks.
if (!Subtarget.hasVLX()) {
for (auto VT : {MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64}) {
setOperationAction(ISD::MLOAD, VT, Custom);
setOperationAction(ISD::MSTORE, VT, Custom);
}
}
setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
// Need to custom widen this if we don't have AVX512BW.
setOperationAction(ISD::ANY_EXTEND, MVT::v8i8, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i8, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i8, Custom);
for (auto VT : { MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
setOperationAction(ISD::FRINT, VT, Legal);
setOperationAction(ISD::STRICT_FRINT, VT, Legal);
setOperationAction(ISD::FNEARBYINT, VT, Legal);
setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
setOperationAction(ISD::SELECT, VT, Custom);
}
// Without BWI we need to use custom lowering to handle MVT::v64i8 input.
for (auto VT : {MVT::v16i32, MVT::v8i64, MVT::v64i8}) {
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
}
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
setOperationAction(ISD::MUL, MVT::v8i64, Custom);
setOperationAction(ISD::MUL, MVT::v16i32, Legal);
setOperationAction(ISD::MULHU, MVT::v16i32, Custom);
setOperationAction(ISD::MULHS, MVT::v16i32, Custom);
for (auto VT : { MVT::v16i32, MVT::v8i64 }) {
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::ABS, VT, Legal);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::ROTL, VT, Custom);
setOperationAction(ISD::ROTR, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
// The condition codes aren't legal in SSE/AVX and under AVX512 we use
// setcc all the way to isel and prefer SETGT in some isel patterns.
setCondCodeAction(ISD::SETLT, VT, Custom);
setCondCodeAction(ISD::SETLE, VT, Custom);
}
if (Subtarget.hasDQI()) {
setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal);
setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v8i64, Legal);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v8i64, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v8i64, Legal);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v8i64, Legal);
setOperationAction(ISD::MUL, MVT::v8i64, Legal);
}
if (Subtarget.hasCDI()) {
// NonVLX sub-targets extend 128/256 vectors to use the 512 version.
for (auto VT : { MVT::v16i32, MVT::v8i64} ) {
setOperationAction(ISD::CTLZ, VT, Legal);
}
} // Subtarget.hasCDI()
if (Subtarget.hasVPOPCNTDQ()) {
for (auto VT : { MVT::v16i32, MVT::v8i64 })
setOperationAction(ISD::CTPOP, VT, Legal);
}
// Extract subvector is special because the value type
// (result) is 256-bit but the source is 512-bit wide.
// 128-bit was made Legal under AVX1.
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
MVT::v8f32, MVT::v4f64 })
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
for (auto VT : { MVT::v16i32, MVT::v8i64, MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Legal);
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::MGATHER, VT, Custom);
setOperationAction(ISD::MSCATTER, VT, Custom);
}
if (!Subtarget.hasBWI()) {
// Need to custom split v32i16/v64i8 bitcasts.
setOperationAction(ISD::BITCAST, MVT::v32i16, Custom);
setOperationAction(ISD::BITCAST, MVT::v64i8, Custom);
// Better to split these into two 256-bit ops.
setOperationAction(ISD::BITREVERSE, MVT::v8i64, Custom);
setOperationAction(ISD::BITREVERSE, MVT::v16i32, Custom);
}
if (Subtarget.hasVBMI2()) {
for (auto VT : { MVT::v16i32, MVT::v8i64 }) {
setOperationAction(ISD::FSHL, VT, Custom);
setOperationAction(ISD::FSHR, VT, Custom);
}
}
}// has AVX-512
// This block controls legalization for operations that don't have
// pre-AVX512 equivalents. Without VLX we use 512-bit operations for
// narrower widths.
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
// These operations are handled on non-VLX by artificially widening in
// isel patterns.
setOperationAction(ISD::FP_TO_UINT, MVT::v8i32,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v8i32,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v8i32,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32,
Subtarget.hasVLX() ? Legal : Custom);
for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::ABS, VT, Legal);
}
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::ROTL, VT, Custom);
setOperationAction(ISD::ROTR, VT, Custom);
}
// Custom legalize 2x32 to get a little better code.
setOperationAction(ISD::MSCATTER, MVT::v2f32, Custom);
setOperationAction(ISD::MSCATTER, MVT::v2i32, Custom);
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 })
setOperationAction(ISD::MSCATTER, VT, Custom);
if (Subtarget.hasDQI()) {
for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::SINT_TO_FP, VT,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::UINT_TO_FP, VT,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::STRICT_SINT_TO_FP, VT,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::STRICT_UINT_TO_FP, VT,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::FP_TO_SINT, VT,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::FP_TO_UINT, VT,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, VT,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, VT,
Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::MUL, VT, Legal);
}
}
if (Subtarget.hasCDI()) {
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::CTLZ, VT, Legal);
}
} // Subtarget.hasCDI()
if (Subtarget.hasVPOPCNTDQ()) {
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64 })
setOperationAction(ISD::CTPOP, VT, Legal);
}
}
// This block control legalization of v32i1/v64i1 which are available with
// AVX512BW. 512-bit v32i16 and v64i8 vector legalization is controlled with
// useBWIRegs.
if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
addRegisterClass(MVT::v32i1, &X86::VK32RegClass);
addRegisterClass(MVT::v64i1, &X86::VK64RegClass);
for (auto VT : { MVT::v32i1, MVT::v64i1 }) {
setOperationAction(ISD::ADD, VT, Custom);
setOperationAction(ISD::SUB, VT, Custom);
setOperationAction(ISD::MUL, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::UADDSAT, VT, Custom);
setOperationAction(ISD::SADDSAT, VT, Custom);
setOperationAction(ISD::USUBSAT, VT, Custom);
setOperationAction(ISD::SSUBSAT, VT, Custom);
setOperationAction(ISD::TRUNCATE, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
}
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom);
for (auto VT : { MVT::v16i1, MVT::v32i1 })
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
// Extends from v32i1 masks to 256-bit vectors.
setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v32i8, Custom);
}
// This block controls legalization for v32i16 and v64i8. 512-bits can be
// disabled based on prefer-vector-width and required-vector-width function
// attributes.
if (!Subtarget.useSoftFloat() && Subtarget.useBWIRegs()) {
addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
addRegisterClass(MVT::v64i8, &X86::VR512RegClass);
// Extends from v64i1 masks to 512-bit vectors.
setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v64i8, Custom);
setOperationAction(ISD::MUL, MVT::v32i16, Legal);
setOperationAction(ISD::MUL, MVT::v64i8, Custom);
setOperationAction(ISD::MULHS, MVT::v32i16, Legal);
setOperationAction(ISD::MULHU, MVT::v32i16, Legal);
setOperationAction(ISD::MULHS, MVT::v64i8, Custom);
setOperationAction(ISD::MULHU, MVT::v64i8, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Legal);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i16, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v64i8, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom);
setOperationAction(ISD::BITREVERSE, MVT::v64i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v32i16, Custom);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, MVT::v32i16, Custom);
setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal);
for (auto VT : { MVT::v64i8, MVT::v32i16 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::ABS, VT, Legal);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTLZ, VT, Custom);
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::UADDSAT, VT, Legal);
setOperationAction(ISD::SADDSAT, VT, Legal);
setOperationAction(ISD::USUBSAT, VT, Legal);
setOperationAction(ISD::SSUBSAT, VT, Legal);
setOperationAction(ISD::SELECT, VT, Custom);
// The condition codes aren't legal in SSE/AVX and under AVX512 we use
// setcc all the way to isel and prefer SETGT in some isel patterns.
setCondCodeAction(ISD::SETLT, VT, Custom);
setCondCodeAction(ISD::SETLE, VT, Custom);
}
for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD}) {
setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal);
}
if (Subtarget.hasBITALG()) {
for (auto VT : { MVT::v64i8, MVT::v32i16 })
setOperationAction(ISD::CTPOP, VT, Legal);
}
if (Subtarget.hasVBMI2()) {
setOperationAction(ISD::FSHL, MVT::v32i16, Custom);
setOperationAction(ISD::FSHR, MVT::v32i16, Custom);
}
}
if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
for (auto VT : { MVT::v32i8, MVT::v16i8, MVT::v16i16, MVT::v8i16 }) {
setOperationAction(ISD::MLOAD, VT, Subtarget.hasVLX() ? Legal : Custom);
setOperationAction(ISD::MSTORE, VT, Subtarget.hasVLX() ? Legal : Custom);
}
// These operations are handled on non-VLX by artificially widening in
// isel patterns.
// TODO: Custom widen in lowering on non-VLX and drop the isel patterns?
if (Subtarget.hasBITALG()) {
for (auto VT : { MVT::v16i8, MVT::v32i8, MVT::v8i16, MVT::v16i16 })
setOperationAction(ISD::CTPOP, VT, Legal);
}
}
if (!Subtarget.useSoftFloat() && Subtarget.hasVLX()) {
setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal);
setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
if (Subtarget.hasDQI()) {
// Fast v2f32 SINT_TO_FP( v2i64 ) custom conversion.
// v2f32 UINT_TO_FP is already custom under SSE2.
assert(isOperationCustom(ISD::UINT_TO_FP, MVT::v2f32) &&
isOperationCustom(ISD::STRICT_UINT_TO_FP, MVT::v2f32) &&
"Unexpected operation action!");
// v2i64 FP_TO_S/UINT(v2f32) custom conversion.
setOperationAction(ISD::FP_TO_SINT, MVT::v2f32, Custom);
setOperationAction(ISD::FP_TO_UINT, MVT::v2f32, Custom);
setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f32, Custom);
setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f32, Custom);
}
if (Subtarget.hasBWI()) {
setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal);
setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
}
if (Subtarget.hasVBMI2()) {
// TODO: Make these legal even without VLX?
for (auto VT : { MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::FSHL, VT, Custom);
setOperationAction(ISD::FSHR, VT, Custom);
}
}
setOperationAction(ISD::TRUNCATE, MVT::v16i32, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v8i64, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v16i64, Custom);
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
if (!Subtarget.is64Bit()) {
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
}
// Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
// handle type legalization for these operations here.
//
// FIXME: We really should do custom legalization for addition and
// subtraction on x86-32 once PR3203 is fixed. We really can't do much better
// than generic legalization for 64-bit multiplication-with-overflow, though.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
// Add/Sub/Mul with overflow operations are custom lowered.
setOperationAction(ISD::SADDO, VT, Custom);
setOperationAction(ISD::UADDO, VT, Custom);
setOperationAction(ISD::SSUBO, VT, Custom);
setOperationAction(ISD::USUBO, VT, Custom);
setOperationAction(ISD::SMULO, VT, Custom);
setOperationAction(ISD::UMULO, VT, Custom);
// Support carry in as value rather than glue.
setOperationAction(ISD::ADDCARRY, VT, Custom);
setOperationAction(ISD::SUBCARRY, VT, Custom);
setOperationAction(ISD::SETCCCARRY, VT, Custom);
}
if (!Subtarget.is64Bit()) {
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
setLibcallName(RTLIB::MUL_I128, nullptr);
}
// Combine sin / cos into _sincos_stret if it is available.
if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
}
if (Subtarget.isTargetWin64()) {
setOperationAction(ISD::SDIV, MVT::i128, Custom);
setOperationAction(ISD::UDIV, MVT::i128, Custom);
setOperationAction(ISD::SREM, MVT::i128, Custom);
setOperationAction(ISD::UREM, MVT::i128, Custom);
setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
}
// On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
// is. We should promote the value to 64-bits to solve this.
// This is what the CRT headers do - `fmodf` is an inline header
// function casting to f64 and calling `fmod`.
if (Subtarget.is32Bit() &&
(Subtarget.isTargetWindowsMSVC() || Subtarget.isTargetWindowsItanium()))
for (ISD::NodeType Op :
{ISD::FCEIL, ISD::STRICT_FCEIL,
ISD::FCOS, ISD::STRICT_FCOS,
ISD::FEXP, ISD::STRICT_FEXP,
ISD::FFLOOR, ISD::STRICT_FFLOOR,
ISD::FREM, ISD::STRICT_FREM,
ISD::FLOG, ISD::STRICT_FLOG,
ISD::FLOG10, ISD::STRICT_FLOG10,
ISD::FPOW, ISD::STRICT_FPOW,
ISD::FSIN, ISD::STRICT_FSIN})
if (isOperationExpand(Op, MVT::f32))
setOperationAction(Op, MVT::f32, Promote);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::CONCAT_VECTORS);
setTargetDAGCombine(ISD::INSERT_SUBVECTOR);
setTargetDAGCombine(ISD::EXTRACT_SUBVECTOR);
setTargetDAGCombine(ISD::BITCAST);
setTargetDAGCombine(ISD::VSELECT);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FNEG);
setTargetDAGCombine(ISD::FMA);
setTargetDAGCombine(ISD::FMINNUM);
setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::MLOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::MSTORE);
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
setTargetDAGCombine(ISD::ANY_EXTEND_VECTOR_INREG);
setTargetDAGCombine(ISD::SIGN_EXTEND_VECTOR_INREG);
setTargetDAGCombine(ISD::ZERO_EXTEND_VECTOR_INREG);
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::STRICT_SINT_TO_FP);
setTargetDAGCombine(ISD::STRICT_UINT_TO_FP);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::XOR);
setTargetDAGCombine(ISD::MSCATTER);
setTargetDAGCombine(ISD::MGATHER);
computeRegisterProperties(Subtarget.getRegisterInfo());
MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
MaxStoresPerMemsetOptSize = 8;
MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
MaxStoresPerMemcpyOptSize = 4;
MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
MaxStoresPerMemmoveOptSize = 4;
// TODO: These control memcmp expansion in CGP and could be raised higher, but
// that needs to benchmarked and balanced with the potential use of vector
// load/store types (PR33329, PR33914).
MaxLoadsPerMemcmp = 2;
MaxLoadsPerMemcmpOptSize = 2;
// Set loop alignment to 2^ExperimentalPrefLoopAlignment bytes (default: 2^4).
setPrefLoopAlignment(Align(1ULL << ExperimentalPrefLoopAlignment));
// An out-of-order CPU can speculatively execute past a predictable branch,
// but a conditional move could be stalled by an expensive earlier operation.
PredictableSelectIsExpensive = Subtarget.getSchedModel().isOutOfOrder();
EnableExtLdPromotion = true;
setPrefFunctionAlignment(Align(16));
verifyIntrinsicTables();
// Default to having -disable-strictnode-mutation on
IsStrictFPEnabled = true;
}
// This has so far only been implemented for 64-bit MachO.
bool X86TargetLowering::useLoadStackGuardNode() const {
return Subtarget.isTargetMachO() && Subtarget.is64Bit();
}
bool X86TargetLowering::useStackGuardXorFP() const {
// Currently only MSVC CRTs XOR the frame pointer into the stack guard value.
return Subtarget.getTargetTriple().isOSMSVCRT() && !Subtarget.isTargetMachO();
}
SDValue X86TargetLowering::emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
const SDLoc &DL) const {
EVT PtrTy = getPointerTy(DAG.getDataLayout());
unsigned XorOp = Subtarget.is64Bit() ? X86::XOR64_FP : X86::XOR32_FP;
MachineSDNode *Node = DAG.getMachineNode(XorOp, DL, PtrTy, Val);
return SDValue(Node, 0);
}
TargetLoweringBase::LegalizeTypeAction
X86TargetLowering::getPreferredVectorAction(MVT VT) const {
if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
return TypeSplitVector;
if (VT.getVectorNumElements() != 1 &&
VT.getVectorElementType() != MVT::i1)
return TypeWidenVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
MVT X86TargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
// v32i1 vectors should be promoted to v32i8 to match avx2.
if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
return MVT::v32i8;
// Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
Subtarget.hasAVX512() &&
(!isPowerOf2_32(VT.getVectorNumElements()) ||
(VT.getVectorNumElements() > 16 && !Subtarget.hasBWI()) ||
(VT.getVectorNumElements() > 64 && Subtarget.hasBWI())))
return MVT::i8;
// Split v64i1 vectors if we don't have v64i8 available.
if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
CC != CallingConv::X86_RegCall)
return MVT::v32i1;
// FIXME: Should we just make these types legal and custom split operations?
if ((VT == MVT::v32i16 || VT == MVT::v64i8) && !EnableOldKNLABI &&
Subtarget.useAVX512Regs() && !Subtarget.hasBWI())
return MVT::v16i32;
return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
}
unsigned X86TargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
// v32i1 vectors should be promoted to v32i8 to match avx2.
if (VT == MVT::v32i1 && Subtarget.hasAVX512() && !Subtarget.hasBWI())
return 1;
// Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
Subtarget.hasAVX512() &&
(!isPowerOf2_32(VT.getVectorNumElements()) ||
(VT.getVectorNumElements() > 16 && !Subtarget.hasBWI()) ||
(VT.getVectorNumElements() > 64 && Subtarget.hasBWI())))
return VT.getVectorNumElements();
// Split v64i1 vectors if we don't have v64i8 available.
if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
CC != CallingConv::X86_RegCall)
return 2;
// FIXME: Should we just make these types legal and custom split operations?
if ((VT == MVT::v32i16 || VT == MVT::v64i8) && !EnableOldKNLABI &&
Subtarget.useAVX512Regs() && !Subtarget.hasBWI())
return 1;
return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
}
unsigned X86TargetLowering::getVectorTypeBreakdownForCallingConv(
LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
unsigned &NumIntermediates, MVT &RegisterVT) const {
// Break wide or odd vXi1 vectors into scalars to match avx2 behavior.
if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
Subtarget.hasAVX512() &&
(!isPowerOf2_32(VT.getVectorNumElements()) ||
(VT.getVectorNumElements() > 16 && !Subtarget.hasBWI()) ||
(VT.getVectorNumElements() > 64 && Subtarget.hasBWI()))) {
RegisterVT = MVT::i8;
IntermediateVT = MVT::i1;
NumIntermediates = VT.getVectorNumElements();
return NumIntermediates;
}
// Split v64i1 vectors if we don't have v64i8 available.
if (VT == MVT::v64i1 && Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
CC != CallingConv::X86_RegCall) {
RegisterVT = MVT::v32i1;
IntermediateVT = MVT::v32i1;
NumIntermediates = 2;
return 2;
}
return TargetLowering::getVectorTypeBreakdownForCallingConv(Context, CC, VT, IntermediateVT,
NumIntermediates, RegisterVT);
}
EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL,
LLVMContext& Context,
EVT VT) const {
if (!VT.isVector())
return MVT::i8;
if (Subtarget.hasAVX512()) {
const unsigned NumElts = VT.getVectorNumElements();
// Figure out what this type will be legalized to.
EVT LegalVT = VT;
while (getTypeAction(Context, LegalVT) != TypeLegal)
LegalVT = getTypeToTransformTo(Context, LegalVT);
// If we got a 512-bit vector then we'll definitely have a vXi1 compare.
if (LegalVT.getSimpleVT().is512BitVector())
return EVT::getVectorVT(Context, MVT::i1, NumElts);
if (LegalVT.getSimpleVT().isVector() && Subtarget.hasVLX()) {
// If we legalized to less than a 512-bit vector, then we will use a vXi1
// compare for vXi32/vXi64 for sure. If we have BWI we will also support
// vXi16/vXi8.
MVT EltVT = LegalVT.getSimpleVT().getVectorElementType();
if (Subtarget.hasBWI() || EltVT.getSizeInBits() >= 32)
return EVT::getVectorVT(Context, MVT::i1, NumElts);
}
}
return VT.changeVectorElementTypeToInteger();
}
/// Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
if (MaxAlign == 16)
return;
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
if (VTy->getBitWidth() == 128)
MaxAlign = 16;
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
unsigned EltAlign = 0;
getMaxByValAlign(ATy->getElementType(), EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
for (auto *EltTy : STy->elements()) {
unsigned EltAlign = 0;
getMaxByValAlign(EltTy, EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
if (MaxAlign == 16)
break;
}
}
}
/// Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
/// are at 4-byte boundaries.
unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty,
const DataLayout &DL) const {
if (Subtarget.is64Bit()) {
// Max of 8 and alignment of type.
unsigned TyAlign = DL.getABITypeAlignment(Ty);
if (TyAlign > 8)
return TyAlign;
return 8;
}
unsigned Align = 4;
if (Subtarget.hasSSE1())
getMaxByValAlign(Ty, Align);
return Align;
}
/// Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
/// For vector ops we check that the overall size isn't larger than our
/// preferred vector width.
EVT X86TargetLowering::getOptimalMemOpType(
uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
bool ZeroMemset, bool MemcpyStrSrc,
const AttributeList &FuncAttributes) const {
if (!FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
if (Size >= 16 && (!Subtarget.isUnalignedMem16Slow() ||
((DstAlign == 0 || DstAlign >= 16) &&
(SrcAlign == 0 || SrcAlign >= 16)))) {
// FIXME: Check if unaligned 64-byte accesses are slow.
if (Size >= 64 && Subtarget.hasAVX512() &&
(Subtarget.getPreferVectorWidth() >= 512)) {
return Subtarget.hasBWI() ? MVT::v64i8 : MVT::v16i32;
}
// FIXME: Check if unaligned 32-byte accesses are slow.
if (Size >= 32 && Subtarget.hasAVX() &&
(Subtarget.getPreferVectorWidth() >= 256)) {
// Although this isn't a well-supported type for AVX1, we'll let
// legalization and shuffle lowering produce the optimal codegen. If we
// choose an optimal type with a vector element larger than a byte,
// getMemsetStores() may create an intermediate splat (using an integer
// multiply) before we splat as a vector.
return MVT::v32i8;
}
if (Subtarget.hasSSE2() && (Subtarget.getPreferVectorWidth() >= 128))
return MVT::v16i8;
// TODO: Can SSE1 handle a byte vector?
// If we have SSE1 registers we should be able to use them.
if (Subtarget.hasSSE1() && (Subtarget.is64Bit() || Subtarget.hasX87()) &&
(Subtarget.getPreferVectorWidth() >= 128))
return MVT::v4f32;
} else if ((!IsMemset || ZeroMemset) && !MemcpyStrSrc && Size >= 8 &&
!Subtarget.is64Bit() && Subtarget.hasSSE2()) {
// Do not use f64 to lower memcpy if source is string constant. It's
// better to use i32 to avoid the loads.
// Also, do not use f64 to lower memset unless this is a memset of zeros.
// The gymnastics of splatting a byte value into an XMM register and then
// only using 8-byte stores (because this is a CPU with slow unaligned
// 16-byte accesses) makes that a loser.
return MVT::f64;
}
}
// This is a compromise. If we reach here, unaligned accesses may be slow on
// this target. However, creating smaller, aligned accesses could be even
// slower and would certainly be a lot more code.
if (Subtarget.is64Bit() && Size >= 8)
return MVT::i64;
return MVT::i32;
}
bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
if (VT == MVT::f32)
return X86ScalarSSEf32;
else if (VT == MVT::f64)
return X86ScalarSSEf64;
return true;
}
bool X86TargetLowering::allowsMisalignedMemoryAccesses(
EVT VT, unsigned, unsigned Align, MachineMemOperand::Flags Flags,
bool *Fast) const {
if (Fast) {
switch (VT.getSizeInBits()) {
default:
// 8-byte and under are always assumed to be fast.
*Fast = true;
break;
case 128:
*Fast = !Subtarget.isUnalignedMem16Slow();
break;
case 256:
*Fast = !Subtarget.isUnalignedMem32Slow();
break;
// TODO: What about AVX-512 (512-bit) accesses?
}
}
// NonTemporal vector memory ops must be aligned.
if (!!(Flags & MachineMemOperand::MONonTemporal) && VT.isVector()) {
// NT loads can only be vector aligned, so if its less aligned than the
// minimum vector size (which we can split the vector down to), we might as
// well use a regular unaligned vector load.
// We don't have any NT loads pre-SSE41.
if (!!(Flags & MachineMemOperand::MOLoad))
return (Align < 16 || !Subtarget.hasSSE41());
return false;
}
// Misaligned accesses of any size are always allowed.
return true;
}
/// Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
unsigned X86TargetLowering::getJumpTableEncoding() const {
// In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
// symbol.
if (isPositionIndependent() && Subtarget.isPICStyleGOT())
return MachineJumpTableInfo::EK_Custom32;
// Otherwise, use the normal jump table encoding heuristics.
return TargetLowering::getJumpTableEncoding();
}
bool X86TargetLowering::useSoftFloat() const {
return Subtarget.useSoftFloat();
}
void X86TargetLowering::markLibCallAttributes(MachineFunction *MF, unsigned CC,
ArgListTy &Args) const {
// Only relabel X86-32 for C / Stdcall CCs.
if (Subtarget.is64Bit())
return;
if (CC != CallingConv::C && CC != CallingConv::X86_StdCall)
return;
unsigned ParamRegs = 0;
if (auto *M = MF->getFunction().getParent())
ParamRegs = M->getNumberRegisterParameters();
// Mark the first N int arguments as having reg
for (unsigned Idx = 0; Idx < Args.size(); Idx++) {
Type *T = Args[Idx].Ty;
if (T->isIntOrPtrTy())
if (MF->getDataLayout().getTypeAllocSize(T) <= 8) {
unsigned numRegs = 1;
if (MF->getDataLayout().getTypeAllocSize(T) > 4)
numRegs = 2;
if (ParamRegs < numRegs)
return;
ParamRegs -= numRegs;
Args[Idx].IsInReg = true;
}
}
}
const MCExpr *
X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid,MCContext &Ctx) const{
assert(isPositionIndependent() && Subtarget.isPICStyleGOT());
// In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
// entries.
return MCSymbolRefExpr::create(MBB->getSymbol(),
MCSymbolRefExpr::VK_GOTOFF, Ctx);
}
/// Returns relocation base for the given PIC jumptable.
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (!Subtarget.is64Bit())
// This doesn't have SDLoc associated with it, but is not really the
// same as a Register.
return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
getPointerTy(DAG.getDataLayout()));
return Table;
}
/// This returns the relocation base for the given PIC jumptable,
/// the same as getPICJumpTableRelocBase, but as an MCExpr.
const MCExpr *X86TargetLowering::
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
MCContext &Ctx) const {
// X86-64 uses RIP relative addressing based on the jump table label.
if (Subtarget.isPICStyleRIPRel())
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
// Otherwise, the reference is relative to the PIC base.
return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
}
std::pair<const TargetRegisterClass *, uint8_t>
X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
const TargetRegisterClass *RRC = nullptr;
uint8_t Cost = 1;
switch (VT.SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(TRI, VT);
case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
break;
case MVT::x86mmx:
RRC = &X86::VR64RegClass;
break;
case MVT::f32: case MVT::f64:
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64:
case MVT::v32i8: case MVT::v16i16: case MVT::v8i32: case MVT::v4i64:
case MVT::v8f32: case MVT::v4f64:
case MVT::v64i8: case MVT::v32i16: case MVT::v16i32: case MVT::v8i64:
case MVT::v16f32: case MVT::v8f64:
RRC = &X86::VR128XRegClass;
break;
}
return std::make_pair(RRC, Cost);
}
unsigned X86TargetLowering::getAddressSpace() const {
if (Subtarget.is64Bit())
return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257;
return 256;
}
static bool hasStackGuardSlotTLS(const Triple &TargetTriple) {
return TargetTriple.isOSGlibc() || TargetTriple.isOSFuchsia() ||
(TargetTriple.isAndroid() && !TargetTriple.isAndroidVersionLT(17));
}
static Constant* SegmentOffset(IRBuilder<> &IRB,
unsigned Offset, unsigned AddressSpace) {
return ConstantExpr::getIntToPtr(
ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
}
Value *X86TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
// glibc, bionic, and Fuchsia have a special slot for the stack guard in
// tcbhead_t; use it instead of the usual global variable (see
// sysdeps/{i386,x86_64}/nptl/tls.h)
if (hasStackGuardSlotTLS(Subtarget.getTargetTriple())) {
if (Subtarget.isTargetFuchsia()) {
// <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
return SegmentOffset(IRB, 0x10, getAddressSpace());
} else {
// %fs:0x28, unless we're using a Kernel code model, in which case
// it's %gs:0x28. gs:0x14 on i386.
unsigned Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14;
return SegmentOffset(IRB, Offset, getAddressSpace());
}
}
return TargetLowering::getIRStackGuard(IRB);
}
void X86TargetLowering::insertSSPDeclarations(Module &M) const {
// MSVC CRT provides functionalities for stack protection.
if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
// MSVC CRT has a global variable holding security cookie.
M.getOrInsertGlobal("__security_cookie",
Type::getInt8PtrTy(M.getContext()));
// MSVC CRT has a function to validate security cookie.
FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
"__security_check_cookie", Type::getVoidTy(M.getContext()),
Type::getInt8PtrTy(M.getContext()));
if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) {
F->setCallingConv(CallingConv::X86_FastCall);
F->addAttribute(1, Attribute::AttrKind::InReg);
}
return;
}
// glibc, bionic, and Fuchsia have a special slot for the stack guard.
if (hasStackGuardSlotTLS(Subtarget.getTargetTriple()))
return;
TargetLowering::insertSSPDeclarations(M);
}
Value *X86TargetLowering::getSDagStackGuard(const Module &M) const {
// MSVC CRT has a global variable holding security cookie.
if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
return M.getGlobalVariable("__security_cookie");
}
return TargetLowering::getSDagStackGuard(M);
}
Function *X86TargetLowering::getSSPStackGuardCheck(const Module &M) const {
// MSVC CRT has a function to validate security cookie.
if (Subtarget.getTargetTriple().isWindowsMSVCEnvironment() ||
Subtarget.getTargetTriple().isWindowsItaniumEnvironment()) {
return M.getFunction("__security_check_cookie");
}
return TargetLowering::getSSPStackGuardCheck(M);
}
Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
if (Subtarget.getTargetTriple().isOSContiki())
return getDefaultSafeStackPointerLocation(IRB, false);
// Android provides a fixed TLS slot for the SafeStack pointer. See the
// definition of TLS_SLOT_SAFESTACK in
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
if (Subtarget.isTargetAndroid()) {
// %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
// %gs:0x24 on i386
unsigned Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24;
return SegmentOffset(IRB, Offset, getAddressSpace());
}
// Fuchsia is similar.
if (Subtarget.isTargetFuchsia()) {
// <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
return SegmentOffset(IRB, 0x18, getAddressSpace());
}
return TargetLowering::getSafeStackPointerLocation(IRB);
}
bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
assert(SrcAS != DestAS && "Expected different address spaces!");
const TargetMachine &TM = getTargetMachine();
if (TM.getPointerSize(SrcAS) != TM.getPointerSize(DestAS))
return false;
return SrcAS < 256 && DestAS < 256;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
bool X86TargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_X86);
}
const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
return ScratchRegs;
}
/// Lowers masks values (v*i1) to the local register values
/// \returns DAG node after lowering to register type
static SDValue lowerMasksToReg(const SDValue &ValArg, const EVT &ValLoc,
const SDLoc &Dl, SelectionDAG &DAG) {
EVT ValVT = ValArg.getValueType();
if (ValVT == MVT::v1i1)
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, Dl, ValLoc, ValArg,
DAG.getIntPtrConstant(0, Dl));
if ((ValVT == MVT::v8i1 && (ValLoc == MVT::i8 || ValLoc == MVT::i32)) ||
(ValVT == MVT::v16i1 && (ValLoc == MVT::i16 || ValLoc == MVT::i32))) {
// Two stage lowering might be required
// bitcast: v8i1 -> i8 / v16i1 -> i16
// anyextend: i8 -> i32 / i16 -> i32
EVT TempValLoc = ValVT == MVT::v8i1 ? MVT::i8 : MVT::i16;
SDValue ValToCopy = DAG.getBitcast(TempValLoc, ValArg);
if (ValLoc == MVT::i32)
ValToCopy = DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValToCopy);
return ValToCopy;
}
if ((ValVT == MVT::v32i1 && ValLoc == MVT::i32) ||
(ValVT == MVT::v64i1 && ValLoc == MVT::i64)) {
// One stage lowering is required
// bitcast: v32i1 -> i32 / v64i1 -> i64
return DAG.getBitcast(ValLoc, ValArg);
}
return DAG.getNode(ISD::ANY_EXTEND, Dl, ValLoc, ValArg);
}
/// Breaks v64i1 value into two registers and adds the new node to the DAG
static void Passv64i1ArgInRegs(
const SDLoc &Dl, SelectionDAG &DAG, SDValue &Arg,
SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass, CCValAssign &VA,
CCValAssign &NextVA, const X86Subtarget &Subtarget) {
assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
assert(Subtarget.is32Bit() && "Expecting 32 bit target");
assert(Arg.getValueType() == MVT::i64 && "Expecting 64 bit value");
assert(VA.isRegLoc() && NextVA.isRegLoc() &&
"The value should reside in two registers");
// Before splitting the value we cast it to i64
Arg = DAG.getBitcast(MVT::i64, Arg);
// Splitting the value into two i32 types
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
DAG.getConstant(0, Dl, MVT::i32));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, Arg,
DAG.getConstant(1, Dl, MVT::i32));
// Attach the two i32 types into corresponding registers
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Hi));
}
SDValue
X86TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
// In some cases we need to disable registers from the default CSR list.
// For example, when they are used for argument passing.
bool ShouldDisableCalleeSavedRegister =
CallConv == CallingConv::X86_RegCall ||
MF.getFunction().hasFnAttribute("no_caller_saved_registers");
if (CallConv == CallingConv::X86_INTR && !Outs.empty())
report_fatal_error("X86 interrupts may not return any value");
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
SDValue Flag;
SmallVector<SDValue, 6> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Operand #1 = Bytes To Pop
RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
MVT::i32));
// Copy the result values into the output registers.
for (unsigned I = 0, OutsIndex = 0, E = RVLocs.size(); I != E;
++I, ++OutsIndex) {
CCValAssign &VA = RVLocs[I];
assert(VA.isRegLoc() && "Can only return in registers!");
// Add the register to the CalleeSaveDisableRegs list.
if (ShouldDisableCalleeSavedRegister)
MF.getRegInfo().disableCalleeSavedRegister(VA.getLocReg());
SDValue ValToCopy = OutVals[OutsIndex];
EVT ValVT = ValToCopy.getValueType();
// Promote values to the appropriate types.
if (VA.getLocInfo() == CCValAssign::SExt)
ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
else if (VA.getLocInfo() == CCValAssign::ZExt)
ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
else if (VA.getLocInfo() == CCValAssign::AExt) {
if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
ValToCopy = lowerMasksToReg(ValToCopy, VA.getLocVT(), dl, DAG);
else
ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
}
else if (VA.getLocInfo() == CCValAssign::BCvt)
ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
assert(VA.getLocInfo() != CCValAssign::FPExt &&
"Unexpected FP-extend for return value.");
// Report an error if we have attempted to return a value via an XMM
// register and SSE was disabled.
if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(VA.getLocReg())) {
errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
} else if (!Subtarget.hasSSE2() &&
X86::FR64XRegClass.contains(VA.getLocReg()) &&
ValVT == MVT::f64) {
// When returning a double via an XMM register, report an error if SSE2 is
// not enabled.
errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
}
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
// the RET instruction and handled by the FP Stackifier.
if (VA.getLocReg() == X86::FP0 ||
VA.getLocReg() == X86::FP1) {
// If this is a copy from an xmm register to ST(0), use an FPExtend to
// change the value to the FP stack register class.
if (isScalarFPTypeInSSEReg(VA.getValVT()))
ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
RetOps.push_back(ValToCopy);
// Don't emit a copytoreg.
continue;
}
// 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
// which is returned in RAX / RDX.
if (Subtarget.is64Bit()) {
if (ValVT == MVT::x86mmx) {
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
ValToCopy);
// If we don't have SSE2 available, convert to v4f32 so the generated
// register is legal.
if (!Subtarget.hasSSE2())
ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
}
}
}
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::v64i1 &&
"Currently the only custom case is when we split v64i1 to 2 regs");
Passv64i1ArgInRegs(dl, DAG, ValToCopy, RegsToPass, VA, RVLocs[++I],
Subtarget);
assert(2 == RegsToPass.size() &&
"Expecting two registers after Pass64BitArgInRegs");
// Add the second register to the CalleeSaveDisableRegs list.
if (ShouldDisableCalleeSavedRegister)
MF.getRegInfo().disableCalleeSavedRegister(RVLocs[I].getLocReg());
} else {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ValToCopy));
}
// Add nodes to the DAG and add the values into the RetOps list
for (auto &Reg : RegsToPass) {
Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
}
}
// Swift calling convention does not require we copy the sret argument
// into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
// All x86 ABIs require that for returning structs by value we copy
// the sret argument into %rax/%eax (depending on ABI) for the return.
// We saved the argument into a virtual register in the entry block,
// so now we copy the value out and into %rax/%eax.
//
// Checking Function.hasStructRetAttr() here is insufficient because the IR
// may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
// false, then an sret argument may be implicitly inserted in the SelDAG. In
// either case FuncInfo->setSRetReturnReg() will have been called.
if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
// When we have both sret and another return value, we should use the
// original Chain stored in RetOps[0], instead of the current Chain updated
// in the above loop. If we only have sret, RetOps[0] equals to Chain.
// For the case of sret and another return value, we have
// Chain_0 at the function entry
// Chain_1 = getCopyToReg(Chain_0) in the above loop
// If we use Chain_1 in getCopyFromReg, we will have
// Val = getCopyFromReg(Chain_1)
// Chain_2 = getCopyToReg(Chain_1, Val) from below
// getCopyToReg(Chain_0) will be glued together with
// getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
// in Unit B, and we will have cyclic dependency between Unit A and Unit B:
// Data dependency from Unit B to Unit A due to usage of Val in
// getCopyToReg(Chain_1, Val)
// Chain dependency from Unit A to Unit B
// So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg,
getPointerTy(MF.getDataLayout()));
unsigned RetValReg
= (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ?
X86::RAX : X86::EAX;
Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
Flag = Chain.getValue(1);
// RAX/EAX now acts like a return value.
RetOps.push_back(
DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
// Add the returned register to the CalleeSaveDisableRegs list.
if (ShouldDisableCalleeSavedRegister)
MF.getRegInfo().disableCalleeSavedRegister(RetValReg);
}
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (X86::GR64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i64));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
X86ISD::NodeType opcode = X86ISD::RET_FLAG;
if (CallConv == CallingConv::X86_INTR)
opcode = X86ISD::IRET;
return DAG.getNode(opcode, dl, MVT::Other, RetOps);
}
bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
return false;
bool HasRet = false;
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() != X86ISD::RET_FLAG)
return false;
// If we are returning more than one value, we can definitely
// not make a tail call see PR19530
if (UI->getNumOperands() > 4)
return false;
if (UI->getNumOperands() == 4 &&
UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
ISD::NodeType ExtendKind) const {
MVT ReturnMVT = MVT::i32;
bool Darwin = Subtarget.getTargetTriple().isOSDarwin();
if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) {
// The ABI does not require i1, i8 or i16 to be extended.
//
// On Darwin, there is code in the wild relying on Clang's old behaviour of
// always extending i8/i16 return values, so keep doing that for now.
// (PR26665).
ReturnMVT = MVT::i8;
}
EVT MinVT = getRegisterType(Context, ReturnMVT);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
/// Reads two 32 bit registers and creates a 64 bit mask value.
/// \param VA The current 32 bit value that need to be assigned.
/// \param NextVA The next 32 bit value that need to be assigned.
/// \param Root The parent DAG node.
/// \param [in,out] InFlag Represents SDvalue in the parent DAG node for
/// glue purposes. In the case the DAG is already using
/// physical register instead of virtual, we should glue
/// our new SDValue to InFlag SDvalue.
/// \return a new SDvalue of size 64bit.
static SDValue getv64i1Argument(CCValAssign &VA, CCValAssign &NextVA,
SDValue &Root, SelectionDAG &DAG,
const SDLoc &Dl, const X86Subtarget &Subtarget,
SDValue *InFlag = nullptr) {
assert((Subtarget.hasBWI()) && "Expected AVX512BW target!");
assert(Subtarget.is32Bit() && "Expecting 32 bit target");
assert(VA.getValVT() == MVT::v64i1 &&
"Expecting first location of 64 bit width type");
assert(NextVA.getValVT() == VA.getValVT() &&
"The locations should have the same type");
assert(VA.isRegLoc() && NextVA.isRegLoc() &&
"The values should reside in two registers");
SDValue Lo, Hi;
SDValue ArgValueLo, ArgValueHi;
MachineFunction &MF = DAG.getMachineFunction();
const TargetRegisterClass *RC = &X86::GR32RegClass;
// Read a 32 bit value from the registers.
if (nullptr == InFlag) {
// When no physical register is present,
// create an intermediate virtual register.
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValueLo = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
ArgValueHi = DAG.getCopyFromReg(Root, Dl, Reg, MVT::i32);
} else {
// When a physical register is available read the value from it and glue
// the reads together.
ArgValueLo =
DAG.getCopyFromReg(Root, Dl, VA.getLocReg(), MVT::i32, *InFlag);
*InFlag = ArgValueLo.getValue(2);
ArgValueHi =
DAG.getCopyFromReg(Root, Dl, NextVA.getLocReg(), MVT::i32, *InFlag);
*InFlag = ArgValueHi.getValue(2);
}
// Convert the i32 type into v32i1 type.
Lo = DAG.getBitcast(MVT::v32i1, ArgValueLo);
// Convert the i32 type into v32i1 type.
Hi = DAG.getBitcast(MVT::v32i1, ArgValueHi);
// Concatenate the two values together.
return DAG.getNode(ISD::CONCAT_VECTORS, Dl, MVT::v64i1, Lo, Hi);
}
/// The function will lower a register of various sizes (8/16/32/64)
/// to a mask value of the expected size (v8i1/v16i1/v32i1/v64i1)
/// \returns a DAG node contains the operand after lowering to mask type.
static SDValue lowerRegToMasks(const SDValue &ValArg, const EVT &ValVT,
const EVT &ValLoc, const SDLoc &Dl,
SelectionDAG &DAG) {
SDValue ValReturned = ValArg;
if (ValVT == MVT::v1i1)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v1i1, ValReturned);
if (ValVT == MVT::v64i1) {
// In 32 bit machine, this case is handled by getv64i1Argument
assert(ValLoc == MVT::i64 && "Expecting only i64 locations");
// In 64 bit machine, There is no need to truncate the value only bitcast
} else {
MVT maskLen;
switch (ValVT.getSimpleVT().SimpleTy) {
case MVT::v8i1:
maskLen = MVT::i8;
break;
case MVT::v16i1:
maskLen = MVT::i16;
break;
case MVT::v32i1:
maskLen = MVT::i32;
break;
default:
llvm_unreachable("Expecting a vector of i1 types");
}
ValReturned = DAG.getNode(ISD::TRUNCATE, Dl, maskLen, ValReturned);
}
return DAG.getBitcast(ValVT, ValReturned);
}
/// Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue X86TargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
uint32_t *RegMask) const {
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
for (unsigned I = 0, InsIndex = 0, E = RVLocs.size(); I != E;
++I, ++InsIndex) {
CCValAssign &VA = RVLocs[I];
EVT CopyVT = VA.getLocVT();
// In some calling conventions we need to remove the used registers
// from the register mask.
if (RegMask) {
for (MCSubRegIterator SubRegs(VA.getLocReg(), TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32));
}
// Report an error if there was an attempt to return FP values via XMM
// registers.
if (!Subtarget.hasSSE1() && X86::FR32XRegClass.contains(VA.getLocReg())) {
errorUnsupported(DAG, dl, "SSE register return with SSE disabled");
if (VA.getLocReg() == X86::XMM1)
VA.convertToReg(X86::FP1); // Set reg to FP1, avoid hitting asserts.
else
VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
} else if (!Subtarget.hasSSE2() &&
X86::FR64XRegClass.contains(VA.getLocReg()) &&
CopyVT == MVT::f64) {
errorUnsupported(DAG, dl, "SSE2 register return with SSE2 disabled");
if (VA.getLocReg() == X86::XMM1)
VA.convertToReg(X86::FP1); // Set reg to FP1, avoid hitting asserts.
else
VA.convertToReg(X86::FP0); // Set reg to FP0, avoid hitting asserts.
}
// If we prefer to use the value in xmm registers, copy it out as f80 and
// use a truncate to move it from fp stack reg to xmm reg.
bool RoundAfterCopy = false;
if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
isScalarFPTypeInSSEReg(VA.getValVT())) {
if (!Subtarget.hasX87())
report_fatal_error("X87 register return with X87 disabled");
CopyVT = MVT::f80;
RoundAfterCopy = (CopyVT != VA.getLocVT());
}
SDValue Val;
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::v64i1 &&
"Currently the only custom case is when we split v64i1 to 2 regs");
Val =
getv64i1Argument(VA, RVLocs[++I], Chain, DAG, dl, Subtarget, &InFlag);
} else {
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), CopyVT, InFlag)
.getValue(1);
Val = Chain.getValue(0);
InFlag = Chain.getValue(2);
}
if (RoundAfterCopy)
Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
// This truncation won't change the value.
DAG.getIntPtrConstant(1, dl));
if (VA.isExtInLoc() && (VA.getValVT().getScalarType() == MVT::i1)) {
if (VA.getValVT().isVector() &&
((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
(VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
// promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
Val = lowerRegToMasks(Val, VA.getValVT(), VA.getLocVT(), dl, DAG);
} else
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
}
if (VA.getLocInfo() == CCValAssign::BCvt)
Val = DAG.getBitcast(VA.getValVT(), Val);
InVals.push_back(Val);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// C & StdCall & Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
// StdCall calling convention seems to be standard for many Windows' API
// routines and around. It differs from C calling convention just a little:
// callee should clean up the stack, not caller. Symbols should be also
// decorated in some fancy way :) It doesn't support any vector arguments.
// For info on fast calling convention see Fast Calling Convention (tail call)
// implementation LowerX86_32FastCCCallTo.
/// CallIsStructReturn - Determines whether a call uses struct return
/// semantics.
enum StructReturnType {
NotStructReturn,
RegStructReturn,
StackStructReturn
};
static StructReturnType
callIsStructReturn(ArrayRef<ISD::OutputArg> Outs, bool IsMCU) {
if (Outs.empty())
return NotStructReturn;
const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
if (!Flags.isSRet())
return NotStructReturn;
if (Flags.isInReg() || IsMCU)
return RegStructReturn;
return StackStructReturn;
}
/// Determines whether a function uses struct return semantics.
static StructReturnType
argsAreStructReturn(ArrayRef<ISD::InputArg> Ins, bool IsMCU) {
if (Ins.empty())
return NotStructReturn;
const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
if (!Flags.isSRet())
return NotStructReturn;
if (Flags.isInReg() || IsMCU)
return RegStructReturn;
return StackStructReturn;
}
/// Make a copy of an aggregate at address specified by "Src" to address
/// "Dst" with size and alignment information specified by the specific
/// parameter attribute. The copy will be passed as a byval function parameter.
static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
SDValue Chain, ISD::ArgFlagsTy Flags,
SelectionDAG &DAG, const SDLoc &dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
/*isVolatile*/false, /*AlwaysInline=*/true,
/*isTailCall*/false,
MachinePointerInfo(), MachinePointerInfo());
}
/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
CC == CallingConv::X86_RegCall || CC == CallingConv::HiPE ||
CC == CallingConv::HHVM || CC == CallingConv::Tail);
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
// C calling conventions:
case CallingConv::C:
case CallingConv::Win64:
case CallingConv::X86_64_SysV:
// Callee pop conventions:
case CallingConv::X86_ThisCall:
case CallingConv::X86_StdCall:
case CallingConv::X86_VectorCall:
case CallingConv::X86_FastCall:
// Swift:
case CallingConv::Swift:
return true;
default:
return canGuaranteeTCO(CC);
}
}
/// Return true if the function is being made into a tailcall target by
/// changing its ABI.
static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
return (GuaranteedTailCallOpt && canGuaranteeTCO(CC)) || CC == CallingConv::Tail;
}
bool X86TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
if (!CI->isTailCall())
return false;
ImmutableCallSite CS(CI);
CallingConv::ID CalleeCC = CS.getCallingConv();
if (!mayTailCallThisCC(CalleeCC))
return false;
return true;
}
SDValue
X86TargetLowering::LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &dl, SelectionDAG &DAG,
const CCValAssign &VA,
MachineFrameInfo &MFI, unsigned i) const {
// Create the nodes corresponding to a load from this parameter slot.
ISD::ArgFlagsTy Flags = Ins[i].Flags;
bool AlwaysUseMutable = shouldGuaranteeTCO(
CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
EVT ValVT;
MVT PtrVT = getPointerTy(DAG.getDataLayout());
// If value is passed by pointer we have address passed instead of the value
// itself. No need to extend if the mask value and location share the same
// absolute size.
bool ExtendedInMem =
VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1 &&
VA.getValVT().getSizeInBits() != VA.getLocVT().getSizeInBits();
if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
ValVT = VA.getLocVT();
else
ValVT = VA.getValVT();
// FIXME: For now, all byval parameter objects are marked mutable. This can be
// changed with more analysis.
// In case of tail call optimization mark all arguments mutable. Since they
// could be overwritten by lowering of arguments in case of a tail call.
if (Flags.isByVal()) {
unsigned Bytes = Flags.getByValSize();
if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
// FIXME: For now, all byval parameter objects are marked as aliasing. This
// can be improved with deeper analysis.
int FI = MFI.CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable,
/*isAliased=*/true);
return DAG.getFrameIndex(FI, PtrVT);
}
// This is an argument in memory. We might be able to perform copy elision.
// If the argument is passed directly in memory without any extension, then we
// can perform copy elision. Large vector types, for example, may be passed
// indirectly by pointer.
if (Flags.isCopyElisionCandidate() &&
VA.getLocInfo() != CCValAssign::Indirect && !ExtendedInMem) {
EVT ArgVT = Ins[i].ArgVT;
SDValue PartAddr;
if (Ins[i].PartOffset == 0) {
// If this is a one-part value or the first part of a multi-part value,
// create a stack object for the entire argument value type and return a
// load from our portion of it. This assumes that if the first part of an
// argument is in memory, the rest will also be in memory.
int FI = MFI.CreateFixedObject(ArgVT.getStoreSize(), VA.getLocMemOffset(),
/*IsImmutable=*/false);
PartAddr = DAG.getFrameIndex(FI, PtrVT);
return DAG.getLoad(
ValVT, dl, Chain, PartAddr,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
} else {
// This is not the first piece of an argument in memory. See if there is
// already a fixed stack object including this offset. If so, assume it
// was created by the PartOffset == 0 branch above and create a load from
// the appropriate offset into it.
int64_t PartBegin = VA.getLocMemOffset();
int64_t PartEnd = PartBegin + ValVT.getSizeInBits() / 8;
int FI = MFI.getObjectIndexBegin();
for (; MFI.isFixedObjectIndex(FI); ++FI) {
int64_t ObjBegin = MFI.getObjectOffset(FI);
int64_t ObjEnd = ObjBegin + MFI.getObjectSize(FI);
if (ObjBegin <= PartBegin && PartEnd <= ObjEnd)
break;
}
if (MFI.isFixedObjectIndex(FI)) {
SDValue Addr =
DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getFrameIndex(FI, PtrVT),
DAG.getIntPtrConstant(Ins[i].PartOffset, dl));
return DAG.getLoad(
ValVT, dl, Chain, Addr,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI,
Ins[i].PartOffset));
}
}
}
int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
VA.getLocMemOffset(), isImmutable);
// Set SExt or ZExt flag.
if (VA.getLocInfo() == CCValAssign::ZExt) {
MFI.setObjectZExt(FI, true);
} else if (VA.getLocInfo() == CCValAssign::SExt) {
MFI.setObjectSExt(FI, true);
}
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
SDValue Val = DAG.getLoad(
ValVT, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
return ExtendedInMem
? (VA.getValVT().isVector()
? DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VA.getValVT(), Val)
: DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val))
: Val;
}
// FIXME: Get this from tablegen.
static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
const X86Subtarget &Subtarget) {
assert(Subtarget.is64Bit());
if (Subtarget.isCallingConvWin64(CallConv)) {
static const MCPhysReg GPR64ArgRegsWin64[] = {
X86::RCX, X86::RDX, X86::R8, X86::R9
};
return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
}
static const MCPhysReg GPR64ArgRegs64Bit[] = {
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
};
return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
}
// FIXME: Get this from tablegen.
static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
CallingConv::ID CallConv,
const X86Subtarget &Subtarget) {
assert(Subtarget.is64Bit());
if (Subtarget.isCallingConvWin64(CallConv)) {
// The XMM registers which might contain var arg parameters are shadowed
// in their paired GPR. So we only need to save the GPR to their home
// slots.
// TODO: __vectorcall will change this.
return None;
}
const Function &F = MF.getFunction();
bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat);
bool isSoftFloat = Subtarget.useSoftFloat();
assert(!(isSoftFloat && NoImplicitFloatOps) &&
"SSE register cannot be used when SSE is disabled!");
if (isSoftFloat || NoImplicitFloatOps || !Subtarget.hasSSE1())
// Kernel mode asks for SSE to be disabled, so there are no XMM argument
// registers.
return None;
static const MCPhysReg XMMArgRegs64Bit[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
}
#ifndef NDEBUG
static bool isSortedByValueNo(ArrayRef<CCValAssign> ArgLocs) {
return std::is_sorted(ArgLocs.begin(), ArgLocs.end(),
[](const CCValAssign &A, const CCValAssign &B) -> bool {
return A.getValNo() < B.getValNo();
});
}
#endif
SDValue X86TargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
const Function &F = MF.getFunction();
if (F.hasExternalLinkage() && Subtarget.isTargetCygMing() &&
F.getName() == "main")
FuncInfo->setForceFramePointer(true);
MachineFrameInfo &MFI = MF.getFrameInfo();
bool Is64Bit = Subtarget.is64Bit();
bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
assert(
!(isVarArg && canGuaranteeTCO(CallConv)) &&
"Var args not supported with calling conv' regcall, fastcc, ghc or hipe");
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64.
if (IsWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeArguments(Ins, CC_X86);
// In vectorcall calling convention a second pass is required for the HVA
// types.
if (CallingConv::X86_VectorCall == CallConv) {
CCInfo.AnalyzeArgumentsSecondPass(Ins, CC_X86);
}
// The next loop assumes that the locations are in the same order of the
// input arguments.
assert(isSortedByValueNo(ArgLocs) &&
"Argument Location list must be sorted before lowering");
SDValue ArgValue;
for (unsigned I = 0, InsIndex = 0, E = ArgLocs.size(); I != E;
++I, ++InsIndex) {
assert(InsIndex < Ins.size() && "Invalid Ins index");
CCValAssign &VA = ArgLocs[I];
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
if (VA.needsCustom()) {
assert(
VA.getValVT() == MVT::v64i1 &&
"Currently the only custom case is when we split v64i1 to 2 regs");
// v64i1 values, in regcall calling convention, that are
// compiled to 32 bit arch, are split up into two registers.
ArgValue =
getv64i1Argument(VA, ArgLocs[++I], Chain, DAG, dl, Subtarget);
} else {
const TargetRegisterClass *RC;
if (RegVT == MVT::i8)
RC = &X86::GR8RegClass;
else if (RegVT == MVT::i16)
RC = &X86::GR16RegClass;
else if (RegVT == MVT::i32)
RC = &X86::GR32RegClass;
else if (Is64Bit && RegVT == MVT::i64)
RC = &X86::GR64RegClass;
else if (RegVT == MVT::f32)
RC = Subtarget.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
else if (RegVT == MVT::f64)
RC = Subtarget.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
else if (RegVT == MVT::f80)
RC = &X86::RFP80RegClass;
else if (RegVT == MVT::f128)
RC = &X86::VR128RegClass;
else if (RegVT.is512BitVector())
RC = &X86::VR512RegClass;
else if (RegVT.is256BitVector())
RC = Subtarget.hasVLX() ? &X86::VR256XRegClass : &X86::VR256RegClass;
else if (RegVT.is128BitVector())
RC = Subtarget.hasVLX() ? &X86::VR128XRegClass : &X86::VR128RegClass;
else if (RegVT == MVT::x86mmx)
RC = &X86::VR64RegClass;
else if (RegVT == MVT::v1i1)
RC = &X86::VK1RegClass;
else if (RegVT == MVT::v8i1)
RC = &X86::VK8RegClass;
else if (RegVT == MVT::v16i1)
RC = &X86::VK16RegClass;
else if (RegVT == MVT::v32i1)
RC = &X86::VK32RegClass;
else if (RegVT == MVT::v64i1)
RC = &X86::VK64RegClass;
else
llvm_unreachable("Unknown argument type!");
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
}
// If this is an 8 or 16-bit value, it is really passed promoted to 32
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::BCvt)
ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
if (VA.isExtInLoc()) {
// Handle MMX values passed in XMM regs.
if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
else if (VA.getValVT().isVector() &&
VA.getValVT().getScalarType() == MVT::i1 &&
((VA.getLocVT() == MVT::i64) || (VA.getLocVT() == MVT::i32) ||
(VA.getLocVT() == MVT::i16) || (VA.getLocVT() == MVT::i8))) {
// Promoting a mask type (v*i1) into a register of type i64/i32/i16/i8
ArgValue = lowerRegToMasks(ArgValue, VA.getValVT(), RegVT, dl, DAG);
} else
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
}
} else {
assert(VA.isMemLoc());
ArgValue =
LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, InsIndex);
}
// If value is passed via pointer - do a load.
if (VA.getLocInfo() == CCValAssign::Indirect && !Ins[I].Flags.isByVal())
ArgValue =
DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, MachinePointerInfo());
InVals.push_back(ArgValue);
}
for (unsigned I = 0, E = Ins.size(); I != E; ++I) {
// Swift calling convention does not require we copy the sret argument
// into %rax/%eax for the return. We don't set SRetReturnReg for Swift.
if (CallConv == CallingConv::Swift)
continue;
// All x86 ABIs require that for returning structs by value we copy the
// sret argument into %rax/%eax (depending on ABI) for the return. Save
// the argument into a virtual register so that we can access it from the
// return points.
if (Ins[I].Flags.isSRet()) {
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
MVT PtrTy = getPointerTy(DAG.getDataLayout());
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
FuncInfo->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[I]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
break;
}
}
unsigned StackSize = CCInfo.getNextStackOffset();
// Align stack specially for tail calls.
if (shouldGuaranteeTCO(CallConv,
MF.getTarget().Options.GuaranteedTailCallOpt))
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start. We
// can skip this if there are no va_start calls.
if (MFI.hasVAStart() &&
(Is64Bit || (CallConv != CallingConv::X86_FastCall &&
CallConv != CallingConv::X86_ThisCall))) {
FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
}
// Figure out if XMM registers are in use.
assert(!(Subtarget.useSoftFloat() &&
F.hasFnAttribute(Attribute::NoImplicitFloat)) &&
"SSE register cannot be used when SSE is disabled!");
// 64-bit calling conventions support varargs and register parameters, so we
// have to do extra work to spill them in the prologue.
if (Is64Bit && isVarArg && MFI.hasVAStart()) {
// Find the first unallocated argument registers.
ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
assert(!(NumXMMRegs && !Subtarget.hasSSE1()) &&
"SSE register cannot be used when SSE is disabled!");
// Gather all the live in physical registers.
SmallVector<SDValue, 6> LiveGPRs;
SmallVector<SDValue, 8> LiveXMMRegs;
SDValue ALVal;
for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
LiveGPRs.push_back(
DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
}
if (!ArgXMMs.empty()) {
unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
LiveXMMRegs.push_back(
DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
}
}
if (IsWin64) {
// Get to the caller-allocated home save location. Add 8 to account
// for the return address.
int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
FuncInfo->setRegSaveFrameIndex(
MFI.CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
// Fixup to set vararg frame on shadow area (4 x i64).
if (NumIntRegs < 4)
FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
} else {
// For X86-64, if there are vararg parameters that are passed via
// registers, then we must store them to their spots on the stack so
// they may be loaded by dereferencing the result of va_next.
FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
FuncInfo->setRegSaveFrameIndex(MFI.CreateStackObject(
ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
}
// Store the integer parameter registers.
SmallVector<SDValue, 8> MemOps;
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
getPointerTy(DAG.getDataLayout()));
unsigned Offset = FuncInfo->getVarArgsGPOffset();
for (SDValue Val : LiveGPRs) {
SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
RSFIN, DAG.getIntPtrConstant(Offset, dl));
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(),
FuncInfo->getRegSaveFrameIndex(), Offset));
MemOps.push_back(Store);
Offset += 8;
}
if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
// Now store the XMM (fp + vector) parameter registers.
SmallVector<SDValue, 12> SaveXMMOps;
SaveXMMOps.push_back(Chain);
SaveXMMOps.push_back(ALVal);
SaveXMMOps.push_back(DAG.getIntPtrConstant(
FuncInfo->getRegSaveFrameIndex(), dl));
SaveXMMOps.push_back(DAG.getIntPtrConstant(
FuncInfo->getVarArgsFPOffset(), dl));
SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
LiveXMMRegs.end());
MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
MVT::Other, SaveXMMOps));
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
}
if (isVarArg && MFI.hasMustTailInVarArgFunc()) {
// Find the largest legal vector type.
MVT VecVT = MVT::Other;
// FIXME: Only some x86_32 calling conventions support AVX512.
if (Subtarget.useAVX512Regs() &&
(Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
CallConv == CallingConv::Intel_OCL_BI)))
VecVT = MVT::v16f32;
else if (Subtarget.hasAVX())
VecVT = MVT::v8f32;
else if (Subtarget.hasSSE2())
VecVT = MVT::v4f32;
// We forward some GPRs and some vector types.
SmallVector<MVT, 2> RegParmTypes;
MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
RegParmTypes.push_back(IntVT);
if (VecVT != MVT::Other)
RegParmTypes.push_back(VecVT);
// Compute the set of forwarded registers. The rest are scratch.
SmallVectorImpl<ForwardedRegister> &Forwards =
FuncInfo->getForwardedMustTailRegParms();
CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
// Forward AL for SysV x86_64 targets, since it is used for varargs.
if (Is64Bit && !IsWin64 && !CCInfo.isAllocated(X86::AL)) {
unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
}
// Copy all forwards from physical to virtual registers.
for (ForwardedRegister &FR : Forwards) {
// FIXME: Can we use a less constrained schedule?
SDValue RegVal = DAG.getCopyFromReg(Chain, dl, FR.VReg, FR.VT);
FR.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(FR.VT));
Chain = DAG.getCopyToReg(Chain, dl, FR.VReg, RegVal);
}
}
// Some CCs need callee pop.
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
MF.getTarget().Options.GuaranteedTailCallOpt)) {
FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
} else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
// X86 interrupts must pop the error code (and the alignment padding) if
// present.
FuncInfo->setBytesToPopOnReturn(Is64Bit ? 16 : 4);
} else {
FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
// If this is an sret function, the return should pop the hidden pointer.
if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
!Subtarget.getTargetTriple().isOSMSVCRT() &&
argsAreStructReturn(Ins, Subtarget.isTargetMCU()) == StackStructReturn)
FuncInfo->setBytesToPopOnReturn(4);
}
if (!Is64Bit) {
// RegSaveFrameIndex is X86-64 only.
FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
if (CallConv == CallingConv::X86_FastCall ||
CallConv == CallingConv::X86_ThisCall)
// fastcc functions can't have varargs.
FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
}
FuncInfo->setArgumentStackSize(StackSize);
if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn());
if (Personality == EHPersonality::CoreCLR) {
assert(Is64Bit);
// TODO: Add a mechanism to frame lowering that will allow us to indicate
// that we'd prefer this slot be allocated towards the bottom of the frame
// (i.e. near the stack pointer after allocating the frame). Every
// funclet needs a copy of this slot in its (mostly empty) frame, and the
// offset from the bottom of this and each funclet's frame must be the
// same, so the size of funclets' (mostly empty) frames is dictated by
// how far this slot is from the bottom (since they allocate just enough
// space to accommodate holding this slot at the correct offset).
int PSPSymFI = MFI.CreateStackObject(8, 8, /*isSS=*/false);
EHInfo->PSPSymFrameIdx = PSPSymFI;
}
}
if (CallConv == CallingConv::X86_RegCall ||
F.hasFnAttribute("no_caller_saved_registers")) {
MachineRegisterInfo &MRI = MF.getRegInfo();
for (std::pair<unsigned, unsigned> Pair : MRI.liveins())
MRI.disableCalleeSavedRegister(Pair.first);
}
return Chain;
}
SDValue X86TargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
SDValue Arg, const SDLoc &dl,
SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, PtrOff);
if (Flags.isByVal())
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
return DAG.getStore(
Chain, dl, Arg, PtrOff,
MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
}
/// Emit a load of return address if tail call
/// optimization is performed and it is required.
SDValue X86TargetLowering::EmitTailCallLoadRetAddr(
SelectionDAG &DAG, SDValue &OutRetAddr, SDValue Chain, bool IsTailCall,
bool Is64Bit, int FPDiff, const SDLoc &dl) const {
// Adjust the Return address stack slot.
EVT VT = getPointerTy(DAG.getDataLayout());
OutRetAddr = getReturnAddressFrameIndex(DAG);
// Load the "old" Return address.
OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo());
return SDValue(OutRetAddr.getNode(), 1);
}
/// Emit a store of the return address if tail call
/// optimization is performed and it is required (FPDiff!=0).
static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
SDValue Chain, SDValue RetAddrFrIdx,
EVT PtrVT, unsigned SlotSize,
int FPDiff, const SDLoc &dl) {
// Store the return address to the appropriate stack slot.
if (!FPDiff) return Chain;
// Calculate the new stack slot for the return address.
int NewReturnAddrFI =
MF.getFrameInfo().CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
false);
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), NewReturnAddrFI));
return Chain;
}
/// Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
static SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
Mask.push_back(NumElems);
for (unsigned i = 1; i != NumElems; ++i)
Mask.push_back(i);
return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
SDValue
X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
CallingConv::ID CallConv = CLI.CallConv;
bool &isTailCall = CLI.IsTailCall;
bool isVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
bool Is64Bit = Subtarget.is64Bit();
bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
StructReturnType SR = callIsStructReturn(Outs, Subtarget.isTargetMCU());
bool IsSibcall = false;
bool IsGuaranteeTCO = MF.getTarget().Options.GuaranteedTailCallOpt ||
CallConv == CallingConv::Tail;
X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
const auto *CI = dyn_cast_or_null<CallInst>(CLI.CS.getInstruction());
const Function *Fn = CI ? CI->getCalledFunction() : nullptr;
bool HasNCSR = (CI && CI->hasFnAttr("no_caller_saved_registers")) ||
(Fn && Fn->hasFnAttribute("no_caller_saved_registers"));
const auto *II = dyn_cast_or_null<InvokeInst>(CLI.CS.getInstruction());
bool HasNoCfCheck =
(CI && CI->doesNoCfCheck()) || (II && II->doesNoCfCheck());
const Module *M = MF.getMMI().getModule();
Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch");
MachineFunction::CallSiteInfo CSInfo;
if (CallConv == CallingConv::X86_INTR)
report_fatal_error("X86 interrupts may not be called directly");
if (Subtarget.isPICStyleGOT() && !IsGuaranteeTCO) {
// If we are using a GOT, disable tail calls to external symbols with
// default visibility. Tail calling such a symbol requires using a GOT
// relocation, which forces early binding of the symbol. This breaks code
// that require lazy function symbol resolution. Using musttail or
// GuaranteedTailCallOpt will override this.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (!G || (!G->getGlobal()->hasLocalLinkage() &&
G->getGlobal()->hasDefaultVisibility()))
isTailCall = false;
}
bool IsMustTail = CLI.CS && CLI.CS.isMustTailCall();
if (IsMustTail) {
// Force this to be a tail call. The verifier rules are enough to ensure
// that we can lower this successfully without moving the return address
// around.
isTailCall = true;
} else if (isTailCall) {
// Check if it's really possible to do a tail call.
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
isVarArg, SR != NotStructReturn,
MF.getFunction().hasStructRetAttr(), CLI.RetTy,
Outs, OutVals, Ins, DAG);
// Sibcalls are automatically detected tailcalls which do not require
// ABI changes.
if (!IsGuaranteeTCO && isTailCall)
IsSibcall = true;
if (isTailCall)
++NumTailCalls;
}
assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
"Var args not supported with calling convention fastcc, ghc or hipe");
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64.
if (IsWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeArguments(Outs, CC_X86);
// In vectorcall calling convention a second pass is required for the HVA
// types.
if (CallingConv::X86_VectorCall == CallConv) {
CCInfo.AnalyzeArgumentsSecondPass(Outs, CC_X86);
}
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
if (IsSibcall)
// This is a sibcall. The memory operands are available in caller's
// own caller's stack.
NumBytes = 0;
else if (IsGuaranteeTCO && canGuaranteeTCO(CallConv))
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
int FPDiff = 0;
if (isTailCall && !IsSibcall && !IsMustTail) {
// Lower arguments at fp - stackoffset + fpdiff.
unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
FPDiff = NumBytesCallerPushed - NumBytes;
// Set the delta of movement of the returnaddr stackslot.
// But only set if delta is greater than previous delta.
if (FPDiff < X86Info->getTCReturnAddrDelta())
X86Info->setTCReturnAddrDelta(FPDiff);
}
unsigned NumBytesToPush = NumBytes;
unsigned NumBytesToPop = NumBytes;
// If we have an inalloca argument, all stack space has already been allocated
// for us and be right at the top of the stack. We don't support multiple
// arguments passed in memory when using inalloca.
if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
NumBytesToPush = 0;
if (!ArgLocs.back().isMemLoc())
report_fatal_error("cannot use inalloca attribute on a register "
"parameter");
if (ArgLocs.back().getLocMemOffset() != 0)
report_fatal_error("any parameter with the inalloca attribute must be "
"the only memory argument");
}
if (!IsSibcall && !IsMustTail)
Chain = DAG.getCALLSEQ_START(Chain, NumBytesToPush,
NumBytes - NumBytesToPush, dl);
SDValue RetAddrFrIdx;
// Load return address for tail calls.
if (isTailCall && FPDiff)
Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
Is64Bit, FPDiff, dl);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
// The next loop assumes that the locations are in the same order of the
// input arguments.
assert(isSortedByValueNo(ArgLocs) &&
"Argument Location list must be sorted before lowering");
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization arguments are handle later.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
for (unsigned I = 0, OutIndex = 0, E = ArgLocs.size(); I != E;
++I, ++OutIndex) {
assert(OutIndex < Outs.size() && "Invalid Out index");
// Skip inalloca arguments, they have already been written.
ISD::ArgFlagsTy Flags = Outs[OutIndex].Flags;
if (Flags.isInAlloca())
continue;
CCValAssign &VA = ArgLocs[I];
EVT RegVT = VA.getLocVT();
SDValue Arg = OutVals[OutIndex];
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::AExt:
if (Arg.getValueType().isVector() &&
Arg.getValueType().getVectorElementType() == MVT::i1)
Arg = lowerMasksToReg(Arg, RegVT, dl, DAG);
else if (RegVT.is128BitVector()) {
// Special case: passing MMX values in XMM registers.
Arg = DAG.getBitcast(MVT::i64, Arg);
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
} else
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getBitcast(RegVT, Arg);
break;
case CCValAssign::Indirect: {
if (isByVal) {
// Memcpy the argument to a temporary stack slot to prevent
// the caller from seeing any modifications the callee may make
// as guaranteed by the `byval` attribute.
int FrameIdx = MF.getFrameInfo().CreateStackObject(
Flags.getByValSize(), std::max(16, (int)Flags.getByValAlign()),
false);
SDValue StackSlot =
DAG.getFrameIndex(FrameIdx, getPointerTy(DAG.getDataLayout()));
Chain =
CreateCopyOfByValArgument(Arg, StackSlot, Chain, Flags, DAG, dl);
// From now on treat this as a regular pointer
Arg = StackSlot;
isByVal = false;
} else {
// Store the argument.
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
Chain = DAG.getStore(
Chain, dl, Arg, SpillSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
Arg = SpillSlot;
}
break;
}
}
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::v64i1 &&
"Currently the only custom case is when we split v64i1 to 2 regs");
// Split v64i1 value into two registers
Passv64i1ArgInRegs(dl, DAG, Arg, RegsToPass, VA, ArgLocs[++I], Subtarget);
} else if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
const TargetOptions &Options = DAG.getTarget().Options;
if (Options.EnableDebugEntryValues)
CSInfo.emplace_back(VA.getLocReg(), I);
if (isVarArg && IsWin64) {
// Win64 ABI requires argument XMM reg to be copied to the corresponding
// shadow reg if callee is a varargs function.
unsigned ShadowReg = 0;
switch (VA.getLocReg()) {
case X86::XMM0: ShadowReg = X86::RCX; break;
case X86::XMM1: ShadowReg = X86::RDX; break;
case X86::XMM2: ShadowReg = X86::R8; break;
case X86::XMM3: ShadowReg = X86::R9; break;
}
if (ShadowReg)
RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
}
} else if (!IsSibcall && (!isTailCall || isByVal)) {
assert(VA.isMemLoc());
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
getPointerTy(DAG.getDataLayout()));
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
dl, DAG, VA, Flags));
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
if (Subtarget.isPICStyleGOT()) {
// ELF / PIC requires GOT in the EBX register before function calls via PLT
// GOT pointer.
if (!isTailCall) {
RegsToPass.push_back(std::make_pair(
unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
getPointerTy(DAG.getDataLayout()))));
} else {
// If we are tail calling and generating PIC/GOT style code load the
// address of the callee into ECX. The value in ecx is used as target of
// the tail jump. This is done to circumvent the ebx/callee-saved problem
// for tail calls on PIC/GOT architectures. Normally we would just put the
// address of GOT into ebx and then call target@PLT. But for tail calls
// ebx would be restored (since ebx is callee saved) before jumping to the
// target@PLT.
// Note: The actual moving to ECX is done further down.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (G && !G->getGlobal()->hasLocalLinkage() &&
G->getGlobal()->hasDefaultVisibility())
Callee = LowerGlobalAddress(Callee, DAG);
else if (isa<ExternalSymbolSDNode>(Callee))
Callee = LowerExternalSymbol(Callee, DAG);
}
}
if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
// From AMD64 ABI document:
// For calls that may call functions that use varargs or stdargs
// (prototype-less calls or calls to functions containing ellipsis (...) in
// the declaration) %al is used as hidden argument to specify the number
// of SSE registers used. The contents of %al do not need to match exactly
// the number of registers, but must be an ubound on the number of SSE
// registers used and is in the range 0 - 8 inclusive.
// Count the number of XMM registers allocated.
static const MCPhysReg XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
assert((Subtarget.hasSSE1() || !NumXMMRegs)
&& "SSE registers cannot be used when SSE is disabled");
RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
DAG.getConstant(NumXMMRegs, dl,
MVT::i8)));
}
if (isVarArg && IsMustTail) {
const auto &Forwards = X86Info->getForwardedMustTailRegParms();
for (const auto &F : Forwards) {
SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
}
}
// For tail calls lower the arguments to the 'real' stack slots. Sibcalls
// don't need this because the eligibility check rejects calls that require
// shuffling arguments passed in memory.
if (!IsSibcall && isTailCall) {
// Force all the incoming stack arguments to be loaded from the stack
// before any new outgoing arguments are stored to the stack, because the
// outgoing stack slots may alias the incoming argument stack slots, and
// the alias isn't otherwise explicit. This is slightly more conservative
// than necessary, because it means that each store effectively depends
// on every argument instead of just those arguments it would clobber.
SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
SmallVector<SDValue, 8> MemOpChains2;
SDValue FIN;
int FI = 0;
for (unsigned I = 0, OutsIndex = 0, E = ArgLocs.size(); I != E;
++I, ++OutsIndex) {
CCValAssign &VA = ArgLocs[I];
if (VA.isRegLoc()) {
if (VA.needsCustom()) {
assert((CallConv == CallingConv::X86_RegCall) &&
"Expecting custom case only in regcall calling convention");
// This means that we are in special case where one argument was
// passed through two register locations - Skip the next location
++I;
}
continue;
}
assert(VA.isMemLoc());
SDValue Arg = OutVals[OutsIndex];
ISD::ArgFlagsTy Flags = Outs[OutsIndex].Flags;
// Skip inalloca arguments. They don't require any work.
if (Flags.isInAlloca())
continue;
// Create frame index.
int32_t Offset = VA.getLocMemOffset()+FPDiff;
uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
if (Flags.isByVal()) {
// Copy relative to framepointer.
SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
getPointerTy(DAG.getDataLayout()));
Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, Source);
MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
ArgChain,
Flags, DAG, dl));
} else {
// Store relative to framepointer.
MemOpChains2.push_back(DAG.getStore(
ArgChain, dl, Arg, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
}
}
if (!MemOpChains2.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
// Store the return address to the appropriate stack slot.
Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
getPointerTy(DAG.getDataLayout()),
RegInfo->getSlotSize(), FPDiff, dl);
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
// In the 64-bit large code model, we have to make all calls
// through a register, since the call instruction's 32-bit
// pc-relative offset may not be large enough to hold the whole
// address.
} else if (Callee->getOpcode() == ISD::GlobalAddress ||
Callee->getOpcode() == ISD::ExternalSymbol) {
// Lower direct calls to global addresses and external symbols. Setting
// ForCall to true here has the effect of removing WrapperRIP when possible
// to allow direct calls to be selected without first materializing the
// address into a register.
Callee = LowerGlobalOrExternal(Callee, DAG, /*ForCall=*/true);
} else if (Subtarget.isTarget64BitILP32() &&
Callee->getValueType(0) == MVT::i32) {
// Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
}
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
if (!IsSibcall && isTailCall && !IsMustTail) {
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytesToPop, dl, true),
DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
Ops.push_back(Chain);
Ops.push_back(Callee);
if (isTailCall)
Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
// If HasNCSR is asserted (attribute NoCallerSavedRegisters exists) then we
// set X86_INTR calling convention because it has the same CSR mask
// (same preserved registers).
const uint32_t *Mask = RegInfo->getCallPreservedMask(
MF, HasNCSR ? (CallingConv::ID)CallingConv::X86_INTR : CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
// If this is an invoke in a 32-bit function using a funclet-based
// personality, assume the function clobbers all registers. If an exception
// is thrown, the runtime will not restore CSRs.
// FIXME: Model this more precisely so that we can register allocate across
// the normal edge and spill and fill across the exceptional edge.
if (!Is64Bit && CLI.CS && CLI.CS.isInvoke()) {
const Function &CallerFn = MF.getFunction();
EHPersonality Pers =
CallerFn.hasPersonalityFn()
? classifyEHPersonality(CallerFn.getPersonalityFn())
: EHPersonality::Unknown;
if (isFuncletEHPersonality(Pers))
Mask = RegInfo->getNoPreservedMask();
}
// Define a new register mask from the existing mask.
uint32_t *RegMask = nullptr;
// In some calling conventions we need to remove the used physical registers
// from the reg mask.
if (CallConv == CallingConv::X86_RegCall || HasNCSR) {
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
// Allocate a new Reg Mask and copy Mask.
RegMask = MF.allocateRegMask();
unsigned RegMaskSize = MachineOperand::getRegMaskSize(TRI->getNumRegs());
memcpy(RegMask, Mask, sizeof(RegMask[0]) * RegMaskSize);
// Make sure all sub registers of the argument registers are reset
// in the RegMask.
for (auto const &RegPair : RegsToPass)
for (MCSubRegIterator SubRegs(RegPair.first, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
RegMask[*SubRegs / 32] &= ~(1u << (*SubRegs % 32));
// Create the RegMask Operand according to our updated mask.
Ops.push_back(DAG.getRegisterMask(RegMask));
} else {
// Create the RegMask Operand according to the static mask.
Ops.push_back(DAG.getRegisterMask(Mask));
}
if (InFlag.getNode())
Ops.push_back(InFlag);
if (isTailCall) {
// We used to do:
//// If this is the first return lowered for this function, add the regs
//// to the liveout set for the function.
// This isn't right, although it's probably harmless on x86; liveouts
// should be computed from returns not tail calls. Consider a void
// function making a tail call to a function returning int.
MF.getFrameInfo().setHasTailCall();
SDValue Ret = DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
return Ret;
}
if (HasNoCfCheck && IsCFProtectionSupported) {
Chain = DAG.getNode(X86ISD::NT_CALL, dl, NodeTys, Ops);
} else {
Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
}
InFlag = Chain.getValue(1);
DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
// Save heapallocsite metadata.
if (CLI.CS)
if (MDNode *HeapAlloc = CLI.CS->getMetadata("heapallocsite"))
DAG.addHeapAllocSite(Chain.getNode(), HeapAlloc);
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPop;
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
DAG.getTarget().Options.GuaranteedTailCallOpt))
NumBytesForCalleeToPop = NumBytes; // Callee pops everything
else if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
!Subtarget.getTargetTriple().isOSMSVCRT() &&
SR == StackStructReturn)
// If this is a call to a struct-return function, the callee
// pops the hidden struct pointer, so we have to push it back.
// This is common for Darwin/X86, Linux & Mingw32 targets.
// For MSVC Win32 targets, the caller pops the hidden struct pointer.
NumBytesForCalleeToPop = 4;
else
NumBytesForCalleeToPop = 0; // Callee pops nothing.
if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
// No need to reset the stack after the call if the call doesn't return. To
// make the MI verify, we'll pretend the callee does it for us.
NumBytesForCalleeToPop = NumBytes;
}
// Returns a flag for retval copy to use.
if (!IsSibcall) {
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytesToPop, dl, true),
DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
true),
InFlag, dl);
InFlag = Chain.getValue(1);
}
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
InVals, RegMask);
}
//===----------------------------------------------------------------------===//
// Fast Calling Convention (tail call) implementation
//===----------------------------------------------------------------------===//
// Like std call, callee cleans arguments, convention except that ECX is
// reserved for storing the tail called function address. Only 2 registers are
// free for argument passing (inreg). Tail call optimization is performed
// provided:
// * tailcallopt is enabled
// * caller/callee are fastcc
// On X86_64 architecture with GOT-style position independent code only local
// (within module) calls are supported at the moment.
// To keep the stack aligned according to platform abi the function
// GetAlignedArgumentStackSize ensures that argument delta is always multiples
// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
// If a tail called function callee has more arguments than the caller the
// caller needs to make sure that there is room to move the RETADDR to. This is
// achieved by reserving an area the size of the argument delta right after the
// original RETADDR, but before the saved framepointer or the spilled registers
// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
// stack layout:
// arg1
// arg2
// RETADDR
// [ new RETADDR
// move area ]
// (possible EBP)
// ESI
// EDI
// local1 ..
/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
/// requirement.
unsigned
X86TargetLowering::GetAlignedArgumentStackSize(const unsigned StackSize,
SelectionDAG &DAG) const {
const Align StackAlignment(Subtarget.getFrameLowering()->getStackAlignment());
const uint64_t SlotSize = Subtarget.getRegisterInfo()->getSlotSize();
assert(StackSize % SlotSize == 0 &&
"StackSize must be a multiple of SlotSize");
return alignTo(StackSize + SlotSize, StackAlignment) - SlotSize;
}
/// Return true if the given stack call argument is already available in the
/// same position (relatively) of the caller's incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
const X86InstrInfo *TII, const CCValAssign &VA) {
unsigned Bytes = Arg.getValueSizeInBits() / 8;
for (;;) {
// Look through nodes that don't alter the bits of the incoming value.
unsigned Op = Arg.getOpcode();
if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) {
Arg = Arg.getOperand(0);
continue;
}
if (Op == ISD::TRUNCATE) {
const SDValue &TruncInput = Arg.getOperand(0);
if (TruncInput.getOpcode() == ISD::AssertZext &&
cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
Arg.getValueType()) {
Arg = TruncInput.getOperand(0);
continue;
}
}
break;
}
int FI = INT_MAX;
if (Arg.getOpcode() == ISD::CopyFromReg) {
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
if (!Register::isVirtualRegister(VR))
return false;
MachineInstr *Def = MRI->getVRegDef(VR);
if (!Def)
return false;
if (!Flags.isByVal()) {
if (!TII->isLoadFromStackSlot(*Def, FI))
return false;
} else {
unsigned Opcode = Def->getOpcode();
if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
Opcode == X86::LEA64_32r) &&
Def->getOperand(1).isFI()) {
FI = Def->getOperand(1).getIndex();
Bytes = Flags.getByValSize();
} else
return false;
}
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
if (Flags.isByVal())
// ByVal argument is passed in as a pointer but it's now being
// dereferenced. e.g.
// define @foo(%struct.X* %A) {
// tail call @bar(%struct.X* byval %A)
// }
return false;
SDValue Ptr = Ld->getBasePtr();
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
if (!FINode)
return false;
FI = FINode->getIndex();
} else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
FI = FINode->getIndex();
Bytes = Flags.getByValSize();
} else
return false;
assert(FI != INT_MAX);
if (!MFI.isFixedObjectIndex(FI))
return false;
if (Offset != MFI.getObjectOffset(FI))
return false;
// If this is not byval, check that the argument stack object is immutable.
// inalloca and argument copy elision can create mutable argument stack
// objects. Byval objects can be mutated, but a byval call intends to pass the
// mutated memory.
if (!Flags.isByVal() && !MFI.isImmutableObjectIndex(FI))
return false;
if (VA.getLocVT().getSizeInBits() > Arg.getValueSizeInBits()) {
// If the argument location is wider than the argument type, check that any
// extension flags match.
if (Flags.isZExt() != MFI.isObjectZExt(FI) ||
Flags.isSExt() != MFI.isObjectSExt(FI)) {
return false;
}
}
return Bytes == MFI.getObjectSize(FI);
}
/// Check whether the call is eligible for tail call optimization. Targets
/// that want to do tail call optimization should implement this function.
bool X86TargetLowering::IsEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
if (!mayTailCallThisCC(CalleeCC))
return false;
// If -tailcallopt is specified, make fastcc functions tail-callable.
MachineFunction &MF = DAG.getMachineFunction();
const Function &CallerF = MF.getFunction();
// If the function return type is x86_fp80 and the callee return type is not,
// then the FP_EXTEND of the call result is not a nop. It's not safe to
// perform a tailcall optimization here.
if (CallerF.getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
return false;
CallingConv::ID CallerCC = CallerF.getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC);
bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC);
bool IsGuaranteeTCO = DAG.getTarget().Options.GuaranteedTailCallOpt ||
CalleeCC == CallingConv::Tail;
// Win64 functions have extra shadow space for argument homing. Don't do the
// sibcall if the caller and callee have mismatched expectations for this
// space.
if (IsCalleeWin64 != IsCallerWin64)
return false;
if (IsGuaranteeTCO) {
if (canGuaranteeTCO(CalleeCC) && CCMatch)
return true;
return false;
}
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes. This is what gcc calls sibcall.
// Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
// emit a special epilogue.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
if (RegInfo->needsStackRealignment(MF))
return false;
// Also avoid sibcall optimization if either caller or callee uses struct
// return semantics.
if (isCalleeStructRet || isCallerStructRet)
return false;
// Do not sibcall optimize vararg calls unless all arguments are passed via
// registers.
LLVMContext &C = *DAG.getContext();
if (isVarArg && !Outs.empty()) {
// Optimizing for varargs on Win64 is unlikely to be safe without
// additional testing.
if (IsCalleeWin64 || IsCallerWin64)
return false;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
if (!ArgLocs[i].isRegLoc())
return false;
}
// If the call result is in ST0 / ST1, it needs to be popped off the x87
// stack. Therefore, if it's not used by the call it is not safe to optimize
// this into a sibcall.
bool Unused = false;
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
if (!Ins[i].Used) {
Unused = true;
break;
}
}
if (Unused) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CalleeCC, false, MF, RVLocs, C);
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
return false;
}
}
// Check that the call results are passed in the same way.
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
RetCC_X86, RetCC_X86))
return false;
// The callee has to preserve all registers the caller needs to preserve.
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (!CCMatch) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
unsigned StackArgsSize = 0;
// If the callee takes no arguments then go on to check the results of the
// call.
if (!Outs.empty()) {
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
// Allocate shadow area for Win64
if (IsCalleeWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
StackArgsSize = CCInfo.getNextStackOffset();
if (CCInfo.getNextStackOffset()) {
// Check if the arguments are already laid out in the right way as
// the caller's fixed stack objects.
MachineFrameInfo &MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (!VA.isRegLoc()) {
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
MFI, MRI, TII, VA))
return false;
}
}
}
bool PositionIndependent = isPositionIndependent();
// If the tailcall address may be in a register, then make sure it's
// possible to register allocate for it. In 32-bit, the call address can
// only target EAX, EDX, or ECX since the tail call must be scheduled after
// callee-saved registers are restored. These happen to be the same
// registers used to pass 'inreg' arguments so watch out for those.
if (!Subtarget.is64Bit() && ((!isa<GlobalAddressSDNode>(Callee) &&
!isa<ExternalSymbolSDNode>(Callee)) ||
PositionIndependent)) {
unsigned NumInRegs = 0;
// In PIC we need an extra register to formulate the address computation
// for the callee.
unsigned MaxInRegs = PositionIndependent ? 2 : 3;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (!VA.isRegLoc())
continue;
Register Reg = VA.getLocReg();
switch (Reg) {
default: break;
case X86::EAX: case X86::EDX: case X86::ECX:
if (++NumInRegs == MaxInRegs)
return false;
break;
}
}
}
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
return false;
}
bool CalleeWillPop =
X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg,
MF.getTarget().Options.GuaranteedTailCallOpt);
if (unsigned BytesToPop =
MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
// If we have bytes to pop, the callee must pop them.
bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
if (!CalleePopMatches)
return false;
} else if (CalleeWillPop && StackArgsSize > 0) {
// If we don't have bytes to pop, make sure the callee doesn't pop any.
return false;
}
return true;
}
FastISel *
X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return X86::createFastISel(funcInfo, libInfo);
}
//===----------------------------------------------------------------------===//
// Other Lowering Hooks
//===----------------------------------------------------------------------===//
static bool MayFoldLoad(SDValue Op) {
return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
}
static bool MayFoldIntoStore(SDValue Op) {
return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
}
static bool MayFoldIntoZeroExtend(SDValue Op) {
if (Op.hasOneUse()) {
unsigned Opcode = Op.getNode()->use_begin()->getOpcode();
return (ISD::ZERO_EXTEND == Opcode);
}
return false;
}
static bool isTargetShuffle(unsigned Opcode) {
switch(Opcode) {
default: return false;
case X86ISD::BLENDI:
case X86ISD::PSHUFB:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::SHUFP:
case X86ISD::INSERTPS:
case X86ISD::EXTRQI:
case X86ISD::INSERTQI:
case X86ISD::PALIGNR:
case X86ISD::VSHLDQ:
case X86ISD::VSRLDQ:
case X86ISD::MOVLHPS:
case X86ISD::MOVHLPS:
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::MOVDDUP:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
case X86ISD::VBROADCAST:
case X86ISD::VPERMILPI:
case X86ISD::VPERMILPV:
case X86ISD::VPERM2X128:
case X86ISD::SHUF128:
case X86ISD::VPERMIL2:
case X86ISD::VPERMI:
case X86ISD::VPPERM:
case X86ISD::VPERMV:
case X86ISD::VPERMV3:
case X86ISD::VZEXT_MOVL:
return true;
}
}
static bool isTargetShuffleVariableMask(unsigned Opcode) {
switch (Opcode) {
default: return false;
// Target Shuffles.
case X86ISD::PSHUFB:
case X86ISD::VPERMILPV:
case X86ISD::VPERMIL2:
case X86ISD::VPPERM:
case X86ISD::VPERMV:
case X86ISD::VPERMV3:
return true;
// 'Faux' Target Shuffles.
case ISD::OR:
case ISD::AND:
case X86ISD::ANDNP:
return true;
}
}
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
unsigned SlotSize = RegInfo->getSlotSize();
ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize,
-(int64_t)SlotSize,
false);
FuncInfo->setRAIndex(ReturnAddrIndex);
}
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
}
bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
bool hasSymbolicDisplacement) {
// Offset should fit into 32 bit immediate field.
if (!isInt<32>(Offset))
return false;
// If we don't have a symbolic displacement - we don't have any extra
// restrictions.
if (!hasSymbolicDisplacement)
return true;
// FIXME: Some tweaks might be needed for medium code model.
if (M != CodeModel::Small && M != CodeModel::Kernel)
return false;
// For small code model we assume that latest object is 16MB before end of 31
// bits boundary. We may also accept pretty large negative constants knowing
// that all objects are in the positive half of address space.
if (M == CodeModel::Small && Offset < 16*1024*1024)
return true;
// For kernel code model we know that all object resist in the negative half
// of 32bits address space. We may not accept negative offsets, since they may
// be just off and we may accept pretty large positive ones.
if (M == CodeModel::Kernel && Offset >= 0)
return true;
return false;
}
/// Determines whether the callee is required to pop its own arguments.
/// Callee pop is necessary to support tail calls.
bool X86::isCalleePop(CallingConv::ID CallingConv,
bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
// If GuaranteeTCO is true, we force some calls to be callee pop so that we
// can guarantee TCO.
if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
return true;
switch (CallingConv) {
default:
return false;
case CallingConv::X86_StdCall:
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::X86_VectorCall:
return !is64Bit;
}
}
/// Return true if the condition is an signed comparison operation.
static bool isX86CCSigned(unsigned X86CC) {
switch (X86CC) {
default:
llvm_unreachable("Invalid integer condition!");
case X86::COND_E:
case X86::COND_NE:
case X86::COND_B:
case X86::COND_A:
case X86::COND_BE:
case X86::COND_AE:
return false;
case X86::COND_G:
case X86::COND_GE:
case X86::COND_L:
case X86::COND_LE:
return true;
}
}
static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) {
switch (SetCCOpcode) {
default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ: return X86::COND_E;
case ISD::SETGT: return X86::COND_G;
case ISD::SETGE: return X86::COND_GE;
case ISD::SETLT: return X86::COND_L;
case ISD::SETLE: return X86::COND_LE;
case ISD::SETNE: return X86::COND_NE;
case ISD::SETULT: return X86::COND_B;
case ISD::SETUGT: return X86::COND_A;
case ISD::SETULE: return X86::COND_BE;
case ISD::SETUGE: return X86::COND_AE;
}
}
/// Do a one-to-one translation of a ISD::CondCode to the X86-specific
/// condition code, returning the condition code and the LHS/RHS of the
/// comparison to make.
static X86::CondCode TranslateX86CC(ISD::CondCode SetCCOpcode, const SDLoc &DL,
bool isFP, SDValue &LHS, SDValue &RHS,
SelectionDAG &DAG) {
if (!isFP) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
// X > -1 -> X == 0, jump !sign.
RHS = DAG.getConstant(0, DL, RHS.getValueType());
return X86::COND_NS;
}
if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
// X < 0 -> X == 0, jump on sign.
return X86::COND_S;
}
if (SetCCOpcode == ISD::SETGE && RHSC->isNullValue()) {
// X >= 0 -> X == 0, jump on !sign.
return X86::COND_NS;
}
if (SetCCOpcode == ISD::SETLT && RHSC->isOne()) {
// X < 1 -> X <= 0
RHS = DAG.getConstant(0, DL, RHS.getValueType());
return X86::COND_LE;
}
}
return TranslateIntegerX86CC(SetCCOpcode);
}
// First determine if it is required or is profitable to flip the operands.
// If LHS is a foldable load, but RHS is not, flip the condition.
if (ISD::isNON_EXTLoad(LHS.getNode()) &&
!ISD::isNON_EXTLoad(RHS.getNode())) {
SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
std::swap(LHS, RHS);
}
switch (SetCCOpcode) {
default: break;
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETUGT:
case ISD::SETUGE:
std::swap(LHS, RHS);
break;
}
// On a floating point condition, the flags are set as follows:
// ZF PF CF op
// 0 | 0 | 0 | X > Y
// 0 | 0 | 1 | X < Y
// 1 | 0 | 0 | X == Y
// 1 | 1 | 1 | unordered
switch (SetCCOpcode) {
default: llvm_unreachable("Condcode should be pre-legalized away");
case ISD::SETUEQ:
case ISD::SETEQ: return X86::COND_E;
case ISD::SETOLT: // flipped
case ISD::SETOGT:
case ISD::SETGT: return X86::COND_A;
case ISD::SETOLE: // flipped
case ISD::SETOGE:
case ISD::SETGE: return X86::COND_AE;
case ISD::SETUGT: // flipped
case ISD::SETULT:
case ISD::SETLT: return X86::COND_B;
case ISD::SETUGE: // flipped
case ISD::SETULE:
case ISD::SETLE: return X86::COND_BE;
case ISD::SETONE:
case ISD::SETNE: return X86::COND_NE;
case ISD::SETUO: return X86::COND_P;
case ISD::SETO: return X86::COND_NP;
case ISD::SETOEQ:
case ISD::SETUNE: return X86::COND_INVALID;
}
}
/// Is there a floating point cmov for the specific X86 condition code?
/// Current x86 isa includes the following FP cmov instructions:
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
static bool hasFPCMov(unsigned X86CC) {
switch (X86CC) {
default:
return false;
case X86::COND_B:
case X86::COND_BE:
case X86::COND_E:
case X86::COND_P:
case X86::COND_A:
case X86::COND_AE:
case X86::COND_NE:
case X86::COND_NP:
return true;
}
}
bool X86TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const {
const IntrinsicData* IntrData = getIntrinsicWithChain(Intrinsic);
if (!IntrData)
return false;
Info.flags = MachineMemOperand::MONone;
Info.offset = 0;
switch (IntrData->Type) {
case TRUNCATE_TO_MEM_VI8:
case TRUNCATE_TO_MEM_VI16:
case TRUNCATE_TO_MEM_VI32: {
Info.opc = ISD::INTRINSIC_VOID;
Info.ptrVal = I.getArgOperand(0);
MVT VT = MVT::getVT(I.getArgOperand(1)->getType());
MVT ScalarVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
if (IntrData->Type == TRUNCATE_TO_MEM_VI8)
ScalarVT = MVT::i8;
else if (IntrData->Type == TRUNCATE_TO_MEM_VI16)
ScalarVT = MVT::i16;
else if (IntrData->Type == TRUNCATE_TO_MEM_VI32)
ScalarVT = MVT::i32;
Info.memVT = MVT::getVectorVT(ScalarVT, VT.getVectorNumElements());
Info.align = Align::None();
Info.flags |= MachineMemOperand::MOStore;
break;
}
case GATHER:
case GATHER_AVX2: {
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.ptrVal = nullptr;
MVT DataVT = MVT::getVT(I.getType());
MVT IndexVT = MVT::getVT(I.getArgOperand(2)->getType());
unsigned NumElts = std::min(DataVT.getVectorNumElements(),
IndexVT.getVectorNumElements());
Info.memVT = MVT::getVectorVT(DataVT.getVectorElementType(), NumElts);
Info.align = Align::None();
Info.flags |= MachineMemOperand::MOLoad;
break;
}
case SCATTER: {
Info.opc = ISD::INTRINSIC_VOID;
Info.ptrVal = nullptr;
MVT DataVT = MVT::getVT(I.getArgOperand(3)->getType());
MVT IndexVT = MVT::getVT(I.getArgOperand(2)->getType());
unsigned NumElts = std::min(DataVT.getVectorNumElements(),
IndexVT.getVectorNumElements());
Info.memVT = MVT::getVectorVT(DataVT.getVectorElementType(), NumElts);
Info.align = Align::None();
Info.flags |= MachineMemOperand::MOStore;
break;
}
default:
return false;
}
return true;
}
/// Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const {
for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
return true;
}
return false;
}
bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
ISD::LoadExtType ExtTy,
EVT NewVT) const {
assert(cast<LoadSDNode>(Load)->isSimple() && "illegal to narrow");
// "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
// relocation target a movq or addq instruction: don't let the load shrink.
SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
// If this is an (1) AVX vector load with (2) multiple uses and (3) all of
// those uses are extracted directly into a store, then the extract + store
// can be store-folded. Therefore, it's probably not worth splitting the load.
EVT VT = Load->getValueType(0);
if ((VT.is256BitVector() || VT.is512BitVector()) && !Load->hasOneUse()) {
for (auto UI = Load->use_begin(), UE = Load->use_end(); UI != UE; ++UI) {
// Skip uses of the chain value. Result 0 of the node is the load value.
if (UI.getUse().getResNo() != 0)
continue;
// If this use is not an extract + store, it's probably worth splitting.
if (UI->getOpcode() != ISD::EXTRACT_SUBVECTOR || !UI->hasOneUse() ||
UI->use_begin()->getOpcode() != ISD::STORE)
return true;
}
// All non-chain uses are extract + store.
return false;
}
return true;
}
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0 || BitSize > 64)
return false;
return true;
}
bool X86TargetLowering::reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
// If we are using XMM registers in the ABI and the condition of the select is
// a floating-point compare and we have blendv or conditional move, then it is
// cheaper to select instead of doing a cross-register move and creating a
// load that depends on the compare result.
bool IsFPSetCC = CmpOpVT.isFloatingPoint() && CmpOpVT != MVT::f128;
return !IsFPSetCC || !Subtarget.isTarget64BitLP64() || !Subtarget.hasAVX();
}
bool X86TargetLowering::convertSelectOfConstantsToMath(EVT VT) const {
// TODO: It might be a win to ease or lift this restriction, but the generic
// folds in DAGCombiner conflict with vector folds for an AVX512 target.
if (VT.isVector() && Subtarget.hasAVX512())
return false;
return true;
}
bool X86TargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
SDValue C) const {
// TODO: We handle scalars using custom code, but generic combining could make
// that unnecessary.
APInt MulC;
if (!ISD::isConstantSplatVector(C.getNode(), MulC))
return false;
// Find the type this will be legalized too. Otherwise we might prematurely
// convert this to shl+add/sub and then still have to type legalize those ops.
// Another choice would be to defer the decision for illegal types until
// after type legalization. But constant splat vectors of i64 can't make it
// through type legalization on 32-bit targets so we would need to special
// case vXi64.
while (getTypeAction(Context, VT) != TypeLegal)
VT = getTypeToTransformTo(Context, VT);
// If vector multiply is legal, assume that's faster than shl + add/sub.
// TODO: Multiply is a complex op with higher latency and lower throughput in
// most implementations, so this check could be loosened based on type
// and/or a CPU attribute.
if (isOperationLegal(ISD::MUL, VT))
return false;
// shl+add, shl+sub, shl+add+neg
return (MulC + 1).isPowerOf2() || (MulC - 1).isPowerOf2() ||
(1 - MulC).isPowerOf2() || (-(MulC + 1)).isPowerOf2();
}
bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const {
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
return false;
// Mask vectors support all subregister combinations and operations that
// extract half of vector.
if (ResVT.getVectorElementType() == MVT::i1)
return Index == 0 || ((ResVT.getSizeInBits() == SrcVT.getSizeInBits()*2) &&
(Index == ResVT.getVectorNumElements()));
return (Index % ResVT.getVectorNumElements()) == 0;
}
bool X86TargetLowering::shouldScalarizeBinop(SDValue VecOp) const {
unsigned Opc = VecOp.getOpcode();
// Assume target opcodes can't be scalarized.
// TODO - do we have any exceptions?
if (Opc >= ISD::BUILTIN_OP_END)
return false;
// If the vector op is not supported, try to convert to scalar.
EVT VecVT = VecOp.getValueType();
if (!isOperationLegalOrCustomOrPromote(Opc, VecVT))
return true;
// If the vector op is supported, but the scalar op is not, the transform may
// not be worthwhile.
EVT ScalarVT = VecVT.getScalarType();
return isOperationLegalOrCustomOrPromote(Opc, ScalarVT);
}
bool X86TargetLowering::shouldFormOverflowOp(unsigned Opcode, EVT VT) const {
// TODO: Allow vectors?
if (VT.isVector())
return false;
return VT.isSimple() || !isOperationExpand(Opcode, VT);
}
bool X86TargetLowering::isCheapToSpeculateCttz() const {
// Speculate cttz only if we can directly use TZCNT.
return Subtarget.hasBMI();
}
bool X86TargetLowering::isCheapToSpeculateCtlz() const {
// Speculate ctlz only if we can directly use LZCNT.
return Subtarget.hasLZCNT();
}
bool X86TargetLowering::isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
const SelectionDAG &DAG,
const MachineMemOperand &MMO) const {
if (!Subtarget.hasAVX512() && !LoadVT.isVector() && BitcastVT.isVector() &&
BitcastVT.getVectorElementType() == MVT::i1)
return false;
if (!Subtarget.hasDQI() && BitcastVT == MVT::v8i1 && LoadVT == MVT::i8)
return false;
// If both types are legal vectors, it's always ok to convert them.
if (LoadVT.isVector() && BitcastVT.isVector() &&
isTypeLegal(LoadVT) && isTypeLegal(BitcastVT))
return true;
return TargetLowering::isLoadBitCastBeneficial(LoadVT, BitcastVT, DAG, MMO);
}
bool X86TargetLowering::canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
const SelectionDAG &DAG) const {
// Do not merge to float value size (128 bytes) if no implicit
// float attribute is set.
bool NoFloat = DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat);
if (NoFloat) {
unsigned MaxIntSize = Subtarget.is64Bit() ? 64 : 32;
return (MemVT.getSizeInBits() <= MaxIntSize);
}
// Make sure we don't merge greater than our preferred vector
// width.
if (MemVT.getSizeInBits() > Subtarget.getPreferVectorWidth())
return false;
return true;
}
bool X86TargetLowering::isCtlzFast() const {
return Subtarget.hasFastLZCNT();
}
bool X86TargetLowering::isMaskAndCmp0FoldingBeneficial(
const Instruction &AndI) const {
return true;
}
bool X86TargetLowering::hasAndNotCompare(SDValue Y) const {
EVT VT = Y.getValueType();
if (VT.isVector())
return false;
if (!Subtarget.hasBMI())
return false;
// There are only 32-bit and 64-bit forms for 'andn'.
if (VT != MVT::i32 && VT != MVT::i64)
return false;
return !isa<ConstantSDNode>(Y);
}
bool X86TargetLowering::hasAndNot(SDValue Y) const {
EVT VT = Y.getValueType();
if (!VT.isVector())
return hasAndNotCompare(Y);
// Vector.
if (!Subtarget.hasSSE1() || VT.getSizeInBits() < 128)
return false;
if (VT == MVT::v4i32)
return true;
return Subtarget.hasSSE2();
}
bool X86TargetLowering::hasBitTest(SDValue X, SDValue Y) const {
return X.getValueType().isScalarInteger(); // 'bt'
}
bool X86TargetLowering::
shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
SelectionDAG &DAG) const {
// Does baseline recommend not to perform the fold by default?
if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG))
return false;
// For scalars this transform is always beneficial.
if (X.getValueType().isScalarInteger())
return true;
// If all the shift amounts are identical, then transform is beneficial even
// with rudimentary SSE2 shifts.
if (DAG.isSplatValue(Y, /*AllowUndefs=*/true))
return true;
// If we have AVX2 with it's powerful shift operations, then it's also good.
if (Subtarget.hasAVX2())
return true;
// Pre-AVX2 vector codegen for this pattern is best for variant with 'shl'.
return NewShiftOpcode == ISD::SHL;
}
bool X86TargetLowering::shouldFoldConstantShiftPairToMask(
const SDNode *N, CombineLevel Level) const {
assert(((N->getOpcode() == ISD::SHL &&
N->getOperand(0).getOpcode() == ISD::SRL) ||
(N->getOpcode() == ISD::SRL &&
N->getOperand(0).getOpcode() == ISD::SHL)) &&
"Expected shift-shift mask");
EVT VT = N->getValueType(0);
if ((Subtarget.hasFastVectorShiftMasks() && VT.isVector()) ||
(Subtarget.hasFastScalarShiftMasks() && !VT.isVector())) {
// Only fold if the shift values are equal - so it folds to AND.
// TODO - we should fold if either is a non-uniform vector but we don't do
// the fold for non-splats yet.
return N->getOperand(1) == N->getOperand(0).getOperand(1);
}
return TargetLoweringBase::shouldFoldConstantShiftPairToMask(N, Level);
}
bool X86TargetLowering::shouldFoldMaskToVariableShiftPair(SDValue Y) const {
EVT VT = Y.getValueType();
// For vectors, we don't have a preference, but we probably want a mask.
if (VT.isVector())
return false;
// 64-bit shifts on 32-bit targets produce really bad bloated code.
if (VT == MVT::i64 && !Subtarget.is64Bit())
return false;
return true;
}
bool X86TargetLowering::shouldExpandShift(SelectionDAG &DAG,
SDNode *N) const {
if (DAG.getMachineFunction().getFunction().hasMinSize() &&
!Subtarget.isOSWindows())
return false;
return true;
}
bool X86TargetLowering::shouldSplatInsEltVarIndex(EVT VT) const {
// Any legal vector type can be splatted more efficiently than
// loading/spilling from memory.
return isTypeLegal(VT);
}
MVT X86TargetLowering::hasFastEqualityCompare(unsigned NumBits) const {
MVT VT = MVT::getIntegerVT(NumBits);
if (isTypeLegal(VT))
return VT;
// PMOVMSKB can handle this.
if (NumBits == 128 && isTypeLegal(MVT::v16i8))
return MVT::v16i8;
// VPMOVMSKB can handle this.
if (NumBits == 256 && isTypeLegal(MVT::v32i8))
return MVT::v32i8;
// TODO: Allow 64-bit type for 32-bit target.
// TODO: 512-bit types should be allowed, but make sure that those
// cases are handled in combineVectorSizedSetCCEquality().
return MVT::INVALID_SIMPLE_VALUE_TYPE;
}
/// Val is the undef sentinel value or equal to the specified value.
static bool isUndefOrEqual(int Val, int CmpVal) {
return ((Val == SM_SentinelUndef) || (Val == CmpVal));
}
/// Val is either the undef or zero sentinel value.
static bool isUndefOrZero(int Val) {
return ((Val == SM_SentinelUndef) || (Val == SM_SentinelZero));
}
/// Return true if every element in Mask, beginning from position Pos and ending
/// in Pos+Size is the undef sentinel value.
static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
return llvm::all_of(Mask.slice(Pos, Size),
[](int M) { return M == SM_SentinelUndef; });
}
/// Return true if the mask creates a vector whose lower half is undefined.
static bool isUndefLowerHalf(ArrayRef<int> Mask) {
unsigned NumElts = Mask.size();
return isUndefInRange(Mask, 0, NumElts / 2);
}
/// Return true if the mask creates a vector whose upper half is undefined.
static bool isUndefUpperHalf(ArrayRef<int> Mask) {
unsigned NumElts = Mask.size();
return isUndefInRange(Mask, NumElts / 2, NumElts / 2);
}
/// Return true if Val falls within the specified range (L, H].
static bool isInRange(int Val, int Low, int Hi) {
return (Val >= Low && Val < Hi);
}
/// Return true if the value of any element in Mask falls within the specified
/// range (L, H].
static bool isAnyInRange(ArrayRef<int> Mask, int Low, int Hi) {
return llvm::any_of(Mask, [Low, Hi](int M) { return isInRange(M, Low, Hi); });
}
/// Return true if Val is undef or if its value falls within the
/// specified range (L, H].
static bool isUndefOrInRange(int Val, int Low, int Hi) {
return (Val == SM_SentinelUndef) || isInRange(Val, Low, Hi);
}
/// Return true if every element in Mask is undef or if its value
/// falls within the specified range (L, H].
static bool isUndefOrInRange(ArrayRef<int> Mask, int Low, int Hi) {
return llvm::all_of(
Mask, [Low, Hi](int M) { return isUndefOrInRange(M, Low, Hi); });
}
/// Return true if Val is undef, zero or if its value falls within the
/// specified range (L, H].
static bool isUndefOrZeroOrInRange(int Val, int Low, int Hi) {
return isUndefOrZero(Val) || isInRange(Val, Low, Hi);
}
/// Return true if every element in Mask is undef, zero or if its value
/// falls within the specified range (L, H].
static bool isUndefOrZeroOrInRange(ArrayRef<int> Mask, int Low, int Hi) {
return llvm::all_of(
Mask, [Low, Hi](int M) { return isUndefOrZeroOrInRange(M, Low, Hi); });
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos + Size, falls within the specified
/// sequence (Low, Low + Step, ..., Low + (Size - 1) * Step) or is undef.
static bool isSequentialOrUndefInRange(ArrayRef<int> Mask, unsigned Pos,
unsigned Size, int Low, int Step = 1) {
for (unsigned i = Pos, e = Pos + Size; i != e; ++i, Low += Step)
if (!isUndefOrEqual(Mask[i], Low))
return false;
return true;
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size, falls within the specified
/// sequential range (Low, Low+Size], or is undef or is zero.
static bool isSequentialOrUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
unsigned Size, int Low,
int Step = 1) {
for (unsigned i = Pos, e = Pos + Size; i != e; ++i, Low += Step)
if (!isUndefOrZero(Mask[i]) && Mask[i] != Low)
return false;
return true;
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size is undef or is zero.
static bool isUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
unsigned Size) {
return llvm::all_of(Mask.slice(Pos, Size),
[](int M) { return isUndefOrZero(M); });
}
/// Helper function to test whether a shuffle mask could be
/// simplified by widening the elements being shuffled.
///
/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
/// leaves it in an unspecified state.
///
/// NOTE: This must handle normal vector shuffle masks and *target* vector
/// shuffle masks. The latter have the special property of a '-2' representing
/// a zero-ed lane of a vector.
static bool canWidenShuffleElements(ArrayRef<int> Mask,
SmallVectorImpl<int> &WidenedMask) {
WidenedMask.assign(Mask.size() / 2, 0);
for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
int M0 = Mask[i];
int M1 = Mask[i + 1];
// If both elements are undef, its trivial.
if (M0 == SM_SentinelUndef && M1 == SM_SentinelUndef) {
WidenedMask[i / 2] = SM_SentinelUndef;
continue;
}
// Check for an undef mask and a mask value properly aligned to fit with
// a pair of values. If we find such a case, use the non-undef mask's value.
if (M0 == SM_SentinelUndef && M1 >= 0 && (M1 % 2) == 1) {
WidenedMask[i / 2] = M1 / 2;
continue;
}
if (M1 == SM_SentinelUndef && M0 >= 0 && (M0 % 2) == 0) {
WidenedMask[i / 2] = M0 / 2;
continue;
}
// When zeroing, we need to spread the zeroing across both lanes to widen.
if (M0 == SM_SentinelZero || M1 == SM_SentinelZero) {
if ((M0 == SM_SentinelZero || M0 == SM_SentinelUndef) &&
(M1 == SM_SentinelZero || M1 == SM_SentinelUndef)) {
WidenedMask[i / 2] = SM_SentinelZero;
continue;
}
return false;
}
// Finally check if the two mask values are adjacent and aligned with
// a pair.
if (M0 != SM_SentinelUndef && (M0 % 2) == 0 && (M0 + 1) == M1) {
WidenedMask[i / 2] = M0 / 2;
continue;
}
// Otherwise we can't safely widen the elements used in this shuffle.
return false;
}
assert(WidenedMask.size() == Mask.size() / 2 &&
"Incorrect size of mask after widening the elements!");
return true;
}
static bool canWidenShuffleElements(ArrayRef<int> Mask,
const APInt &Zeroable,
bool V2IsZero,
SmallVectorImpl<int> &WidenedMask) {
// Create an alternative mask with info about zeroable elements.
// Here we do not set undef elements as zeroable.
SmallVector<int, 64> ZeroableMask(Mask.begin(), Mask.end());
if (V2IsZero) {
assert(!Zeroable.isNullValue() && "V2's non-undef elements are used?!");
for (int i = 0, Size = Mask.size(); i != Size; ++i)
if (Mask[i] != SM_SentinelUndef && Zeroable[i])
ZeroableMask[i] = SM_SentinelZero;
}
return canWidenShuffleElements(ZeroableMask, WidenedMask);
}
static bool canWidenShuffleElements(ArrayRef<int> Mask) {
SmallVector<int, 32> WidenedMask;
return canWidenShuffleElements(Mask, WidenedMask);
}
/// Returns true if Elt is a constant zero or a floating point constant +0.0.
bool X86::isZeroNode(SDValue Elt) {
return isNullConstant(Elt) || isNullFPConstant(Elt);
}
// Build a vector of constants.
// Use an UNDEF node if MaskElt == -1.
// Split 64-bit constants in the 32-bit mode.
static SDValue getConstVector(ArrayRef<int> Values, MVT VT, SelectionDAG &DAG,
const SDLoc &dl, bool IsMask = false) {
SmallVector<SDValue, 32> Ops;
bool Split = false;
MVT ConstVecVT = VT;
unsigned NumElts = VT.getVectorNumElements();
bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
Split = true;
}
MVT EltVT = ConstVecVT.getVectorElementType();
for (unsigned i = 0; i < NumElts; ++i) {
bool IsUndef = Values[i] < 0 && IsMask;
SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) :
DAG.getConstant(Values[i], dl, EltVT);
Ops.push_back(OpNode);
if (Split)
Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) :
DAG.getConstant(0, dl, EltVT));
}
SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
if (Split)
ConstsNode = DAG.getBitcast(VT, ConstsNode);
return ConstsNode;
}
static SDValue getConstVector(ArrayRef<APInt> Bits, APInt &Undefs,
MVT VT, SelectionDAG &DAG, const SDLoc &dl) {
assert(Bits.size() == Undefs.getBitWidth() &&
"Unequal constant and undef arrays");
SmallVector<SDValue, 32> Ops;
bool Split = false;
MVT ConstVecVT = VT;
unsigned NumElts = VT.getVectorNumElements();
bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
Split = true;
}
MVT EltVT = ConstVecVT.getVectorElementType();
for (unsigned i = 0, e = Bits.size(); i != e; ++i) {
if (Undefs[i]) {
Ops.append(Split ? 2 : 1, DAG.getUNDEF(EltVT));
continue;
}
const APInt &V = Bits[i];
assert(V.getBitWidth() == VT.getScalarSizeInBits() && "Unexpected sizes");
if (Split) {
Ops.push_back(DAG.getConstant(V.trunc(32), dl, EltVT));
Ops.push_back(DAG.getConstant(V.lshr(32).trunc(32), dl, EltVT));
} else if (EltVT == MVT::f32) {
APFloat FV(APFloat::IEEEsingle(), V);
Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
} else if (EltVT == MVT::f64) {
APFloat FV(APFloat::IEEEdouble(), V);
Ops.push_back(DAG.getConstantFP(FV, dl, EltVT));
} else {
Ops.push_back(DAG.getConstant(V, dl, EltVT));
}
}
SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
return DAG.getBitcast(VT, ConstsNode);
}
/// Returns a vector of specified type with all zero elements.
static SDValue getZeroVector(MVT VT, const X86Subtarget &Subtarget,
SelectionDAG &DAG, const SDLoc &dl) {
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector() ||
VT.getVectorElementType() == MVT::i1) &&
"Unexpected vector type");
// Try to build SSE/AVX zero vectors as <N x i32> bitcasted to their dest
// type. This ensures they get CSE'd. But if the integer type is not
// available, use a floating-point +0.0 instead.
SDValue Vec;
if (!Subtarget.hasSSE2() && VT.is128BitVector()) {
Vec = DAG.getConstantFP(+0.0, dl, MVT::v4f32);
} else if (VT.isFloatingPoint()) {
Vec = DAG.getConstantFP(+0.0, dl, VT);
} else if (VT.getVectorElementType() == MVT::i1) {
assert((Subtarget.hasBWI() || VT.getVectorNumElements() <= 16) &&
"Unexpected vector type");
Vec = DAG.getConstant(0, dl, VT);
} else {
unsigned Num32BitElts = VT.getSizeInBits() / 32;
Vec = DAG.getConstant(0, dl, MVT::getVectorVT(MVT::i32, Num32BitElts));
}
return DAG.getBitcast(VT, Vec);
}
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG,
const SDLoc &dl, unsigned vectorWidth) {
EVT VT = Vec.getValueType();
EVT ElVT = VT.getVectorElementType();
unsigned Factor = VT.getSizeInBits()/vectorWidth;
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
VT.getVectorNumElements()/Factor);
// Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// This is the index of the first element of the vectorWidth-bit chunk
// we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
IdxVal &= ~(ElemsPerChunk - 1);
// If the input is a buildvector just emit a smaller one.
if (Vec.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getBuildVector(ResultVT, dl,
Vec->ops().slice(IdxVal, ElemsPerChunk));
SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
}
/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
/// instructions or a simple subregister reference. Idx is an index in the
/// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes
/// lowering EXTRACT_VECTOR_ELT operations easier.
static SDValue extract128BitVector(SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, const SDLoc &dl) {
assert((Vec.getValueType().is256BitVector() ||
Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
return extractSubVector(Vec, IdxVal, DAG, dl, 128);
}
/// Generate a DAG to grab 256-bits from a 512-bit vector.
static SDValue extract256BitVector(SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, const SDLoc &dl) {
assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
return extractSubVector(Vec, IdxVal, DAG, dl, 256);
}
static SDValue insertSubVector(SDValue Result, SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, const SDLoc &dl,
unsigned vectorWidth) {
assert((vectorWidth == 128 || vectorWidth == 256) &&
"Unsupported vector width");
// Inserting UNDEF is Result
if (Vec.isUndef())
return Result;
EVT VT = Vec.getValueType();
EVT ElVT = VT.getVectorElementType();
EVT ResultVT = Result.getValueType();
// Insert the relevant vectorWidth bits.
unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// This is the index of the first element of the vectorWidth-bit chunk
// we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
IdxVal &= ~(ElemsPerChunk - 1);
SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
}
/// Generate a DAG to put 128-bits into a vector > 128 bits. This
/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
/// simple superregister reference. Idx is an index in the 128 bits
/// we want. It need not be aligned to a 128-bit boundary. That makes
/// lowering INSERT_VECTOR_ELT operations easier.
static SDValue insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, const SDLoc &dl) {
assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
return insertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
}
/// Widen a vector to a larger size with the same scalar type, with the new
/// elements either zero or undef.
static SDValue widenSubVector(MVT VT, SDValue Vec, bool ZeroNewElements,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl) {
assert(Vec.getValueSizeInBits() < VT.getSizeInBits() &&
Vec.getValueType().getScalarType() == VT.getScalarType() &&
"Unsupported vector widening type");
SDValue Res = ZeroNewElements ? getZeroVector(VT, Subtarget, DAG, dl)
: DAG.getUNDEF(VT);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, Vec,
DAG.getIntPtrConstant(0, dl));
}
/// Widen a vector to a larger size with the same scalar type, with the new
/// elements either zero or undef.
static SDValue widenSubVector(SDValue Vec, bool ZeroNewElements,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, unsigned WideSizeInBits) {
assert(Vec.getValueSizeInBits() < WideSizeInBits &&
(WideSizeInBits % Vec.getScalarValueSizeInBits()) == 0 &&
"Unsupported vector widening type");
unsigned WideNumElts = WideSizeInBits / Vec.getScalarValueSizeInBits();
MVT SVT = Vec.getSimpleValueType().getScalarType();
MVT VT = MVT::getVectorVT(SVT, WideNumElts);
return widenSubVector(VT, Vec, ZeroNewElements, Subtarget, DAG, dl);
}
// Helper function to collect subvector ops that are concated together,
// either by ISD::CONCAT_VECTORS or a ISD::INSERT_SUBVECTOR series.
// The subvectors in Ops are guaranteed to be the same type.
static bool collectConcatOps(SDNode *N, SmallVectorImpl<SDValue> &Ops) {
assert(Ops.empty() && "Expected an empty ops vector");
if (N->getOpcode() == ISD::CONCAT_VECTORS) {
Ops.append(N->op_begin(), N->op_end());
return true;
}
if (N->getOpcode() == ISD::INSERT_SUBVECTOR &&
isa<ConstantSDNode>(N->getOperand(2))) {
SDValue Src = N->getOperand(0);
SDValue Sub = N->getOperand(1);
const APInt &Idx = N->getConstantOperandAPInt(2);
EVT VT = Src.getValueType();
EVT SubVT = Sub.getValueType();
// TODO - Handle more general insert_subvector chains.
if (VT.getSizeInBits() == (SubVT.getSizeInBits() * 2) &&
Idx == (VT.getVectorNumElements() / 2) &&
Src.getOpcode() == ISD::INSERT_SUBVECTOR &&
Src.getOperand(1).getValueType() == SubVT &&
isNullConstant(Src.getOperand(2))) {
Ops.push_back(Src.getOperand(1));
Ops.push_back(Sub);
return true;
}
}
return false;
}
// Helper for splitting operands of an operation to legal target size and
// apply a function on each part.
// Useful for operations that are available on SSE2 in 128-bit, on AVX2 in
// 256-bit and on AVX512BW in 512-bit. The argument VT is the type used for
// deciding if/how to split Ops. Ops elements do *not* have to be of type VT.
// The argument Builder is a function that will be applied on each split part:
// SDValue Builder(SelectionDAG&G, SDLoc, ArrayRef<SDValue>)
template <typename F>
SDValue SplitOpsAndApply(SelectionDAG &DAG, const X86Subtarget &Subtarget,
const SDLoc &DL, EVT VT, ArrayRef<SDValue> Ops,
F Builder, bool CheckBWI = true) {
assert(Subtarget.hasSSE2() && "Target assumed to support at least SSE2");
unsigned NumSubs = 1;
if ((CheckBWI && Subtarget.useBWIRegs()) ||
(!CheckBWI && Subtarget.useAVX512Regs())) {
if (VT.getSizeInBits() > 512) {
NumSubs = VT.getSizeInBits() / 512;
assert((VT.getSizeInBits() % 512) == 0 && "Illegal vector size");
}
} else if (Subtarget.hasAVX2()) {
if (VT.getSizeInBits() > 256) {
NumSubs = VT.getSizeInBits() / 256;
assert((VT.getSizeInBits() % 256) == 0 && "Illegal vector size");
}
} else {
if (VT.getSizeInBits() > 128) {
NumSubs = VT.getSizeInBits() / 128;
assert((VT.getSizeInBits() % 128) == 0 && "Illegal vector size");
}
}
if (NumSubs == 1)
return Builder(DAG, DL, Ops);
SmallVector<SDValue, 4> Subs;
for (unsigned i = 0; i != NumSubs; ++i) {
SmallVector<SDValue, 2> SubOps;
for (SDValue Op : Ops) {
EVT OpVT = Op.getValueType();
unsigned NumSubElts = OpVT.getVectorNumElements() / NumSubs;
unsigned SizeSub = OpVT.getSizeInBits() / NumSubs;
SubOps.push_back(extractSubVector(Op, i * NumSubElts, DAG, DL, SizeSub));
}
Subs.push_back(Builder(DAG, DL, SubOps));
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Subs);
}
/// Insert i1-subvector to i1-vector.
static SDValue insert1BitVector(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue SubVec = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
if (!isa<ConstantSDNode>(Idx))
return SDValue();
// Inserting undef is a nop. We can just return the original vector.
if (SubVec.isUndef())
return Vec;
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal == 0 && Vec.isUndef()) // the operation is legal
return Op;
MVT OpVT = Op.getSimpleValueType();
unsigned NumElems = OpVT.getVectorNumElements();
SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
// Extend to natively supported kshift.
MVT WideOpVT = OpVT;
if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8)
WideOpVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
// Inserting into the lsbs of a zero vector is legal. ISel will insert shifts
// if necessary.
if (IdxVal == 0 && ISD::isBuildVectorAllZeros(Vec.getNode())) {
// May need to promote to a legal type.
Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
DAG.getConstant(0, dl, WideOpVT),
SubVec, Idx);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
}
MVT SubVecVT = SubVec.getSimpleValueType();
unsigned SubVecNumElems = SubVecVT.getVectorNumElements();
assert(IdxVal + SubVecNumElems <= NumElems &&
IdxVal % SubVecVT.getSizeInBits() == 0 &&
"Unexpected index value in INSERT_SUBVECTOR");
SDValue Undef = DAG.getUNDEF(WideOpVT);
if (IdxVal == 0) {
// Zero lower bits of the Vec
SDValue ShiftBits = DAG.getTargetConstant(SubVecNumElems, dl, MVT::i8);
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec,
ZeroIdx);
Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits);
Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits);
// Merge them together, SubVec should be zero extended.
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
DAG.getConstant(0, dl, WideOpVT),
SubVec, ZeroIdx);
Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
}
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
Undef, SubVec, ZeroIdx);
if (Vec.isUndef()) {
assert(IdxVal != 0 && "Unexpected index");
SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
DAG.getTargetConstant(IdxVal, dl, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
}
if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
assert(IdxVal != 0 && "Unexpected index");
NumElems = WideOpVT.getVectorNumElements();
unsigned ShiftLeft = NumElems - SubVecNumElems;
unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
DAG.getTargetConstant(ShiftLeft, dl, MVT::i8));
if (ShiftRight != 0)
SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec,
DAG.getTargetConstant(ShiftRight, dl, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
}
// Simple case when we put subvector in the upper part
if (IdxVal + SubVecNumElems == NumElems) {
SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
DAG.getTargetConstant(IdxVal, dl, MVT::i8));
if (SubVecNumElems * 2 == NumElems) {
// Special case, use legal zero extending insert_subvector. This allows
// isel to opimitize when bits are known zero.
Vec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubVecVT, Vec, ZeroIdx);
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
DAG.getConstant(0, dl, WideOpVT),
Vec, ZeroIdx);
} else {
// Otherwise use explicit shifts to zero the bits.
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
Undef, Vec, ZeroIdx);
NumElems = WideOpVT.getVectorNumElements();
SDValue ShiftBits = DAG.getTargetConstant(NumElems - IdxVal, dl, MVT::i8);
Vec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec, ShiftBits);
Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec, ShiftBits);
}
Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
}
// Inserting into the middle is more complicated.
NumElems = WideOpVT.getVectorNumElements();
// Widen the vector if needed.
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx);
unsigned ShiftLeft = NumElems - SubVecNumElems;
unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
// Do an optimization for the the most frequently used types.
if (WideOpVT != MVT::v64i1 || Subtarget.is64Bit()) {
APInt Mask0 = APInt::getBitsSet(NumElems, IdxVal, IdxVal + SubVecNumElems);
Mask0.flipAllBits();
SDValue CMask0 = DAG.getConstant(Mask0, dl, MVT::getIntegerVT(NumElems));
SDValue VMask0 = DAG.getNode(ISD::BITCAST, dl, WideOpVT, CMask0);
Vec = DAG.getNode(ISD::AND, dl, WideOpVT, Vec, VMask0);
SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
DAG.getTargetConstant(ShiftLeft, dl, MVT::i8));
SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec,
DAG.getTargetConstant(ShiftRight, dl, MVT::i8));
Op = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, SubVec);
// Reduce to original width if needed.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, Op, ZeroIdx);
}
// Clear the upper bits of the subvector and move it to its insert position.
SubVec = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, SubVec,
DAG.getTargetConstant(ShiftLeft, dl, MVT::i8));
SubVec = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, SubVec,
DAG.getTargetConstant(ShiftRight, dl, MVT::i8));
// Isolate the bits below the insertion point.
unsigned LowShift = NumElems - IdxVal;
SDValue Low = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, Vec,
DAG.getTargetConstant(LowShift, dl, MVT::i8));
Low = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Low,
DAG.getTargetConstant(LowShift, dl, MVT::i8));
// Isolate the bits after the last inserted bit.
unsigned HighShift = IdxVal + SubVecNumElems;
SDValue High = DAG.getNode(X86ISD::KSHIFTR, dl, WideOpVT, Vec,
DAG.getTargetConstant(HighShift, dl, MVT::i8));
High = DAG.getNode(X86ISD::KSHIFTL, dl, WideOpVT, High,
DAG.getTargetConstant(HighShift, dl, MVT::i8));
// Now OR all 3 pieces together.
Vec = DAG.getNode(ISD::OR, dl, WideOpVT, Low, High);
SubVec = DAG.getNode(ISD::OR, dl, WideOpVT, SubVec, Vec);
// Reduce to original width if needed.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OpVT, SubVec, ZeroIdx);
}
static SDValue concatSubVectors(SDValue V1, SDValue V2, SelectionDAG &DAG,
const SDLoc &dl) {
assert(V1.getValueType() == V2.getValueType() && "subvector type mismatch");
EVT SubVT = V1.getValueType();
EVT SubSVT = SubVT.getScalarType();
unsigned SubNumElts = SubVT.getVectorNumElements();
unsigned SubVectorWidth = SubVT.getSizeInBits();
EVT VT = EVT::getVectorVT(*DAG.getContext(), SubSVT, 2 * SubNumElts);
SDValue V = insertSubVector(DAG.getUNDEF(VT), V1, 0, DAG, dl, SubVectorWidth);
return insertSubVector(V, V2, SubNumElts, DAG, dl, SubVectorWidth);
}
/// Returns a vector of specified type with all bits set.
/// Always build ones vectors as <4 x i32>, <8 x i32> or <16 x i32>.
/// Then bitcast to their original type, ensuring they get CSE'd.
static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
"Expected a 128/256/512-bit vector type");
APInt Ones = APInt::getAllOnesValue(32);
unsigned NumElts = VT.getSizeInBits() / 32;
SDValue Vec = DAG.getConstant(Ones, dl, MVT::getVectorVT(MVT::i32, NumElts));
return DAG.getBitcast(VT, Vec);
}
// Convert *_EXTEND to *_EXTEND_VECTOR_INREG opcode.
static unsigned getOpcode_EXTEND_VECTOR_INREG(unsigned Opcode) {
switch (Opcode) {
case ISD::ANY_EXTEND:
case ISD::ANY_EXTEND_VECTOR_INREG:
return ISD::ANY_EXTEND_VECTOR_INREG;
case ISD::ZERO_EXTEND:
case ISD::ZERO_EXTEND_VECTOR_INREG:
return ISD::ZERO_EXTEND_VECTOR_INREG;
case ISD::SIGN_EXTEND:
case ISD::SIGN_EXTEND_VECTOR_INREG:
return ISD::SIGN_EXTEND_VECTOR_INREG;
}
llvm_unreachable("Unknown opcode");
}
static SDValue getExtendInVec(unsigned Opcode, const SDLoc &DL, EVT VT,
SDValue In, SelectionDAG &DAG) {
EVT InVT = In.getValueType();
assert(VT.isVector() && InVT.isVector() && "Expected vector VTs.");
assert((ISD::ANY_EXTEND == Opcode || ISD::SIGN_EXTEND == Opcode ||
ISD::ZERO_EXTEND == Opcode) &&
"Unknown extension opcode");
// For 256-bit vectors, we only need the lower (128-bit) input half.
// For 512-bit vectors, we only need the lower input half or quarter.
if (InVT.getSizeInBits() > 128) {
assert(VT.getSizeInBits() == InVT.getSizeInBits() &&
"Expected VTs to be the same size!");
unsigned Scale = VT.getScalarSizeInBits() / InVT.getScalarSizeInBits();
In = extractSubVector(In, 0, DAG, DL,
std::max(128U, (unsigned)VT.getSizeInBits() / Scale));
InVT = In.getValueType();
}
if (VT.getVectorNumElements() != InVT.getVectorNumElements())
Opcode = getOpcode_EXTEND_VECTOR_INREG(Opcode);
return DAG.getNode(Opcode, DL, VT, In);
}
// Match (xor X, -1) -> X.
// Match extract_subvector(xor X, -1) -> extract_subvector(X).
// Match concat_vectors(xor X, -1, xor Y, -1) -> concat_vectors(X, Y).
static SDValue IsNOT(SDValue V, SelectionDAG &DAG) {
V = peekThroughBitcasts(V);
if (V.getOpcode() == ISD::XOR &&
ISD::isBuildVectorAllOnes(V.getOperand(1).getNode()))
return V.getOperand(0);
if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
(isNullConstant(V.getOperand(1)) || V.getOperand(0).hasOneUse())) {
if (SDValue Not = IsNOT(V.getOperand(0), DAG)) {
Not = DAG.getBitcast(V.getOperand(0).getValueType(), Not);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(Not), V.getValueType(),
Not, V.getOperand(1));
}
}
SmallVector<SDValue, 2> CatOps;
if (collectConcatOps(V.getNode(), CatOps)) {
for (SDValue &CatOp : CatOps) {
SDValue NotCat = IsNOT(CatOp, DAG);
if (!NotCat) return SDValue();
CatOp = DAG.getBitcast(CatOp.getValueType(), NotCat);
}
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(V), V.getValueType(), CatOps);
}
return SDValue();
}
/// Returns a vector_shuffle node for an unpackl operation.
static SDValue getUnpackl(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
SDValue V1, SDValue V2) {
SmallVector<int, 8> Mask;
createUnpackShuffleMask(VT, Mask, /* Lo = */ true, /* Unary = */ false);
return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
/// Returns a vector_shuffle node for an unpackh operation.
static SDValue getUnpackh(SelectionDAG &DAG, const SDLoc &dl, MVT VT,
SDValue V1, SDValue V2) {
SmallVector<int, 8> Mask;
createUnpackShuffleMask(VT, Mask, /* Lo = */ false, /* Unary = */ false);
return DAG.getVectorShuffle(VT, dl, V1, V2, Mask);
}
/// Return a vector_shuffle of the specified vector of zero or undef vector.
/// This produces a shuffle where the low element of V2 is swizzled into the
/// zero/undef vector, landing at element Idx.
/// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, int Idx,
bool IsZero,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = V2.getSimpleValueType();
SDValue V1 = IsZero
? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
int NumElems = VT.getVectorNumElements();
SmallVector<int, 16> MaskVec(NumElems);
for (int i = 0; i != NumElems; ++i)
// If this is the insertion idx, put the low elt of V2 here.
MaskVec[i] = (i == Idx) ? NumElems : i;
return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, MaskVec);
}
static const Constant *getTargetConstantFromNode(LoadSDNode *Load) {
if (!Load || !ISD::isNormalLoad(Load))
return nullptr;
SDValue Ptr = Load->getBasePtr();
if (Ptr->getOpcode() == X86ISD::Wrapper ||
Ptr->getOpcode() == X86ISD::WrapperRIP)
Ptr = Ptr->getOperand(0);
auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
if (!CNode || CNode->isMachineConstantPoolEntry() || CNode->getOffset() != 0)
return nullptr;
return CNode->getConstVal();
}
static const Constant *getTargetConstantFromNode(SDValue Op) {
Op = peekThroughBitcasts(Op);
return getTargetConstantFromNode(dyn_cast<LoadSDNode>(Op));
}
const Constant *
X86TargetLowering::getTargetConstantFromLoad(LoadSDNode *LD) const {
assert(LD && "Unexpected null LoadSDNode");
return getTargetConstantFromNode(LD);
}
// Extract raw constant bits from constant pools.
static bool getTargetConstantBitsFromNode(SDValue Op, unsigned EltSizeInBits,
APInt &UndefElts,
SmallVectorImpl<APInt> &EltBits,
bool AllowWholeUndefs = true,
bool AllowPartialUndefs = true) {
assert(EltBits.empty() && "Expected an empty EltBits vector");
Op = peekThroughBitcasts(Op);
EVT VT = Op.getValueType();
unsigned SizeInBits = VT.getSizeInBits();
assert((SizeInBits % EltSizeInBits) == 0 && "Can't split constant!");
unsigned NumElts = SizeInBits / EltSizeInBits;
// Bitcast a source array of element bits to the target size.
auto CastBitData = [&](APInt &UndefSrcElts, ArrayRef<APInt> SrcEltBits) {
unsigned NumSrcElts = UndefSrcElts.getBitWidth();
unsigned SrcEltSizeInBits = SrcEltBits[0].getBitWidth();
assert((NumSrcElts * SrcEltSizeInBits) == SizeInBits &&
"Constant bit sizes don't match");
// Don't split if we don't allow undef bits.
bool AllowUndefs = AllowWholeUndefs || AllowPartialUndefs;
if (UndefSrcElts.getBoolValue() && !AllowUndefs)
return false;
// If we're already the right size, don't bother bitcasting.
if (NumSrcElts == NumElts) {
UndefElts = UndefSrcElts;
EltBits.assign(SrcEltBits.begin(), SrcEltBits.end());
return true;
}
// Extract all the undef/constant element data and pack into single bitsets.
APInt UndefBits(SizeInBits, 0);
APInt MaskBits(SizeInBits, 0);
for (unsigned i = 0; i != NumSrcElts; ++i) {
unsigned BitOffset = i * SrcEltSizeInBits;
if (UndefSrcElts[i])
UndefBits.setBits(BitOffset, BitOffset + SrcEltSizeInBits);
MaskBits.insertBits(SrcEltBits[i], BitOffset);
}
// Split the undef/constant single bitset data into the target elements.
UndefElts = APInt(NumElts, 0);
EltBits.resize(NumElts, APInt(EltSizeInBits, 0));
for (unsigned i = 0; i != NumElts; ++i) {
unsigned BitOffset = i * EltSizeInBits;
APInt UndefEltBits = UndefBits.extractBits(EltSizeInBits, BitOffset);
// Only treat an element as UNDEF if all bits are UNDEF.
if (UndefEltBits.isAllOnesValue()) {
if (!AllowWholeUndefs)
return false;
UndefElts.setBit(i);
continue;
}
// If only some bits are UNDEF then treat them as zero (or bail if not
// supported).
if (UndefEltBits.getBoolValue() && !AllowPartialUndefs)
return false;
EltBits[i] = MaskBits.extractBits(EltSizeInBits, BitOffset);
}
return true;
};
// Collect constant bits and insert into mask/undef bit masks.
auto CollectConstantBits = [](const Constant *Cst, APInt &Mask, APInt &Undefs,
unsigned UndefBitIndex) {
if (!Cst)
return false;
if (isa<UndefValue>(Cst)) {
Undefs.setBit(UndefBitIndex);
return true;
}
if (auto *CInt = dyn_cast<ConstantInt>(Cst)) {
Mask = CInt->getValue();
return true;
}
if (auto *CFP = dyn_cast<ConstantFP>(Cst)) {
Mask = CFP->getValueAPF().bitcastToAPInt();
return true;
}
return false;
};
// Handle UNDEFs.
if (Op.isUndef()) {
APInt UndefSrcElts = APInt::getAllOnesValue(NumElts);
SmallVector<APInt, 64> SrcEltBits(NumElts, APInt(EltSizeInBits, 0));
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Extract scalar constant bits.
if (auto *Cst = dyn_cast<ConstantSDNode>(Op)) {
APInt UndefSrcElts = APInt::getNullValue(1);
SmallVector<APInt, 64> SrcEltBits(1, Cst->getAPIntValue());
return CastBitData(UndefSrcElts, SrcEltBits);
}
if (auto *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
APInt UndefSrcElts = APInt::getNullValue(1);
APInt RawBits = Cst->getValueAPF().bitcastToAPInt();
SmallVector<APInt, 64> SrcEltBits(1, RawBits);
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Extract constant bits from build vector.
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
const SDValue &Src = Op.getOperand(i);
if (Src.isUndef()) {
UndefSrcElts.setBit(i);
continue;
}
auto *Cst = cast<ConstantSDNode>(Src);
SrcEltBits[i] = Cst->getAPIntValue().zextOrTrunc(SrcEltSizeInBits);
}
return CastBitData(UndefSrcElts, SrcEltBits);
}
if (ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) {
unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
const SDValue &Src = Op.getOperand(i);
if (Src.isUndef()) {
UndefSrcElts.setBit(i);
continue;
}
auto *Cst = cast<ConstantFPSDNode>(Src);
APInt RawBits = Cst->getValueAPF().bitcastToAPInt();
SrcEltBits[i] = RawBits.zextOrTrunc(SrcEltSizeInBits);
}
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Extract constant bits from constant pool vector.
if (auto *Cst = getTargetConstantFromNode(Op)) {
Type *CstTy = Cst->getType();
unsigned CstSizeInBits = CstTy->getPrimitiveSizeInBits();
if (!CstTy->isVectorTy() || (CstSizeInBits % SizeInBits) != 0)
return false;
unsigned SrcEltSizeInBits = CstTy->getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits(NumSrcElts, APInt(SrcEltSizeInBits, 0));
for (unsigned i = 0; i != NumSrcElts; ++i)
if (!CollectConstantBits(Cst->getAggregateElement(i), SrcEltBits[i],
UndefSrcElts, i))
return false;
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Extract constant bits from a broadcasted constant pool scalar.
if (Op.getOpcode() == X86ISD::VBROADCAST &&
EltSizeInBits <= VT.getScalarSizeInBits()) {
if (auto *Broadcast = getTargetConstantFromNode(Op.getOperand(0))) {
unsigned SrcEltSizeInBits = Broadcast->getType()->getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits(1, APInt(SrcEltSizeInBits, 0));
if (CollectConstantBits(Broadcast, SrcEltBits[0], UndefSrcElts, 0)) {
if (UndefSrcElts[0])
UndefSrcElts.setBits(0, NumSrcElts);
SrcEltBits.append(NumSrcElts - 1, SrcEltBits[0]);
return CastBitData(UndefSrcElts, SrcEltBits);
}
}
}
if (Op.getOpcode() == X86ISD::VBROADCAST_LOAD &&
EltSizeInBits <= VT.getScalarSizeInBits()) {
auto *MemIntr = cast<MemIntrinsicSDNode>(Op);
if (MemIntr->getMemoryVT().getScalarSizeInBits() != VT.getScalarSizeInBits())
return false;
SDValue Ptr = MemIntr->getBasePtr();
if (Ptr->getOpcode() == X86ISD::Wrapper ||
Ptr->getOpcode() == X86ISD::WrapperRIP)
Ptr = Ptr->getOperand(0);
auto *CNode = dyn_cast<ConstantPoolSDNode>(Ptr);
if (!CNode || CNode->isMachineConstantPoolEntry() ||
CNode->getOffset() != 0)
return false;
if (const Constant *C = CNode->getConstVal()) {
unsigned SrcEltSizeInBits = C->getType()->getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits(1, APInt(SrcEltSizeInBits, 0));
if (CollectConstantBits(C, SrcEltBits[0], UndefSrcElts, 0)) {
if (UndefSrcElts[0])
UndefSrcElts.setBits(0, NumSrcElts);
SrcEltBits.append(NumSrcElts - 1, SrcEltBits[0]);
return CastBitData(UndefSrcElts, SrcEltBits);
}
}
}
// Extract constant bits from a subvector broadcast.
if (Op.getOpcode() == X86ISD::SUBV_BROADCAST) {
SmallVector<APInt, 16> SubEltBits;
if (getTargetConstantBitsFromNode(Op.getOperand(0), EltSizeInBits,
UndefElts, SubEltBits, AllowWholeUndefs,
AllowPartialUndefs)) {
UndefElts = APInt::getSplat(NumElts, UndefElts);
while (EltBits.size() < NumElts)
EltBits.append(SubEltBits.begin(), SubEltBits.end());
return true;
}
}
// Extract a rematerialized scalar constant insertion.
if (Op.getOpcode() == X86ISD::VZEXT_MOVL &&
Op.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
isa<ConstantSDNode>(Op.getOperand(0).getOperand(0))) {
unsigned SrcEltSizeInBits = VT.getScalarSizeInBits();
unsigned NumSrcElts = SizeInBits / SrcEltSizeInBits;
APInt UndefSrcElts(NumSrcElts, 0);
SmallVector<APInt, 64> SrcEltBits;
auto *CN = cast<ConstantSDNode>(Op.getOperand(0).getOperand(0));
SrcEltBits.push_back(CN->getAPIntValue().zextOrTrunc(SrcEltSizeInBits));
SrcEltBits.append(NumSrcElts - 1, APInt(SrcEltSizeInBits, 0));
return CastBitData(UndefSrcElts, SrcEltBits);
}
// Insert constant bits from a base and sub vector sources.
if (Op.getOpcode() == ISD::INSERT_SUBVECTOR &&
isa<ConstantSDNode>(Op.getOperand(2))) {
// TODO - support insert_subvector through bitcasts.
if (EltSizeInBits != VT.getScalarSizeInBits())
return false;
APInt UndefSubElts;
SmallVector<APInt, 32> EltSubBits;
if (getTargetConstantBitsFromNode(Op.getOperand(1), EltSizeInBits,
UndefSubElts, EltSubBits,
AllowWholeUndefs, AllowPartialUndefs) &&
getTargetConstantBitsFromNode(Op.getOperand(0), EltSizeInBits,
UndefElts, EltBits, AllowWholeUndefs,
AllowPartialUndefs)) {
unsigned BaseIdx = Op.getConstantOperandVal(2);
UndefElts.insertBits(UndefSubElts, BaseIdx);
for (unsigned i = 0, e = EltSubBits.size(); i != e; ++i)
EltBits[BaseIdx + i] = EltSubBits[i];
return true;
}
}
// Extract constant bits from a subvector's source.
if (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
isa<ConstantSDNode>(Op.getOperand(1))) {
// TODO - support extract_subvector through bitcasts.
if (EltSizeInBits != VT.getScalarSizeInBits())
return false;
if (getTargetConstantBitsFromNode(Op.getOperand(0), EltSizeInBits,
UndefElts, EltBits, AllowWholeUndefs,
AllowPartialUndefs)) {
EVT SrcVT = Op.getOperand(0).getValueType();
unsigned NumSrcElts = SrcVT.getVectorNumElements();
unsigned NumSubElts = VT.getVectorNumElements();
unsigned BaseIdx = Op.getConstantOperandVal(1);
UndefElts = UndefElts.extractBits(NumSubElts, BaseIdx);
if ((BaseIdx + NumSubElts) != NumSrcElts)
EltBits.erase(EltBits.begin() + BaseIdx + NumSubElts, EltBits.end());
if (BaseIdx != 0)
EltBits.erase(EltBits.begin(), EltBits.begin() + BaseIdx);
return true;
}
}
// Extract constant bits from shuffle node sources.
if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(Op)) {
// TODO - support shuffle through bitcasts.
if (EltSizeInBits != VT.getScalarSizeInBits())
return false;
ArrayRef<int> Mask = SVN->getMask();
if ((!AllowWholeUndefs || !AllowPartialUndefs) &&
llvm::any_of(Mask, [](int M) { return M < 0; }))
return false;
APInt UndefElts0, UndefElts1;
SmallVector<APInt, 32> EltBits0, EltBits1;
if (isAnyInRange(Mask, 0, NumElts) &&
!getTargetConstantBitsFromNode(Op.getOperand(0), EltSizeInBits,
UndefElts0, EltBits0, AllowWholeUndefs,
AllowPartialUndefs))
return false;
if (isAnyInRange(Mask, NumElts, 2 * NumElts) &&
!getTargetConstantBitsFromNode(Op.getOperand(1), EltSizeInBits,
UndefElts1, EltBits1, AllowWholeUndefs,
AllowPartialUndefs))
return false;
UndefElts = APInt::getNullValue(NumElts);
for (int i = 0; i != (int)NumElts; ++i) {
int M = Mask[i];
if (M < 0) {
UndefElts.setBit(i);
EltBits.push_back(APInt::getNullValue(EltSizeInBits));
} else if (M < (int)NumElts) {
if (UndefElts0[M])
UndefElts.setBit(i);
EltBits.push_back(EltBits0[M]);
} else {
if (UndefElts1[M - NumElts])
UndefElts.setBit(i);
EltBits.push_back(EltBits1[M - NumElts]);
}
}
return true;
}
return false;
}
namespace llvm {
namespace X86 {
bool isConstantSplat(SDValue Op, APInt &SplatVal) {
APInt UndefElts;
SmallVector<APInt, 16> EltBits;
if (getTargetConstantBitsFromNode(Op, Op.getScalarValueSizeInBits(),
UndefElts, EltBits, true, false)) {
int SplatIndex = -1;
for (int i = 0, e = EltBits.size(); i != e; ++i) {
if (UndefElts[i])
continue;
if (0 <= SplatIndex && EltBits[i] != EltBits[SplatIndex]) {
SplatIndex = -1;
break;
}
SplatIndex = i;
}
if (0 <= SplatIndex) {
SplatVal = EltBits[SplatIndex];
return true;
}
}
return false;
}
} // namespace X86
} // namespace llvm
static bool getTargetShuffleMaskIndices(SDValue MaskNode,
unsigned MaskEltSizeInBits,
SmallVectorImpl<uint64_t> &RawMask,
APInt &UndefElts) {
// Extract the raw target constant bits.
SmallVector<APInt, 64> EltBits;
if (!getTargetConstantBitsFromNode(MaskNode, MaskEltSizeInBits, UndefElts,
EltBits, /* AllowWholeUndefs */ true,
/* AllowPartialUndefs */ false))
return false;
// Insert the extracted elements into the mask.
for (APInt Elt : EltBits)
RawMask.push_back(Elt.getZExtValue());
return true;
}
/// Create a shuffle mask that matches the PACKSS/PACKUS truncation.
/// Note: This ignores saturation, so inputs must be checked first.
static void createPackShuffleMask(MVT VT, SmallVectorImpl<int> &Mask,
bool Unary) {
assert(Mask.empty() && "Expected an empty shuffle mask vector");
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumEltsPerLane = 128 / VT.getScalarSizeInBits();
unsigned Offset = Unary ? 0 : NumElts;
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2)
Mask.push_back(Elt + (Lane * NumEltsPerLane));
for (unsigned Elt = 0; Elt != NumEltsPerLane; Elt += 2)
Mask.push_back(Elt + (Lane * NumEltsPerLane) + Offset);
}
}
// Split the demanded elts of a PACKSS/PACKUS node between its operands.
static void getPackDemandedElts(EVT VT, const APInt &DemandedElts,
APInt &DemandedLHS, APInt &DemandedRHS) {
int NumLanes = VT.getSizeInBits() / 128;
int NumElts = DemandedElts.getBitWidth();
int NumInnerElts = NumElts / 2;
int NumEltsPerLane = NumElts / NumLanes;
int NumInnerEltsPerLane = NumInnerElts / NumLanes;
DemandedLHS = APInt::getNullValue(NumInnerElts);
DemandedRHS = APInt::getNullValue(NumInnerElts);
// Map DemandedElts to the packed operands.
for (int Lane = 0; Lane != NumLanes; ++Lane) {
for (int Elt = 0; Elt != NumInnerEltsPerLane; ++Elt) {
int OuterIdx = (Lane * NumEltsPerLane) + Elt;
int InnerIdx = (Lane * NumInnerEltsPerLane) + Elt;
if (DemandedElts[OuterIdx])
DemandedLHS.setBit(InnerIdx);
if (DemandedElts[OuterIdx + NumInnerEltsPerLane])
DemandedRHS.setBit(InnerIdx);
}
}
}
// Split the demanded elts of a HADD/HSUB node between its operands.
static void getHorizDemandedElts(EVT VT, const APInt &DemandedElts,
APInt &DemandedLHS, APInt &DemandedRHS) {
int NumLanes = VT.getSizeInBits() / 128;
int NumElts = DemandedElts.getBitWidth();
int NumEltsPerLane = NumElts / NumLanes;
int HalfEltsPerLane = NumEltsPerLane / 2;
DemandedLHS = APInt::getNullValue(NumElts);
DemandedRHS = APInt::getNullValue(NumElts);
// Map DemandedElts to the horizontal operands.
for (int Idx = 0; Idx != NumElts; ++Idx) {
if (!DemandedElts[Idx])
continue;
int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane;
int LocalIdx = Idx % NumEltsPerLane;
if (LocalIdx < HalfEltsPerLane) {
DemandedLHS.setBit(LaneIdx + 2 * LocalIdx + 0);
DemandedLHS.setBit(LaneIdx + 2 * LocalIdx + 1);
} else {
LocalIdx -= HalfEltsPerLane;
DemandedRHS.setBit(LaneIdx + 2 * LocalIdx + 0);
DemandedRHS.setBit(LaneIdx + 2 * LocalIdx + 1);
}
}
}
/// Calculates the shuffle mask corresponding to the target-specific opcode.
/// If the mask could be calculated, returns it in \p Mask, returns the shuffle
/// operands in \p Ops, and returns true.
/// Sets \p IsUnary to true if only one source is used. Note that this will set
/// IsUnary for shuffles which use a single input multiple times, and in those
/// cases it will adjust the mask to only have indices within that single input.
/// It is an error to call this with non-empty Mask/Ops vectors.
static bool getTargetShuffleMask(SDNode *N, MVT VT, bool AllowSentinelZero,
SmallVectorImpl<SDValue> &Ops,
SmallVectorImpl<int> &Mask, bool &IsUnary) {
unsigned NumElems = VT.getVectorNumElements();
unsigned MaskEltSize = VT.getScalarSizeInBits();
SmallVector<uint64_t, 32> RawMask;
APInt RawUndefs;
SDValue ImmN;
assert(Mask.empty() && "getTargetShuffleMask expects an empty Mask vector");
assert(Ops.empty() && "getTargetShuffleMask expects an empty Ops vector");
IsUnary = false;
bool IsFakeUnary = false;
switch (N->getOpcode()) {
case X86ISD::BLENDI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodeBLENDMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::SHUFP:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodeSHUFPMask(NumElems, MaskEltSize,
cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::INSERTPS:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodeINSERTPSMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::EXTRQI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
if (isa<ConstantSDNode>(N->getOperand(1)) &&
isa<ConstantSDNode>(N->getOperand(2))) {
int BitLen = N->getConstantOperandVal(1);
int BitIdx = N->getConstantOperandVal(2);
DecodeEXTRQIMask(NumElems, MaskEltSize, BitLen, BitIdx, Mask);
IsUnary = true;
}
break;
case X86ISD::INSERTQI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
if (isa<ConstantSDNode>(N->getOperand(2)) &&
isa<ConstantSDNode>(N->getOperand(3))) {
int BitLen = N->getConstantOperandVal(2);
int BitIdx = N->getConstantOperandVal(3);
DecodeINSERTQIMask(NumElems, MaskEltSize, BitLen, BitIdx, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
}
break;
case X86ISD::UNPCKH:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeUNPCKHMask(NumElems, MaskEltSize, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::UNPCKL:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeUNPCKLMask(NumElems, MaskEltSize, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVHLPS:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeMOVHLPSMask(NumElems, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVLHPS:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeMOVLHPSMask(NumElems, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::PALIGNR:
assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodePALIGNRMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
Ops.push_back(N->getOperand(1));
Ops.push_back(N->getOperand(0));
break;
case X86ISD::VSHLDQ:
assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodePSLLDQMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = true;
break;
case X86ISD::VSRLDQ:
assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodePSRLDQMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = true;
break;
case X86ISD::PSHUFD:
case X86ISD::VPERMILPI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodePSHUFMask(NumElems, MaskEltSize,
cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::PSHUFHW:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodePSHUFHWMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = true;
break;
case X86ISD::PSHUFLW:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodePSHUFLWMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = true;
break;
case X86ISD::VZEXT_MOVL:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
DecodeZeroMoveLowMask(NumElems, Mask);
IsUnary = true;
break;
case X86ISD::VBROADCAST: {
SDValue N0 = N->getOperand(0);
// See if we're broadcasting from index 0 of an EXTRACT_SUBVECTOR. If so,
// add the pre-extracted value to the Ops vector.
if (N0.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N0.getOperand(0).getValueType() == VT &&
N0.getConstantOperandVal(1) == 0)
Ops.push_back(N0.getOperand(0));
// We only decode broadcasts of same-sized vectors, unless the broadcast
// came from an extract from the original width. If we found one, we
// pushed it the Ops vector above.
if (N0.getValueType() == VT || !Ops.empty()) {
DecodeVectorBroadcast(NumElems, Mask);
IsUnary = true;
break;
}
return false;
}
case X86ISD::VPERMILPV: {
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
IsUnary = true;
SDValue MaskNode = N->getOperand(1);
if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask,
RawUndefs)) {
DecodeVPERMILPMask(NumElems, MaskEltSize, RawMask, RawUndefs, Mask);
break;
}
return false;
}
case X86ISD::PSHUFB: {
assert(VT.getScalarType() == MVT::i8 && "Byte vector expected");
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
IsUnary = true;
SDValue MaskNode = N->getOperand(1);
if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask, RawUndefs)) {
DecodePSHUFBMask(RawMask, RawUndefs, Mask);
break;
}
return false;
}
case X86ISD::VPERMI:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodeVPERMMask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::MOVSS:
case X86ISD::MOVSD:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
DecodeScalarMoveMask(NumElems, /* IsLoad */ false, Mask);
break;
case X86ISD::VPERM2X128:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
DecodeVPERM2X128Mask(NumElems, cast<ConstantSDNode>(ImmN)->getZExtValue(),
Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::SHUF128:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
ImmN = N->getOperand(N->getNumOperands() - 1);
decodeVSHUF64x2FamilyMask(NumElems, MaskEltSize,
cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVSLDUP:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
DecodeMOVSLDUPMask(NumElems, Mask);
IsUnary = true;
break;
case X86ISD::MOVSHDUP:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
DecodeMOVSHDUPMask(NumElems, Mask);
IsUnary = true;
break;
case X86ISD::MOVDDUP:
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
DecodeMOVDDUPMask(NumElems, Mask);
IsUnary = true;
break;
case X86ISD::VPERMIL2: {
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
SDValue MaskNode = N->getOperand(2);
SDValue CtrlNode = N->getOperand(3);
if (ConstantSDNode *CtrlOp = dyn_cast<ConstantSDNode>(CtrlNode)) {
unsigned CtrlImm = CtrlOp->getZExtValue();
if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask,
RawUndefs)) {
DecodeVPERMIL2PMask(NumElems, MaskEltSize, CtrlImm, RawMask, RawUndefs,
Mask);
break;
}
}
return false;
}
case X86ISD::VPPERM: {
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
SDValue MaskNode = N->getOperand(2);
if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask, RawUndefs)) {
DecodeVPPERMMask(RawMask, RawUndefs, Mask);
break;
}
return false;
}
case X86ISD::VPERMV: {
assert(N->getOperand(1).getValueType() == VT && "Unexpected value type");
IsUnary = true;
// Unlike most shuffle nodes, VPERMV's mask operand is operand 0.
Ops.push_back(N->getOperand(1));
SDValue MaskNode = N->getOperand(0);
if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask,
RawUndefs)) {
DecodeVPERMVMask(RawMask, RawUndefs, Mask);
break;
}
return false;
}
case X86ISD::VPERMV3: {
assert(N->getOperand(0).getValueType() == VT && "Unexpected value type");
assert(N->getOperand(2).getValueType() == VT && "Unexpected value type");
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(2);
// Unlike most shuffle nodes, VPERMV3's mask operand is the middle one.
Ops.push_back(N->getOperand(0));
Ops.push_back(N->getOperand(2));
SDValue MaskNode = N->getOperand(1);
if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask,
RawUndefs)) {
DecodeVPERMV3Mask(RawMask, RawUndefs, Mask);
break;
}
return false;
}
default: llvm_unreachable("unknown target shuffle node");
}
// Empty mask indicates the decode failed.
if (Mask.empty())
return false;
// Check if we're getting a shuffle mask with zero'd elements.
if (!AllowSentinelZero)
if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
return false;
// If we have a fake unary shuffle, the shuffle mask is spread across two
// inputs that are actually the same node. Re-map the mask to always point
// into the first input.
if (IsFakeUnary)
for (int &M : Mask)
if (M >= (int)Mask.size())
M -= Mask.size();
// If we didn't already add operands in the opcode-specific code, default to
// adding 1 or 2 operands starting at 0.
if (Ops.empty()) {
Ops.push_back(N->getOperand(0));
if (!IsUnary || IsFakeUnary)
Ops.push_back(N->getOperand(1));
}
return true;
}
/// Compute whether each element of a shuffle is zeroable.
///
/// A "zeroable" vector shuffle element is one which can be lowered to zero.
/// Either it is an undef element in the shuffle mask, the element of the input
/// referenced is undef, or the element of the input referenced is known to be
/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
/// as many lanes with this technique as possible to simplify the remaining
/// shuffle.
static void computeZeroableShuffleElements(ArrayRef<int> Mask,
SDValue V1, SDValue V2,
APInt &KnownUndef, APInt &KnownZero) {
int Size = Mask.size();
KnownUndef = KnownZero = APInt::getNullValue(Size);
V1 = peekThroughBitcasts(V1);
V2 = peekThroughBitcasts(V2);
bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
int VectorSizeInBits = V1.getValueSizeInBits();
int ScalarSizeInBits = VectorSizeInBits / Size;
assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size");
for (int i = 0; i < Size; ++i) {
int M = Mask[i];
// Handle the easy cases.
if (M < 0) {
KnownUndef.setBit(i);
continue;
}
if ((M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
KnownZero.setBit(i);
continue;
}
// Determine shuffle input and normalize the mask.
SDValue V = M < Size ? V1 : V2;
M %= Size;
// Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements.
if (V.getOpcode() != ISD::BUILD_VECTOR)
continue;
// If the BUILD_VECTOR has fewer elements then the bitcasted portion of
// the (larger) source element must be UNDEF/ZERO.
if ((Size % V.getNumOperands()) == 0) {
int Scale = Size / V->getNumOperands();
SDValue Op = V.getOperand(M / Scale);
if (Op.isUndef())
KnownUndef.setBit(i);
if (X86::isZeroNode(Op))
KnownZero.setBit(i);
else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
APInt Val = Cst->getAPIntValue();
Val = Val.extractBits(ScalarSizeInBits, (M % Scale) * ScalarSizeInBits);
if (Val == 0)
KnownZero.setBit(i);
} else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
APInt Val = Cst->getValueAPF().bitcastToAPInt();
Val = Val.extractBits(ScalarSizeInBits, (M % Scale) * ScalarSizeInBits);
if (Val == 0)
KnownZero.setBit(i);
}
continue;
}
// If the BUILD_VECTOR has more elements then all the (smaller) source
// elements must be UNDEF or ZERO.
if ((V.getNumOperands() % Size) == 0) {
int Scale = V->getNumOperands() / Size;
bool AllUndef = true;
bool AllZero = true;
for (int j = 0; j < Scale; ++j) {
SDValue Op = V.getOperand((M * Scale) + j);
AllUndef &= Op.isUndef();
AllZero &= X86::isZeroNode(Op);
}
if (AllUndef)
KnownUndef.setBit(i);
if (AllZero)
KnownZero.setBit(i);
continue;
}
}
}
/// Decode a target shuffle mask and inputs and see if any values are
/// known to be undef or zero from their inputs.
/// Returns true if the target shuffle mask was decoded.
/// FIXME: Merge this with computeZeroableShuffleElements?
static bool getTargetShuffleAndZeroables(SDValue N, SmallVectorImpl<int> &Mask,
SmallVectorImpl<SDValue> &Ops,
APInt &KnownUndef, APInt &KnownZero) {
bool IsUnary;
if (!isTargetShuffle(N.getOpcode()))
return false;
MVT VT = N.getSimpleValueType();
if (!getTargetShuffleMask(N.getNode(), VT, true, Ops, Mask, IsUnary))
return false;
int Size = Mask.size();
SDValue V1 = Ops[0];
SDValue V2 = IsUnary ? V1 : Ops[1];
KnownUndef = KnownZero = APInt::getNullValue(Size);
V1 = peekThroughBitcasts(V1);
V2 = peekThroughBitcasts(V2);
assert((VT.getSizeInBits() % Size) == 0 &&
"Illegal split of shuffle value type");
unsigned EltSizeInBits = VT.getSizeInBits() / Size;
// Extract known constant input data.
APInt UndefSrcElts[2];
SmallVector<APInt, 32> SrcEltBits[2];
bool IsSrcConstant[2] = {
getTargetConstantBitsFromNode(V1, EltSizeInBits, UndefSrcElts[0],
SrcEltBits[0], true, false),
getTargetConstantBitsFromNode(V2, EltSizeInBits, UndefSrcElts[1],
SrcEltBits[1], true, false)};
for (int i = 0; i < Size; ++i) {
int M = Mask[i];
// Already decoded as SM_SentinelZero / SM_SentinelUndef.
if (M < 0) {
assert(isUndefOrZero(M) && "Unknown shuffle sentinel value!");
if (SM_SentinelUndef == M)
KnownUndef.setBit(i);
if (SM_SentinelZero == M)
KnownZero.setBit(i);
continue;
}
// Determine shuffle input and normalize the mask.
unsigned SrcIdx = M / Size;
SDValue V = M < Size ? V1 : V2;
M %= Size;
// We are referencing an UNDEF input.
if (V.isUndef()) {
KnownUndef.setBit(i);
continue;
}
// SCALAR_TO_VECTOR - only the first element is defined, and the rest UNDEF.
// TODO: We currently only set UNDEF for integer types - floats use the same
// registers as vectors and many of the scalar folded loads rely on the
// SCALAR_TO_VECTOR pattern.
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
(Size % V.getValueType().getVectorNumElements()) == 0) {
int Scale = Size / V.getValueType().getVectorNumElements();
int Idx = M / Scale;
if (Idx != 0 && !VT.isFloatingPoint())
KnownUndef.setBit(i);
else if (Idx == 0 && X86::isZeroNode(V.getOperand(0)))
KnownZero.setBit(i);
continue;
}
// Attempt to extract from the source's constant bits.
if (IsSrcConstant[SrcIdx]) {
if (UndefSrcElts[SrcIdx][M])
KnownUndef.setBit(i);
else if (SrcEltBits[SrcIdx][M] == 0)
KnownZero.setBit(i);
}
}
assert(VT.getVectorNumElements() == (unsigned)Size &&
"Different mask size from vector size!");
return true;
}
// Replace target shuffle mask elements with known undef/zero sentinels.
static void resolveTargetShuffleFromZeroables(SmallVectorImpl<int> &Mask,
const APInt &KnownUndef,
const APInt &KnownZero,
bool ResolveKnownZeros= true) {
unsigned NumElts = Mask.size();
assert(KnownUndef.getBitWidth() == NumElts &&
KnownZero.getBitWidth() == NumElts && "Shuffle mask size mismatch");
for (unsigned i = 0; i != NumElts; ++i) {
if (KnownUndef[i])
Mask[i] = SM_SentinelUndef;
else if (ResolveKnownZeros && KnownZero[i])
Mask[i] = SM_SentinelZero;
}
}
// Extract target shuffle mask sentinel elements to known undef/zero bitmasks.
static void resolveZeroablesFromTargetShuffle(const SmallVectorImpl<int> &Mask,
APInt &KnownUndef,
APInt &KnownZero) {
unsigned NumElts = Mask.size();
KnownUndef = KnownZero = APInt::getNullValue(NumElts);
for (unsigned i = 0; i != NumElts; ++i) {
int M = Mask[i];
if (SM_SentinelUndef == M)
KnownUndef.setBit(i);
if (SM_SentinelZero == M)
KnownZero.setBit(i);
}
}
// Forward declaration (for getFauxShuffleMask recursive check).
// TODO: Use DemandedElts variant.
static bool getTargetShuffleInputs(SDValue Op, SmallVectorImpl<SDValue> &Inputs,
SmallVectorImpl<int> &Mask,
SelectionDAG &DAG, unsigned Depth,
bool ResolveKnownElts);
// Attempt to decode ops that could be represented as a shuffle mask.
// The decoded shuffle mask may contain a different number of elements to the
// destination value type.
static bool getFauxShuffleMask(SDValue N, const APInt &DemandedElts,
SmallVectorImpl<int> &Mask,
SmallVectorImpl<SDValue> &Ops,
SelectionDAG &DAG, unsigned Depth,
bool ResolveKnownElts) {
Mask.clear();
Ops.clear();
MVT VT = N.getSimpleValueType();
unsigned NumElts = VT.getVectorNumElements();
unsigned NumSizeInBits = VT.getSizeInBits();
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
if ((NumBitsPerElt % 8) != 0 || (NumSizeInBits % 8) != 0)
return false;
assert(NumElts == DemandedElts.getBitWidth() && "Unexpected vector size");
unsigned Opcode = N.getOpcode();
switch (Opcode) {
case ISD::VECTOR_SHUFFLE: {
// Don't treat ISD::VECTOR_SHUFFLE as a target shuffle so decode it here.
ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(N)->getMask();
if (isUndefOrInRange(ShuffleMask, 0, 2 * NumElts)) {
Mask.append(ShuffleMask.begin(), ShuffleMask.end());
Ops.push_back(N.getOperand(0));
Ops.push_back(N.getOperand(1));
return true;
}
return false;
}
case ISD::AND:
case X86ISD::ANDNP: {
// Attempt to decode as a per-byte mask.
APInt UndefElts;
SmallVector<APInt, 32> EltBits;
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
bool IsAndN = (X86ISD::ANDNP == Opcode);
uint64_t ZeroMask = IsAndN ? 255 : 0;
if (!getTargetConstantBitsFromNode(IsAndN ? N0 : N1, 8, UndefElts, EltBits))
return false;
for (int i = 0, e = (int)EltBits.size(); i != e; ++i) {
if (UndefElts[i]) {
Mask.push_back(SM_SentinelUndef);
continue;
}
const APInt &ByteBits = EltBits[i];
if (ByteBits != 0 && ByteBits != 255)
return false;
Mask.push_back(ByteBits == ZeroMask ? SM_SentinelZero : i);
}
Ops.push_back(IsAndN ? N1 : N0);
return true;
}
case ISD::OR: {
// Inspect each operand at the byte level. We can merge these into a
// blend shuffle mask if for each byte at least one is masked out (zero).
KnownBits Known0 =
DAG.computeKnownBits(N.getOperand(0), DemandedElts, Depth + 1);
KnownBits Known1 =
DAG.computeKnownBits(N.getOperand(1), DemandedElts, Depth + 1);
if (Known0.One.isNullValue() && Known1.One.isNullValue()) {
bool IsByteMask = true;
unsigned NumSizeInBytes = NumSizeInBits / 8;
unsigned NumBytesPerElt = NumBitsPerElt / 8;
APInt ZeroMask = APInt::getNullValue(NumBytesPerElt);
APInt SelectMask = APInt::getNullValue(NumBytesPerElt);
for (unsigned i = 0; i != NumBytesPerElt && IsByteMask; ++i) {
unsigned LHS = Known0.Zero.extractBits(8, i * 8).getZExtValue();
unsigned RHS = Known1.Zero.extractBits(8, i * 8).getZExtValue();
if (LHS == 255 && RHS == 0)
SelectMask.setBit(i);
else if (LHS == 255 && RHS == 255)
ZeroMask.setBit(i);
else if (!(LHS == 0 && RHS == 255))
IsByteMask = false;
}
if (IsByteMask) {
for (unsigned i = 0; i != NumSizeInBytes; i += NumBytesPerElt) {
for (unsigned j = 0; j != NumBytesPerElt; ++j) {
unsigned Ofs = (SelectMask[j] ? NumSizeInBytes : 0);
int Idx = (ZeroMask[j] ? (int)SM_SentinelZero : (i + j + Ofs));
Mask.push_back(Idx);
}
}
Ops.push_back(N.getOperand(0));
Ops.push_back(N.getOperand(1));
return true;
}
}
// Handle OR(SHUFFLE,SHUFFLE) case where one source is zero and the other
// is a valid shuffle index.
SDValue N0 = peekThroughOneUseBitcasts(N.getOperand(0));
SDValue N1 = peekThroughOneUseBitcasts(N.getOperand(1));
if (!N0.getValueType().isVector() || !N1.getValueType().isVector())
return false;
SmallVector<int, 64> SrcMask0, SrcMask1;
SmallVector<SDValue, 2> SrcInputs0, SrcInputs1;
if (!getTargetShuffleInputs(N0, SrcInputs0, SrcMask0, DAG, Depth + 1,
true) ||
!getTargetShuffleInputs(N1, SrcInputs1, SrcMask1, DAG, Depth + 1,
true))
return false;
size_t MaskSize = std::max(SrcMask0.size(), SrcMask1.size());
SmallVector<int, 64> Mask0, Mask1;
scaleShuffleMask<int>(MaskSize / SrcMask0.size(), SrcMask0, Mask0);
scaleShuffleMask<int>(MaskSize / SrcMask1.size(), SrcMask1, Mask1);
for (size_t i = 0; i != MaskSize; ++i) {
if (Mask0[i] == SM_SentinelUndef && Mask1[i] == SM_SentinelUndef)
Mask.push_back(SM_SentinelUndef);
else if (Mask0[i] == SM_SentinelZero && Mask1[i] == SM_SentinelZero)
Mask.push_back(SM_SentinelZero);
else if (Mask1[i] == SM_SentinelZero)
Mask.push_back(Mask0[i]);
else if (Mask0[i] == SM_SentinelZero)
Mask.push_back(Mask1[i] + (int)(MaskSize * SrcInputs0.size()));
else
return false;
}
Ops.append(SrcInputs0.begin(), SrcInputs0.end());
Ops.append(SrcInputs1.begin(), SrcInputs1.end());
return true;
}
case ISD::INSERT_SUBVECTOR: {
SDValue Src = N.getOperand(0);
SDValue Sub = N.getOperand(1);
EVT SubVT = Sub.getValueType();
unsigned NumSubElts = SubVT.getVectorNumElements();
if (!isa<ConstantSDNode>(N.getOperand(2)) ||
!N->isOnlyUserOf(Sub.getNode()))
return false;
uint64_t InsertIdx = N.getConstantOperandVal(2);
// Handle INSERT_SUBVECTOR(SRC0, EXTRACT_SUBVECTOR(SRC1)).
if (Sub.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
Sub.getOperand(0).getValueType() == VT &&
isa<ConstantSDNode>(Sub.getOperand(1))) {
uint64_t ExtractIdx = Sub.getConstantOperandVal(1);
for (int i = 0; i != (int)NumElts; ++i)
Mask.push_back(i);
for (int i = 0; i != (int)NumSubElts; ++i)
Mask[InsertIdx + i] = NumElts + ExtractIdx + i;
Ops.push_back(Src);
Ops.push_back(Sub.getOperand(0));
return true;
}
// Handle INSERT_SUBVECTOR(SRC0, SHUFFLE(SRC1)).
SmallVector<int, 64> SubMask;
SmallVector<SDValue, 2> SubInputs;
if (!getTargetShuffleInputs(peekThroughOneUseBitcasts(Sub), SubInputs,
SubMask, DAG, Depth + 1, ResolveKnownElts))
return false;
if (SubMask.size() != NumSubElts) {
assert(((SubMask.size() % NumSubElts) == 0 ||
(NumSubElts % SubMask.size()) == 0) && "Illegal submask scale");
if ((NumSubElts % SubMask.size()) == 0) {
int Scale = NumSubElts / SubMask.size();
SmallVector<int,64> ScaledSubMask;
scaleShuffleMask<int>(Scale, SubMask, ScaledSubMask);
SubMask = ScaledSubMask;
} else {
int Scale = SubMask.size() / NumSubElts;
NumSubElts = SubMask.size();
NumElts *= Scale;
InsertIdx *= Scale;
}
}
Ops.push_back(Src);
for (SDValue &SubInput : SubInputs) {
EVT SubSVT = SubInput.getValueType().getScalarType();
EVT AltVT = EVT::getVectorVT(*DAG.getContext(), SubSVT,
NumSizeInBits / SubSVT.getSizeInBits());
Ops.push_back(DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), AltVT,
DAG.getUNDEF(AltVT), SubInput,
DAG.getIntPtrConstant(0, SDLoc(N))));
}
for (int i = 0; i != (int)NumElts; ++i)
Mask.push_back(i);
for (int i = 0; i != (int)NumSubElts; ++i) {
int M = SubMask[i];
if (0 <= M) {
int InputIdx = M / NumSubElts;
M = (NumElts * (1 + InputIdx)) + (M % NumSubElts);
}
Mask[i + InsertIdx] = M;
}
return true;
}
case ISD::SCALAR_TO_VECTOR: {
// Match against a scalar_to_vector of an extract from a vector,
// for PEXTRW/PEXTRB we must handle the implicit zext of the scalar.
SDValue N0 = N.getOperand(0);
SDValue SrcExtract;
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
N0.getOperand(0).getValueType() == VT) ||
(N0.getOpcode() == X86ISD::PEXTRW &&
N0.getOperand(0).getValueType() == MVT::v8i16) ||
(N0.getOpcode() == X86ISD::PEXTRB &&
N0.getOperand(0).getValueType() == MVT::v16i8)) {
SrcExtract = N0;
}
if (!SrcExtract || !isa<ConstantSDNode>(SrcExtract.getOperand(1)))
return false;
SDValue SrcVec = SrcExtract.getOperand(0);
EVT SrcVT = SrcVec.getValueType();
unsigned NumSrcElts = SrcVT.getVectorNumElements();
unsigned NumZeros = (NumBitsPerElt / SrcVT.getScalarSizeInBits()) - 1;
unsigned SrcIdx = SrcExtract.getConstantOperandVal(1);
if (NumSrcElts <= SrcIdx)
return false;
Ops.push_back(SrcVec);
Mask.push_back(SrcIdx);
Mask.append(NumZeros, SM_SentinelZero);
Mask.append(NumSrcElts - Mask.size(), SM_SentinelUndef);
return true;
}
case X86ISD::PINSRB:
case X86ISD::PINSRW: {
SDValue InVec = N.getOperand(0);
SDValue InScl = N.getOperand(1);
SDValue InIndex = N.getOperand(2);
if (!isa<ConstantSDNode>(InIndex) ||
cast<ConstantSDNode>(InIndex)->getAPIntValue().uge(NumElts))
return false;
uint64_t InIdx = N.getConstantOperandVal(2);
// Attempt to recognise a PINSR*(VEC, 0, Idx) shuffle pattern.
if (X86::isZeroNode(InScl)) {
Ops.push_back(InVec);
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(i == InIdx ? SM_SentinelZero : (int)i);
return true;
}
// Attempt to recognise a PINSR*(PEXTR*) shuffle pattern.
// TODO: Expand this to support INSERT_VECTOR_ELT/etc.
unsigned ExOp =
(X86ISD::PINSRB == Opcode ? X86ISD::PEXTRB : X86ISD::PEXTRW);
if (InScl.getOpcode() != ExOp)
return false;
SDValue ExVec = InScl.getOperand(0);
SDValue ExIndex = InScl.getOperand(1);
if (!isa<ConstantSDNode>(ExIndex) ||
cast<ConstantSDNode>(ExIndex)->getAPIntValue().uge(NumElts))
return false;
uint64_t ExIdx = InScl.getConstantOperandVal(1);
Ops.push_back(InVec);
Ops.push_back(ExVec);
for (unsigned i = 0; i != NumElts; ++i)
Mask.push_back(i == InIdx ? NumElts + ExIdx : i);
return true;
}
case X86ISD::PACKSS:
case X86ISD::PACKUS: {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
assert(N0.getValueType().getVectorNumElements() == (NumElts / 2) &&
N1.getValueType().getVectorNumElements() == (NumElts / 2) &&
"Unexpected input value type");
APInt EltsLHS, EltsRHS;
getPackDemandedElts(VT, DemandedElts, EltsLHS, EltsRHS);
// If we know input saturation won't happen we can treat this
// as a truncation shuffle.
if (Opcode == X86ISD::PACKSS) {
if ((!N0.isUndef() &&
DAG.ComputeNumSignBits(N0, EltsLHS, Depth + 1) <= NumBitsPerElt) ||
(!N1.isUndef() &&
DAG.ComputeNumSignBits(N1, EltsRHS, Depth + 1) <= NumBitsPerElt))
return false;
} else {
APInt ZeroMask = APInt::getHighBitsSet(2 * NumBitsPerElt, NumBitsPerElt);
if ((!N0.isUndef() &&
!DAG.MaskedValueIsZero(N0, ZeroMask, EltsLHS, Depth + 1)) ||
(!N1.isUndef() &&
!DAG.MaskedValueIsZero(N1, ZeroMask, EltsRHS, Depth + 1)))
return false;
}
bool IsUnary = (N0 == N1);
Ops.push_back(N0);
if (!IsUnary)
Ops.push_back(N1);
createPackShuffleMask(VT, Mask, IsUnary);
return true;
}
case X86ISD::VSHLI:
case X86ISD::VSRLI: {
uint64_t ShiftVal = N.getConstantOperandVal(1);
// Out of range bit shifts are guaranteed to be zero.
if (NumBitsPerElt <= ShiftVal) {
Mask.append(NumElts, SM_SentinelZero);
return true;
}
// We can only decode 'whole byte' bit shifts as shuffles.
if ((ShiftVal % 8) != 0)
break;
uint64_t ByteShift = ShiftVal / 8;
unsigned NumBytes = NumSizeInBits / 8;
unsigned NumBytesPerElt = NumBitsPerElt / 8;
Ops.push_back(N.getOperand(0));
// Clear mask to all zeros and insert the shifted byte indices.
Mask.append(NumBytes, SM_SentinelZero);
if (X86ISD::VSHLI == Opcode) {
for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
Mask[i + j] = i + j - ByteShift;
} else {
for (unsigned i = 0; i != NumBytes; i += NumBytesPerElt)
for (unsigned j = ByteShift; j != NumBytesPerElt; ++j)
Mask[i + j - ByteShift] = i + j;
}
return true;
}
case X86ISD::VBROADCAST: {
SDValue Src = N.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
if (!SrcVT.isVector())
return false;
if (NumSizeInBits != SrcVT.getSizeInBits()) {
assert((NumSizeInBits % SrcVT.getSizeInBits()) == 0 &&
"Illegal broadcast type");
SrcVT = MVT::getVectorVT(SrcVT.getScalarType(),
NumSizeInBits / SrcVT.getScalarSizeInBits());
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), SrcVT,
DAG.getUNDEF(SrcVT), Src,
DAG.getIntPtrConstant(0, SDLoc(N)));
}
Ops.push_back(Src);
Mask.append(NumElts, 0);
return true;
}
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND_VECTOR_INREG:
case ISD::ANY_EXTEND_VECTOR_INREG: {
SDValue Src = N.getOperand(0);
EVT SrcVT = Src.getValueType();
// Extended source must be a simple vector.
if (!SrcVT.isSimple() || (SrcVT.getSizeInBits() % 128) != 0 ||
(SrcVT.getScalarSizeInBits() % 8) != 0)
return false;
unsigned NumSrcBitsPerElt = SrcVT.getScalarSizeInBits();
bool IsAnyExtend =
(ISD::ANY_EXTEND == Opcode || ISD::ANY_EXTEND_VECTOR_INREG == Opcode);
DecodeZeroExtendMask(NumSrcBitsPerElt, NumBitsPerElt, NumElts, IsAnyExtend,
Mask);
if (NumSizeInBits != SrcVT.getSizeInBits()) {
assert((NumSizeInBits % SrcVT.getSizeInBits()) == 0 &&
"Illegal zero-extension type");
SrcVT = MVT::getVectorVT(SrcVT.getSimpleVT().getScalarType(),
NumSizeInBits / NumSrcBitsPerElt);
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), SrcVT,
DAG.getUNDEF(SrcVT), Src,
DAG.getIntPtrConstant(0, SDLoc(N)));
}
Ops.push_back(Src);
return true;
}
}
return false;
}
/// Removes unused/repeated shuffle source inputs and adjusts the shuffle mask.
static void resolveTargetShuffleInputsAndMask(SmallVectorImpl<SDValue> &Inputs,
SmallVectorImpl<int> &Mask) {
int MaskWidth = Mask.size();
SmallVector<SDValue, 16> UsedInputs;
for (int i = 0, e = Inputs.size(); i < e; ++i) {
int lo = UsedInputs.size() * MaskWidth;
int hi = lo + MaskWidth;
// Strip UNDEF input usage.
if (Inputs[i].isUndef())
for (int &M : Mask)
if ((lo <= M) && (M < hi))
M = SM_SentinelUndef;
// Check for unused inputs.
if (none_of(Mask, [lo, hi](int i) { return (lo <= i) && (i < hi); })) {
for (int &M : Mask)
if (lo <= M)
M -= MaskWidth;
continue;
}
// Check for repeated inputs.
bool IsRepeat = false;
for (int j = 0, ue = UsedInputs.size(); j != ue; ++j) {
if (UsedInputs[j] != Inputs[i])
continue;
for (int &M : Mask)
if (lo <= M)
M = (M < hi) ? ((M - lo) + (j * MaskWidth)) : (M - MaskWidth);
IsRepeat = true;
break;
}
if (IsRepeat)
continue;
UsedInputs.push_back(Inputs[i]);
}
Inputs = UsedInputs;
}
/// Calls getTargetShuffleAndZeroables to resolve a target shuffle mask's inputs
/// and then sets the SM_SentinelUndef and SM_SentinelZero values.
/// Returns true if the target shuffle mask was decoded.
static bool getTargetShuffleInputs(SDValue Op, const APInt &DemandedElts,
SmallVectorImpl<SDValue> &Inputs,
SmallVectorImpl<int> &Mask,
APInt &KnownUndef, APInt &KnownZero,
SelectionDAG &DAG, unsigned Depth,
bool ResolveKnownElts) {
EVT VT = Op.getValueType();
if (!VT.isSimple() || !VT.isVector())
return false;
if (getTargetShuffleAndZeroables(Op, Mask, Inputs, KnownUndef, KnownZero)) {
if (ResolveKnownElts)
resolveTargetShuffleFromZeroables(Mask, KnownUndef, KnownZero);
return true;
}
if (getFauxShuffleMask(Op, DemandedElts, Mask, Inputs, DAG, Depth,
ResolveKnownElts)) {
resolveZeroablesFromTargetShuffle(Mask, KnownUndef, KnownZero);
return true;
}
return false;
}
static bool getTargetShuffleInputs(SDValue Op, SmallVectorImpl<SDValue> &Inputs,
SmallVectorImpl<int> &Mask,
SelectionDAG &DAG, unsigned Depth = 0,
bool ResolveKnownElts = true) {
EVT VT = Op.getValueType();
if (!VT.isSimple() || !VT.isVector())
return false;
APInt KnownUndef, KnownZero;
unsigned NumElts = Op.getValueType().getVectorNumElements();
APInt DemandedElts = APInt::getAllOnesValue(NumElts);
return getTargetShuffleInputs(Op, DemandedElts, Inputs, Mask, KnownUndef,
KnownZero, DAG, Depth, ResolveKnownElts);
}
/// Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
unsigned Depth) {
if (Depth == 6)
return SDValue(); // Limit search depth.
SDValue V = SDValue(N, 0);
EVT VT = V.getValueType();
unsigned Opcode = V.getOpcode();
// Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
int Elt = SV->getMaskElt(Index);
if (Elt < 0)
return DAG.getUNDEF(VT.getVectorElementType());
unsigned NumElems = VT.getVectorNumElements();
SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
: SV->getOperand(1);
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
}
// Recurse into target specific vector shuffles to find scalars.
if (isTargetShuffle(Opcode)) {
MVT ShufVT = V.getSimpleValueType();
MVT ShufSVT = ShufVT.getVectorElementType();
int NumElems = (int)ShufVT.getVectorNumElements();
SmallVector<int, 16> ShuffleMask;
SmallVector<SDValue, 16> ShuffleOps;
bool IsUnary;
if (!getTargetShuffleMask(N, ShufVT, true, ShuffleOps, ShuffleMask, IsUnary))
return SDValue();
int Elt = ShuffleMask[Index];
if (Elt == SM_SentinelZero)
return ShufSVT.isInteger() ? DAG.getConstant(0, SDLoc(N), ShufSVT)
: DAG.getConstantFP(+0.0, SDLoc(N), ShufSVT);
if (Elt == SM_SentinelUndef)
return DAG.getUNDEF(ShufSVT);
assert(0 <= Elt && Elt < (2*NumElems) && "Shuffle index out of range");
SDValue NewV = (Elt < NumElems) ? ShuffleOps[0] : ShuffleOps[1];
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
Depth+1);
}
// Recurse into insert_subvector base/sub vector to find scalars.
if (Opcode == ISD::INSERT_SUBVECTOR &&
isa<ConstantSDNode>(N->getOperand(2))) {
SDValue Vec = N->getOperand(0);
SDValue Sub = N->getOperand(1);
EVT SubVT = Sub.getValueType();
unsigned NumSubElts = SubVT.getVectorNumElements();
uint64_t SubIdx = N->getConstantOperandVal(2);
if (SubIdx <= Index && Index < (SubIdx + NumSubElts))
return getShuffleScalarElt(Sub.getNode(), Index - SubIdx, DAG, Depth + 1);
return getShuffleScalarElt(Vec.getNode(), Index, DAG, Depth + 1);
}
// Recurse into extract_subvector src vector to find scalars.
if (Opcode == ISD::EXTRACT_SUBVECTOR &&
isa<ConstantSDNode>(N->getOperand(1))) {
SDValue Src = N->getOperand(0);
uint64_t SrcIdx = N->getConstantOperandVal(1);
return getShuffleScalarElt(Src.getNode(), Index + SrcIdx, DAG, Depth + 1);
}
// Actual nodes that may contain scalar elements
if (Opcode == ISD::BITCAST) {
V = V.getOperand(0);
EVT SrcVT = V.getValueType();
unsigned NumElems = VT.getVectorNumElements();
if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
return SDValue();
}
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
return (Index == 0) ? V.getOperand(0)
: DAG.getUNDEF(VT.getVectorElementType());
if (V.getOpcode() == ISD::BUILD_VECTOR)
return V.getOperand(Index);
return SDValue();
}
// Use PINSRB/PINSRW/PINSRD to create a build vector.
static SDValue LowerBuildVectorAsInsert(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
unsigned NumElts = VT.getVectorNumElements();
assert(((VT == MVT::v8i16 && Subtarget.hasSSE2()) ||
((VT == MVT::v16i8 || VT == MVT::v4i32) && Subtarget.hasSSE41())) &&
"Illegal vector insertion");
SDLoc dl(Op);
SDValue V;
bool First = true;
for (unsigned i = 0; i < NumElts; ++i) {
bool IsNonZero = (NonZeros & (1 << i)) != 0;
if (!IsNonZero)
continue;
// If the build vector contains zeros or our first insertion is not the
// first index then insert into zero vector to break any register
// dependency else use SCALAR_TO_VECTOR.
if (First) {
First = false;
if (NumZero || 0 != i)
V = getZeroVector(VT, Subtarget, DAG, dl);
else {
assert(0 == i && "Expected insertion into zero-index");
V = DAG.getAnyExtOrTrunc(Op.getOperand(i), dl, MVT::i32);
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, V);
V = DAG.getBitcast(VT, V);
continue;
}
}
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V, Op.getOperand(i),
DAG.getIntPtrConstant(i, dl));
}
return V;
}
/// Custom lower build_vector of v16i8.
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (NumNonZero > 8 && !Subtarget.hasSSE41())
return SDValue();
// SSE4.1 - use PINSRB to insert each byte directly.
if (Subtarget.hasSSE41())
return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG,
Subtarget);
SDLoc dl(Op);
SDValue V;
// Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
for (unsigned i = 0; i < 16; i += 2) {
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
bool NextIsNonZero = (NonZeros & (1 << (i + 1))) != 0;
if (!ThisIsNonZero && !NextIsNonZero)
continue;
// FIXME: Investigate combining the first 4 bytes as a i32 instead.
SDValue Elt;
if (ThisIsNonZero) {
if (NumZero || NextIsNonZero)
Elt = DAG.getZExtOrTrunc(Op.getOperand(i), dl, MVT::i32);
else
Elt = DAG.getAnyExtOrTrunc(Op.getOperand(i), dl, MVT::i32);
}
if (NextIsNonZero) {
SDValue NextElt = Op.getOperand(i + 1);
if (i == 0 && NumZero)
NextElt = DAG.getZExtOrTrunc(NextElt, dl, MVT::i32);
else
NextElt = DAG.getAnyExtOrTrunc(NextElt, dl, MVT::i32);
NextElt = DAG.getNode(ISD::SHL, dl, MVT::i32, NextElt,
DAG.getConstant(8, dl, MVT::i8));
if (ThisIsNonZero)
Elt = DAG.getNode(ISD::OR, dl, MVT::i32, NextElt, Elt);
else
Elt = NextElt;
}
// If our first insertion is not the first index then insert into zero
// vector to break any register dependency else use SCALAR_TO_VECTOR.
if (!V) {
if (i != 0)
V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
else {
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Elt);
V = DAG.getBitcast(MVT::v8i16, V);
continue;
}
}
Elt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Elt);
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, Elt,
DAG.getIntPtrConstant(i / 2, dl));
}
return DAG.getBitcast(MVT::v16i8, V);
}
/// Custom lower build_vector of v8i16.
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (NumNonZero > 4 && !Subtarget.hasSSE41())
return SDValue();
// Use PINSRW to insert each byte directly.
return LowerBuildVectorAsInsert(Op, NonZeros, NumNonZero, NumZero, DAG,
Subtarget);
}
/// Custom lower build_vector of v4i32 or v4f32.
static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// If this is a splat of a pair of elements, use MOVDDUP (unless the target
// has XOP; in that case defer lowering to potentially use VPERMIL2PS).
// Because we're creating a less complicated build vector here, we may enable
// further folding of the MOVDDUP via shuffle transforms.
if (Subtarget.hasSSE3() && !Subtarget.hasXOP() &&
Op.getOperand(0) == Op.getOperand(2) &&
Op.getOperand(1) == Op.getOperand(3) &&
Op.getOperand(0) != Op.getOperand(1)) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
// Create a new build vector with the first 2 elements followed by undef
// padding, bitcast to v2f64, duplicate, and bitcast back.
SDValue Ops[4] = { Op.getOperand(0), Op.getOperand(1),
DAG.getUNDEF(EltVT), DAG.getUNDEF(EltVT) };
SDValue NewBV = DAG.getBitcast(MVT::v2f64, DAG.getBuildVector(VT, DL, Ops));
SDValue Dup = DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v2f64, NewBV);
return DAG.getBitcast(VT, Dup);
}
// Find all zeroable elements.
std::bitset<4> Zeroable, Undefs;
for (int i = 0; i < 4; ++i) {
SDValue Elt = Op.getOperand(i);
Undefs[i] = Elt.isUndef();
Zeroable[i] = (Elt.isUndef() || X86::isZeroNode(Elt));
}
assert(Zeroable.size() - Zeroable.count() > 1 &&
"We expect at least two non-zero elements!");
// We only know how to deal with build_vector nodes where elements are either
// zeroable or extract_vector_elt with constant index.
SDValue FirstNonZero;
unsigned FirstNonZeroIdx;
for (unsigned i = 0; i < 4; ++i) {
if (Zeroable[i])
continue;
SDValue Elt = Op.getOperand(i);
if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Elt.getOperand(1)))
return SDValue();
// Make sure that this node is extracting from a 128-bit vector.
MVT VT = Elt.getOperand(0).getSimpleValueType();
if (!VT.is128BitVector())
return SDValue();
if (!FirstNonZero.getNode()) {
FirstNonZero = Elt;
FirstNonZeroIdx = i;
}
}
assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
SDValue V1 = FirstNonZero.getOperand(0);
MVT VT = V1.getSimpleValueType();
// See if this build_vector can be lowered as a blend with zero.
SDValue Elt;
unsigned EltMaskIdx, EltIdx;
int Mask[4];
for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
if (Zeroable[EltIdx]) {
// The zero vector will be on the right hand side.
Mask[EltIdx] = EltIdx+4;
continue;
}
Elt = Op->getOperand(EltIdx);
// By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
EltMaskIdx = Elt.getConstantOperandVal(1);
if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
break;
Mask[EltIdx] = EltIdx;
}
if (EltIdx == 4) {
// Let the shuffle legalizer deal with blend operations.
SDValue VZeroOrUndef = (Zeroable == Undefs)
? DAG.getUNDEF(VT)
: getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
if (V1.getSimpleValueType() != VT)
V1 = DAG.getBitcast(VT, V1);
return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZeroOrUndef, Mask);
}
// See if we can lower this build_vector to a INSERTPS.
if (!Subtarget.hasSSE41())
return SDValue();
SDValue V2 = Elt.getOperand(0);
if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
V1 = SDValue();
bool CanFold = true;
for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
if (Zeroable[i])
continue;
SDValue Current = Op->getOperand(i);
SDValue SrcVector = Current->getOperand(0);
if (!V1.getNode())
V1 = SrcVector;
CanFold = (SrcVector == V1) && (Current.getConstantOperandAPInt(1) == i);
}
if (!CanFold)
return SDValue();
assert(V1.getNode() && "Expected at least two non-zero elements!");
if (V1.getSimpleValueType() != MVT::v4f32)
V1 = DAG.getBitcast(MVT::v4f32, V1);
if (V2.getSimpleValueType() != MVT::v4f32)
V2 = DAG.getBitcast(MVT::v4f32, V2);
// Ok, we can emit an INSERTPS instruction.
unsigned ZMask = Zeroable.to_ulong();
unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
SDLoc DL(Op);
SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
DAG.getIntPtrConstant(InsertPSMask, DL, true));
return DAG.getBitcast(VT, Result);
}
/// Return a vector logical shift node.
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, unsigned NumBits,
SelectionDAG &DAG, const TargetLowering &TLI,
const SDLoc &dl) {
assert(VT.is128BitVector() && "Unknown type for VShift");
MVT ShVT = MVT::v16i8;
unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
SrcOp = DAG.getBitcast(ShVT, SrcOp);
assert(NumBits % 8 == 0 && "Only support byte sized shifts");
SDValue ShiftVal = DAG.getTargetConstant(NumBits / 8, dl, MVT::i8);
return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
}
static SDValue LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, const SDLoc &dl,
SelectionDAG &DAG) {
// Check if the scalar load can be widened into a vector load. And if
// the address is "base + cst" see if the cst can be "absorbed" into
// the shuffle mask.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
SDValue Ptr = LD->getBasePtr();
if (!ISD::isNormalLoad(LD) || !LD->isSimple())
return SDValue();
EVT PVT = LD->getValueType(0);
if (PVT != MVT::i32 && PVT != MVT::f32)
return SDValue();
int FI = -1;
int64_t Offset = 0;
if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
FI = FINode->getIndex();
Offset = 0;
} else if (DAG.isBaseWithConstantOffset(Ptr) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
Offset = Ptr.getConstantOperandVal(1);
Ptr = Ptr.getOperand(0);
} else {
return SDValue();
}
// FIXME: 256-bit vector instructions don't require a strict alignment,
// improve this code to support it better.
unsigned RequiredAlign = VT.getSizeInBits()/8;
SDValue Chain = LD->getChain();
// Make sure the stack object alignment is at least 16 or 32.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
if (MFI.isFixedObjectIndex(FI)) {
// Can't change the alignment. FIXME: It's possible to compute
// the exact stack offset and reference FI + adjust offset instead.
// If someone *really* cares about this. That's the way to implement it.
return SDValue();
} else {
MFI.setObjectAlignment(FI, RequiredAlign);
}
}
// (Offset % 16 or 32) must be multiple of 4. Then address is then
// Ptr + (Offset & ~15).
if (Offset < 0)
return SDValue();
if ((Offset % RequiredAlign) & 3)
return SDValue();
int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
if (StartOffset) {
SDLoc DL(Ptr);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
}
int EltNo = (Offset - StartOffset) >> 2;
unsigned NumElems = VT.getVectorNumElements();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(StartOffset));
SmallVector<int, 8> Mask(NumElems, EltNo);
return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), Mask);
}
return SDValue();
}
// Recurse to find a LoadSDNode source and the accumulated ByteOffest.
static bool findEltLoadSrc(SDValue Elt, LoadSDNode *&Ld, int64_t &ByteOffset) {
if (ISD::isNON_EXTLoad(Elt.getNode())) {
auto *BaseLd = cast<LoadSDNode>(Elt);
if (!BaseLd->isSimple())
return false;
Ld = BaseLd;
ByteOffset = 0;
return true;
}
switch (Elt.getOpcode()) {
case ISD::BITCAST:
case ISD::TRUNCATE:
case ISD::SCALAR_TO_VECTOR:
return findEltLoadSrc(Elt.getOperand(0), Ld, ByteOffset);
case ISD::SRL:
if (isa<ConstantSDNode>(Elt.getOperand(1))) {
uint64_t Idx = Elt.getConstantOperandVal(1);
if ((Idx % 8) == 0 && findEltLoadSrc(Elt.getOperand(0), Ld, ByteOffset)) {
ByteOffset += Idx / 8;
return true;
}
}
break;
case ISD::EXTRACT_VECTOR_ELT:
if (isa<ConstantSDNode>(Elt.getOperand(1))) {
SDValue Src = Elt.getOperand(0);
unsigned SrcSizeInBits = Src.getScalarValueSizeInBits();
unsigned DstSizeInBits = Elt.getScalarValueSizeInBits();
if (DstSizeInBits == SrcSizeInBits && (SrcSizeInBits % 8) == 0 &&
findEltLoadSrc(Src, Ld, ByteOffset)) {
uint64_t Idx = Elt.getConstantOperandVal(1);
ByteOffset += Idx * (SrcSizeInBits / 8);
return true;
}
}
break;
}
return false;
}
/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
/// elements can be replaced by a single large load which has the same value as
/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
///
/// Example: <load i32 *a, load i32 *a+4, zero, undef> -> zextload a
static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
const SDLoc &DL, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
bool isAfterLegalize) {
if ((VT.getScalarSizeInBits() % 8) != 0)
return SDValue();
unsigned NumElems = Elts.size();
int LastLoadedElt = -1;
APInt LoadMask = APInt::getNullValue(NumElems);
APInt ZeroMask = APInt::getNullValue(NumElems);
APInt UndefMask = APInt::getNullValue(NumElems);
SmallVector<LoadSDNode*, 8> Loads(NumElems, nullptr);
SmallVector<int64_t, 8> ByteOffsets(NumElems, 0);
// For each element in the initializer, see if we've found a load, zero or an
// undef.
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = peekThroughBitcasts(Elts[i]);
if (!Elt.getNode())
return SDValue();
if (Elt.isUndef()) {
UndefMask.setBit(i);
continue;
}
if (X86::isZeroNode(Elt) || ISD::isBuildVectorAllZeros(Elt.getNode())) {
ZeroMask.setBit(i);
continue;
}
// Each loaded element must be the correct fractional portion of the
// requested vector load.
unsigned EltSizeInBits = Elt.getValueSizeInBits();
if ((NumElems * EltSizeInBits) != VT.getSizeInBits())
return SDValue();
if (!findEltLoadSrc(Elt, Loads[i], ByteOffsets[i]) || ByteOffsets[i] < 0)
return SDValue();
unsigned LoadSizeInBits = Loads[i]->getValueSizeInBits(0);
if (((ByteOffsets[i] * 8) + EltSizeInBits) > LoadSizeInBits)
return SDValue();
LoadMask.setBit(i);
LastLoadedElt = i;
}
assert((ZeroMask.countPopulation() + UndefMask.countPopulation() +
LoadMask.countPopulation()) == NumElems &&
"Incomplete element masks");
// Handle Special Cases - all undef or undef/zero.
if (UndefMask.countPopulation() == NumElems)
return DAG.getUNDEF(VT);
// FIXME: Should we return this as a BUILD_VECTOR instead?
if ((ZeroMask.countPopulation() + UndefMask.countPopulation()) == NumElems)
return VT.isInteger() ? DAG.getConstant(0, DL, VT)
: DAG.getConstantFP(0.0, DL, VT);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
int FirstLoadedElt = LoadMask.countTrailingZeros();
SDValue EltBase = peekThroughBitcasts(Elts[FirstLoadedElt]);
EVT EltBaseVT = EltBase.getValueType();
assert(EltBaseVT.getSizeInBits() == EltBaseVT.getStoreSizeInBits() &&
"Register/Memory size mismatch");
LoadSDNode *LDBase = Loads[FirstLoadedElt];
assert(LDBase && "Did not find base load for merging consecutive loads");
unsigned BaseSizeInBits = EltBaseVT.getStoreSizeInBits();
unsigned BaseSizeInBytes = BaseSizeInBits / 8;
int LoadSizeInBits = (1 + LastLoadedElt - FirstLoadedElt) * BaseSizeInBits;
assert((BaseSizeInBits % 8) == 0 && "Sub-byte element loads detected");
// TODO: Support offsetting the base load.
if (ByteOffsets[FirstLoadedElt] != 0)
return SDValue();
// Check to see if the element's load is consecutive to the base load
// or offset from a previous (already checked) load.
auto CheckConsecutiveLoad = [&](LoadSDNode *Base, int EltIdx) {
LoadSDNode *Ld = Loads[EltIdx];
int64_t ByteOffset = ByteOffsets[EltIdx];
if (ByteOffset && (ByteOffset % BaseSizeInBytes) == 0) {
int64_t BaseIdx = EltIdx - (ByteOffset / BaseSizeInBytes);
return (0 <= BaseIdx && BaseIdx < (int)NumElems && LoadMask[BaseIdx] &&
Loads[BaseIdx] == Ld && ByteOffsets[BaseIdx] == 0);
}
return DAG.areNonVolatileConsecutiveLoads(Ld, Base, BaseSizeInBytes,
EltIdx - FirstLoadedElt);
};
// Consecutive loads can contain UNDEFS but not ZERO elements.
// Consecutive loads with UNDEFs and ZEROs elements require a
// an additional shuffle stage to clear the ZERO elements.
bool IsConsecutiveLoad = true;
bool IsConsecutiveLoadWithZeros = true;
for (int i = FirstLoadedElt + 1; i <= LastLoadedElt; ++i) {
if (LoadMask[i]) {
if (!CheckConsecutiveLoad(LDBase, i)) {
IsConsecutiveLoad = false;
IsConsecutiveLoadWithZeros = false;
break;
}
} else if (ZeroMask[i]) {
IsConsecutiveLoad = false;
}
}
auto CreateLoad = [&DAG, &DL, &Loads](EVT VT, LoadSDNode *LDBase) {
auto MMOFlags = LDBase->getMemOperand()->getFlags();
assert(LDBase->isSimple() &&
"Cannot merge volatile or atomic loads.");
SDValue NewLd =
DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
LDBase->getPointerInfo(), LDBase->getAlignment(), MMOFlags);
for (auto *LD : Loads)
if (LD)
DAG.makeEquivalentMemoryOrdering(LD, NewLd);
return NewLd;
};
// Check if the base load is entirely dereferenceable.
bool IsDereferenceable = LDBase->getPointerInfo().isDereferenceable(
VT.getSizeInBits() / 8, *DAG.getContext(), DAG.getDataLayout());
// LOAD - all consecutive load/undefs (must start/end with a load or be
// entirely dereferenceable). If we have found an entire vector of loads and
// undefs, then return a large load of the entire vector width starting at the
// base pointer. If the vector contains zeros, then attempt to shuffle those
// elements.
if (FirstLoadedElt == 0 &&
(LastLoadedElt == (int)(NumElems - 1) || IsDereferenceable) &&
(IsConsecutiveLoad || IsConsecutiveLoadWithZeros)) {
if (isAfterLegalize && !TLI.isOperationLegal(ISD::LOAD, VT))
return SDValue();
// Don't create 256-bit non-temporal aligned loads without AVX2 as these
// will lower to regular temporal loads and use the cache.
if (LDBase->isNonTemporal() && LDBase->getAlignment() >= 32 &&
VT.is256BitVector() && !Subtarget.hasInt256())
return SDValue();
if (NumElems == 1)
return DAG.getBitcast(VT, Elts[FirstLoadedElt]);
if (!ZeroMask)
return CreateLoad(VT, LDBase);
// IsConsecutiveLoadWithZeros - we need to create a shuffle of the loaded
// vector and a zero vector to clear out the zero elements.
if (!isAfterLegalize && VT.isVector()) {
unsigned NumMaskElts = VT.getVectorNumElements();
if ((NumMaskElts % NumElems) == 0) {
unsigned Scale = NumMaskElts / NumElems;
SmallVector<int, 4> ClearMask(NumMaskElts, -1);
for (unsigned i = 0; i < NumElems; ++i) {
if (UndefMask[i])
continue;
int Offset = ZeroMask[i] ? NumMaskElts : 0;
for (unsigned j = 0; j != Scale; ++j)
ClearMask[(i * Scale) + j] = (i * Scale) + j + Offset;
}
SDValue V = CreateLoad(VT, LDBase);
SDValue Z = VT.isInteger() ? DAG.getConstant(0, DL, VT)
: DAG.getConstantFP(0.0, DL, VT);
return DAG.getVectorShuffle(VT, DL, V, Z, ClearMask);
}
}
}
// If the upper half of a ymm/zmm load is undef then just load the lower half.
if (VT.is256BitVector() || VT.is512BitVector()) {
unsigned HalfNumElems = NumElems / 2;
if (UndefMask.extractBits(HalfNumElems, HalfNumElems).isAllOnesValue()) {
EVT HalfVT =
EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), HalfNumElems);
SDValue HalfLD =
EltsFromConsecutiveLoads(HalfVT, Elts.drop_back(HalfNumElems), DL,
DAG, Subtarget, isAfterLegalize);
if (HalfLD)
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT),
HalfLD, DAG.getIntPtrConstant(0, DL));
}
}
// VZEXT_LOAD - consecutive 32/64-bit load/undefs followed by zeros/undefs.
if (IsConsecutiveLoad && FirstLoadedElt == 0 &&
(LoadSizeInBits == 32 || LoadSizeInBits == 64) &&
((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) {
MVT VecSVT = VT.isFloatingPoint() ? MVT::getFloatingPointVT(LoadSizeInBits)
: MVT::getIntegerVT(LoadSizeInBits);
MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / LoadSizeInBits);
if (TLI.isTypeLegal(VecVT)) {
SDVTList Tys = DAG.getVTList(VecVT, MVT::Other);
SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
SDValue ResNode =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, VecSVT,
LDBase->getPointerInfo(),
LDBase->getAlignment(),
MachineMemOperand::MOLoad);
for (auto *LD : Loads)
if (LD)
DAG.makeEquivalentMemoryOrdering(LD, ResNode);
return DAG.getBitcast(VT, ResNode);
}
}
// BROADCAST - match the smallest possible repetition pattern, load that
// scalar/subvector element and then broadcast to the entire vector.
if (ZeroMask.isNullValue() && isPowerOf2_32(NumElems) && Subtarget.hasAVX() &&
(VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector())) {
for (unsigned SubElems = 1; SubElems < NumElems; SubElems *= 2) {
unsigned RepeatSize = SubElems * BaseSizeInBits;
unsigned ScalarSize = std::min(RepeatSize, 64u);
if (!Subtarget.hasAVX2() && ScalarSize < 32)
continue;
bool Match = true;
SmallVector<SDValue, 8> RepeatedLoads(SubElems, DAG.getUNDEF(EltBaseVT));
for (unsigned i = 0; i != NumElems && Match; ++i) {
if (!LoadMask[i])
continue;
SDValue Elt = peekThroughBitcasts(Elts[i]);
if (RepeatedLoads[i % SubElems].isUndef())
RepeatedLoads[i % SubElems] = Elt;
else
Match &= (RepeatedLoads[i % SubElems] == Elt);
}
// We must have loads at both ends of the repetition.
Match &= !RepeatedLoads.front().isUndef();
Match &= !RepeatedLoads.back().isUndef();
if (!Match)
continue;
EVT RepeatVT =
VT.isInteger() && (RepeatSize != 64 || TLI.isTypeLegal(MVT::i64))
? EVT::getIntegerVT(*DAG.getContext(), ScalarSize)
: EVT::getFloatingPointVT(ScalarSize);
if (RepeatSize > ScalarSize)
RepeatVT = EVT::getVectorVT(*DAG.getContext(), RepeatVT,
RepeatSize / ScalarSize);
EVT BroadcastVT =
EVT::getVectorVT(*DAG.getContext(), RepeatVT.getScalarType(),
VT.getSizeInBits() / ScalarSize);
if (TLI.isTypeLegal(BroadcastVT)) {
if (SDValue RepeatLoad = EltsFromConsecutiveLoads(
RepeatVT, RepeatedLoads, DL, DAG, Subtarget, isAfterLegalize)) {
unsigned Opcode = RepeatSize > ScalarSize ? X86ISD::SUBV_BROADCAST
: X86ISD::VBROADCAST;
SDValue Broadcast = DAG.getNode(Opcode, DL, BroadcastVT, RepeatLoad);
return DAG.getBitcast(VT, Broadcast);
}
}
}
}
return SDValue();
}
// Combine a vector ops (shuffles etc.) that is equal to build_vector load1,
// load2, load3, load4, <0, 1, 2, 3> into a vector load if the load addresses
// are consecutive, non-overlapping, and in the right order.
static SDValue combineToConsecutiveLoads(EVT VT, SDNode *N, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
bool isAfterLegalize) {
SmallVector<SDValue, 64> Elts;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
if (SDValue Elt = getShuffleScalarElt(N, i, DAG, 0)) {
Elts.push_back(Elt);
continue;
}
return SDValue();
}
assert(Elts.size() == VT.getVectorNumElements());
return EltsFromConsecutiveLoads(VT, Elts, DL, DAG, Subtarget,
isAfterLegalize);
}
static Constant *getConstantVector(MVT VT, const APInt &SplatValue,
unsigned SplatBitSize, LLVMContext &C) {
unsigned ScalarSize = VT.getScalarSizeInBits();
unsigned NumElm = SplatBitSize / ScalarSize;
SmallVector<Constant *, 32> ConstantVec;
for (unsigned i = 0; i < NumElm; i++) {
APInt Val = SplatValue.extractBits(ScalarSize, ScalarSize * i);
Constant *Const;
if (VT.isFloatingPoint()) {
if (ScalarSize == 32) {
Const = ConstantFP::get(C, APFloat(APFloat::IEEEsingle(), Val));
} else {
assert(ScalarSize == 64 && "Unsupported floating point scalar size");
Const = ConstantFP::get(C, APFloat(APFloat::IEEEdouble(), Val));
}
} else
Const = Constant::getIntegerValue(Type::getIntNTy(C, ScalarSize), Val);
ConstantVec.push_back(Const);
}
return ConstantVector::get(ArrayRef<Constant *>(ConstantVec));
}
static bool isFoldableUseOfShuffle(SDNode *N) {
for (auto *U : N->uses()) {
unsigned Opc = U->getOpcode();
// VPERMV/VPERMV3 shuffles can never fold their index operands.
if (Opc == X86ISD::VPERMV && U->getOperand(0).getNode() == N)
return false;
if (Opc == X86ISD::VPERMV3 && U->getOperand(1).getNode() == N)
return false;
if (isTargetShuffle(Opc))
return true;
if (Opc == ISD::BITCAST) // Ignore bitcasts
return isFoldableUseOfShuffle(U);
if (N->hasOneUse())
return true;
}
return false;
}
// Check if the current node of build vector is a zero extended vector.
// // If so, return the value extended.
// // For example: (0,0,0,a,0,0,0,a,0,0,0,a,0,0,0,a) returns a.
// // NumElt - return the number of zero extended identical values.
// // EltType - return the type of the value include the zero extend.
static SDValue isSplatZeroExtended(const BuildVectorSDNode *Op,
unsigned &NumElt, MVT &EltType) {
SDValue ExtValue = Op->getOperand(0);
unsigned NumElts = Op->getNumOperands();
unsigned Delta = NumElts;
for (unsigned i = 1; i < NumElts; i++) {
if (Op->getOperand(i) == ExtValue) {
Delta = i;
break;
}
if (!(Op->getOperand(i).isUndef() || isNullConstant(Op->getOperand(i))))
return SDValue();
}
if (!isPowerOf2_32(Delta) || Delta == 1)
return SDValue();
for (unsigned i = Delta; i < NumElts; i++) {
if (i % Delta == 0) {
if (Op->getOperand(i) != ExtValue)
return SDValue();
} else if (!(isNullConstant(Op->getOperand(i)) ||
Op->getOperand(i).isUndef()))
return SDValue();
}
unsigned EltSize = Op->getSimpleValueType(0).getScalarSizeInBits();
unsigned ExtVTSize = EltSize * Delta;
EltType = MVT::getIntegerVT(ExtVTSize);
NumElt = NumElts / Delta;
return ExtValue;
}
/// Attempt to use the vbroadcast instruction to generate a splat value
/// from a splat BUILD_VECTOR which uses:
/// a. A single scalar load, or a constant.
/// b. Repeated pattern of constants (e.g. <0,1,0,1> or <0,1,2,3,0,1,2,3>).
///
/// The VBROADCAST node is returned when a pattern is found,
/// or SDValue() otherwise.
static SDValue lowerBuildVectorAsBroadcast(BuildVectorSDNode *BVOp,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// VBROADCAST requires AVX.
// TODO: Splats could be generated for non-AVX CPUs using SSE
// instructions, but there's less potential gain for only 128-bit vectors.
if (!Subtarget.hasAVX())
return SDValue();
MVT VT = BVOp->getSimpleValueType(0);
SDLoc dl(BVOp);
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
"Unsupported vector type for broadcast.");
BitVector UndefElements;
SDValue Ld = BVOp->getSplatValue(&UndefElements);
// Attempt to use VBROADCASTM
// From this paterrn:
// a. t0 = (zext_i64 (bitcast_i8 v2i1 X))
// b. t1 = (build_vector t0 t0)
//
// Create (VBROADCASTM v2i1 X)
if (Subtarget.hasCDI() && (VT.is512BitVector() || Subtarget.hasVLX())) {
MVT EltType = VT.getScalarType();
unsigned NumElts = VT.getVectorNumElements();
SDValue BOperand;
SDValue ZeroExtended = isSplatZeroExtended(BVOp, NumElts, EltType);
if ((ZeroExtended && ZeroExtended.getOpcode() == ISD::BITCAST) ||
(Ld && Ld.getOpcode() == ISD::ZERO_EXTEND &&
Ld.getOperand(0).getOpcode() == ISD::BITCAST)) {
if (ZeroExtended)
BOperand = ZeroExtended.getOperand(0);
else
BOperand = Ld.getOperand(0).getOperand(0);
MVT MaskVT = BOperand.getSimpleValueType();
if ((EltType == MVT::i64 && MaskVT == MVT::v8i1) || // for broadcastmb2q
(EltType == MVT::i32 && MaskVT == MVT::v16i1)) { // for broadcastmw2d
SDValue Brdcst =
DAG.getNode(X86ISD::VBROADCASTM, dl,
MVT::getVectorVT(EltType, NumElts), BOperand);
return DAG.getBitcast(VT, Brdcst);
}
}
}
unsigned NumElts = VT.getVectorNumElements();
unsigned NumUndefElts = UndefElements.count();
if (!Ld || (NumElts - NumUndefElts) <= 1) {
APInt SplatValue, Undef;
unsigned SplatBitSize;
bool HasUndef;
// Check if this is a repeated constant pattern suitable for broadcasting.
if (BVOp->isConstantSplat(SplatValue, Undef, SplatBitSize, HasUndef) &&
SplatBitSize > VT.getScalarSizeInBits() &&
SplatBitSize < VT.getSizeInBits()) {
// Avoid replacing with broadcast when it's a use of a shuffle
// instruction to preserve the present custom lowering of shuffles.
if (isFoldableUseOfShuffle(BVOp))
return SDValue();
// replace BUILD_VECTOR with broadcast of the repeated constants.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
LLVMContext *Ctx = DAG.getContext();
MVT PVT = TLI.getPointerTy(DAG.getDataLayout());
if (Subtarget.hasAVX()) {
if (SplatBitSize <= 64 && Subtarget.hasAVX2() &&
!(SplatBitSize == 64 && Subtarget.is32Bit())) {
// Splatted value can fit in one INTEGER constant in constant pool.
// Load the constant and broadcast it.
MVT CVT = MVT::getIntegerVT(SplatBitSize);
Type *ScalarTy = Type::getIntNTy(*Ctx, SplatBitSize);
Constant *C = Constant::getIntegerValue(ScalarTy, SplatValue);
SDValue CP = DAG.getConstantPool(C, PVT);
unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(
CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
MVT::getVectorVT(CVT, Repeat), Ld);
return DAG.getBitcast(VT, Brdcst);
} else if (SplatBitSize == 32 || SplatBitSize == 64) {
// Splatted value can fit in one FLOAT constant in constant pool.
// Load the constant and broadcast it.
// AVX have support for 32 and 64 bit broadcast for floats only.
// No 64bit integer in 32bit subtarget.
MVT CVT = MVT::getFloatingPointVT(SplatBitSize);
// Lower the splat via APFloat directly, to avoid any conversion.
Constant *C =
SplatBitSize == 32
? ConstantFP::get(*Ctx,
APFloat(APFloat::IEEEsingle(), SplatValue))
: ConstantFP::get(*Ctx,
APFloat(APFloat::IEEEdouble(), SplatValue));
SDValue CP = DAG.getConstantPool(C, PVT);
unsigned Repeat = VT.getSizeInBits() / SplatBitSize;
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(
CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
SDValue Brdcst = DAG.getNode(X86ISD::VBROADCAST, dl,
MVT::getVectorVT(CVT, Repeat), Ld);
return DAG.getBitcast(VT, Brdcst);
} else if (SplatBitSize > 64) {
// Load the vector of constants and broadcast it.
MVT CVT = VT.getScalarType();
Constant *VecC = getConstantVector(VT, SplatValue, SplatBitSize,
*Ctx);
SDValue VCP = DAG.getConstantPool(VecC, PVT);
unsigned NumElm = SplatBitSize / VT.getScalarSizeInBits();
unsigned Alignment = cast<ConstantPoolSDNode>(VCP)->getAlignment();
Ld = DAG.getLoad(
MVT::getVectorVT(CVT, NumElm), dl, DAG.getEntryNode(), VCP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
SDValue Brdcst = DAG.getNode(X86ISD::SUBV_BROADCAST, dl, VT, Ld);
return DAG.getBitcast(VT, Brdcst);
}
}
}
// If we are moving a scalar into a vector (Ld must be set and all elements
// but 1 are undef) and that operation is not obviously supported by
// vmovd/vmovq/vmovss/vmovsd, then keep trying to form a broadcast.
// That's better than general shuffling and may eliminate a load to GPR and
// move from scalar to vector register.
if (!Ld || NumElts - NumUndefElts != 1)
return SDValue();
unsigned ScalarSize = Ld.getValueSizeInBits();
if (!(UndefElements[0] || (ScalarSize != 32 && ScalarSize != 64)))
return SDValue();
}
bool ConstSplatVal =
(Ld.getOpcode() == ISD::Constant || Ld.getOpcode() == ISD::ConstantFP);
// Make sure that all of the users of a non-constant load are from the
// BUILD_VECTOR node.
if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
return SDValue();
unsigned ScalarSize = Ld.getValueSizeInBits();
bool IsGE256 = (VT.getSizeInBits() >= 256);
// When optimizing for size, generate up to 5 extra bytes for a broadcast
// instruction to save 8 or more bytes of constant pool data.
// TODO: If multiple splats are generated to load the same constant,
// it may be detrimental to overall size. There needs to be a way to detect
// that condition to know if this is truly a size win.
bool OptForSize = DAG.shouldOptForSize();
// Handle broadcasting a single constant scalar from the constant pool
// into a vector.
// On Sandybridge (no AVX2), it is still better to load a constant vector
// from the constant pool and not to broadcast it from a scalar.
// But override that restriction when optimizing for size.
// TODO: Check if splatting is recommended for other AVX-capable CPUs.
if (ConstSplatVal && (Subtarget.hasAVX2() || OptForSize)) {
EVT CVT = Ld.getValueType();
assert(!CVT.isVector() && "Must not broadcast a vector type");
// Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
// For size optimization, also splat v2f64 and v2i64, and for size opt
// with AVX2, also splat i8 and i16.
// With pattern matching, the VBROADCAST node may become a VMOVDDUP.
if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
(OptForSize && (ScalarSize == 64 || Subtarget.hasAVX2()))) {
const Constant *C = nullptr;
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
C = CI->getConstantIntValue();
else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
C = CF->getConstantFPValue();
assert(C && "Invalid constant type");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue CP =
DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(
CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
Alignment);
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
}
}
bool IsLoad = ISD::isNormalLoad(Ld.getNode());
// Handle AVX2 in-register broadcasts.
if (!IsLoad && Subtarget.hasInt256() &&
(ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The scalar source must be a normal load.
if (!IsLoad)
return SDValue();
if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
(Subtarget.hasVLX() && ScalarSize == 64))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The integer check is needed for the 64-bit into 128-bit so it doesn't match
// double since there is no vbroadcastsd xmm
if (Subtarget.hasInt256() && Ld.getValueType().isInteger()) {
if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
}
// Unsupported broadcast.
return SDValue();
}
/// For an EXTRACT_VECTOR_ELT with a constant index return the real
/// underlying vector and index.
///
/// Modifies \p ExtractedFromVec to the real vector and returns the real
/// index.
static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
SDValue ExtIdx) {
int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
return Idx;
// For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
// lowered this:
// (extract_vector_elt (v8f32 %1), Constant<6>)
// to:
// (extract_vector_elt (vector_shuffle<2,u,u,u>
// (extract_subvector (v8f32 %0), Constant<4>),
// undef)
// Constant<0>)
// In this case the vector is the extract_subvector expression and the index
// is 2, as specified by the shuffle.
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
SDValue ShuffleVec = SVOp->getOperand(0);
MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
assert(ShuffleVecVT.getVectorElementType() ==
ExtractedFromVec.getSimpleValueType().getVectorElementType());
int ShuffleIdx = SVOp->getMaskElt(Idx);
if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
ExtractedFromVec = ShuffleVec;
return ShuffleIdx;
}
return Idx;
}
static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
// Skip if insert_vec_elt is not supported.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
return SDValue();
SDLoc DL(Op);
unsigned NumElems = Op.getNumOperands();
SDValue VecIn1;
SDValue VecIn2;
SmallVector<unsigned, 4> InsertIndices;
SmallVector<int, 8> Mask(NumElems, -1);
for (unsigned i = 0; i != NumElems; ++i) {
unsigned Opc = Op.getOperand(i).getOpcode();
if (Opc == ISD::UNDEF)
continue;
if (Opc != ISD::EXTRACT_VECTOR_ELT) {
// Quit if more than 1 elements need inserting.
if (InsertIndices.size() > 1)
return SDValue();
InsertIndices.push_back(i);
continue;
}
SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
SDValue ExtIdx = Op.getOperand(i).getOperand(1);
// Quit if non-constant index.
if (!isa<ConstantSDNode>(ExtIdx))
return SDValue();
int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
// Quit if extracted from vector of different type.
if (ExtractedFromVec.getValueType() != VT)
return SDValue();
if (!VecIn1.getNode())
VecIn1 = ExtractedFromVec;
else if (VecIn1 != ExtractedFromVec) {
if (!VecIn2.getNode())
VecIn2 = ExtractedFromVec;
else if (VecIn2 != ExtractedFromVec)
// Quit if more than 2 vectors to shuffle
return SDValue();
}
if (ExtractedFromVec == VecIn1)
Mask[i] = Idx;
else if (ExtractedFromVec == VecIn2)
Mask[i] = Idx + NumElems;
}
if (!VecIn1.getNode())
return SDValue();
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, Mask);
for (unsigned Idx : InsertIndices)
NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
DAG.getIntPtrConstant(Idx, DL));
return NV;
}
static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) {
assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
Op.getScalarValueSizeInBits() == 1 &&
"Can not convert non-constant vector");
uint64_t Immediate = 0;
for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
SDValue In = Op.getOperand(idx);
if (!In.isUndef())
Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx;
}
SDLoc dl(Op);
MVT VT = MVT::getIntegerVT(std::max((int)Op.getValueSizeInBits(), 8));
return DAG.getConstant(Immediate, dl, VT);
}
// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
static SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
assert((VT.getVectorElementType() == MVT::i1) &&
"Unexpected type in LowerBUILD_VECTORvXi1!");
SDLoc dl(Op);
if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
ISD::isBuildVectorAllOnes(Op.getNode()))
return Op;
uint64_t Immediate = 0;
SmallVector<unsigned, 16> NonConstIdx;
bool IsSplat = true;
bool HasConstElts = false;
int SplatIdx = -1;
for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
SDValue In = Op.getOperand(idx);
if (In.isUndef())
continue;
if (!isa<ConstantSDNode>(In))
NonConstIdx.push_back(idx);
else {
Immediate |= (cast<ConstantSDNode>(In)->getZExtValue() & 0x1) << idx;
HasConstElts = true;
}
if (SplatIdx < 0)
SplatIdx = idx;
else if (In != Op.getOperand(SplatIdx))
IsSplat = false;
}
// for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
if (IsSplat) {
// The build_vector allows the scalar element to be larger than the vector
// element type. We need to mask it to use as a condition unless we know
// the upper bits are zero.
// FIXME: Use computeKnownBits instead of checking specific opcode?
SDValue Cond = Op.getOperand(SplatIdx);
assert(Cond.getValueType() == MVT::i8 && "Unexpected VT!");
if (Cond.getOpcode() != ISD::SETCC)
Cond = DAG.getNode(ISD::AND, dl, MVT::i8, Cond,
DAG.getConstant(1, dl, MVT::i8));
return DAG.getSelect(dl, VT, Cond,
DAG.getConstant(1, dl, VT),
DAG.getConstant(0, dl, VT));
}
// insert elements one by one
SDValue DstVec;
if (HasConstElts) {
if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
SDValue ImmL = DAG.getConstant(Lo_32(Immediate), dl, MVT::i32);
SDValue ImmH = DAG.getConstant(Hi_32(Immediate), dl, MVT::i32);
ImmL = DAG.getBitcast(MVT::v32i1, ImmL);
ImmH = DAG.getBitcast(MVT::v32i1, ImmH);
DstVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, ImmL, ImmH);
} else {
MVT ImmVT = MVT::getIntegerVT(std::max((unsigned)VT.getSizeInBits(), 8U));
SDValue Imm = DAG.getConstant(Immediate, dl, ImmVT);
MVT VecVT = VT.getSizeInBits() >= 8 ? VT : MVT::v8i1;
DstVec = DAG.getBitcast(VecVT, Imm);
DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, DstVec,
DAG.getIntPtrConstant(0, dl));
}
} else
DstVec = DAG.getUNDEF(VT);
for (unsigned i = 0, e = NonConstIdx.size(); i != e; ++i) {
unsigned InsertIdx = NonConstIdx[i];
DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
Op.getOperand(InsertIdx),
DAG.getIntPtrConstant(InsertIdx, dl));
}
return DstVec;
}
/// This is a helper function of LowerToHorizontalOp().
/// This function checks that the build_vector \p N in input implements a
/// 128-bit partial horizontal operation on a 256-bit vector, but that operation
/// may not match the layout of an x86 256-bit horizontal instruction.
/// In other words, if this returns true, then some extraction/insertion will
/// be required to produce a valid horizontal instruction.
///
/// Parameter \p Opcode defines the kind of horizontal operation to match.
/// For example, if \p Opcode is equal to ISD::ADD, then this function
/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
/// is equal to ISD::SUB, then this function checks if this is a horizontal
/// arithmetic sub.
///
/// This function only analyzes elements of \p N whose indices are
/// in range [BaseIdx, LastIdx).
///
/// TODO: This function was originally used to match both real and fake partial
/// horizontal operations, but the index-matching logic is incorrect for that.
/// See the corrected implementation in isHopBuildVector(). Can we reduce this
/// code because it is only used for partial h-op matching now?
static bool isHorizontalBinOpPart(const BuildVectorSDNode *N, unsigned Opcode,
SelectionDAG &DAG,
unsigned BaseIdx, unsigned LastIdx,
SDValue &V0, SDValue &V1) {
EVT VT = N->getValueType(0);
assert(VT.is256BitVector() && "Only use for matching partial 256-bit h-ops");
assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
"Invalid Vector in input!");
bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
bool CanFold = true;
unsigned ExpectedVExtractIdx = BaseIdx;
unsigned NumElts = LastIdx - BaseIdx;
V0 = DAG.getUNDEF(VT);
V1 = DAG.getUNDEF(VT);
// Check if N implements a horizontal binop.
for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
SDValue Op = N->getOperand(i + BaseIdx);
// Skip UNDEFs.
if (Op->isUndef()) {
// Update the expected vector extract index.
if (i * 2 == NumElts)
ExpectedVExtractIdx = BaseIdx;
ExpectedVExtractIdx += 2;
continue;
}
CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
if (!CanFold)
break;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// Try to match the following pattern:
// (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0) == Op1.getOperand(0) &&
isa<ConstantSDNode>(Op0.getOperand(1)) &&
isa<ConstantSDNode>(Op1.getOperand(1)));
if (!CanFold)
break;
unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
if (i * 2 < NumElts) {
if (V0.isUndef()) {
V0 = Op0.getOperand(0);
if (V0.getValueType() != VT)
return false;
}
} else {
if (V1.isUndef()) {
V1 = Op0.getOperand(0);
if (V1.getValueType() != VT)
return false;
}
if (i * 2 == NumElts)
ExpectedVExtractIdx = BaseIdx;
}
SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
if (I0 == ExpectedVExtractIdx)
CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
else if (IsCommutable && I1 == ExpectedVExtractIdx) {
// Try to match the following dag sequence:
// (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
} else
CanFold = false;
ExpectedVExtractIdx += 2;
}
return CanFold;
}
/// Emit a sequence of two 128-bit horizontal add/sub followed by
/// a concat_vector.
///
/// This is a helper function of LowerToHorizontalOp().
/// This function expects two 256-bit vectors called V0 and V1.
/// At first, each vector is split into two separate 128-bit vectors.
/// Then, the resulting 128-bit vectors are used to implement two
/// horizontal binary operations.
///
/// The kind of horizontal binary operation is defined by \p X86Opcode.
///
/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
/// the two new horizontal binop.
/// When Mode is set, the first horizontal binop dag node would take as input
/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
/// horizontal binop dag node would take as input the lower 128-bit of V1
/// and the upper 128-bit of V1.
/// Example:
/// HADD V0_LO, V0_HI
/// HADD V1_LO, V1_HI
///
/// Otherwise, the first horizontal binop dag node takes as input the lower
/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
/// Example:
/// HADD V0_LO, V1_LO
/// HADD V0_HI, V1_HI
///
/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
/// the upper 128-bits of the result.
static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
const SDLoc &DL, SelectionDAG &DAG,
unsigned X86Opcode, bool Mode,
bool isUndefLO, bool isUndefHI) {
MVT VT = V0.getSimpleValueType();
assert(VT.is256BitVector() && VT == V1.getSimpleValueType() &&
"Invalid nodes in input!");
unsigned NumElts = VT.getVectorNumElements();
SDValue V0_LO = extract128BitVector(V0, 0, DAG, DL);
SDValue V0_HI = extract128BitVector(V0, NumElts/2, DAG, DL);
SDValue V1_LO = extract128BitVector(V1, 0, DAG, DL);
SDValue V1_HI = extract128BitVector(V1, NumElts/2, DAG, DL);
MVT NewVT = V0_LO.getSimpleValueType();
SDValue LO = DAG.getUNDEF(NewVT);
SDValue HI = DAG.getUNDEF(NewVT);
if (Mode) {
// Don't emit a horizontal binop if the result is expected to be UNDEF.
if (!isUndefLO && !V0->isUndef())
LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
if (!isUndefHI && !V1->isUndef())
HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
} else {
// Don't emit a horizontal binop if the result is expected to be UNDEF.
if (!isUndefLO && (!V0_LO->isUndef() || !V1_LO->isUndef()))
LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
if (!isUndefHI && (!V0_HI->isUndef() || !V1_HI->isUndef()))
HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
}
/// Returns true iff \p BV builds a vector with the result equivalent to
/// the result of ADDSUB/SUBADD operation.
/// If true is returned then the operands of ADDSUB = Opnd0 +- Opnd1
/// (SUBADD = Opnd0 -+ Opnd1) operation are written to the parameters
/// \p Opnd0 and \p Opnd1.
static bool isAddSubOrSubAdd(const BuildVectorSDNode *BV,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
SDValue &Opnd0, SDValue &Opnd1,
unsigned &NumExtracts,
bool &IsSubAdd) {
MVT VT = BV->getSimpleValueType(0);
if (!Subtarget.hasSSE3() || !VT.isFloatingPoint())
return false;
unsigned NumElts = VT.getVectorNumElements();
SDValue InVec0 = DAG.getUNDEF(VT);
SDValue InVec1 = DAG.getUNDEF(VT);
NumExtracts = 0;
// Odd-numbered elements in the input build vector are obtained from
// adding/subtracting two integer/float elements.
// Even-numbered elements in the input build vector are obtained from
// subtracting/adding two integer/float elements.
unsigned Opc[2] = {0, 0};
for (unsigned i = 0, e = NumElts; i != e; ++i) {
SDValue Op = BV->getOperand(i);
// Skip 'undef' values.
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::UNDEF)
continue;
// Early exit if we found an unexpected opcode.
if (Opcode != ISD::FADD && Opcode != ISD::FSUB)
return false;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// Try to match the following pattern:
// (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
// Early exit if we cannot match that sequence.
if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Op0.getOperand(1)) ||
!isa<ConstantSDNode>(Op1.getOperand(1)) ||
Op0.getOperand(1) != Op1.getOperand(1))
return false;
unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
if (I0 != i)
return false;
// We found a valid add/sub node, make sure its the same opcode as previous
// elements for this parity.
if (Opc[i % 2] != 0 && Opc[i % 2] != Opcode)
return false;
Opc[i % 2] = Opcode;
// Update InVec0 and InVec1.
if (InVec0.isUndef()) {
InVec0 = Op0.getOperand(0);
if (InVec0.getSimpleValueType() != VT)
return false;
}
if (InVec1.isUndef()) {
InVec1 = Op1.getOperand(0);
if (InVec1.getSimpleValueType() != VT)
return false;
}
// Make sure that operands in input to each add/sub node always
// come from a same pair of vectors.
if (InVec0 != Op0.getOperand(0)) {
if (Opcode == ISD::FSUB)
return false;
// FADD is commutable. Try to commute the operands
// and then test again.
std::swap(Op0, Op1);
if (InVec0 != Op0.getOperand(0))
return false;
}
if (InVec1 != Op1.getOperand(0))
return false;
// Increment the number of extractions done.
++NumExtracts;
}
// Ensure we have found an opcode for both parities and that they are
// different. Don't try to fold this build_vector into an ADDSUB/SUBADD if the
// inputs are undef.
if (!Opc[0] || !Opc[1] || Opc[0] == Opc[1] ||
InVec0.isUndef() || InVec1.isUndef())
return false;
IsSubAdd = Opc[0] == ISD::FADD;
Opnd0 = InVec0;
Opnd1 = InVec1;
return true;
}
/// Returns true if is possible to fold MUL and an idiom that has already been
/// recognized as ADDSUB/SUBADD(\p Opnd0, \p Opnd1) into
/// FMADDSUB/FMSUBADD(x, y, \p Opnd1). If (and only if) true is returned, the
/// operands of FMADDSUB/FMSUBADD are written to parameters \p Opnd0, \p Opnd1, \p Opnd2.
///
/// Prior to calling this function it should be known that there is some
/// SDNode that potentially can be replaced with an X86ISD::ADDSUB operation
/// using \p Opnd0 and \p Opnd1 as operands. Also, this method is called
/// before replacement of such SDNode with ADDSUB operation. Thus the number
/// of \p Opnd0 uses is expected to be equal to 2.
/// For example, this function may be called for the following IR:
/// %AB = fmul fast <2 x double> %A, %B
/// %Sub = fsub fast <2 x double> %AB, %C
/// %Add = fadd fast <2 x double> %AB, %C
/// %Addsub = shufflevector <2 x double> %Sub, <2 x double> %Add,
/// <2 x i32> <i32 0, i32 3>
/// There is a def for %Addsub here, which potentially can be replaced by
/// X86ISD::ADDSUB operation:
/// %Addsub = X86ISD::ADDSUB %AB, %C
/// and such ADDSUB can further be replaced with FMADDSUB:
/// %Addsub = FMADDSUB %A, %B, %C.
///
/// The main reason why this method is called before the replacement of the
/// recognized ADDSUB idiom with ADDSUB operation is that such replacement
/// is illegal sometimes. E.g. 512-bit ADDSUB is not available, while 512-bit
/// FMADDSUB is.
static bool isFMAddSubOrFMSubAdd(const X86Subtarget &Subtarget,
SelectionDAG &DAG,
SDValue &Opnd0, SDValue &Opnd1, SDValue &Opnd2,
unsigned ExpectedUses) {
if (Opnd0.getOpcode() != ISD::FMUL ||
!Opnd0->hasNUsesOfValue(ExpectedUses, 0) || !Subtarget.hasAnyFMA())
return false;
// FIXME: These checks must match the similar ones in
// DAGCombiner::visitFADDForFMACombine. It would be good to have one
// function that would answer if it is Ok to fuse MUL + ADD to FMADD
// or MUL + ADDSUB to FMADDSUB.
const TargetOptions &Options = DAG.getTarget().Options;
bool AllowFusion =
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath);
if (!AllowFusion)
return false;
Opnd2 = Opnd1;
Opnd1 = Opnd0.getOperand(1);
Opnd0 = Opnd0.getOperand(0);
return true;
}
/// Try to fold a build_vector that performs an 'addsub' or 'fmaddsub' or
/// 'fsubadd' operation accordingly to X86ISD::ADDSUB or X86ISD::FMADDSUB or
/// X86ISD::FMSUBADD node.
static SDValue lowerToAddSubOrFMAddSub(const BuildVectorSDNode *BV,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Opnd0, Opnd1;
unsigned NumExtracts;
bool IsSubAdd;
if (!isAddSubOrSubAdd(BV, Subtarget, DAG, Opnd0, Opnd1, NumExtracts,
IsSubAdd))
return SDValue();
MVT VT = BV->getSimpleValueType(0);
SDLoc DL(BV);
// Try to generate X86ISD::FMADDSUB node here.
SDValue Opnd2;
if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, NumExtracts)) {
unsigned Opc = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
return DAG.getNode(Opc, DL, VT, Opnd0, Opnd1, Opnd2);
}
// We only support ADDSUB.
if (IsSubAdd)
return SDValue();
// Do not generate X86ISD::ADDSUB node for 512-bit types even though
// the ADDSUB idiom has been successfully recognized. There are no known
// X86 targets with 512-bit ADDSUB instructions!
// 512-bit ADDSUB idiom recognition was needed only as part of FMADDSUB idiom
// recognition.
if (VT.is512BitVector())
return SDValue();
return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
}
static bool isHopBuildVector(const BuildVectorSDNode *BV, SelectionDAG &DAG,
unsigned &HOpcode, SDValue &V0, SDValue &V1) {
// Initialize outputs to known values.
MVT VT = BV->getSimpleValueType(0);
HOpcode = ISD::DELETED_NODE;
V0 = DAG.getUNDEF(VT);
V1 = DAG.getUNDEF(VT);
// x86 256-bit horizontal ops are defined in a non-obvious way. Each 128-bit
// half of the result is calculated independently from the 128-bit halves of
// the inputs, so that makes the index-checking logic below more complicated.
unsigned NumElts = VT.getVectorNumElements();
unsigned GenericOpcode = ISD::DELETED_NODE;
unsigned Num128BitChunks = VT.is256BitVector() ? 2 : 1;
unsigned NumEltsIn128Bits = NumElts / Num128BitChunks;
unsigned NumEltsIn64Bits = NumEltsIn128Bits / 2;
for (unsigned i = 0; i != Num128BitChunks; ++i) {
for (unsigned j = 0; j != NumEltsIn128Bits; ++j) {
// Ignore undef elements.
SDValue Op = BV->getOperand(i * NumEltsIn128Bits + j);
if (Op.isUndef())
continue;
// If there's an opcode mismatch, we're done.
if (HOpcode != ISD::DELETED_NODE && Op.getOpcode() != GenericOpcode)
return false;
// Initialize horizontal opcode.
if (HOpcode == ISD::DELETED_NODE) {
GenericOpcode = Op.getOpcode();
switch (GenericOpcode) {
case ISD::ADD: HOpcode = X86ISD::HADD; break;
case ISD::SUB: HOpcode = X86ISD::HSUB; break;
case ISD::FADD: HOpcode = X86ISD::FHADD; break;
case ISD::FSUB: HOpcode = X86ISD::FHSUB; break;
default: return false;
}
}
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op0.getOperand(0) != Op1.getOperand(0) ||
!isa<ConstantSDNode>(Op0.getOperand(1)) ||
!isa<ConstantSDNode>(Op1.getOperand(1)) || !Op.hasOneUse())
return false;
// The source vector is chosen based on which 64-bit half of the
// destination vector is being calculated.
if (j < NumEltsIn64Bits) {
if (V0.isUndef())
V0 = Op0.getOperand(0);
} else {
if (V1.isUndef())
V1 = Op0.getOperand(0);
}
SDValue SourceVec = (j < NumEltsIn64Bits) ? V0 : V1;
if (SourceVec != Op0.getOperand(0))
return false;
// op (extract_vector_elt A, I), (extract_vector_elt A, I+1)
unsigned ExtIndex0 = Op0.getConstantOperandVal(1);
unsigned ExtIndex1 = Op1.getConstantOperandVal(1);
unsigned ExpectedIndex = i * NumEltsIn128Bits +
(j % NumEltsIn64Bits) * 2;
if (ExpectedIndex == ExtIndex0 && ExtIndex1 == ExtIndex0 + 1)
continue;
// If this is not a commutative op, this does not match.
if (GenericOpcode != ISD::ADD && GenericOpcode != ISD::FADD)
return false;
// Addition is commutative, so try swapping the extract indexes.
// op (extract_vector_elt A, I+1), (extract_vector_elt A, I)
if (ExpectedIndex == ExtIndex1 && ExtIndex0 == ExtIndex1 + 1)
continue;
// Extract indexes do not match horizontal requirement.
return false;
}
}
// We matched. Opcode and operands are returned by reference as arguments.
return true;
}
static SDValue getHopForBuildVector(const BuildVectorSDNode *BV,
SelectionDAG &DAG, unsigned HOpcode,
SDValue V0, SDValue V1) {
// If either input vector is not the same size as the build vector,
// extract/insert the low bits to the correct size.
// This is free (examples: zmm --> xmm, xmm --> ymm).
MVT VT = BV->getSimpleValueType(0);
unsigned Width = VT.getSizeInBits();
if (V0.getValueSizeInBits() > Width)
V0 = extractSubVector(V0, 0, DAG, SDLoc(BV), Width);
else if (V0.getValueSizeInBits() < Width)
V0 = insertSubVector(DAG.getUNDEF(VT), V0, 0, DAG, SDLoc(BV), Width);
if (V1.getValueSizeInBits() > Width)
V1 = extractSubVector(V1, 0, DAG, SDLoc(BV), Width);
else if (V1.getValueSizeInBits() < Width)
V1 = insertSubVector(DAG.getUNDEF(VT), V1, 0, DAG, SDLoc(BV), Width);
unsigned NumElts = VT.getVectorNumElements();
APInt DemandedElts = APInt::getAllOnesValue(NumElts);
for (unsigned i = 0; i != NumElts; ++i)
if (BV->getOperand(i).isUndef())
DemandedElts.clearBit(i);
// If we don't need the upper xmm, then perform as a xmm hop.
unsigned HalfNumElts = NumElts / 2;
if (VT.is256BitVector() && DemandedElts.lshr(HalfNumElts) == 0) {
MVT HalfVT = VT.getHalfNumVectorElementsVT();
V0 = extractSubVector(V0, 0, DAG, SDLoc(BV), 128);
V1 = extractSubVector(V1, 0, DAG, SDLoc(BV), 128);
SDValue Half = DAG.getNode(HOpcode, SDLoc(BV), HalfVT, V0, V1);
return insertSubVector(DAG.getUNDEF(VT), Half, 0, DAG, SDLoc(BV), 256);
}
return DAG.getNode(HOpcode, SDLoc(BV), VT, V0, V1);
}
/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// We need at least 2 non-undef elements to make this worthwhile by default.
unsigned NumNonUndefs =
count_if(BV->op_values(), [](SDValue V) { return !V.isUndef(); });
if (NumNonUndefs < 2)
return SDValue();
// There are 4 sets of horizontal math operations distinguished by type:
// int/FP at 128-bit/256-bit. Each type was introduced with a different
// subtarget feature. Try to match those "native" patterns first.
MVT VT = BV->getSimpleValueType(0);
if (((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget.hasSSE3()) ||
((VT == MVT::v8i16 || VT == MVT::v4i32) && Subtarget.hasSSSE3()) ||
((VT == MVT::v8f32 || VT == MVT::v4f64) && Subtarget.hasAVX()) ||
((VT == MVT::v16i16 || VT == MVT::v8i32) && Subtarget.hasAVX2())) {
unsigned HOpcode;
SDValue V0, V1;
if (isHopBuildVector(BV, DAG, HOpcode, V0, V1))
return getHopForBuildVector(BV, DAG, HOpcode, V0, V1);
}
// Try harder to match 256-bit ops by using extract/concat.
if (!Subtarget.hasAVX() || !VT.is256BitVector())
return SDValue();
// Count the number of UNDEF operands in the build_vector in input.
unsigned NumElts = VT.getVectorNumElements();
unsigned Half = NumElts / 2;
unsigned NumUndefsLO = 0;
unsigned NumUndefsHI = 0;
for (unsigned i = 0, e = Half; i != e; ++i)
if (BV->getOperand(i)->isUndef())
NumUndefsLO++;
for (unsigned i = Half, e = NumElts; i != e; ++i)
if (BV->getOperand(i)->isUndef())
NumUndefsHI++;
SDLoc DL(BV);
SDValue InVec0, InVec1;
if (VT == MVT::v8i32 || VT == MVT::v16i16) {
SDValue InVec2, InVec3;
unsigned X86Opcode;
bool CanFold = true;
if (isHorizontalBinOpPart(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOpPart(BV, ISD::ADD, DAG, Half, NumElts, InVec2,
InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
X86Opcode = X86ISD::HADD;
else if (isHorizontalBinOpPart(BV, ISD::SUB, DAG, 0, Half, InVec0,
InVec1) &&
isHorizontalBinOpPart(BV, ISD::SUB, DAG, Half, NumElts, InVec2,
InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
X86Opcode = X86ISD::HSUB;
else
CanFold = false;
if (CanFold) {
// Do not try to expand this build_vector into a pair of horizontal
// add/sub if we can emit a pair of scalar add/sub.
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
return SDValue();
// Convert this build_vector into a pair of horizontal binops followed by
// a concat vector. We must adjust the outputs from the partial horizontal
// matching calls above to account for undefined vector halves.
SDValue V0 = InVec0.isUndef() ? InVec2 : InVec0;
SDValue V1 = InVec1.isUndef() ? InVec3 : InVec1;
assert((!V0.isUndef() || !V1.isUndef()) && "Horizontal-op of undefs?");
bool isUndefLO = NumUndefsLO == Half;
bool isUndefHI = NumUndefsHI == Half;
return ExpandHorizontalBinOp(V0, V1, DL, DAG, X86Opcode, false, isUndefLO,
isUndefHI);
}
}
if (VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
VT == MVT::v16i16) {
unsigned X86Opcode;
if (isHorizontalBinOpPart(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::HADD;
else if (isHorizontalBinOpPart(BV, ISD::SUB, DAG, 0, NumElts, InVec0,
InVec1))
X86Opcode = X86ISD::HSUB;
else if (isHorizontalBinOpPart(BV, ISD::FADD, DAG, 0, NumElts, InVec0,
InVec1))
X86Opcode = X86ISD::FHADD;
else if (isHorizontalBinOpPart(BV, ISD::FSUB, DAG, 0, NumElts, InVec0,
InVec1))
X86Opcode = X86ISD::FHSUB;
else
return SDValue();
// Don't try to expand this build_vector into a pair of horizontal add/sub
// if we can simply emit a pair of scalar add/sub.
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
return SDValue();
// Convert this build_vector into two horizontal add/sub followed by
// a concat vector.
bool isUndefLO = NumUndefsLO == Half;
bool isUndefHI = NumUndefsHI == Half;
return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
isUndefLO, isUndefHI);
}
return SDValue();
}
/// If a BUILD_VECTOR's source elements all apply the same bit operation and
/// one of their operands is constant, lower to a pair of BUILD_VECTOR and
/// just apply the bit to the vectors.
/// NOTE: Its not in our interest to start make a general purpose vectorizer
/// from this, but enough scalar bit operations are created from the later
/// legalization + scalarization stages to need basic support.
static SDValue lowerBuildVectorToBitOp(BuildVectorSDNode *Op,
SelectionDAG &DAG) {
SDLoc DL(Op);
MVT VT = Op->getSimpleValueType(0);
unsigned NumElems = VT.getVectorNumElements();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Check that all elements have the same opcode.
// TODO: Should we allow UNDEFS and if so how many?
unsigned Opcode = Op->getOperand(0).getOpcode();
for (unsigned i = 1; i < NumElems; ++i)
if (Opcode != Op->getOperand(i).getOpcode())
return SDValue();
// TODO: We may be able to add support for other Ops (ADD/SUB + shifts).
bool IsShift = false;
switch (Opcode) {
default:
return SDValue();
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
IsShift = true;
break;
case ISD::AND:
case ISD::XOR:
case ISD::OR:
// Don't do this if the buildvector is a splat - we'd replace one
// constant with an entire vector.
if (Op->getSplatValue())
return SDValue();
if (!TLI.isOperationLegalOrPromote(Opcode, VT))
return SDValue();
break;
}
SmallVector<SDValue, 4> LHSElts, RHSElts;
for (SDValue Elt : Op->ops()) {
SDValue LHS = Elt.getOperand(0);
SDValue RHS = Elt.getOperand(1);
// We expect the canonicalized RHS operand to be the constant.
if (!isa<ConstantSDNode>(RHS))
return SDValue();
// Extend shift amounts.
if (RHS.getValueSizeInBits() != VT.getScalarSizeInBits()) {
if (!IsShift)
return SDValue();
RHS = DAG.getZExtOrTrunc(RHS, DL, VT.getScalarType());
}
LHSElts.push_back(LHS);
RHSElts.push_back(RHS);
}
// Limit to shifts by uniform immediates.
// TODO: Only accept vXi8/vXi64 special cases?
// TODO: Permit non-uniform XOP/AVX2/MULLO cases?
if (IsShift && any_of(RHSElts, [&](SDValue V) { return RHSElts[0] != V; }))
return SDValue();
SDValue LHS = DAG.getBuildVector(VT, DL, LHSElts);
SDValue RHS = DAG.getBuildVector(VT, DL, RHSElts);
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
}
/// Create a vector constant without a load. SSE/AVX provide the bare minimum
/// functionality to do this, so it's all zeros, all ones, or some derivation
/// that is cheap to calculate.
static SDValue materializeVectorConstant(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
// Vectors containing all zeros can be matched by pxor and xorps.
if (ISD::isBuildVectorAllZeros(Op.getNode()))
return Op;
// Vectors containing all ones can be matched by pcmpeqd on 128-bit width
// vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
// vpcmpeqd on 256-bit vectors.
if (Subtarget.hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
return Op;
return getOnesVector(VT, DAG, DL);
}
return SDValue();
}
/// Look for opportunities to create a VPERMV/VPERMILPV/PSHUFB variable permute
/// from a vector of source values and a vector of extraction indices.
/// The vectors might be manipulated to match the type of the permute op.
static SDValue createVariablePermute(MVT VT, SDValue SrcVec, SDValue IndicesVec,
SDLoc &DL, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT ShuffleVT = VT;
EVT IndicesVT = EVT(VT).changeVectorElementTypeToInteger();
unsigned NumElts = VT.getVectorNumElements();
unsigned SizeInBits = VT.getSizeInBits();
// Adjust IndicesVec to match VT size.
assert(IndicesVec.getValueType().getVectorNumElements() >= NumElts &&
"Illegal variable permute mask size");
if (IndicesVec.getValueType().getVectorNumElements() > NumElts)
IndicesVec = extractSubVector(IndicesVec, 0, DAG, SDLoc(IndicesVec),
NumElts * VT.getScalarSizeInBits());
IndicesVec = DAG.getZExtOrTrunc(IndicesVec, SDLoc(IndicesVec), IndicesVT);
// Handle SrcVec that don't match VT type.
if (SrcVec.getValueSizeInBits() != SizeInBits) {
if ((SrcVec.getValueSizeInBits() % SizeInBits) == 0) {
// Handle larger SrcVec by treating it as a larger permute.
unsigned Scale = SrcVec.getValueSizeInBits() / SizeInBits;
VT = MVT::getVectorVT(VT.getScalarType(), Scale * NumElts);
IndicesVT = EVT(VT).changeVectorElementTypeToInteger();
IndicesVec = widenSubVector(IndicesVT.getSimpleVT(), IndicesVec, false,
Subtarget, DAG, SDLoc(IndicesVec));
return extractSubVector(
createVariablePermute(VT, SrcVec, IndicesVec, DL, DAG, Subtarget), 0,
DAG, DL, SizeInBits);
} else if (SrcVec.getValueSizeInBits() < SizeInBits) {
// Widen smaller SrcVec to match VT.
SrcVec = widenSubVector(VT, SrcVec, false, Subtarget, DAG, SDLoc(SrcVec));
} else
return SDValue();
}
auto ScaleIndices = [&DAG](SDValue Idx, uint64_t Scale) {
assert(isPowerOf2_64(Scale) && "Illegal variable permute shuffle scale");
EVT SrcVT = Idx.getValueType();
unsigned NumDstBits = SrcVT.getScalarSizeInBits() / Scale;
uint64_t IndexScale = 0;
uint64_t IndexOffset = 0;
// If we're scaling a smaller permute op, then we need to repeat the
// indices, scaling and offsetting them as well.
// e.g. v4i32 -> v16i8 (Scale = 4)
// IndexScale = v4i32 Splat(4 << 24 | 4 << 16 | 4 << 8 | 4)
// IndexOffset = v4i32 Splat(3 << 24 | 2 << 16 | 1 << 8 | 0)
for (uint64_t i = 0; i != Scale; ++i) {
IndexScale |= Scale << (i * NumDstBits);
IndexOffset |= i << (i * NumDstBits);
}
Idx = DAG.getNode(ISD::MUL, SDLoc(Idx), SrcVT, Idx,
DAG.getConstant(IndexScale, SDLoc(Idx), SrcVT));
Idx = DAG.getNode(ISD::ADD, SDLoc(Idx), SrcVT, Idx,
DAG.getConstant(IndexOffset, SDLoc(Idx), SrcVT));
return Idx;
};
unsigned Opcode = 0;
switch (VT.SimpleTy) {
default:
break;
case MVT::v16i8:
if (Subtarget.hasSSSE3())
Opcode = X86ISD::PSHUFB;
break;
case MVT::v8i16:
if (Subtarget.hasVLX() && Subtarget.hasBWI())
Opcode = X86ISD::VPERMV;
else if (Subtarget.hasSSSE3()) {
Opcode = X86ISD::PSHUFB;
ShuffleVT = MVT::v16i8;
}
break;
case MVT::v4f32:
case MVT::v4i32:
if (Subtarget.hasAVX()) {
Opcode = X86ISD::VPERMILPV;
ShuffleVT = MVT::v4f32;
} else if (Subtarget.hasSSSE3()) {
Opcode = X86ISD::PSHUFB;
ShuffleVT = MVT::v16i8;
}
break;
case MVT::v2f64:
case MVT::v2i64:
if (Subtarget.hasAVX()) {
// VPERMILPD selects using bit#1 of the index vector, so scale IndicesVec.
IndicesVec = DAG.getNode(ISD::ADD, DL, IndicesVT, IndicesVec, IndicesVec);
Opcode = X86ISD::VPERMILPV;
ShuffleVT = MVT::v2f64;
} else if (Subtarget.hasSSE41()) {
// SSE41 can compare v2i64 - select between indices 0 and 1.
return DAG.getSelectCC(
DL, IndicesVec,
getZeroVector(IndicesVT.getSimpleVT(), Subtarget, DAG, DL),
DAG.getVectorShuffle(VT, DL, SrcVec, SrcVec, {0, 0}),
DAG.getVectorShuffle(VT, DL, SrcVec, SrcVec, {1, 1}),
ISD::CondCode::SETEQ);
}
break;
case MVT::v32i8:
if (Subtarget.hasVLX() && Subtarget.hasVBMI())
Opcode = X86ISD::VPERMV;
else if (Subtarget.hasXOP()) {
SDValue LoSrc = extract128BitVector(SrcVec, 0, DAG, DL);
SDValue HiSrc = extract128BitVector(SrcVec, 16, DAG, DL);
SDValue LoIdx = extract128BitVector(IndicesVec, 0, DAG, DL);
SDValue HiIdx = extract128BitVector(IndicesVec, 16, DAG, DL);
return DAG.getNode(
ISD::CONCAT_VECTORS, DL, VT,
DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, LoSrc, HiSrc, LoIdx),
DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, LoSrc, HiSrc, HiIdx));
} else if (Subtarget.hasAVX()) {
SDValue Lo = extract128BitVector(SrcVec, 0, DAG, DL);
SDValue Hi = extract128BitVector(SrcVec, 16, DAG, DL);
SDValue LoLo = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Lo);
SDValue HiHi = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Hi, Hi);
auto PSHUFBBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
// Permute Lo and Hi and then select based on index range.
// This works as SHUFB uses bits[3:0] to permute elements and we don't
// care about the bit[7] as its just an index vector.
SDValue Idx = Ops[2];
EVT VT = Idx.getValueType();
return DAG.getSelectCC(DL, Idx, DAG.getConstant(15, DL, VT),
DAG.getNode(X86ISD::PSHUFB, DL, VT, Ops[1], Idx),
DAG.getNode(X86ISD::PSHUFB, DL, VT, Ops[0], Idx),
ISD::CondCode::SETGT);
};
SDValue Ops[] = {LoLo, HiHi, IndicesVec};
return SplitOpsAndApply(DAG, Subtarget, DL, MVT::v32i8, Ops,
PSHUFBBuilder);
}
break;
case MVT::v16i16:
if (Subtarget.hasVLX() && Subtarget.hasBWI())
Opcode = X86ISD::VPERMV;
else if (Subtarget.hasAVX()) {
// Scale to v32i8 and perform as v32i8.
IndicesVec = ScaleIndices(IndicesVec, 2);
return DAG.getBitcast(
VT, createVariablePermute(
MVT::v32i8, DAG.getBitcast(MVT::v32i8, SrcVec),
DAG.getBitcast(MVT::v32i8, IndicesVec), DL, DAG, Subtarget));
}
break;
case MVT::v8f32:
case MVT::v8i32:
if (Subtarget.hasAVX2())
Opcode = X86ISD::VPERMV;
else if (Subtarget.hasAVX()) {
SrcVec = DAG.getBitcast(MVT::v8f32, SrcVec);
SDValue LoLo = DAG.getVectorShuffle(MVT::v8f32, DL, SrcVec, SrcVec,
{0, 1, 2, 3, 0, 1, 2, 3});
SDValue HiHi = DAG.getVectorShuffle(MVT::v8f32, DL, SrcVec, SrcVec,
{4, 5, 6, 7, 4, 5, 6, 7});
if (Subtarget.hasXOP())
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::VPERMIL2, DL, MVT::v8f32, LoLo, HiHi,
IndicesVec, DAG.getTargetConstant(0, DL, MVT::i8)));
// Permute Lo and Hi and then select based on index range.
// This works as VPERMILPS only uses index bits[0:1] to permute elements.
SDValue Res = DAG.getSelectCC(
DL, IndicesVec, DAG.getConstant(3, DL, MVT::v8i32),
DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, HiHi, IndicesVec),
DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, LoLo, IndicesVec),
ISD::CondCode::SETGT);
return DAG.getBitcast(VT, Res);
}
break;
case MVT::v4i64:
case MVT::v4f64:
if (Subtarget.hasAVX512()) {
if (!Subtarget.hasVLX()) {
MVT WidenSrcVT = MVT::getVectorVT(VT.getScalarType(), 8);
SrcVec = widenSubVector(WidenSrcVT, SrcVec, false, Subtarget, DAG,
SDLoc(SrcVec));
IndicesVec = widenSubVector(MVT::v8i64, IndicesVec, false, Subtarget,
DAG, SDLoc(IndicesVec));
SDValue Res = createVariablePermute(WidenSrcVT, SrcVec, IndicesVec, DL,
DAG, Subtarget);
return extract256BitVector(Res, 0, DAG, DL);
}
Opcode = X86ISD::VPERMV;
} else if (Subtarget.hasAVX()) {
SrcVec = DAG.getBitcast(MVT::v4f64, SrcVec);
SDValue LoLo =
DAG.getVectorShuffle(MVT::v4f64, DL, SrcVec, SrcVec, {0, 1, 0, 1});
SDValue HiHi =
DAG.getVectorShuffle(MVT::v4f64, DL, SrcVec, SrcVec, {2, 3, 2, 3});
// VPERMIL2PD selects with bit#1 of the index vector, so scale IndicesVec.
IndicesVec = DAG.getNode(ISD::ADD, DL, IndicesVT, IndicesVec, IndicesVec);
if (Subtarget.hasXOP())
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::VPERMIL2, DL, MVT::v4f64, LoLo, HiHi,
IndicesVec, DAG.getTargetConstant(0, DL, MVT::i8)));
// Permute Lo and Hi and then select based on index range.
// This works as VPERMILPD only uses index bit[1] to permute elements.
SDValue Res = DAG.getSelectCC(
DL, IndicesVec, DAG.getConstant(2, DL, MVT::v4i64),
DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v4f64, HiHi, IndicesVec),
DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v4f64, LoLo, IndicesVec),
ISD::CondCode::SETGT);
return DAG.getBitcast(VT, Res);
}
break;
case MVT::v64i8:
if (Subtarget.hasVBMI())
Opcode = X86ISD::VPERMV;
break;
case MVT::v32i16:
if (Subtarget.hasBWI())
Opcode = X86ISD::VPERMV;
break;
case MVT::v16f32:
case MVT::v16i32:
case MVT::v8f64:
case MVT::v8i64:
if (Subtarget.hasAVX512())
Opcode = X86ISD::VPERMV;
break;
}
if (!Opcode)
return SDValue();
assert((VT.getSizeInBits() == ShuffleVT.getSizeInBits()) &&
(VT.getScalarSizeInBits() % ShuffleVT.getScalarSizeInBits()) == 0 &&
"Illegal variable permute shuffle type");
uint64_t Scale = VT.getScalarSizeInBits() / ShuffleVT.getScalarSizeInBits();
if (Scale > 1)
IndicesVec = ScaleIndices(IndicesVec, Scale);
EVT ShuffleIdxVT = EVT(ShuffleVT).changeVectorElementTypeToInteger();
IndicesVec = DAG.getBitcast(ShuffleIdxVT, IndicesVec);
SrcVec = DAG.getBitcast(ShuffleVT, SrcVec);
SDValue Res = Opcode == X86ISD::VPERMV
? DAG.getNode(Opcode, DL, ShuffleVT, IndicesVec, SrcVec)
: DAG.getNode(Opcode, DL, ShuffleVT, SrcVec, IndicesVec);
return DAG.getBitcast(VT, Res);
}
// Tries to lower a BUILD_VECTOR composed of extract-extract chains that can be
// reasoned to be a permutation of a vector by indices in a non-constant vector.
// (build_vector (extract_elt V, (extract_elt I, 0)),
// (extract_elt V, (extract_elt I, 1)),
// ...
// ->
// (vpermv I, V)
//
// TODO: Handle undefs
// TODO: Utilize pshufb and zero mask blending to support more efficient
// construction of vectors with constant-0 elements.
static SDValue
LowerBUILD_VECTORAsVariablePermute(SDValue V, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue SrcVec, IndicesVec;
// Check for a match of the permute source vector and permute index elements.
// This is done by checking that the i-th build_vector operand is of the form:
// (extract_elt SrcVec, (extract_elt IndicesVec, i)).
for (unsigned Idx = 0, E = V.getNumOperands(); Idx != E; ++Idx) {
SDValue Op = V.getOperand(Idx);
if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
// If this is the first extract encountered in V, set the source vector,
// otherwise verify the extract is from the previously defined source
// vector.
if (!SrcVec)
SrcVec = Op.getOperand(0);
else if (SrcVec != Op.getOperand(0))
return SDValue();
SDValue ExtractedIndex = Op->getOperand(1);
// Peek through extends.
if (ExtractedIndex.getOpcode() == ISD::ZERO_EXTEND ||
ExtractedIndex.getOpcode() == ISD::SIGN_EXTEND)
ExtractedIndex = ExtractedIndex.getOperand(0);
if (ExtractedIndex.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
// If this is the first extract from the index vector candidate, set the
// indices vector, otherwise verify the extract is from the previously
// defined indices vector.
if (!IndicesVec)
IndicesVec = ExtractedIndex.getOperand(0);
else if (IndicesVec != ExtractedIndex.getOperand(0))
return SDValue();
auto *PermIdx = dyn_cast<ConstantSDNode>(ExtractedIndex.getOperand(1));
if (!PermIdx || PermIdx->getAPIntValue() != Idx)
return SDValue();
}
SDLoc DL(V);
MVT VT = V.getSimpleValueType();
return createVariablePermute(VT, SrcVec, IndicesVec, DL, DAG, Subtarget);
}
SDValue
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElems = Op.getNumOperands();
// Generate vectors for predicate vectors.
if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512())
return LowerBUILD_VECTORvXi1(Op, DAG, Subtarget);
if (SDValue VectorConstant = materializeVectorConstant(Op, DAG, Subtarget))
return VectorConstant;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
if (SDValue AddSub = lowerToAddSubOrFMAddSub(BV, Subtarget, DAG))
return AddSub;
if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
return HorizontalOp;
if (SDValue Broadcast = lowerBuildVectorAsBroadcast(BV, Subtarget, DAG))
return Broadcast;
if (SDValue BitOp = lowerBuildVectorToBitOp(BV, DAG))
return BitOp;
unsigned EVTBits = EltVT.getSizeInBits();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
uint64_t NonZeros = 0;
bool IsAllConstants = true;
SmallSet<SDValue, 8> Values;
unsigned NumConstants = NumElems;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = Op.getOperand(i);
if (Elt.isUndef())
continue;
Values.insert(Elt);
if (!isa<ConstantSDNode>(Elt) && !isa<ConstantFPSDNode>(Elt)) {
IsAllConstants = false;
NumConstants--;
}
if (X86::isZeroNode(Elt))
NumZero++;
else {
assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range.
NonZeros |= ((uint64_t)1 << i);
NumNonZero++;
}
}
// All undef vector. Return an UNDEF. All zero vectors were handled above.
if (NumNonZero == 0)
return DAG.getUNDEF(VT);
// If we are inserting one variable into a vector of non-zero constants, try
// to avoid loading each constant element as a scalar. Load the constants as a
// vector and then insert the variable scalar element. If insertion is not
// supported, fall back to a shuffle to get the scalar blended with the
// constants. Insertion into a zero vector is handled as a special-case
// somewhere below here.
if (NumConstants == NumElems - 1 && NumNonZero != 1 &&
(isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT) ||
isOperationLegalOrCustom(ISD::VECTOR_SHUFFLE, VT))) {
// Create an all-constant vector. The variable element in the old
// build vector is replaced by undef in the constant vector. Save the
// variable scalar element and its index for use in the insertelement.
LLVMContext &Context = *DAG.getContext();
Type *EltType = Op.getValueType().getScalarType().getTypeForEVT(Context);
SmallVector<Constant *, 16> ConstVecOps(NumElems, UndefValue::get(EltType));
SDValue VarElt;
SDValue InsIndex;
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Elt = Op.getOperand(i);
if (auto *C = dyn_cast<ConstantSDNode>(Elt))
ConstVecOps[i] = ConstantInt::get(Context, C->getAPIntValue());
else if (auto *C = dyn_cast<ConstantFPSDNode>(Elt))
ConstVecOps[i] = ConstantFP::get(Context, C->getValueAPF());
else if (!Elt.isUndef()) {
assert(!VarElt.getNode() && !InsIndex.getNode() &&
"Expected one variable element in this vector");
VarElt = Elt;
InsIndex = DAG.getConstant(i, dl, getVectorIdxTy(DAG.getDataLayout()));
}
}
Constant *CV = ConstantVector::get(ConstVecOps);
SDValue DAGConstVec = DAG.getConstantPool(CV, VT);
// The constants we just created may not be legal (eg, floating point). We
// must lower the vector right here because we can not guarantee that we'll
// legalize it before loading it. This is also why we could not just create
// a new build vector here. If the build vector contains illegal constants,
// it could get split back up into a series of insert elements.
// TODO: Improve this by using shorter loads with broadcast/VZEXT_LOAD.
SDValue LegalDAGConstVec = LowerConstantPool(DAGConstVec, DAG);
MachineFunction &MF = DAG.getMachineFunction();
MachinePointerInfo MPI = MachinePointerInfo::getConstantPool(MF);
SDValue Ld = DAG.getLoad(VT, dl, DAG.getEntryNode(), LegalDAGConstVec, MPI);
unsigned InsertC = cast<ConstantSDNode>(InsIndex)->getZExtValue();
unsigned NumEltsInLow128Bits = 128 / VT.getScalarSizeInBits();
if (InsertC < NumEltsInLow128Bits)
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ld, VarElt, InsIndex);
// There's no good way to insert into the high elements of a >128-bit
// vector, so use shuffles to avoid an extract/insert sequence.
assert(VT.getSizeInBits() > 128 && "Invalid insertion index?");
assert(Subtarget.hasAVX() && "Must have AVX with >16-byte vector");
SmallVector<int, 8> ShuffleMask;
unsigned NumElts = VT.getVectorNumElements();
for (unsigned i = 0; i != NumElts; ++i)
ShuffleMask.push_back(i == InsertC ? NumElts : i);
SDValue S2V = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, VarElt);
return DAG.getVectorShuffle(VT, dl, Ld, S2V, ShuffleMask);
}
// Special case for single non-zero, non-undef, element.
if (NumNonZero == 1) {
unsigned Idx = countTrailingZeros(NonZeros);
SDValue Item = Op.getOperand(Idx);
// If we have a constant or non-constant insertion into the low element of
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
// the rest of the elements. This will be matched as movd/movq/movss/movsd
// depending on what the source datatype is.
if (Idx == 0) {
if (NumZero == 0)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
if (EltVT == MVT::i32 || EltVT == MVT::f32 || EltVT == MVT::f64 ||
(EltVT == MVT::i64 && Subtarget.is64Bit())) {
assert((VT.is128BitVector() || VT.is256BitVector() ||
VT.is512BitVector()) &&
"Expected an SSE value type!");
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
}
// We can't directly insert an i8 or i16 into a vector, so zero extend
// it to i32 first.
if (EltVT == MVT::i16 || EltVT == MVT::i8) {
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
MVT ShufVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShufVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
return DAG.getBitcast(VT, Item);
}
}
// Is it a vector logical left shift?
if (NumElems == 2 && Idx == 1 &&
X86::isZeroNode(Op.getOperand(0)) &&
!X86::isZeroNode(Op.getOperand(1))) {
unsigned NumBits = VT.getSizeInBits();
return getVShift(true, VT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
VT, Op.getOperand(1)),
NumBits/2, DAG, *this, dl);
}
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
return SDValue();
// Otherwise, if this is a vector with i32 or f32 elements, and the element
// is a non-constant being inserted into an element other than the low one,
// we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
// movd/movss) to move this into the low element, then shuffle it into
// place.
if (EVTBits == 32) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
}
}
// Splat is obviously ok. Let legalizer expand it to a shuffle.
if (Values.size() == 1) {
if (EVTBits == 32) {
// Instead of a shuffle like this:
// shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
// Check if it's possible to issue this instead.
// shuffle (vload ptr)), undef, <1, 1, 1, 1>
unsigned Idx = countTrailingZeros(NonZeros);
SDValue Item = Op.getOperand(Idx);
if (Op.getNode()->isOnlyUserOf(Item.getNode()))
return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
}
return SDValue();
}
// A vector full of immediates; various special cases are already
// handled, so this is best done with a single constant-pool load.
if (IsAllConstants)
return SDValue();
if (SDValue V = LowerBUILD_VECTORAsVariablePermute(Op, DAG, Subtarget))
return V;
// See if we can use a vector load to get all of the elements.
{
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems);
if (SDValue LD =
EltsFromConsecutiveLoads(VT, Ops, dl, DAG, Subtarget, false))
return LD;
}
// If this is a splat of pairs of 32-bit elements, we can use a narrower
// build_vector and broadcast it.
// TODO: We could probably generalize this more.
if (Subtarget.hasAVX2() && EVTBits == 32 && Values.size() == 2) {
SDValue Ops[4] = { Op.getOperand(0), Op.getOperand(1),
DAG.getUNDEF(EltVT), DAG.getUNDEF(EltVT) };
auto CanSplat = [](SDValue Op, unsigned NumElems, ArrayRef<SDValue> Ops) {
// Make sure all the even/odd operands match.
for (unsigned i = 2; i != NumElems; ++i)
if (Ops[i % 2] != Op.getOperand(i))
return false;
return true;
};
if (CanSplat(Op, NumElems, Ops)) {
MVT WideEltVT = VT.isFloatingPoint() ? MVT::f64 : MVT::i64;
MVT NarrowVT = MVT::getVectorVT(EltVT, 4);
// Create a new build vector and cast to v2i64/v2f64.
SDValue NewBV = DAG.getBitcast(MVT::getVectorVT(WideEltVT, 2),
DAG.getBuildVector(NarrowVT, dl, Ops));
// Broadcast from v2i64/v2f64 and cast to final VT.
MVT BcastVT = MVT::getVectorVT(WideEltVT, NumElems/2);
return DAG.getBitcast(VT, DAG.getNode(X86ISD::VBROADCAST, dl, BcastVT,
NewBV));
}
}
// For AVX-length vectors, build the individual 128-bit pieces and use
// shuffles to put them in place.
if (VT.getSizeInBits() > 128) {
MVT HVT = MVT::getVectorVT(EltVT, NumElems/2);
// Build both the lower and upper subvector.
SDValue Lower =
DAG.getBuildVector(HVT, dl, Op->ops().slice(0, NumElems / 2));
SDValue Upper = DAG.getBuildVector(
HVT, dl, Op->ops().slice(NumElems / 2, NumElems /2));
// Recreate the wider vector with the lower and upper part.
return concatSubVectors(Lower, Upper, DAG, dl);
}
// Let legalizer expand 2-wide build_vectors.
if (EVTBits == 64) {
if (NumNonZero == 1) {
// One half is zero or undef.
unsigned Idx = countTrailingZeros(NonZeros);
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
Op.getOperand(Idx));
return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
}
return SDValue();
}
// If element VT is < 32 bits, convert it to inserts into a zero vector.
if (EVTBits == 8 && NumElems == 16)
if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero,
DAG, Subtarget))
return V;
if (EVTBits == 16 && NumElems == 8)
if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero,
DAG, Subtarget))
return V;
// If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
if (EVTBits == 32 && NumElems == 4)
if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget))
return V;
// If element VT is == 32 bits, turn it into a number of shuffles.
if (NumElems == 4 && NumZero > 0) {
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < 4; ++i) {
bool isZero = !(NonZeros & (1ULL << i));
if (isZero)
Ops[i] = getZeroVector(VT, Subtarget, DAG, dl);
else
Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
}
for (unsigned i = 0; i < 2; ++i) {
switch ((NonZeros >> (i*2)) & 0x3) {
default: llvm_unreachable("Unexpected NonZero count");
case 0:
Ops[i] = Ops[i*2]; // Must be a zero vector.
break;
case 1:
Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2+1], Ops[i*2]);
break;
case 2:
Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
break;
case 3:
Ops[i] = getUnpackl(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
break;
}
}
bool Reverse1 = (NonZeros & 0x3) == 2;
bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
int MaskVec[] = {
Reverse1 ? 1 : 0,
Reverse1 ? 0 : 1,
static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
static_cast<int>(Reverse2 ? NumElems : NumElems+1)
};
return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], MaskVec);
}
assert(Values.size() > 1 && "Expected non-undef and non-splat vector");
// Check for a build vector from mostly shuffle plus few inserting.
if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
return Sh;
// For SSE 4.1, use insertps to put the high elements into the low element.
if (Subtarget.hasSSE41()) {
SDValue Result;
if (!Op.getOperand(0).isUndef())
Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
else
Result = DAG.getUNDEF(VT);
for (unsigned i = 1; i < NumElems; ++i) {
if (Op.getOperand(i).isUndef()) continue;
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
}
return Result;
}
// Otherwise, expand into a number of unpckl*, start by extending each of
// our (non-undef) elements to the full vector width with the element in the
// bottom slot of the vector (which generates no code for SSE).
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
if (!Op.getOperand(i).isUndef())
Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
else
Ops[i] = DAG.getUNDEF(VT);
}
// Next, we iteratively mix elements, e.g. for v4f32:
// Step 1: unpcklps 0, 1 ==> X: <?, ?, 1, 0>
// : unpcklps 2, 3 ==> Y: <?, ?, 3, 2>
// Step 2: unpcklpd X, Y ==> <3, 2, 1, 0>
for (unsigned Scale = 1; Scale < NumElems; Scale *= 2) {
// Generate scaled UNPCKL shuffle mask.
SmallVector<int, 16> Mask;
for(unsigned i = 0; i != Scale; ++i)
Mask.push_back(i);
for (unsigned i = 0; i != Scale; ++i)
Mask.push_back(NumElems+i);
Mask.append(NumElems - Mask.size(), SM_SentinelUndef);
for (unsigned i = 0, e = NumElems / (2 * Scale); i != e; ++i)
Ops[i] = DAG.getVectorShuffle(VT, dl, Ops[2*i], Ops[(2*i)+1], Mask);
}
return Ops[0];
}
// 256-bit AVX can use the vinsertf128 instruction
// to create 256-bit vectors from two other 128-bit ones.
// TODO: Detect subvector broadcast here instead of DAG combine?
static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
MVT ResVT = Op.getSimpleValueType();
assert((ResVT.is256BitVector() ||
ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
unsigned NumOperands = Op.getNumOperands();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
unsigned NonZeros = 0;
for (unsigned i = 0; i != NumOperands; ++i) {
SDValue SubVec = Op.getOperand(i);
if (SubVec.isUndef())
continue;
if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
++NumZero;
else {
assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range.
NonZeros |= 1 << i;
++NumNonZero;
}
}
// If we have more than 2 non-zeros, build each half separately.
if (NumNonZero > 2) {
MVT HalfVT = ResVT.getHalfNumVectorElementsVT();
ArrayRef<SDUse> Ops = Op->ops();
SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
Ops.slice(0, NumOperands/2));
SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
Ops.slice(NumOperands/2));
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}
// Otherwise, build it up through insert_subvectors.
SDValue Vec = NumZero ? getZeroVector(ResVT, Subtarget, DAG, dl)
: DAG.getUNDEF(ResVT);
MVT SubVT = Op.getOperand(0).getSimpleValueType();
unsigned NumSubElems = SubVT.getVectorNumElements();
for (unsigned i = 0; i != NumOperands; ++i) {
if ((NonZeros & (1 << i)) == 0)
continue;
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec,
Op.getOperand(i),
DAG.getIntPtrConstant(i * NumSubElems, dl));
}
return Vec;
}
// Returns true if the given node is a type promotion (by concatenating i1
// zeros) of the result of a node that already zeros all upper bits of
// k-register.
// TODO: Merge this with LowerAVXCONCAT_VECTORS?
static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG & DAG) {
SDLoc dl(Op);
MVT ResVT = Op.getSimpleValueType();
unsigned NumOperands = Op.getNumOperands();
assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&
"Unexpected number of operands in CONCAT_VECTORS");
uint64_t Zeros = 0;
uint64_t NonZeros = 0;
for (unsigned i = 0; i != NumOperands; ++i) {
SDValue SubVec = Op.getOperand(i);
if (SubVec.isUndef())
continue;
assert(i < sizeof(NonZeros) * CHAR_BIT); // Ensure the shift is in range.
if (ISD::isBuildVectorAllZeros(SubVec.getNode()))
Zeros |= (uint64_t)1 << i;
else
NonZeros |= (uint64_t)1 << i;
}
unsigned NumElems = ResVT.getVectorNumElements();
// If we are inserting non-zero vector and there are zeros in LSBs and undef
// in the MSBs we need to emit a KSHIFTL. The generic lowering to
// insert_subvector will give us two kshifts.
if (isPowerOf2_64(NonZeros) && Zeros != 0 && NonZeros > Zeros &&
Log2_64(NonZeros) != NumOperands - 1) {
MVT ShiftVT = ResVT;
if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8)
ShiftVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
unsigned Idx = Log2_64(NonZeros);
SDValue SubVec = Op.getOperand(Idx);
unsigned SubVecNumElts = SubVec.getSimpleValueType().getVectorNumElements();
SubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ShiftVT,
DAG.getUNDEF(ShiftVT), SubVec,
DAG.getIntPtrConstant(0, dl));
Op = DAG.getNode(X86ISD::KSHIFTL, dl, ShiftVT, SubVec,
DAG.getTargetConstant(Idx * SubVecNumElts, dl, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResVT, Op,
DAG.getIntPtrConstant(0, dl));
}
// If there are zero or one non-zeros we can handle this very simply.
if (NonZeros == 0 || isPowerOf2_64(NonZeros)) {
SDValue Vec = Zeros ? DAG.getConstant(0, dl, ResVT) : DAG.getUNDEF(ResVT);
if (!NonZeros)
return Vec;
unsigned Idx = Log2_64(NonZeros);
SDValue SubVec = Op.getOperand(Idx);
unsigned SubVecNumElts = SubVec.getSimpleValueType().getVectorNumElements();
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, SubVec,
DAG.getIntPtrConstant(Idx * SubVecNumElts, dl));
}
if (NumOperands > 2) {
MVT HalfVT = ResVT.getHalfNumVectorElementsVT();
ArrayRef<SDUse> Ops = Op->ops();
SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
Ops.slice(0, NumOperands/2));
SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT,
Ops.slice(NumOperands/2));
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}
assert(countPopulation(NonZeros) == 2 && "Simple cases not handled?");
if (ResVT.getVectorNumElements() >= 16)
return Op; // The operation is legal with KUNPCK
SDValue Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT,
DAG.getUNDEF(ResVT), Op.getOperand(0),
DAG.getIntPtrConstant(0, dl));
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Vec, Op.getOperand(1),
DAG.getIntPtrConstant(NumElems/2, dl));
}
static SDValue LowerCONCAT_VECTORS(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (VT.getVectorElementType() == MVT::i1)
return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
(VT.is512BitVector() && (Op.getNumOperands() == 2 ||
Op.getNumOperands() == 4)));
// AVX can use the vinsertf128 instruction to create 256-bit vectors
// from two other 128-bit ones.
// 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
return LowerAVXCONCAT_VECTORS(Op, DAG, Subtarget);
}
//===----------------------------------------------------------------------===//
// Vector shuffle lowering
//
// This is an experimental code path for lowering vector shuffles on x86. It is
// designed to handle arbitrary vector shuffles and blends, gracefully
// degrading performance as necessary. It works hard to recognize idiomatic
// shuffles and lower them to optimal instruction patterns without leaving
// a framework that allows reasonably efficient handling of all vector shuffle
// patterns.
//===----------------------------------------------------------------------===//
/// Tiny helper function to identify a no-op mask.
///
/// This is a somewhat boring predicate function. It checks whether the mask
/// array input, which is assumed to be a single-input shuffle mask of the kind
/// used by the X86 shuffle instructions (not a fully general
/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
/// in-place shuffle are 'no-op's.
static bool isNoopShuffleMask(ArrayRef<int> Mask) {
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
assert(Mask[i] >= -1 && "Out of bound mask element!");
if (Mask[i] >= 0 && Mask[i] != i)
return false;
}
return true;
}
/// Test whether there are elements crossing LaneSizeInBits lanes in this
/// shuffle mask.
///
/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
/// and we routinely test for these.
static bool isLaneCrossingShuffleMask(unsigned LaneSizeInBits,
unsigned ScalarSizeInBits,
ArrayRef<int> Mask) {
assert(LaneSizeInBits && ScalarSizeInBits &&
(LaneSizeInBits % ScalarSizeInBits) == 0 &&
"Illegal shuffle lane size");
int LaneSize = LaneSizeInBits / ScalarSizeInBits;
int Size = Mask.size();
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
return true;
return false;
}
/// Test whether there are elements crossing 128-bit lanes in this
/// shuffle mask.
static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
return isLaneCrossingShuffleMask(128, VT.getScalarSizeInBits(), Mask);
}
/// Test whether a shuffle mask is equivalent within each sub-lane.
///
/// This checks a shuffle mask to see if it is performing the same
/// lane-relative shuffle in each sub-lane. This trivially implies
/// that it is also not lane-crossing. It may however involve a blend from the
/// same lane of a second vector.
///
/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
/// non-trivial to compute in the face of undef lanes. The representation is
/// suitable for use with existing 128-bit shuffles as entries from the second
/// vector have been remapped to [LaneSize, 2*LaneSize).
static bool isRepeatedShuffleMask(unsigned LaneSizeInBits, MVT VT,
ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
auto LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
RepeatedMask.assign(LaneSize, -1);
int Size = Mask.size();
for (int i = 0; i < Size; ++i) {
assert(Mask[i] == SM_SentinelUndef || Mask[i] >= 0);
if (Mask[i] < 0)
continue;
if ((Mask[i] % Size) / LaneSize != i / LaneSize)
// This entry crosses lanes, so there is no way to model this shuffle.
return false;
// Ok, handle the in-lane shuffles by detecting if and when they repeat.
// Adjust second vector indices to start at LaneSize instead of Size.
int LocalM = Mask[i] < Size ? Mask[i] % LaneSize
: Mask[i] % LaneSize + LaneSize;
if (RepeatedMask[i % LaneSize] < 0)
// This is the first non-undef entry in this slot of a 128-bit lane.
RepeatedMask[i % LaneSize] = LocalM;
else if (RepeatedMask[i % LaneSize] != LocalM)
// Found a mismatch with the repeated mask.
return false;
}
return true;
}
/// Test whether a shuffle mask is equivalent within each 128-bit lane.
static bool
is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask);
}
static bool
is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask) {
SmallVector<int, 32> RepeatedMask;
return isRepeatedShuffleMask(128, VT, Mask, RepeatedMask);
}
/// Test whether a shuffle mask is equivalent within each 256-bit lane.
static bool
is256BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
return isRepeatedShuffleMask(256, VT, Mask, RepeatedMask);
}
/// Test whether a target shuffle mask is equivalent within each sub-lane.
/// Unlike isRepeatedShuffleMask we must respect SM_SentinelZero.
static bool isRepeatedTargetShuffleMask(unsigned LaneSizeInBits, MVT VT,
ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
int LaneSize = LaneSizeInBits / VT.getScalarSizeInBits();
RepeatedMask.assign(LaneSize, SM_SentinelUndef);
int Size = Mask.size();
for (int i = 0; i < Size; ++i) {
assert(isUndefOrZero(Mask[i]) || (Mask[i] >= 0));
if (Mask[i] == SM_SentinelUndef)
continue;
if (Mask[i] == SM_SentinelZero) {
if (!isUndefOrZero(RepeatedMask[i % LaneSize]))
return false;
RepeatedMask[i % LaneSize] = SM_SentinelZero;
continue;
}
if ((Mask[i] % Size) / LaneSize != i / LaneSize)
// This entry crosses lanes, so there is no way to model this shuffle.
return false;
// Ok, handle the in-lane shuffles by detecting if and when they repeat.
// Adjust second vector indices to start at LaneSize instead of Size.
int LocalM =
Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + LaneSize;
if (RepeatedMask[i % LaneSize] == SM_SentinelUndef)
// This is the first non-undef entry in this slot of a 128-bit lane.
RepeatedMask[i % LaneSize] = LocalM;
else if (RepeatedMask[i % LaneSize] != LocalM)
// Found a mismatch with the repeated mask.
return false;
}
return true;
}
/// Checks whether a shuffle mask is equivalent to an explicit list of
/// arguments.
///
/// This is a fast way to test a shuffle mask against a fixed pattern:
///
/// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
///
/// It returns true if the mask is exactly as wide as the argument list, and
/// each element of the mask is either -1 (signifying undef) or the value given
/// in the argument.
static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
ArrayRef<int> ExpectedMask) {
if (Mask.size() != ExpectedMask.size())
return false;
int Size = Mask.size();
// If the values are build vectors, we can look through them to find
// equivalent inputs that make the shuffles equivalent.
auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
for (int i = 0; i < Size; ++i) {
assert(Mask[i] >= -1 && "Out of bound mask element!");
if (Mask[i] >= 0 && Mask[i] != ExpectedMask[i]) {
auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
if (!MaskBV || !ExpectedBV ||
MaskBV->getOperand(Mask[i] % Size) !=
ExpectedBV->getOperand(ExpectedMask[i] % Size))
return false;
}
}
return true;
}
/// Checks whether a target shuffle mask is equivalent to an explicit pattern.
///
/// The masks must be exactly the same width.
///
/// If an element in Mask matches SM_SentinelUndef (-1) then the corresponding
/// value in ExpectedMask is always accepted. Otherwise the indices must match.
///
/// SM_SentinelZero is accepted as a valid negative index but must match in
/// both.
static bool isTargetShuffleEquivalent(ArrayRef<int> Mask,
ArrayRef<int> ExpectedMask,
SDValue V1 = SDValue(),
SDValue V2 = SDValue()) {
int Size = Mask.size();
if (Size != (int)ExpectedMask.size())
return false;
assert(isUndefOrZeroOrInRange(ExpectedMask, 0, 2 * Size) &&
"Illegal target shuffle mask");
// Check for out-of-range target shuffle mask indices.
if (!isUndefOrZeroOrInRange(Mask, 0, 2 * Size))
return false;
// If the values are build vectors, we can look through them to find
// equivalent inputs that make the shuffles equivalent.
auto *BV1 = dyn_cast_or_null<BuildVectorSDNode>(V1);
auto *BV2 = dyn_cast_or_null<BuildVectorSDNode>(V2);
BV1 = ((BV1 && Size != (int)BV1->getNumOperands()) ? nullptr : BV1);
BV2 = ((BV2 && Size != (int)BV2->getNumOperands()) ? nullptr : BV2);
for (int i = 0; i < Size; ++i) {
if (Mask[i] == SM_SentinelUndef || Mask[i] == ExpectedMask[i])
continue;
if (0 <= Mask[i] && 0 <= ExpectedMask[i]) {
auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
if (MaskBV && ExpectedBV &&
MaskBV->getOperand(Mask[i] % Size) ==
ExpectedBV->getOperand(ExpectedMask[i] % Size))
continue;
}
// TODO - handle SM_Sentinel equivalences.
return false;
}
return true;
}
// Attempt to create a shuffle mask from a VSELECT condition mask.
static bool createShuffleMaskFromVSELECT(SmallVectorImpl<int> &Mask,
SDValue Cond) {
if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
return false;
unsigned Size = Cond.getValueType().getVectorNumElements();
Mask.resize(Size, SM_SentinelUndef);
for (int i = 0; i != (int)Size; ++i) {
SDValue CondElt = Cond.getOperand(i);
Mask[i] = i;
// Arbitrarily choose from the 2nd operand if the select condition element
// is undef.
// TODO: Can we do better by matching patterns such as even/odd?
if (CondElt.isUndef() || isNullConstant(CondElt))
Mask[i] += Size;
}
return true;
}
// Check if the shuffle mask is suitable for the AVX vpunpcklwd or vpunpckhwd
// instructions.
static bool isUnpackWdShuffleMask(ArrayRef<int> Mask, MVT VT) {
if (VT != MVT::v8i32 && VT != MVT::v8f32)
return false;
SmallVector<int, 8> Unpcklwd;
createUnpackShuffleMask(MVT::v8i16, Unpcklwd, /* Lo = */ true,
/* Unary = */ false);
SmallVector<int, 8> Unpckhwd;
createUnpackShuffleMask(MVT::v8i16, Unpckhwd, /* Lo = */ false,
/* Unary = */ false);
bool IsUnpackwdMask = (isTargetShuffleEquivalent(Mask, Unpcklwd) ||
isTargetShuffleEquivalent(Mask, Unpckhwd));
return IsUnpackwdMask;
}
static bool is128BitUnpackShuffleMask(ArrayRef<int> Mask) {
// Create 128-bit vector type based on mask size.
MVT EltVT = MVT::getIntegerVT(128 / Mask.size());
MVT VT = MVT::getVectorVT(EltVT, Mask.size());
// We can't assume a canonical shuffle mask, so try the commuted version too.
SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end());
ShuffleVectorSDNode::commuteMask(CommutedMask);
// Match any of unary/binary or low/high.
for (unsigned i = 0; i != 4; ++i) {
SmallVector<int, 16> UnpackMask;
createUnpackShuffleMask(VT, UnpackMask, (i >> 1) % 2, i % 2);
if (isTargetShuffleEquivalent(Mask, UnpackMask) ||
isTargetShuffleEquivalent(CommutedMask, UnpackMask))
return true;
}
return false;
}
/// Return true if a shuffle mask chooses elements identically in its top and
/// bottom halves. For example, any splat mask has the same top and bottom
/// halves. If an element is undefined in only one half of the mask, the halves
/// are not considered identical.
static bool hasIdenticalHalvesShuffleMask(ArrayRef<int> Mask) {
assert(Mask.size() % 2 == 0 && "Expecting even number of elements in mask");
unsigned HalfSize = Mask.size() / 2;
for (unsigned i = 0; i != HalfSize; ++i) {
if (Mask[i] != Mask[i + HalfSize])
return false;
}
return true;
}
/// Get a 4-lane 8-bit shuffle immediate for a mask.
///
/// This helper function produces an 8-bit shuffle immediate corresponding to
/// the ubiquitous shuffle encoding scheme used in x86 instructions for
/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
/// example.
///
/// NB: We rely heavily on "undef" masks preserving the input lane.
static unsigned getV4X86ShuffleImm(ArrayRef<int> Mask) {
assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
unsigned Imm = 0;
Imm |= (Mask[0] < 0 ? 0 : Mask[0]) << 0;
Imm |= (Mask[1] < 0 ? 1 : Mask[1]) << 2;
Imm |= (Mask[2] < 0 ? 2 : Mask[2]) << 4;
Imm |= (Mask[3] < 0 ? 3 : Mask[3]) << 6;
return Imm;
}
static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, const SDLoc &DL,
SelectionDAG &DAG) {
return DAG.getTargetConstant(getV4X86ShuffleImm(Mask), DL, MVT::i8);
}
// The Shuffle result is as follow:
// 0*a[0]0*a[1]...0*a[n] , n >=0 where a[] elements in a ascending order.
// Each Zeroable's element correspond to a particular Mask's element.
// As described in computeZeroableShuffleElements function.
//
// The function looks for a sub-mask that the nonzero elements are in
// increasing order. If such sub-mask exist. The function returns true.
static bool isNonZeroElementsInOrder(const APInt &Zeroable,
ArrayRef<int> Mask, const EVT &VectorType,
bool &IsZeroSideLeft) {
int NextElement = -1;
// Check if the Mask's nonzero elements are in increasing order.
for (int i = 0, e = Mask.size(); i < e; i++) {
// Checks if the mask's zeros elements are built from only zeros.
assert(Mask[i] >= -1 && "Out of bound mask element!");
if (Mask[i] < 0)
return false;
if (Zeroable[i])
continue;
// Find the lowest non zero element
if (NextElement < 0) {
NextElement = Mask[i] != 0 ? VectorType.getVectorNumElements() : 0;
IsZeroSideLeft = NextElement != 0;
}
// Exit if the mask's non zero elements are not in increasing order.
if (NextElement != Mask[i])
return false;
NextElement++;
}
return true;
}
/// Try to lower a shuffle with a single PSHUFB of V1 or V2.
static SDValue lowerShuffleWithPSHUFB(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
int Size = Mask.size();
int LaneSize = 128 / VT.getScalarSizeInBits();
const int NumBytes = VT.getSizeInBits() / 8;
const int NumEltBytes = VT.getScalarSizeInBits() / 8;
assert((Subtarget.hasSSSE3() && VT.is128BitVector()) ||
(Subtarget.hasAVX2() && VT.is256BitVector()) ||
(Subtarget.hasBWI() && VT.is512BitVector()));
SmallVector<SDValue, 64> PSHUFBMask(NumBytes);
// Sign bit set in i8 mask means zero element.
SDValue ZeroMask = DAG.getConstant(0x80, DL, MVT::i8);
SDValue V;
for (int i = 0; i < NumBytes; ++i) {
int M = Mask[i / NumEltBytes];
if (M < 0) {
PSHUFBMask[i] = DAG.getUNDEF(MVT::i8);
continue;
}
if (Zeroable[i / NumEltBytes]) {
PSHUFBMask[i] = ZeroMask;
continue;
}
// We can only use a single input of V1 or V2.
SDValue SrcV = (M >= Size ? V2 : V1);
if (V && V != SrcV)
return SDValue();
V = SrcV;
M %= Size;
// PSHUFB can't cross lanes, ensure this doesn't happen.
if ((M / LaneSize) != ((i / NumEltBytes) / LaneSize))
return SDValue();
M = M % LaneSize;
M = M * NumEltBytes + (i % NumEltBytes);
PSHUFBMask[i] = DAG.getConstant(M, DL, MVT::i8);
}
assert(V && "Failed to find a source input");
MVT I8VT = MVT::getVectorVT(MVT::i8, NumBytes);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PSHUFB, DL, I8VT, DAG.getBitcast(I8VT, V),
DAG.getBuildVector(I8VT, DL, PSHUFBMask)));
}
static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl);
// X86 has dedicated shuffle that can be lowered to VEXPAND
static SDValue lowerShuffleToEXPAND(const SDLoc &DL, MVT VT,
const APInt &Zeroable,
ArrayRef<int> Mask, SDValue &V1,
SDValue &V2, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
bool IsLeftZeroSide = true;
if (!isNonZeroElementsInOrder(Zeroable, Mask, V1.getValueType(),
IsLeftZeroSide))
return SDValue();
unsigned VEXPANDMask = (~Zeroable).getZExtValue();
MVT IntegerType =
MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
SDValue MaskNode = DAG.getConstant(VEXPANDMask, DL, IntegerType);
unsigned NumElts = VT.getVectorNumElements();
assert((NumElts == 4 || NumElts == 8 || NumElts == 16) &&
"Unexpected number of vector elements");
SDValue VMask = getMaskNode(MaskNode, MVT::getVectorVT(MVT::i1, NumElts),
Subtarget, DAG, DL);
SDValue ZeroVector = getZeroVector(VT, Subtarget, DAG, DL);
SDValue ExpandedVector = IsLeftZeroSide ? V2 : V1;
return DAG.getNode(X86ISD::EXPAND, DL, VT, ExpandedVector, ZeroVector, VMask);
}
static bool matchShuffleWithUNPCK(MVT VT, SDValue &V1, SDValue &V2,
unsigned &UnpackOpcode, bool IsUnary,
ArrayRef<int> TargetMask, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
int NumElts = VT.getVectorNumElements();
bool Undef1 = true, Undef2 = true, Zero1 = true, Zero2 = true;
for (int i = 0; i != NumElts; i += 2) {
int M1 = TargetMask[i + 0];
int M2 = TargetMask[i + 1];
Undef1 &= (SM_SentinelUndef == M1);
Undef2 &= (SM_SentinelUndef == M2);
Zero1 &= isUndefOrZero(M1);
Zero2 &= isUndefOrZero(M2);
}
assert(!((Undef1 || Zero1) && (Undef2 || Zero2)) &&
"Zeroable shuffle detected");
// Attempt to match the target mask against the unpack lo/hi mask patterns.
SmallVector<int, 64> Unpckl, Unpckh;
createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, IsUnary);
if (isTargetShuffleEquivalent(TargetMask, Unpckl)) {
UnpackOpcode = X86ISD::UNPCKL;
V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2));
V1 = (Undef1 ? DAG.getUNDEF(VT) : V1);
return true;
}
createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, IsUnary);
if (isTargetShuffleEquivalent(TargetMask, Unpckh)) {
UnpackOpcode = X86ISD::UNPCKH;
V2 = (Undef2 ? DAG.getUNDEF(VT) : (IsUnary ? V1 : V2));
V1 = (Undef1 ? DAG.getUNDEF(VT) : V1);
return true;
}
// If an unary shuffle, attempt to match as an unpack lo/hi with zero.
if (IsUnary && (Zero1 || Zero2)) {
// Don't bother if we can blend instead.
if ((Subtarget.hasSSE41() || VT == MVT::v2i64 || VT == MVT::v2f64) &&
isSequentialOrUndefOrZeroInRange(TargetMask, 0, NumElts, 0))
return false;
bool MatchLo = true, MatchHi = true;
for (int i = 0; (i != NumElts) && (MatchLo || MatchHi); ++i) {
int M = TargetMask[i];
// Ignore if the input is known to be zero or the index is undef.
if ((((i & 1) == 0) && Zero1) || (((i & 1) == 1) && Zero2) ||
(M == SM_SentinelUndef))
continue;
MatchLo &= (M == Unpckl[i]);
MatchHi &= (M == Unpckh[i]);
}
if (MatchLo || MatchHi) {
UnpackOpcode = MatchLo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
V2 = Zero2 ? getZeroVector(VT, Subtarget, DAG, DL) : V1;
V1 = Zero1 ? getZeroVector(VT, Subtarget, DAG, DL) : V1;
return true;
}
}
// If a binary shuffle, commute and try again.
if (!IsUnary) {
ShuffleVectorSDNode::commuteMask(Unpckl);
if (isTargetShuffleEquivalent(TargetMask, Unpckl)) {
UnpackOpcode = X86ISD::UNPCKL;
std::swap(V1, V2);
return true;
}
ShuffleVectorSDNode::commuteMask(Unpckh);
if (isTargetShuffleEquivalent(TargetMask, Unpckh)) {
UnpackOpcode = X86ISD::UNPCKH;
std::swap(V1, V2);
return true;
}
}
return false;
}
// X86 has dedicated unpack instructions that can handle specific blend
// operations: UNPCKH and UNPCKL.
static SDValue lowerShuffleWithUNPCK(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1, SDValue V2,
SelectionDAG &DAG) {
SmallVector<int, 8> Unpckl;
createUnpackShuffleMask(VT, Unpckl, /* Lo = */ true, /* Unary = */ false);
if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
SmallVector<int, 8> Unpckh;
createUnpackShuffleMask(VT, Unpckh, /* Lo = */ false, /* Unary = */ false);
if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
// Commute and try again.
ShuffleVectorSDNode::commuteMask(Unpckl);
if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1);
ShuffleVectorSDNode::commuteMask(Unpckh);
if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1);
return SDValue();
}
static bool matchShuffleAsVPMOV(ArrayRef<int> Mask, bool SwappedOps,
int Delta) {
int Size = (int)Mask.size();
int Split = Size / Delta;
int TruncatedVectorStart = SwappedOps ? Size : 0;
// Match for mask starting with e.g.: <8, 10, 12, 14,... or <0, 2, 4, 6,...
if (!isSequentialOrUndefInRange(Mask, 0, Split, TruncatedVectorStart, Delta))
return false;
// The rest of the mask should not refer to the truncated vector's elements.
if (isAnyInRange(Mask.slice(Split, Size - Split), TruncatedVectorStart,
TruncatedVectorStart + Size))
return false;
return true;
}
// Try to lower trunc+vector_shuffle to a vpmovdb or a vpmovdw instruction.
//
// An example is the following:
//
// t0: ch = EntryToken
// t2: v4i64,ch = CopyFromReg t0, Register:v4i64 %0
// t25: v4i32 = truncate t2
// t41: v8i16 = bitcast t25
// t21: v8i16 = BUILD_VECTOR undef:i16, undef:i16, undef:i16, undef:i16,
// Constant:i16<0>, Constant:i16<0>, Constant:i16<0>, Constant:i16<0>
// t51: v8i16 = vector_shuffle<0,2,4,6,12,13,14,15> t41, t21
// t18: v2i64 = bitcast t51
//
// Without avx512vl, this is lowered to:
//
// vpmovqd %zmm0, %ymm0
// vpshufb {{.*#+}} xmm0 =
// xmm0[0,1,4,5,8,9,12,13],zero,zero,zero,zero,zero,zero,zero,zero
//
// But when avx512vl is available, one can just use a single vpmovdw
// instruction.
static SDValue lowerShuffleWithVPMOV(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (VT != MVT::v16i8 && VT != MVT::v8i16)
return SDValue();
if (Mask.size() != VT.getVectorNumElements())
return SDValue();
bool SwappedOps = false;
if (!ISD::isBuildVectorAllZeros(V2.getNode())) {
if (!ISD::isBuildVectorAllZeros(V1.getNode()))
return SDValue();
std::swap(V1, V2);
SwappedOps = true;
}
// Look for:
//
// bitcast (truncate <8 x i32> %vec to <8 x i16>) to <16 x i8>
// bitcast (truncate <4 x i64> %vec to <4 x i32>) to <8 x i16>
//
// and similar ones.
if (V1.getOpcode() != ISD::BITCAST)
return SDValue();
if (V1.getOperand(0).getOpcode() != ISD::TRUNCATE)
return SDValue();
SDValue Src = V1.getOperand(0).getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
// The vptrunc** instructions truncating 128 bit and 256 bit vectors
// are only available with avx512vl.
if (!SrcVT.is512BitVector() && !Subtarget.hasVLX())
return SDValue();
// Down Convert Word to Byte is only available with avx512bw. The case with
// 256-bit output doesn't contain a shuffle and is therefore not handled here.
if (SrcVT.getVectorElementType() == MVT::i16 && VT == MVT::v16i8 &&
!Subtarget.hasBWI())
return SDValue();
// The first half/quarter of the mask should refer to every second/fourth
// element of the vector truncated and bitcasted.
if (!matchShuffleAsVPMOV(Mask, SwappedOps, 2) &&
!matchShuffleAsVPMOV(Mask, SwappedOps, 4))
return SDValue();
return DAG.getNode(X86ISD::VTRUNC, DL, VT, Src);
}
// X86 has dedicated pack instructions that can handle specific truncation
// operations: PACKSS and PACKUS.
static bool matchShuffleWithPACK(MVT VT, MVT &SrcVT, SDValue &V1, SDValue &V2,
unsigned &PackOpcode, ArrayRef<int> TargetMask,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned NumElts = VT.getVectorNumElements();
unsigned BitSize = VT.getScalarSizeInBits();
MVT PackSVT = MVT::getIntegerVT(BitSize * 2);
MVT PackVT = MVT::getVectorVT(PackSVT, NumElts / 2);
auto MatchPACK = [&](SDValue N1, SDValue N2) {
SDValue VV1 = DAG.getBitcast(PackVT, N1);
SDValue VV2 = DAG.getBitcast(PackVT, N2);
if (Subtarget.hasSSE41() || PackSVT == MVT::i16) {
APInt ZeroMask = APInt::getHighBitsSet(BitSize * 2, BitSize);
if ((N1.isUndef() || DAG.MaskedValueIsZero(VV1, ZeroMask)) &&
(N2.isUndef() || DAG.MaskedValueIsZero(VV2, ZeroMask))) {
V1 = VV1;
V2 = VV2;
SrcVT = PackVT;
PackOpcode = X86ISD::PACKUS;
return true;
}
}
if ((N1.isUndef() || DAG.ComputeNumSignBits(VV1) > BitSize) &&
(N2.isUndef() || DAG.ComputeNumSignBits(VV2) > BitSize)) {
V1 = VV1;
V2 = VV2;
SrcVT = PackVT;
PackOpcode = X86ISD::PACKSS;
return true;
}
return false;
};
// Try binary shuffle.
SmallVector<int, 32> BinaryMask;
createPackShuffleMask(VT, BinaryMask, false);
if (isTargetShuffleEquivalent(TargetMask, BinaryMask, V1, V2))
if (MatchPACK(V1, V2))
return true;
// Try unary shuffle.
SmallVector<int, 32> UnaryMask;
createPackShuffleMask(VT, UnaryMask, true);
if (isTargetShuffleEquivalent(TargetMask, UnaryMask, V1))
if (MatchPACK(V1, V1))
return true;
return false;
}
static SDValue lowerShuffleWithPACK(const SDLoc &DL, MVT VT, ArrayRef<int> Mask,
SDValue V1, SDValue V2, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT PackVT;
unsigned PackOpcode;
if (matchShuffleWithPACK(VT, PackVT, V1, V2, PackOpcode, Mask, DAG,
Subtarget))
return DAG.getNode(PackOpcode, DL, VT, DAG.getBitcast(PackVT, V1),
DAG.getBitcast(PackVT, V2));
return SDValue();
}
/// Try to emit a bitmask instruction for a shuffle.
///
/// This handles cases where we can model a blend exactly as a bitmask due to
/// one of the inputs being zeroable.
static SDValue lowerShuffleAsBitMask(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT MaskVT = VT;
MVT EltVT = VT.getVectorElementType();
SDValue Zero, AllOnes;
// Use f64 if i64 isn't legal.
if (EltVT == MVT::i64 && !Subtarget.is64Bit()) {
EltVT = MVT::f64;
MaskVT = MVT::getVectorVT(EltVT, Mask.size());
}
MVT LogicVT = VT;
if (EltVT == MVT::f32 || EltVT == MVT::f64) {
Zero = DAG.getConstantFP(0.0, DL, EltVT);
AllOnes = DAG.getConstantFP(
APFloat::getAllOnesValue(EltVT.getSizeInBits(), true), DL, EltVT);
LogicVT =
MVT::getVectorVT(EltVT == MVT::f64 ? MVT::i64 : MVT::i32, Mask.size());
} else {
Zero = DAG.getConstant(0, DL, EltVT);
AllOnes = DAG.getAllOnesConstant(DL, EltVT);
}
SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
SDValue V;
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Zeroable[i])
continue;
if (Mask[i] % Size != i)
return SDValue(); // Not a blend.
if (!V)
V = Mask[i] < Size ? V1 : V2;
else if (V != (Mask[i] < Size ? V1 : V2))
return SDValue(); // Can only let one input through the mask.
VMaskOps[i] = AllOnes;
}
if (!V)
return SDValue(); // No non-zeroable elements!
SDValue VMask = DAG.getBuildVector(MaskVT, DL, VMaskOps);
VMask = DAG.getBitcast(LogicVT, VMask);
V = DAG.getBitcast(LogicVT, V);
SDValue And = DAG.getNode(ISD::AND, DL, LogicVT, V, VMask);
return DAG.getBitcast(VT, And);
}
/// Try to emit a blend instruction for a shuffle using bit math.
///
/// This is used as a fallback approach when first class blend instructions are
/// unavailable. Currently it is only suitable for integer vectors, but could
/// be generalized for floating point vectors if desirable.
static SDValue lowerShuffleAsBitBlend(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(VT.isInteger() && "Only supports integer vector types!");
MVT EltVT = VT.getVectorElementType();
SDValue Zero = DAG.getConstant(0, DL, EltVT);
SDValue AllOnes = DAG.getAllOnesConstant(DL, EltVT);
SmallVector<SDValue, 16> MaskOps;
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Mask[i] >= 0 && Mask[i] != i && Mask[i] != i + Size)
return SDValue(); // Shuffled input!
MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
}
SDValue V1Mask = DAG.getBuildVector(VT, DL, MaskOps);
V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
V2 = DAG.getNode(X86ISD::ANDNP, DL, VT, V1Mask, V2);
return DAG.getNode(ISD::OR, DL, VT, V1, V2);
}
static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
SDValue PreservedSrc,
const X86Subtarget &Subtarget,
SelectionDAG &DAG);
static bool matchShuffleAsBlend(SDValue V1, SDValue V2,
MutableArrayRef<int> Mask,
const APInt &Zeroable, bool &ForceV1Zero,
bool &ForceV2Zero, uint64_t &BlendMask) {
bool V1IsZeroOrUndef =
V1.isUndef() || ISD::isBuildVectorAllZeros(V1.getNode());
bool V2IsZeroOrUndef =
V2.isUndef() || ISD::isBuildVectorAllZeros(V2.getNode());
BlendMask = 0;
ForceV1Zero = false, ForceV2Zero = false;
assert(Mask.size() <= 64 && "Shuffle mask too big for blend mask");
// Attempt to generate the binary blend mask. If an input is zero then
// we can use any lane.
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef)
continue;
if (M == i)
continue;
if (M == i + Size) {
BlendMask |= 1ull << i;
continue;
}
if (Zeroable[i]) {
if (V1IsZeroOrUndef) {
ForceV1Zero = true;
Mask[i] = i;
continue;
}
if (V2IsZeroOrUndef) {
ForceV2Zero = true;
BlendMask |= 1ull << i;
Mask[i] = i + Size;
continue;
}
}
return false;
}
return true;
}
static uint64_t scaleVectorShuffleBlendMask(uint64_t BlendMask, int Size,
int Scale) {
uint64_t ScaledMask = 0;
for (int i = 0; i != Size; ++i)
if (BlendMask & (1ull << i))
ScaledMask |= ((1ull << Scale) - 1) << (i * Scale);
return ScaledMask;
}
/// Try to emit a blend instruction for a shuffle.
///
/// This doesn't do any checks for the availability of instructions for blending
/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
/// be matched in the backend with the type given. What it does check for is
/// that the shuffle mask is a blend, or convertible into a blend with zero.
static SDValue lowerShuffleAsBlend(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Original,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
uint64_t BlendMask = 0;
bool ForceV1Zero = false, ForceV2Zero = false;
SmallVector<int, 64> Mask(Original.begin(), Original.end());
if (!matchShuffleAsBlend(V1, V2, Mask, Zeroable, ForceV1Zero, ForceV2Zero,
BlendMask))
return SDValue();
// Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
if (ForceV1Zero)
V1 = getZeroVector(VT, Subtarget, DAG, DL);
if (ForceV2Zero)
V2 = getZeroVector(VT, Subtarget, DAG, DL);
switch (VT.SimpleTy) {
case MVT::v4i64:
case MVT::v8i32:
assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
LLVM_FALLTHROUGH;
case MVT::v4f64:
case MVT::v8f32:
assert(Subtarget.hasAVX() && "256-bit float blends require AVX!");
LLVM_FALLTHROUGH;
case MVT::v2f64:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v4i32:
case MVT::v8i16:
assert(Subtarget.hasSSE41() && "128-bit blends require SSE41!");
return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
DAG.getTargetConstant(BlendMask, DL, MVT::i8));
case MVT::v16i16: {
assert(Subtarget.hasAVX2() && "v16i16 blends require AVX2!");
SmallVector<int, 8> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
// We can lower these with PBLENDW which is mirrored across 128-bit lanes.
assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
BlendMask = 0;
for (int i = 0; i < 8; ++i)
if (RepeatedMask[i] >= 8)
BlendMask |= 1ull << i;
return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
DAG.getTargetConstant(BlendMask, DL, MVT::i8));
}
// Use PBLENDW for lower/upper lanes and then blend lanes.
// TODO - we should allow 2 PBLENDW here and leave shuffle combine to
// merge to VSELECT where useful.
uint64_t LoMask = BlendMask & 0xFF;
uint64_t HiMask = (BlendMask >> 8) & 0xFF;
if (LoMask == 0 || LoMask == 255 || HiMask == 0 || HiMask == 255) {
SDValue Lo = DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
DAG.getTargetConstant(LoMask, DL, MVT::i8));
SDValue Hi = DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
DAG.getTargetConstant(HiMask, DL, MVT::i8));
return DAG.getVectorShuffle(
MVT::v16i16, DL, Lo, Hi,
{0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31});
}
LLVM_FALLTHROUGH;
}
case MVT::v32i8:
assert(Subtarget.hasAVX2() && "256-bit byte-blends require AVX2!");
LLVM_FALLTHROUGH;
case MVT::v16i8: {
assert(Subtarget.hasSSE41() && "128-bit byte-blends require SSE41!");
// Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
if (SDValue Masked = lowerShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable,
Subtarget, DAG))
return Masked;
if (Subtarget.hasBWI() && Subtarget.hasVLX()) {
MVT IntegerType =
MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType);
return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG);
}
// Scale the blend by the number of bytes per element.
int Scale = VT.getScalarSizeInBits() / 8;
// This form of blend is always done on bytes. Compute the byte vector
// type.
MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
// x86 allows load folding with blendvb from the 2nd source operand. But
// we are still using LLVM select here (see comment below), so that's V1.
// If V2 can be load-folded and V1 cannot be load-folded, then commute to
// allow that load-folding possibility.
if (!ISD::isNormalLoad(V1.getNode()) && ISD::isNormalLoad(V2.getNode())) {
ShuffleVectorSDNode::commuteMask(Mask);
std::swap(V1, V2);
}
// Compute the VSELECT mask. Note that VSELECT is really confusing in the
// mix of LLVM's code generator and the x86 backend. We tell the code
// generator that boolean values in the elements of an x86 vector register
// are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
// mapping a select to operand #1, and 'false' mapping to operand #2. The
// reality in x86 is that vector masks (pre-AVX-512) use only the high bit
// of the element (the remaining are ignored) and 0 in that high bit would
// mean operand #1 while 1 in the high bit would mean operand #2. So while
// the LLVM model for boolean values in vector elements gets the relevant
// bit set, it is set backwards and over constrained relative to x86's
// actual model.
SmallVector<SDValue, 32> VSELECTMask;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
for (int j = 0; j < Scale; ++j)
VSELECTMask.push_back(
Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
: DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
MVT::i8));
V1 = DAG.getBitcast(BlendVT, V1);
V2 = DAG.getBitcast(BlendVT, V2);
return DAG.getBitcast(
VT,
DAG.getSelect(DL, BlendVT, DAG.getBuildVector(BlendVT, DL, VSELECTMask),
V1, V2));
}
case MVT::v16f32:
case MVT::v8f64:
case MVT::v8i64:
case MVT::v16i32:
case MVT::v32i16:
case MVT::v64i8: {
// Attempt to lower to a bitmask if we can. Only if not optimizing for size.
bool OptForSize = DAG.shouldOptForSize();
if (!OptForSize) {
if (SDValue Masked = lowerShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable,
Subtarget, DAG))
return Masked;
}
// Otherwise load an immediate into a GPR, cast to k-register, and use a
// masked move.
MVT IntegerType =
MVT::getIntegerVT(std::max((int)VT.getVectorNumElements(), 8));
SDValue MaskNode = DAG.getConstant(BlendMask, DL, IntegerType);
return getVectorMaskingNode(V2, MaskNode, V1, Subtarget, DAG);
}
default:
llvm_unreachable("Not a supported integer vector type!");
}
}
/// Try to lower as a blend of elements from two inputs followed by
/// a single-input permutation.
///
/// This matches the pattern where we can blend elements from two inputs and
/// then reduce the shuffle to a single-input permutation.
static SDValue lowerShuffleAsBlendAndPermute(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG,
bool ImmBlends = false) {
// We build up the blend mask while checking whether a blend is a viable way
// to reduce the shuffle.
SmallVector<int, 32> BlendMask(Mask.size(), -1);
SmallVector<int, 32> PermuteMask(Mask.size(), -1);
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Mask[i] < 0)
continue;
assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
if (BlendMask[Mask[i] % Size] < 0)
BlendMask[Mask[i] % Size] = Mask[i];
else if (BlendMask[Mask[i] % Size] != Mask[i])
return SDValue(); // Can't blend in the needed input!
PermuteMask[i] = Mask[i] % Size;
}
// If only immediate blends, then bail if the blend mask can't be widened to
// i16.
unsigned EltSize = VT.getScalarSizeInBits();
if (ImmBlends && EltSize == 8 && !canWidenShuffleElements(BlendMask))
return SDValue();
SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
}
/// Try to lower as an unpack of elements from two inputs followed by
/// a single-input permutation.
///
/// This matches the pattern where we can unpack elements from two inputs and
/// then reduce the shuffle to a single-input (wider) permutation.
static SDValue lowerShuffleAsUNPCKAndPermute(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
int NumElts = Mask.size();
int NumLanes = VT.getSizeInBits() / 128;
int NumLaneElts = NumElts / NumLanes;
int NumHalfLaneElts = NumLaneElts / 2;
bool MatchLo = true, MatchHi = true;
SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)};
// Determine UNPCKL/UNPCKH type and operand order.
for (int Lane = 0; Lane != NumElts; Lane += NumLaneElts) {
for (int Elt = 0; Elt != NumLaneElts; ++Elt) {
int M = Mask[Lane + Elt];
if (M < 0)
continue;
SDValue &Op = Ops[Elt & 1];
if (M < NumElts && (Op.isUndef() || Op == V1))
Op = V1;
else if (NumElts <= M && (Op.isUndef() || Op == V2))
Op = V2;
else
return SDValue();
int Lo = Lane, Mid = Lane + NumHalfLaneElts, Hi = Lane + NumLaneElts;
MatchLo &= isUndefOrInRange(M, Lo, Mid) ||
isUndefOrInRange(M, NumElts + Lo, NumElts + Mid);
MatchHi &= isUndefOrInRange(M, Mid, Hi) ||
isUndefOrInRange(M, NumElts + Mid, NumElts + Hi);
if (!MatchLo && !MatchHi)
return SDValue();
}
}
assert((MatchLo ^ MatchHi) && "Failed to match UNPCKLO/UNPCKHI");
// Now check that each pair of elts come from the same unpack pair
// and set the permute mask based on each pair.
// TODO - Investigate cases where we permute individual elements.
SmallVector<int, 32> PermuteMask(NumElts, -1);
for (int Lane = 0; Lane != NumElts; Lane += NumLaneElts) {
for (int Elt = 0; Elt != NumLaneElts; Elt += 2) {
int M0 = Mask[Lane + Elt + 0];
int M1 = Mask[Lane + Elt + 1];
if (0 <= M0 && 0 <= M1 &&
(M0 % NumHalfLaneElts) != (M1 % NumHalfLaneElts))
return SDValue();
if (0 <= M0)
PermuteMask[Lane + Elt + 0] = Lane + (2 * (M0 % NumHalfLaneElts));
if (0 <= M1)
PermuteMask[Lane + Elt + 1] = Lane + (2 * (M1 % NumHalfLaneElts)) + 1;
}
}
unsigned UnpckOp = MatchLo ? X86ISD::UNPCKL : X86ISD::UNPCKH;
SDValue Unpck = DAG.getNode(UnpckOp, DL, VT, Ops);
return DAG.getVectorShuffle(VT, DL, Unpck, DAG.getUNDEF(VT), PermuteMask);
}
/// Helper to form a PALIGNR-based rotate+permute, merging 2 inputs and then
/// permuting the elements of the result in place.
static SDValue lowerShuffleAsByteRotateAndPermute(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
if ((VT.is128BitVector() && !Subtarget.hasSSSE3()) ||
(VT.is256BitVector() && !Subtarget.hasAVX2()) ||
(VT.is512BitVector() && !Subtarget.hasBWI()))
return SDValue();
// We don't currently support lane crossing permutes.
if (is128BitLaneCrossingShuffleMask(VT, Mask))
return SDValue();
int Scale = VT.getScalarSizeInBits() / 8;
int NumLanes = VT.getSizeInBits() / 128;
int NumElts = VT.getVectorNumElements();
int NumEltsPerLane = NumElts / NumLanes;
// Determine range of mask elts.
bool Blend1 = true;
bool Blend2 = true;
std::pair<int, int> Range1 = std::make_pair(INT_MAX, INT_MIN);
std::pair<int, int> Range2 = std::make_pair(INT_MAX, INT_MIN);
for (int Lane = 0; Lane != NumElts; Lane += NumEltsPerLane) {
for (int Elt = 0; Elt != NumEltsPerLane; ++Elt) {
int M = Mask[Lane + Elt];
if (M < 0)
continue;
if (M < NumElts) {
Blend1 &= (M == (Lane + Elt));
assert(Lane <= M && M < (Lane + NumEltsPerLane) && "Out of range mask");
M = M % NumEltsPerLane;
Range1.first = std::min(Range1.first, M);
Range1.second = std::max(Range1.second, M);
} else {
M -= NumElts;
Blend2 &= (M == (Lane + Elt));
assert(Lane <= M && M < (Lane + NumEltsPerLane) && "Out of range mask");
M = M % NumEltsPerLane;
Range2.first = std::min(Range2.first, M);
Range2.second = std::max(Range2.second, M);
}
}
}
// Bail if we don't need both elements.
// TODO - it might be worth doing this for unary shuffles if the permute
// can be widened.
if (!(0 <= Range1.first && Range1.second < NumEltsPerLane) ||
!(0 <= Range2.first && Range2.second < NumEltsPerLane))
return SDValue();
if (VT.getSizeInBits() > 128 && (Blend1 || Blend2))
return SDValue();
// Rotate the 2 ops so we can access both ranges, then permute the result.
auto RotateAndPermute = [&](SDValue Lo, SDValue Hi, int RotAmt, int Ofs) {
MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
SDValue Rotate = DAG.getBitcast(
VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, DAG.getBitcast(ByteVT, Hi),
DAG.getBitcast(ByteVT, Lo),
DAG.getTargetConstant(Scale * RotAmt, DL, MVT::i8)));
SmallVector<int, 64> PermMask(NumElts, SM_SentinelUndef);
for (int Lane = 0; Lane != NumElts; Lane += NumEltsPerLane) {
for (int Elt = 0; Elt != NumEltsPerLane; ++Elt) {
int M = Mask[Lane + Elt];
if (M < 0)
continue;
if (M < NumElts)
PermMask[Lane + Elt] = Lane + ((M + Ofs - RotAmt) % NumEltsPerLane);
else
PermMask[Lane + Elt] = Lane + ((M - Ofs - RotAmt) % NumEltsPerLane);
}
}
return DAG.getVectorShuffle(VT, DL, Rotate, DAG.getUNDEF(VT), PermMask);
};
// Check if the ranges are small enough to rotate from either direction.
if (Range2.second < Range1.first)
return RotateAndPermute(V1, V2, Range1.first, 0);
if (Range1.second < Range2.first)
return RotateAndPermute(V2, V1, Range2.first, NumElts);
return SDValue();
}
/// Generic routine to decompose a shuffle and blend into independent
/// blends and permutes.
///
/// This matches the extremely common pattern for handling combined
/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
/// operations. It will try to pick the best arrangement of shuffles and
/// blends.
static SDValue lowerShuffleAsDecomposedShuffleBlend(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
// Shuffle the input elements into the desired positions in V1 and V2 and
// blend them together.
SmallVector<int, 32> V1Mask(Mask.size(), -1);
SmallVector<int, 32> V2Mask(Mask.size(), -1);
SmallVector<int, 32> BlendMask(Mask.size(), -1);
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] >= 0 && Mask[i] < Size) {
V1Mask[i] = Mask[i];
BlendMask[i] = i;
} else if (Mask[i] >= Size) {
V2Mask[i] = Mask[i] - Size;
BlendMask[i] = i + Size;
}
// Try to lower with the simpler initial blend/unpack/rotate strategies unless
// one of the input shuffles would be a no-op. We prefer to shuffle inputs as
// the shuffle may be able to fold with a load or other benefit. However, when
// we'll have to do 2x as many shuffles in order to achieve this, a 2-input
// pre-shuffle first is a better strategy.
if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask)) {
// Only prefer immediate blends to unpack/rotate.
if (SDValue BlendPerm = lowerShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask,
DAG, true))
return BlendPerm;
if (SDValue UnpackPerm = lowerShuffleAsUNPCKAndPermute(DL, VT, V1, V2, Mask,
DAG))
return UnpackPerm;
if (SDValue RotatePerm = lowerShuffleAsByteRotateAndPermute(
DL, VT, V1, V2, Mask, Subtarget, DAG))
return RotatePerm;
// Unpack/rotate failed - try again with variable blends.
if (SDValue BlendPerm = lowerShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask,
DAG))
return BlendPerm;
}
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
}
/// Try to lower a vector shuffle as a rotation.
///
/// This is used for support PALIGNR for SSSE3 or VALIGND/Q for AVX512.
static int matchShuffleAsRotate(SDValue &V1, SDValue &V2, ArrayRef<int> Mask) {
int NumElts = Mask.size();
// We need to detect various ways of spelling a rotation:
// [11, 12, 13, 14, 15, 0, 1, 2]
// [-1, 12, 13, 14, -1, -1, 1, -1]
// [-1, -1, -1, -1, -1, -1, 1, 2]
// [ 3, 4, 5, 6, 7, 8, 9, 10]
// [-1, 4, 5, 6, -1, -1, 9, -1]
// [-1, 4, 5, 6, -1, -1, -1, -1]
int Rotation = 0;
SDValue Lo, Hi;
for (int i = 0; i < NumElts; ++i) {
int M = Mask[i];
assert((M == SM_SentinelUndef || (0 <= M && M < (2*NumElts))) &&
"Unexpected mask index.");
if (M < 0)
continue;
// Determine where a rotated vector would have started.
int StartIdx = i - (M % NumElts);
if (StartIdx == 0)
// The identity rotation isn't interesting, stop.
return -1;
// If we found the tail of a vector the rotation must be the missing
// front. If we found the head of a vector, it must be how much of the
// head.
int CandidateRotation = StartIdx < 0 ? -StartIdx : NumElts - StartIdx;
if (Rotation == 0)
Rotation = CandidateRotation;
else if (Rotation != CandidateRotation)
// The rotations don't match, so we can't match this mask.
return -1;
// Compute which value this mask is pointing at.
SDValue MaskV = M < NumElts ? V1 : V2;
// Compute which of the two target values this index should be assigned
// to. This reflects whether the high elements are remaining or the low
// elements are remaining.
SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
// Either set up this value if we've not encountered it before, or check
// that it remains consistent.
if (!TargetV)
TargetV = MaskV;
else if (TargetV != MaskV)
// This may be a rotation, but it pulls from the inputs in some
// unsupported interleaving.
return -1;
}
// Check that we successfully analyzed the mask, and normalize the results.
assert(Rotation != 0 && "Failed to locate a viable rotation!");
assert((Lo || Hi) && "Failed to find a rotated input vector!");
if (!Lo)
Lo = Hi;
else if (!Hi)
Hi = Lo;
V1 = Lo;
V2 = Hi;
return Rotation;
}
/// Try to lower a vector shuffle as a byte rotation.
///
/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
/// try to generically lower a vector shuffle through such an pattern. It
/// does not check for the profitability of lowering either as PALIGNR or
/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
/// This matches shuffle vectors that look like:
///
/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
///
/// Essentially it concatenates V1 and V2, shifts right by some number of
/// elements, and takes the low elements as the result. Note that while this is
/// specified as a *right shift* because x86 is little-endian, it is a *left
/// rotate* of the vector lanes.
static int matchShuffleAsByteRotate(MVT VT, SDValue &V1, SDValue &V2,
ArrayRef<int> Mask) {
// Don't accept any shuffles with zero elements.
if (any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
return -1;
// PALIGNR works on 128-bit lanes.
SmallVector<int, 16> RepeatedMask;
if (!is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedMask))
return -1;
int Rotation = matchShuffleAsRotate(V1, V2, RepeatedMask);
if (Rotation <= 0)
return -1;
// PALIGNR rotates bytes, so we need to scale the
// rotation based on how many bytes are in the vector lane.
int NumElts = RepeatedMask.size();
int Scale = 16 / NumElts;
return Rotation * Scale;
}
static SDValue lowerShuffleAsByteRotate(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
SDValue Lo = V1, Hi = V2;
int ByteRotation = matchShuffleAsByteRotate(VT, Lo, Hi, Mask);
if (ByteRotation <= 0)
return SDValue();
// Cast the inputs to i8 vector of correct length to match PALIGNR or
// PSLLDQ/PSRLDQ.
MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
Lo = DAG.getBitcast(ByteVT, Lo);
Hi = DAG.getBitcast(ByteVT, Hi);
// SSSE3 targets can use the palignr instruction.
if (Subtarget.hasSSSE3()) {
assert((!VT.is512BitVector() || Subtarget.hasBWI()) &&
"512-bit PALIGNR requires BWI instructions");
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PALIGNR, DL, ByteVT, Lo, Hi,
DAG.getTargetConstant(ByteRotation, DL, MVT::i8)));
}
assert(VT.is128BitVector() &&
"Rotate-based lowering only supports 128-bit lowering!");
assert(Mask.size() <= 16 &&
"Can shuffle at most 16 bytes in a 128-bit vector!");
assert(ByteVT == MVT::v16i8 &&
"SSE2 rotate lowering only needed for v16i8!");
// Default SSE2 implementation
int LoByteShift = 16 - ByteRotation;
int HiByteShift = ByteRotation;
SDValue LoShift =
DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Lo,
DAG.getTargetConstant(LoByteShift, DL, MVT::i8));
SDValue HiShift =
DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Hi,
DAG.getTargetConstant(HiByteShift, DL, MVT::i8));
return DAG.getBitcast(VT,
DAG.getNode(ISD::OR, DL, MVT::v16i8, LoShift, HiShift));
}
/// Try to lower a vector shuffle as a dword/qword rotation.
///
/// AVX512 has a VALIGND/VALIGNQ instructions that will do an arbitrary
/// rotation of the concatenation of two vectors; This routine will
/// try to generically lower a vector shuffle through such an pattern.
///
/// Essentially it concatenates V1 and V2, shifts right by some number of
/// elements, and takes the low elements as the result. Note that while this is
/// specified as a *right shift* because x86 is little-endian, it is a *left
/// rotate* of the vector lanes.
static SDValue lowerShuffleAsRotate(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert((VT.getScalarType() == MVT::i32 || VT.getScalarType() == MVT::i64) &&
"Only 32-bit and 64-bit elements are supported!");
// 128/256-bit vectors are only supported with VLX.
assert((Subtarget.hasVLX() || (!VT.is128BitVector() && !VT.is256BitVector()))
&& "VLX required for 128/256-bit vectors");
SDValue Lo = V1, Hi = V2;
int Rotation = matchShuffleAsRotate(Lo, Hi, Mask);
if (Rotation <= 0)
return SDValue();
return DAG.getNode(X86ISD::VALIGN, DL, VT, Lo, Hi,
DAG.getTargetConstant(Rotation, DL, MVT::i8));
}
/// Try to lower a vector shuffle as a byte shift sequence.
static SDValue lowerShuffleAsByteShiftMask(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
assert(VT.is128BitVector() && "Only 128-bit vectors supported");
// We need a shuffle that has zeros at one/both ends and a sequential
// shuffle from one source within.
unsigned ZeroLo = Zeroable.countTrailingOnes();
unsigned ZeroHi = Zeroable.countLeadingOnes();
if (!ZeroLo && !ZeroHi)
return SDValue();
unsigned NumElts = Mask.size();
unsigned Len = NumElts - (ZeroLo + ZeroHi);
if (!isSequentialOrUndefInRange(Mask, ZeroLo, Len, Mask[ZeroLo]))
return SDValue();
unsigned Scale = VT.getScalarSizeInBits() / 8;
ArrayRef<int> StubMask = Mask.slice(ZeroLo, Len);
if (!isUndefOrInRange(StubMask, 0, NumElts) &&
!isUndefOrInRange(StubMask, NumElts, 2 * NumElts))
return SDValue();
SDValue Res = Mask[ZeroLo] < (int)NumElts ? V1 : V2;
Res = DAG.getBitcast(MVT::v16i8, Res);
// Use VSHLDQ/VSRLDQ ops to zero the ends of a vector and leave an
// inner sequential set of elements, possibly offset:
// 01234567 --> zzzzzz01 --> 1zzzzzzz
// 01234567 --> 4567zzzz --> zzzzz456
// 01234567 --> z0123456 --> 3456zzzz --> zz3456zz
if (ZeroLo == 0) {
unsigned Shift = (NumElts - 1) - (Mask[ZeroLo + Len - 1] % NumElts);
Res = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Res,
DAG.getTargetConstant(Scale * Shift, DL, MVT::i8));
Res = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Res,
DAG.getTargetConstant(Scale * ZeroHi, DL, MVT::i8));
} else if (ZeroHi == 0) {
unsigned Shift = Mask[ZeroLo] % NumElts;
Res = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Res,
DAG.getTargetConstant(Scale * Shift, DL, MVT::i8));
Res = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Res,
DAG.getTargetConstant(Scale * ZeroLo, DL, MVT::i8));
} else if (!Subtarget.hasSSSE3()) {
// If we don't have PSHUFB then its worth avoiding an AND constant mask
// by performing 3 byte shifts. Shuffle combining can kick in above that.
// TODO: There may be some cases where VSH{LR}DQ+PAND is still better.
unsigned Shift = (NumElts - 1) - (Mask[ZeroLo + Len - 1] % NumElts);
Res = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Res,
DAG.getTargetConstant(Scale * Shift, DL, MVT::i8));
Shift += Mask[ZeroLo] % NumElts;
Res = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v16i8, Res,
DAG.getTargetConstant(Scale * Shift, DL, MVT::i8));
Res = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, Res,
DAG.getTargetConstant(Scale * ZeroLo, DL, MVT::i8));
} else
return SDValue();
return DAG.getBitcast(VT, Res);
}
/// Try to lower a vector shuffle as a bit shift (shifts in zeros).
///
/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
/// matches elements from one of the input vectors shuffled to the left or
/// right with zeroable elements 'shifted in'. It handles both the strictly
/// bit-wise element shifts and the byte shift across an entire 128-bit double
/// quad word lane.
///
/// PSHL : (little-endian) left bit shift.
/// [ zz, 0, zz, 2 ]
/// [ -1, 4, zz, -1 ]
/// PSRL : (little-endian) right bit shift.
/// [ 1, zz, 3, zz]
/// [ -1, -1, 7, zz]
/// PSLLDQ : (little-endian) left byte shift
/// [ zz, 0, 1, 2, 3, 4, 5, 6]
/// [ zz, zz, -1, -1, 2, 3, 4, -1]
/// [ zz, zz, zz, zz, zz, zz, -1, 1]
/// PSRLDQ : (little-endian) right byte shift
/// [ 5, 6, 7, zz, zz, zz, zz, zz]
/// [ -1, 5, 6, 7, zz, zz, zz, zz]
/// [ 1, 2, -1, -1, -1, -1, zz, zz]
static int matchShuffleAsShift(MVT &ShiftVT, unsigned &Opcode,
unsigned ScalarSizeInBits, ArrayRef<int> Mask,
int MaskOffset, const APInt &Zeroable,
const X86Subtarget &Subtarget) {
int Size = Mask.size();
unsigned SizeInBits = Size * ScalarSizeInBits;
auto CheckZeros = [&](int Shift, int Scale, bool Left) {
for (int i = 0; i < Size; i += Scale)
for (int j = 0; j < Shift; ++j)
if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
return false;
return true;
};
auto MatchShift = [&](int Shift, int Scale, bool Left) {
for (int i = 0; i != Size; i += Scale) {
unsigned Pos = Left ? i + Shift : i;
unsigned Low = Left ? i : i + Shift;
unsigned Len = Scale - Shift;
if (!isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset))
return -1;
}
int ShiftEltBits = ScalarSizeInBits * Scale;
bool ByteShift = ShiftEltBits > 64;
Opcode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
: (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
int ShiftAmt = Shift * ScalarSizeInBits / (ByteShift ? 8 : 1);
// Normalize the scale for byte shifts to still produce an i64 element
// type.
Scale = ByteShift ? Scale / 2 : Scale;
// We need to round trip through the appropriate type for the shift.
MVT ShiftSVT = MVT::getIntegerVT(ScalarSizeInBits * Scale);
ShiftVT = ByteShift ? MVT::getVectorVT(MVT::i8, SizeInBits / 8)
: MVT::getVectorVT(ShiftSVT, Size / Scale);
return (int)ShiftAmt;
};
// SSE/AVX supports logical shifts up to 64-bit integers - so we can just
// keep doubling the size of the integer elements up to that. We can
// then shift the elements of the integer vector by whole multiples of
// their width within the elements of the larger integer vector. Test each
// multiple to see if we can find a match with the moved element indices
// and that the shifted in elements are all zeroable.
unsigned MaxWidth = ((SizeInBits == 512) && !Subtarget.hasBWI() ? 64 : 128);
for (int Scale = 2; Scale * ScalarSizeInBits <= MaxWidth; Scale *= 2)
for (int Shift = 1; Shift != Scale; ++Shift)
for (bool Left : {true, false})
if (CheckZeros(Shift, Scale, Left)) {
int ShiftAmt = MatchShift(Shift, Scale, Left);
if (0 < ShiftAmt)
return ShiftAmt;
}
// no match
return -1;
}
static SDValue lowerShuffleAsShift(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
int Size = Mask.size();
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
MVT ShiftVT;
SDValue V = V1;
unsigned Opcode;
// Try to match shuffle against V1 shift.
int ShiftAmt = matchShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(),
Mask, 0, Zeroable, Subtarget);
// If V1 failed, try to match shuffle against V2 shift.
if (ShiftAmt < 0) {
ShiftAmt = matchShuffleAsShift(ShiftVT, Opcode, VT.getScalarSizeInBits(),
Mask, Size, Zeroable, Subtarget);
V = V2;
}
if (ShiftAmt < 0)
return SDValue();
assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
"Illegal integer vector type");
V = DAG.getBitcast(ShiftVT, V);
V = DAG.getNode(Opcode, DL, ShiftVT, V,
DAG.getTargetConstant(ShiftAmt, DL, MVT::i8));
return DAG.getBitcast(VT, V);
}
// EXTRQ: Extract Len elements from lower half of source, starting at Idx.
// Remainder of lower half result is zero and upper half is all undef.
static bool matchShuffleAsEXTRQ(MVT VT, SDValue &V1, SDValue &V2,
ArrayRef<int> Mask, uint64_t &BitLen,
uint64_t &BitIdx, const APInt &Zeroable) {
int Size = Mask.size();
int HalfSize = Size / 2;
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
assert(!Zeroable.isAllOnesValue() && "Fully zeroable shuffle mask");
// Upper half must be undefined.
if (!isUndefUpperHalf(Mask))
return false;
// Determine the extraction length from the part of the
// lower half that isn't zeroable.
int Len = HalfSize;
for (; Len > 0; --Len)
if (!Zeroable[Len - 1])
break;
assert(Len > 0 && "Zeroable shuffle mask");
// Attempt to match first Len sequential elements from the lower half.
SDValue Src;
int Idx = -1;
for (int i = 0; i != Len; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef)
continue;
SDValue &V = (M < Size ? V1 : V2);
M = M % Size;
// The extracted elements must start at a valid index and all mask
// elements must be in the lower half.
if (i > M || M >= HalfSize)
return false;
if (Idx < 0 || (Src == V && Idx == (M - i))) {
Src = V;
Idx = M - i;
continue;
}
return false;
}
if (!Src || Idx < 0)
return false;
assert((Idx + Len) <= HalfSize && "Illegal extraction mask");
BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
V1 = Src;
return true;
}
// INSERTQ: Extract lowest Len elements from lower half of second source and
// insert over first source, starting at Idx.
// { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... }
static bool matchShuffleAsINSERTQ(MVT VT, SDValue &V1, SDValue &V2,
ArrayRef<int> Mask, uint64_t &BitLen,
uint64_t &BitIdx) {
int Size = Mask.size();
int HalfSize = Size / 2;
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
// Upper half must be undefined.
if (!isUndefUpperHalf(Mask))
return false;
for (int Idx = 0; Idx != HalfSize; ++Idx) {
SDValue Base;
// Attempt to match first source from mask before insertion point.
if (isUndefInRange(Mask, 0, Idx)) {
/* EMPTY */
} else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) {
Base = V1;
} else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) {
Base = V2;
} else {
continue;
}
// Extend the extraction length looking to match both the insertion of
// the second source and the remaining elements of the first.
for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) {
SDValue Insert;
int Len = Hi - Idx;
// Match insertion.
if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) {
Insert = V1;
} else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) {
Insert = V2;
} else {
continue;
}
// Match the remaining elements of the lower half.
if (isUndefInRange(Mask, Hi, HalfSize - Hi)) {
/* EMPTY */
} else if ((!Base || (Base == V1)) &&
isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) {
Base = V1;
} else if ((!Base || (Base == V2)) &&
isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi,
Size + Hi)) {
Base = V2;
} else {
continue;
}
BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
V1 = Base;
V2 = Insert;
return true;
}
}
return false;
}
/// Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ.
static SDValue lowerShuffleWithSSE4A(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable, SelectionDAG &DAG) {
uint64_t BitLen, BitIdx;
if (matchShuffleAsEXTRQ(VT, V1, V2, Mask, BitLen, BitIdx, Zeroable))
return DAG.getNode(X86ISD::EXTRQI, DL, VT, V1,
DAG.getTargetConstant(BitLen, DL, MVT::i8),
DAG.getTargetConstant(BitIdx, DL, MVT::i8));
if (matchShuffleAsINSERTQ(VT, V1, V2, Mask, BitLen, BitIdx))
return DAG.getNode(X86ISD::INSERTQI, DL, VT, V1 ? V1 : DAG.getUNDEF(VT),
V2 ? V2 : DAG.getUNDEF(VT),
DAG.getTargetConstant(BitLen, DL, MVT::i8),
DAG.getTargetConstant(BitIdx, DL, MVT::i8));
return SDValue();
}
/// Lower a vector shuffle as a zero or any extension.
///
/// Given a specific number of elements, element bit width, and extension
/// stride, produce either a zero or any extension based on the available
/// features of the subtarget. The extended elements are consecutive and
/// begin and can start from an offsetted element index in the input; to
/// avoid excess shuffling the offset must either being in the bottom lane
/// or at the start of a higher lane. All extended elements must be from
/// the same lane.
static SDValue lowerShuffleAsSpecificZeroOrAnyExtend(
const SDLoc &DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV,
ArrayRef<int> Mask, const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(Scale > 1 && "Need a scale to extend.");
int EltBits = VT.getScalarSizeInBits();
int NumElements = VT.getVectorNumElements();
int NumEltsPerLane = 128 / EltBits;
int OffsetLane = Offset / NumEltsPerLane;
assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
"Only 8, 16, and 32 bit elements can be extended.");
assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
assert(0 <= Offset && "Extension offset must be positive.");
assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) &&
"Extension offset must be in the first lane or start an upper lane.");
// Check that an index is in same lane as the base offset.
auto SafeOffset = [&](int Idx) {
return OffsetLane == (Idx / NumEltsPerLane);
};
// Shift along an input so that the offset base moves to the first element.
auto ShuffleOffset = [&](SDValue V) {
if (!Offset)
return V;
SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
for (int i = 0; i * Scale < NumElements; ++i) {
int SrcIdx = i + Offset;
ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1;
}
return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask);
};
// Found a valid a/zext mask! Try various lowering strategies based on the
// input type and available ISA extensions.
if (Subtarget.hasSSE41()) {
// Not worth offsetting 128-bit vectors if scale == 2, a pattern using
// PUNPCK will catch this in a later shuffle match.
if (Offset && Scale == 2 && VT.is128BitVector())
return SDValue();
MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
NumElements / Scale);
InputV = ShuffleOffset(InputV);
InputV = getExtendInVec(AnyExt ? ISD::ANY_EXTEND : ISD::ZERO_EXTEND, DL,
ExtVT, InputV, DAG);
return DAG.getBitcast(VT, InputV);
}
assert(VT.is128BitVector() && "Only 128-bit vectors can be extended.");
// For any extends we can cheat for larger element sizes and use shuffle
// instructions that can fold with a load and/or copy.
if (AnyExt && EltBits == 32) {
int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1,
-1};
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
DAG.getBitcast(MVT::v4i32, InputV),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
if (AnyExt && EltBits == 16 && Scale > 2) {
int PSHUFDMask[4] = {Offset / 2, -1,
SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1};
InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
DAG.getBitcast(MVT::v4i32, InputV),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
int PSHUFWMask[4] = {1, -1, -1, -1};
unsigned OddEvenOp = (Offset & 1) ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
return DAG.getBitcast(
VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16,
DAG.getBitcast(MVT::v8i16, InputV),
getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG)));
}
// The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes
// to 64-bits.
if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget.hasSSE4A()) {
assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!");
assert(VT.is128BitVector() && "Unexpected vector width!");
int LoIdx = Offset * EltBits;
SDValue Lo = DAG.getBitcast(
MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
DAG.getTargetConstant(EltBits, DL, MVT::i8),
DAG.getTargetConstant(LoIdx, DL, MVT::i8)));
if (isUndefUpperHalf(Mask) || !SafeOffset(Offset + 1))
return DAG.getBitcast(VT, Lo);
int HiIdx = (Offset + 1) * EltBits;
SDValue Hi = DAG.getBitcast(
MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
DAG.getTargetConstant(EltBits, DL, MVT::i8),
DAG.getTargetConstant(HiIdx, DL, MVT::i8)));
return DAG.getBitcast(VT,
DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi));
}
// If this would require more than 2 unpack instructions to expand, use
// pshufb when available. We can only use more than 2 unpack instructions
// when zero extending i8 elements which also makes it easier to use pshufb.
if (Scale > 4 && EltBits == 8 && Subtarget.hasSSSE3()) {
assert(NumElements == 16 && "Unexpected byte vector width!");
SDValue PSHUFBMask[16];
for (int i = 0; i < 16; ++i) {
int Idx = Offset + (i / Scale);
if ((i % Scale == 0 && SafeOffset(Idx))) {
PSHUFBMask[i] = DAG.getConstant(Idx, DL, MVT::i8);
continue;
}
PSHUFBMask[i] =
AnyExt ? DAG.getUNDEF(MVT::i8) : DAG.getConstant(0x80, DL, MVT::i8);
}
InputV = DAG.getBitcast(MVT::v16i8, InputV);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
DAG.getBuildVector(MVT::v16i8, DL, PSHUFBMask)));
}
// If we are extending from an offset, ensure we start on a boundary that
// we can unpack from.
int AlignToUnpack = Offset % (NumElements / Scale);
if (AlignToUnpack) {
SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
for (int i = AlignToUnpack; i < NumElements; ++i)
ShMask[i - AlignToUnpack] = i;
InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask);
Offset -= AlignToUnpack;
}
// Otherwise emit a sequence of unpacks.
do {
unsigned UnpackLoHi = X86ISD::UNPCKL;
if (Offset >= (NumElements / 2)) {
UnpackLoHi = X86ISD::UNPCKH;
Offset -= (NumElements / 2);
}
MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
: getZeroVector(InputVT, Subtarget, DAG, DL);
InputV = DAG.getBitcast(InputVT, InputV);
InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext);
Scale /= 2;
EltBits *= 2;
NumElements /= 2;
} while (Scale > 1);
return DAG.getBitcast(VT, InputV);
}
/// Try to lower a vector shuffle as a zero extension on any microarch.
///
/// This routine will try to do everything in its power to cleverly lower
/// a shuffle which happens to match the pattern of a zero extend. It doesn't
/// check for the profitability of this lowering, it tries to aggressively
/// match this pattern. It will use all of the micro-architectural details it
/// can to emit an efficient lowering. It handles both blends with all-zero
/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
/// masking out later).
///
/// The reason we have dedicated lowering for zext-style shuffles is that they
/// are both incredibly common and often quite performance sensitive.
static SDValue lowerShuffleAsZeroOrAnyExtend(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
int Bits = VT.getSizeInBits();
int NumLanes = Bits / 128;
int NumElements = VT.getVectorNumElements();
int NumEltsPerLane = NumElements / NumLanes;
assert(VT.getScalarSizeInBits() <= 32 &&
"Exceeds 32-bit integer zero extension limit");
assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
// Define a helper function to check a particular ext-scale and lower to it if
// valid.
auto Lower = [&](int Scale) -> SDValue {
SDValue InputV;
bool AnyExt = true;
int Offset = 0;
int Matches = 0;
for (int i = 0; i < NumElements; ++i) {
int M = Mask[i];
if (M < 0)
continue; // Valid anywhere but doesn't tell us anything.
if (i % Scale != 0) {
// Each of the extended elements need to be zeroable.
if (!Zeroable[i])
return SDValue();
// We no longer are in the anyext case.
AnyExt = false;
continue;
}
// Each of the base elements needs to be consecutive indices into the
// same input vector.
SDValue V = M < NumElements ? V1 : V2;
M = M % NumElements;
if (!InputV) {
InputV = V;
Offset = M - (i / Scale);
} else if (InputV != V)
return SDValue(); // Flip-flopping inputs.
// Offset must start in the lowest 128-bit lane or at the start of an
// upper lane.
// FIXME: Is it ever worth allowing a negative base offset?
if (!((0 <= Offset && Offset < NumEltsPerLane) ||
(Offset % NumEltsPerLane) == 0))
return SDValue();
// If we are offsetting, all referenced entries must come from the same
// lane.
if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane))
return SDValue();
if ((M % NumElements) != (Offset + (i / Scale)))
return SDValue(); // Non-consecutive strided elements.
Matches++;
}
// If we fail to find an input, we have a zero-shuffle which should always
// have already been handled.
// FIXME: Maybe handle this here in case during blending we end up with one?
if (!InputV)
return SDValue();
// If we are offsetting, don't extend if we only match a single input, we
// can always do better by using a basic PSHUF or PUNPCK.
if (Offset != 0 && Matches < 2)
return SDValue();
return lowerShuffleAsSpecificZeroOrAnyExtend(DL, VT, Scale, Offset, AnyExt,
InputV, Mask, Subtarget, DAG);
};
// The widest scale possible for extending is to a 64-bit integer.
assert(Bits % 64 == 0 &&
"The number of bits in a vector must be divisible by 64 on x86!");
int NumExtElements = Bits / 64;
// Each iteration, try extending the elements half as much, but into twice as
// many elements.
for (; NumExtElements < NumElements; NumExtElements *= 2) {
assert(NumElements % NumExtElements == 0 &&
"The input vector size must be divisible by the extended size.");
if (SDValue V = Lower(NumElements / NumExtElements))
return V;
}
// General extends failed, but 128-bit vectors may be able to use MOVQ.
if (Bits != 128)
return SDValue();
// Returns one of the source operands if the shuffle can be reduced to a
// MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
auto CanZExtLowHalf = [&]() {
for (int i = NumElements / 2; i != NumElements; ++i)
if (!Zeroable[i])
return SDValue();
if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
return V1;
if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
return V2;
return SDValue();
};
if (SDValue V = CanZExtLowHalf()) {
V = DAG.getBitcast(MVT::v2i64, V);
V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
return DAG.getBitcast(VT, V);
}
// No viable ext lowering found.
return SDValue();
}
/// Try to get a scalar value for a specific element of a vector.
///
/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
SelectionDAG &DAG) {
MVT VT = V.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
V = peekThroughBitcasts(V);
// If the bitcasts shift the element size, we can't extract an equivalent
// element from it.
MVT NewVT = V.getSimpleValueType();
if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
return SDValue();
if (V.getOpcode() == ISD::BUILD_VECTOR ||
(Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
// Ensure the scalar operand is the same size as the destination.
// FIXME: Add support for scalar truncation where possible.
SDValue S = V.getOperand(Idx);
if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
return DAG.getBitcast(EltVT, S);
}
return SDValue();
}
/// Helper to test for a load that can be folded with x86 shuffles.
///
/// This is particularly important because the set of instructions varies
/// significantly based on whether the operand is a load or not.
static bool isShuffleFoldableLoad(SDValue V) {
V = peekThroughBitcasts(V);
return ISD::isNON_EXTLoad(V.getNode());
}
/// Try to lower insertion of a single element into a zero vector.
///
/// This is a common pattern that we have especially efficient patterns to lower
/// across all subtarget feature sets.
static SDValue lowerShuffleAsElementInsertion(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT ExtVT = VT;
MVT EltVT = VT.getVectorElementType();
int V2Index =
find_if(Mask, [&Mask](int M) { return M >= (int)Mask.size(); }) -
Mask.begin();
bool IsV1Zeroable = true;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (i != V2Index && !Zeroable[i]) {
IsV1Zeroable = false;
break;
}
// Check for a single input from a SCALAR_TO_VECTOR node.
// FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
// all the smarts here sunk into that routine. However, the current
// lowering of BUILD_VECTOR makes that nearly impossible until the old
// vector shuffle lowering is dead.
SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
DAG);
if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
// We need to zext the scalar if it is smaller than an i32.
V2S = DAG.getBitcast(EltVT, V2S);
if (EltVT == MVT::i8 || EltVT == MVT::i16) {
// Using zext to expand a narrow element won't work for non-zero
// insertions.
if (!IsV1Zeroable)
return SDValue();
// Zero-extend directly to i32.
ExtVT = MVT::getVectorVT(MVT::i32, ExtVT.getSizeInBits() / 32);
V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
}
V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
} else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
EltVT == MVT::i16) {
// Either not inserting from the low element of the input or the input
// element size is too small to use VZEXT_MOVL to clear the high bits.
return SDValue();
}
if (!IsV1Zeroable) {
// If V1 can't be treated as a zero vector we have fewer options to lower
// this. We can't support integer vectors or non-zero targets cheaply, and
// the V1 elements can't be permuted in any way.
assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
if (!VT.isFloatingPoint() || V2Index != 0)
return SDValue();
SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
V1Mask[V2Index] = -1;
if (!isNoopShuffleMask(V1Mask))
return SDValue();
if (!VT.is128BitVector())
return SDValue();
// Otherwise, use MOVSD or MOVSS.
assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
"Only two types of floating point element types to handle!");
return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
ExtVT, V1, V2);
}
// This lowering only works for the low element with floating point vectors.
if (VT.isFloatingPoint() && V2Index != 0)
return SDValue();
V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
if (ExtVT != VT)
V2 = DAG.getBitcast(VT, V2);
if (V2Index != 0) {
// If we have 4 or fewer lanes we can cheaply shuffle the element into
// the desired position. Otherwise it is more efficient to do a vector
// shift left. We know that we can do a vector shift left because all
// the inputs are zero.
if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
V2Shuffle[V2Index] = 0;
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
} else {
V2 = DAG.getBitcast(MVT::v16i8, V2);
V2 = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v16i8, V2,
DAG.getTargetConstant(
V2Index * EltVT.getSizeInBits() / 8, DL, MVT::i8));
V2 = DAG.getBitcast(VT, V2);
}
}
return V2;
}
/// Try to lower broadcast of a single - truncated - integer element,
/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements.
///
/// This assumes we have AVX2.
static SDValue lowerShuffleAsTruncBroadcast(const SDLoc &DL, MVT VT, SDValue V0,
int BroadcastIdx,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX2() &&
"We can only lower integer broadcasts with AVX2!");
EVT EltVT = VT.getVectorElementType();
EVT V0VT = V0.getValueType();
assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!");
assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!");
EVT V0EltVT = V0VT.getVectorElementType();
if (!V0EltVT.isInteger())
return SDValue();
const unsigned EltSize = EltVT.getSizeInBits();
const unsigned V0EltSize = V0EltVT.getSizeInBits();
// This is only a truncation if the original element type is larger.
if (V0EltSize <= EltSize)
return SDValue();
assert(((V0EltSize % EltSize) == 0) &&
"Scalar type sizes must all be powers of 2 on x86!");
const unsigned V0Opc = V0.getOpcode();
const unsigned Scale = V0EltSize / EltSize;
const unsigned V0BroadcastIdx = BroadcastIdx / Scale;
if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) &&
V0Opc != ISD::BUILD_VECTOR)
return SDValue();
SDValue Scalar = V0.getOperand(V0BroadcastIdx);
// If we're extracting non-least-significant bits, shift so we can truncate.
// Hopefully, we can fold away the trunc/srl/load into the broadcast.
// Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer
// vpbroadcast+vmovd+shr to vpshufb(m)+vmovd.
if (const int OffsetIdx = BroadcastIdx % Scale)
Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar,
DAG.getConstant(OffsetIdx * EltSize, DL, MVT::i8));
return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar));
}
/// Test whether this can be lowered with a single SHUFPS instruction.
///
/// This is used to disable more specialized lowerings when the shufps lowering
/// will happen to be efficient.
static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
// This routine only handles 128-bit shufps.
assert(Mask.size() == 4 && "Unsupported mask size!");
assert(Mask[0] >= -1 && Mask[0] < 8 && "Out of bound mask element!");
assert(Mask[1] >= -1 && Mask[1] < 8 && "Out of bound mask element!");
assert(Mask[2] >= -1 && Mask[2] < 8 && "Out of bound mask element!");
assert(Mask[3] >= -1 && Mask[3] < 8 && "Out of bound mask element!");
// To lower with a single SHUFPS we need to have the low half and high half
// each requiring a single input.
if (Mask[0] >= 0 && Mask[1] >= 0 && (Mask[0] < 4) != (Mask[1] < 4))
return false;
if (Mask[2] >= 0 && Mask[3] >= 0 && (Mask[2] < 4) != (Mask[3] < 4))
return false;
return true;
}
/// If we are extracting two 128-bit halves of a vector and shuffling the
/// result, match that to a 256-bit AVX2 vperm* instruction to avoid a
/// multi-shuffle lowering.
static SDValue lowerShuffleOfExtractsAsVperm(const SDLoc &DL, SDValue N0,
SDValue N1, ArrayRef<int> Mask,
SelectionDAG &DAG) {
EVT VT = N0.getValueType();
assert((VT.is128BitVector() &&
(VT.getScalarSizeInBits() == 32 || VT.getScalarSizeInBits() == 64)) &&
"VPERM* family of shuffles requires 32-bit or 64-bit elements");
// Check that both sources are extracts of the same source vector.
if (!N0.hasOneUse() || !N1.hasOneUse() ||
N0.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
N1.getOpcode() != ISD::EXTRACT_SUBVECTOR ||
N0.getOperand(0) != N1.getOperand(0))
return SDValue();
SDValue WideVec = N0.getOperand(0);
EVT WideVT = WideVec.getValueType();
if (!WideVT.is256BitVector() || !isa<ConstantSDNode>(N0.getOperand(1)) ||
!isa<ConstantSDNode>(N1.getOperand(1)))
return SDValue();
// Match extracts of each half of the wide source vector. Commute the shuffle
// if the extract of the low half is N1.
unsigned NumElts = VT.getVectorNumElements();
SmallVector<int, 4> NewMask(Mask.begin(), Mask.end());
const APInt &ExtIndex0 = N0.getConstantOperandAPInt(1);
const APInt &ExtIndex1 = N1.getConstantOperandAPInt(1);
if (ExtIndex1 == 0 && ExtIndex0 == NumElts)
ShuffleVectorSDNode::commuteMask(NewMask);
else if (ExtIndex0 != 0 || ExtIndex1 != NumElts)
return SDValue();
// Final bailout: if the mask is simple, we are better off using an extract
// and a simple narrow shuffle. Prefer extract+unpack(h/l)ps to vpermps
// because that avoids a constant load from memory.
if (NumElts == 4 &&
(isSingleSHUFPSMask(NewMask) || is128BitUnpackShuffleMask(NewMask)))
return SDValue();
// Extend the shuffle mask with undef elements.
NewMask.append(NumElts, -1);
// shuf (extract X, 0), (extract X, 4), M --> extract (shuf X, undef, M'), 0
SDValue Shuf = DAG.getVectorShuffle(WideVT, DL, WideVec, DAG.getUNDEF(WideVT),
NewMask);
// This is free: ymm -> xmm.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuf,
DAG.getIntPtrConstant(0, DL));
}
/// Try to lower broadcast of a single element.
///
/// For convenience, this code also bundles all of the subtarget feature set
/// filtering. While a little annoying to re-dispatch on type here, there isn't
/// a convenient way to factor it out.
static SDValue lowerShuffleAsBroadcast(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (!((Subtarget.hasSSE3() && VT == MVT::v2f64) ||
(Subtarget.hasAVX() && VT.isFloatingPoint()) ||
(Subtarget.hasAVX2() && VT.isInteger())))
return SDValue();
// With MOVDDUP (v2f64) we can broadcast from a register or a load, otherwise
// we can only broadcast from a register with AVX2.
unsigned NumElts = Mask.size();
unsigned NumEltBits = VT.getScalarSizeInBits();
unsigned Opcode = (VT == MVT::v2f64 && !Subtarget.hasAVX2())
? X86ISD::MOVDDUP
: X86ISD::VBROADCAST;
bool BroadcastFromReg = (Opcode == X86ISD::MOVDDUP) || Subtarget.hasAVX2();
// Check that the mask is a broadcast.
int BroadcastIdx = -1;
for (int i = 0; i != (int)NumElts; ++i) {
SmallVector<int, 8> BroadcastMask(NumElts, i);
if (isShuffleEquivalent(V1, V2, Mask, BroadcastMask)) {
BroadcastIdx = i;
break;
}
}
if (BroadcastIdx < 0)
return SDValue();
assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
"a sorted mask where the broadcast "
"comes from V1.");
// Go up the chain of (vector) values to find a scalar load that we can
// combine with the broadcast.
int BitOffset = BroadcastIdx * NumEltBits;
SDValue V = V1;
for (;;) {
switch (V.getOpcode()) {
case ISD::BITCAST: {
V = V.getOperand(0);
continue;
}
case ISD::CONCAT_VECTORS: {
int OpBitWidth = V.getOperand(0).getValueSizeInBits();
int OpIdx = BitOffset / OpBitWidth;
V = V.getOperand(OpIdx);
BitOffset %= OpBitWidth;
continue;
}
case ISD::INSERT_SUBVECTOR: {
SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
if (!ConstantIdx)
break;
int EltBitWidth = VOuter.getScalarValueSizeInBits();
int Idx = (int)ConstantIdx->getZExtValue();
int NumSubElts = (int)VInner.getSimpleValueType().getVectorNumElements();
int BeginOffset = Idx * EltBitWidth;
int EndOffset = BeginOffset + NumSubElts * EltBitWidth;
if (BeginOffset <= BitOffset && BitOffset < EndOffset) {
BitOffset -= BeginOffset;
V = VInner;
} else {
V = VOuter;
}
continue;
}
}
break;
}
assert((BitOffset % NumEltBits) == 0 && "Illegal bit-offset");
BroadcastIdx = BitOffset / NumEltBits;
// Do we need to bitcast the source to retrieve the original broadcast index?
bool BitCastSrc = V.getScalarValueSizeInBits() != NumEltBits;
// Check if this is a broadcast of a scalar. We special case lowering
// for scalars so that we can more effectively fold with loads.
// If the original value has a larger element type than the shuffle, the
// broadcast element is in essence truncated. Make that explicit to ease
// folding.
if (BitCastSrc && VT.isInteger())
if (SDValue TruncBroadcast = lowerShuffleAsTruncBroadcast(
DL, VT, V, BroadcastIdx, Subtarget, DAG))
return TruncBroadcast;
MVT BroadcastVT = VT;
// Also check the simpler case, where we can directly reuse the scalar.
if (!BitCastSrc &&
((V.getOpcode() == ISD::BUILD_VECTOR && V.hasOneUse()) ||
(V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0))) {
V = V.getOperand(BroadcastIdx);
// If we can't broadcast from a register, check that the input is a load.
if (!BroadcastFromReg && !isShuffleFoldableLoad(V))
return SDValue();
} else if (MayFoldLoad(V) && cast<LoadSDNode>(V)->isSimple()) {
// 32-bit targets need to load i64 as a f64 and then bitcast the result.
if (!Subtarget.is64Bit() && VT.getScalarType() == MVT::i64) {
BroadcastVT = MVT::getVectorVT(MVT::f64, VT.getVectorNumElements());
Opcode = (BroadcastVT.is128BitVector() && !Subtarget.hasAVX2())
? X86ISD::MOVDDUP
: Opcode;
}
// If we are broadcasting a load that is only used by the shuffle
// then we can reduce the vector load to the broadcasted scalar load.
LoadSDNode *Ld = cast<LoadSDNode>(V);
SDValue BaseAddr = Ld->getOperand(1);
EVT SVT = BroadcastVT.getScalarType();
unsigned Offset = BroadcastIdx * SVT.getStoreSize();
assert((int)(Offset * 8) == BitOffset && "Unexpected bit-offset");
SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
DAG.getMachineFunction().getMachineMemOperand(
Ld->getMemOperand(), Offset, SVT.getStoreSize()));
DAG.makeEquivalentMemoryOrdering(Ld, V);
} else if (!BroadcastFromReg) {
// We can't broadcast from a vector register.
return SDValue();
} else if (BitOffset != 0) {
// We can only broadcast from the zero-element of a vector register,
// but it can be advantageous to broadcast from the zero-element of a
// subvector.
if (!VT.is256BitVector() && !VT.is512BitVector())
return SDValue();
// VPERMQ/VPERMPD can perform the cross-lane shuffle directly.
if (VT == MVT::v4f64 || VT == MVT::v4i64)
return SDValue();
// Only broadcast the zero-element of a 128-bit subvector.
if ((BitOffset % 128) != 0)
return SDValue();
assert((BitOffset % V.getScalarValueSizeInBits()) == 0 &&
"Unexpected bit-offset");
assert((V.getValueSizeInBits() == 256 || V.getValueSizeInBits() == 512) &&
"Unexpected vector size");
unsigned ExtractIdx = BitOffset / V.getScalarValueSizeInBits();
V = extract128BitVector(V, ExtractIdx, DAG, DL);
}
if (Opcode == X86ISD::MOVDDUP && !V.getValueType().isVector())
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
DAG.getBitcast(MVT::f64, V));
// Bitcast back to the same scalar type as BroadcastVT.
if (V.getValueType().getScalarType() != BroadcastVT.getScalarType()) {
assert(NumEltBits == BroadcastVT.getScalarSizeInBits() &&
"Unexpected vector element size");
MVT ExtVT;
if (V.getValueType().isVector()) {
unsigned NumSrcElts = V.getValueSizeInBits() / NumEltBits;
ExtVT = MVT::getVectorVT(BroadcastVT.getScalarType(), NumSrcElts);
} else {
ExtVT = BroadcastVT.getScalarType();
}
V = DAG.getBitcast(ExtVT, V);
}
// 32-bit targets need to load i64 as a f64 and then bitcast the result.
if (!Subtarget.is64Bit() && V.getValueType() == MVT::i64) {
V = DAG.getBitcast(MVT::f64, V);
unsigned NumBroadcastElts = BroadcastVT.getVectorNumElements();
BroadcastVT = MVT::getVectorVT(MVT::f64, NumBroadcastElts);
}
// We only support broadcasting from 128-bit vectors to minimize the
// number of patterns we need to deal with in isel. So extract down to
// 128-bits, removing as many bitcasts as possible.
if (V.getValueSizeInBits() > 128) {
MVT ExtVT = V.getSimpleValueType().getScalarType();
ExtVT = MVT::getVectorVT(ExtVT, 128 / ExtVT.getScalarSizeInBits());
V = extract128BitVector(peekThroughBitcasts(V), 0, DAG, DL);
V = DAG.getBitcast(ExtVT, V);
}
return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, BroadcastVT, V));
}
// Check for whether we can use INSERTPS to perform the shuffle. We only use
// INSERTPS when the V1 elements are already in the correct locations
// because otherwise we can just always use two SHUFPS instructions which
// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
// perform INSERTPS if a single V1 element is out of place and all V2
// elements are zeroable.
static bool matchShuffleAsInsertPS(SDValue &V1, SDValue &V2,
unsigned &InsertPSMask,
const APInt &Zeroable,
ArrayRef<int> Mask, SelectionDAG &DAG) {
assert(V1.getSimpleValueType().is128BitVector() && "Bad operand type!");
assert(V2.getSimpleValueType().is128BitVector() && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
// Attempt to match INSERTPS with one element from VA or VB being
// inserted into VA (or undef). If successful, V1, V2 and InsertPSMask
// are updated.
auto matchAsInsertPS = [&](SDValue VA, SDValue VB,
ArrayRef<int> CandidateMask) {
unsigned ZMask = 0;
int VADstIndex = -1;
int VBDstIndex = -1;
bool VAUsedInPlace = false;
for (int i = 0; i < 4; ++i) {
// Synthesize a zero mask from the zeroable elements (includes undefs).
if (Zeroable[i]) {
ZMask |= 1 << i;
continue;
}
// Flag if we use any VA inputs in place.
if (i == CandidateMask[i]) {
VAUsedInPlace = true;
continue;
}
// We can only insert a single non-zeroable element.
if (VADstIndex >= 0 || VBDstIndex >= 0)
return false;
if (CandidateMask[i] < 4) {
// VA input out of place for insertion.
VADstIndex = i;
} else {
// VB input for insertion.
VBDstIndex = i;
}
}
// Don't bother if we have no (non-zeroable) element for insertion.
if (VADstIndex < 0 && VBDstIndex < 0)
return false;
// Determine element insertion src/dst indices. The src index is from the
// start of the inserted vector, not the start of the concatenated vector.
unsigned VBSrcIndex = 0;
if (VADstIndex >= 0) {
// If we have a VA input out of place, we use VA as the V2 element
// insertion and don't use the original V2 at all.
VBSrcIndex = CandidateMask[VADstIndex];
VBDstIndex = VADstIndex;
VB = VA;
} else {
VBSrcIndex = CandidateMask[VBDstIndex] - 4;
}
// If no V1 inputs are used in place, then the result is created only from
// the zero mask and the V2 insertion - so remove V1 dependency.
if (!VAUsedInPlace)
VA = DAG.getUNDEF(MVT::v4f32);
// Update V1, V2 and InsertPSMask accordingly.
V1 = VA;
V2 = VB;
// Insert the V2 element into the desired position.
InsertPSMask = VBSrcIndex << 6 | VBDstIndex << 4 | ZMask;
assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
return true;
};
if (matchAsInsertPS(V1, V2, Mask))
return true;
// Commute and try again.
SmallVector<int, 4> CommutedMask(Mask.begin(), Mask.end());
ShuffleVectorSDNode::commuteMask(CommutedMask);
if (matchAsInsertPS(V2, V1, CommutedMask))
return true;
return false;
}
static SDValue lowerShuffleAsInsertPS(const SDLoc &DL, SDValue V1, SDValue V2,
ArrayRef<int> Mask, const APInt &Zeroable,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
// Attempt to match the insertps pattern.
unsigned InsertPSMask;
if (!matchShuffleAsInsertPS(V1, V2, InsertPSMask, Zeroable, Mask, DAG))
return SDValue();
// Insert the V2 element into the desired position.
return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
}
/// Try to lower a shuffle as a permute of the inputs followed by an
/// UNPCK instruction.
///
/// This specifically targets cases where we end up with alternating between
/// the two inputs, and so can permute them into something that feeds a single
/// UNPCK instruction. Note that this routine only targets integer vectors
/// because for floating point vectors we have a generalized SHUFPS lowering
/// strategy that handles everything that doesn't *exactly* match an unpack,
/// making this clever lowering unnecessary.
static SDValue lowerShuffleAsPermuteAndUnpack(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(!VT.isFloatingPoint() &&
"This routine only supports integer vectors.");
assert(VT.is128BitVector() &&
"This routine only works on 128-bit vectors.");
assert(!V2.isUndef() &&
"This routine should only be used when blending two inputs.");
assert(Mask.size() >= 2 && "Single element masks are invalid.");
int Size = Mask.size();
int NumLoInputs =
count_if(Mask, [Size](int M) { return M >= 0 && M % Size < Size / 2; });
int NumHiInputs =
count_if(Mask, [Size](int M) { return M % Size >= Size / 2; });
bool UnpackLo = NumLoInputs >= NumHiInputs;
auto TryUnpack = [&](int ScalarSize, int Scale) {
SmallVector<int, 16> V1Mask((unsigned)Size, -1);
SmallVector<int, 16> V2Mask((unsigned)Size, -1);
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
// Each element of the unpack contains Scale elements from this mask.
int UnpackIdx = i / Scale;
// We only handle the case where V1 feeds the first slots of the unpack.
// We rely on canonicalization to ensure this is the case.
if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
return SDValue();
// Setup the mask for this input. The indexing is tricky as we have to
// handle the unpack stride.
SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
Mask[i] % Size;
}
// If we will have to shuffle both inputs to use the unpack, check whether
// we can just unpack first and shuffle the result. If so, skip this unpack.
if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
!isNoopShuffleMask(V2Mask))
return SDValue();
// Shuffle the inputs into place.
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
// Cast the inputs to the type we will use to unpack them.
MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), Size / Scale);
V1 = DAG.getBitcast(UnpackVT, V1);
V2 = DAG.getBitcast(UnpackVT, V2);
// Unpack the inputs and cast the result back to the desired type.
return DAG.getBitcast(
VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
UnpackVT, V1, V2));
};
// We try each unpack from the largest to the smallest to try and find one
// that fits this mask.
int OrigScalarSize = VT.getScalarSizeInBits();
for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2)
if (SDValue Unpack = TryUnpack(ScalarSize, ScalarSize / OrigScalarSize))
return Unpack;
// If we're shuffling with a zero vector then we're better off not doing
// VECTOR_SHUFFLE(UNPCK()) as we lose track of those zero elements.
if (ISD::isBuildVectorAllZeros(V1.getNode()) ||
ISD::isBuildVectorAllZeros(V2.getNode()))
return SDValue();
// If none of the unpack-rooted lowerings worked (or were profitable) try an
// initial unpack.
if (NumLoInputs == 0 || NumHiInputs == 0) {
assert((NumLoInputs > 0 || NumHiInputs > 0) &&
"We have to have *some* inputs!");
int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
// FIXME: We could consider the total complexity of the permute of each
// possible unpacking. Or at the least we should consider how many
// half-crossings are created.
// FIXME: We could consider commuting the unpacks.
SmallVector<int, 32> PermMask((unsigned)Size, -1);
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
PermMask[i] =
2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
}
return DAG.getVectorShuffle(
VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
DL, VT, V1, V2),
DAG.getUNDEF(VT), PermMask);
}
return SDValue();
}
/// Handle lowering of 2-lane 64-bit floating point shuffles.
///
/// This is the basis function for the 2-lane 64-bit shuffles as we have full
/// support for floating point shuffles but not integer shuffles. These
/// instructions will incur a domain crossing penalty on some chips though so
/// it is better to avoid lowering through this for integer vectors where
/// possible.
static SDValue lowerV2F64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
if (V2.isUndef()) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v2f64, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// Straight shuffle of a single input vector. Simulate this by using the
// single input as both of the "inputs" to this instruction..
unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
if (Subtarget.hasAVX()) {
// If we have AVX, we can use VPERMILPS which will allow folding a load
// into the shuffle.
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
DAG.getTargetConstant(SHUFPDMask, DL, MVT::i8));
}
return DAG.getNode(
X86ISD::SHUFP, DL, MVT::v2f64,
Mask[0] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
Mask[1] == SM_SentinelUndef ? DAG.getUNDEF(MVT::v2f64) : V1,
DAG.getTargetConstant(SHUFPDMask, DL, MVT::i8));
}
assert(Mask[0] >= 0 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[1] >= 0 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[0] < 2 && "We sort V1 to be the first input.");
assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
if (Subtarget.hasAVX2())
if (SDValue Extract = lowerShuffleOfExtractsAsVperm(DL, V1, V2, Mask, DAG))
return Extract;
// When loading a scalar and then shuffling it into a vector we can often do
// the insertion cheaply.
if (SDValue Insertion = lowerShuffleAsElementInsertion(
DL, MVT::v2f64, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Insertion;
// Try inverting the insertion since for v2 masks it is easy to do and we
// can't reliably sort the mask one way or the other.
int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
if (SDValue Insertion = lowerShuffleAsElementInsertion(
DL, MVT::v2f64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
return Insertion;
// Try to use one of the special instruction patterns to handle two common
// blend patterns if a zero-blend above didn't work.
if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
isShuffleEquivalent(V1, V2, Mask, {1, 3}))
if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
// We can either use a special instruction to load over the low double or
// to move just the low double.
return DAG.getNode(
X86ISD::MOVSD, DL, MVT::v2f64, V2,
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
if (Subtarget.hasSSE41())
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG))
return V;
unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
DAG.getTargetConstant(SHUFPDMask, DL, MVT::i8));
}
/// Handle lowering of 2-lane 64-bit integer shuffles.
///
/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
/// the integer unit to minimize domain crossing penalties. However, for blends
/// it falls back to the floating point shuffle operation with appropriate bit
/// casting.
static SDValue lowerV2I64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
if (V2.isUndef()) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v2i64, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
// We have to map the mask as it is actually a v4i32 shuffle instruction.
V1 = DAG.getBitcast(MVT::v4i32, V1);
int WidenedMask[4] = {
std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
return DAG.getBitcast(
MVT::v2i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
}
assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[0] < 2 && "We sort V1 to be the first input.");
assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
if (Subtarget.hasAVX2())
if (SDValue Extract = lowerShuffleOfExtractsAsVperm(DL, V1, V2, Mask, DAG))
return Extract;
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// When loading a scalar and then shuffling it into a vector we can often do
// the insertion cheaply.
if (SDValue Insertion = lowerShuffleAsElementInsertion(
DL, MVT::v2i64, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Insertion;
// Try inverting the insertion since for v2 masks it is easy to do and we
// can't reliably sort the mask one way or the other.
int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
if (SDValue Insertion = lowerShuffleAsElementInsertion(
DL, MVT::v2i64, V2, V1, InverseMask, Zeroable, Subtarget, DAG))
return Insertion;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG))
return V;
// Try to use byte rotation instructions.
// Its more profitable for pre-SSSE3 to use shuffles/unpacks.
if (Subtarget.hasSSSE3()) {
if (Subtarget.hasVLX())
if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v2i64, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v2i64, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
}
// If we have direct support for blends, we should lower by decomposing into
// a permute. That will be faster than the domain cross.
if (IsBlendSupported)
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2, Mask,
Subtarget, DAG);
// We implement this with SHUFPD which is pretty lame because it will likely
// incur 2 cycles of stall for integer vectors on Nehalem and older chips.
// However, all the alternatives are still more cycles and newer chips don't
// have this problem. It would be really nice if x86 had better shuffles here.
V1 = DAG.getBitcast(MVT::v2f64, V1);
V2 = DAG.getBitcast(MVT::v2f64, V2);
return DAG.getBitcast(MVT::v2i64,
DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
}
/// Lower a vector shuffle using the SHUFPS instruction.
///
/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
/// It makes no assumptions about whether this is the *best* lowering, it simply
/// uses it.
static SDValue lowerShuffleWithSHUFPS(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
SDValue LowV = V1, HighV = V2;
int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
if (NumV2Elements == 1) {
int V2Index = find_if(Mask, [](int M) { return M >= 4; }) - Mask.begin();
// Compute the index adjacent to V2Index and in the same half by toggling
// the low bit.
int V2AdjIndex = V2Index ^ 1;
if (Mask[V2AdjIndex] < 0) {
// Handles all the cases where we have a single V2 element and an undef.
// This will only ever happen in the high lanes because we commute the
// vector otherwise.
if (V2Index < 2)
std::swap(LowV, HighV);
NewMask[V2Index] -= 4;
} else {
// Handle the case where the V2 element ends up adjacent to a V1 element.
// To make this work, blend them together as the first step.
int V1Index = V2AdjIndex;
int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
// Now proceed to reconstruct the final blend as we have the necessary
// high or low half formed.
if (V2Index < 2) {
LowV = V2;
HighV = V1;
} else {
HighV = V2;
}
NewMask[V1Index] = 2; // We put the V1 element in V2[2].
NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
}
} else if (NumV2Elements == 2) {
if (Mask[0] < 4 && Mask[1] < 4) {
// Handle the easy case where we have V1 in the low lanes and V2 in the
// high lanes.
NewMask[2] -= 4;
NewMask[3] -= 4;
} else if (Mask[2] < 4 && Mask[3] < 4) {
// We also handle the reversed case because this utility may get called
// when we detect a SHUFPS pattern but can't easily commute the shuffle to
// arrange things in the right direction.
NewMask[0] -= 4;
NewMask[1] -= 4;
HighV = V1;
LowV = V2;
} else {
// We have a mixture of V1 and V2 in both low and high lanes. Rather than
// trying to place elements directly, just blend them and set up the final
// shuffle to place them.
// The first two blend mask elements are for V1, the second two are for
// V2.
int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
Mask[2] < 4 ? Mask[2] : Mask[3],
(Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
(Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
// Now we do a normal shuffle of V1 by giving V1 as both operands to
// a blend.
LowV = HighV = V1;
NewMask[0] = Mask[0] < 4 ? 0 : 2;
NewMask[1] = Mask[0] < 4 ? 2 : 0;
NewMask[2] = Mask[2] < 4 ? 1 : 3;
NewMask[3] = Mask[2] < 4 ? 3 : 1;
}
}
return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
}
/// Lower 4-lane 32-bit floating point shuffles.
///
/// Uses instructions exclusively from the floating point unit to minimize
/// domain crossing penalties, as these are sufficient to implement all v4f32
/// shuffles.
static SDValue lowerV4F32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
if (NumV2Elements == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v4f32, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// Use even/odd duplicate instructions for masks that match their pattern.
if (Subtarget.hasSSE3()) {
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
}
if (Subtarget.hasAVX()) {
// If we have AVX, we can use VPERMILPS which will allow folding a load
// into the shuffle.
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// Use MOVLHPS/MOVHLPS to simulate unary shuffles. These are only valid
// in SSE1 because otherwise they are widened to v2f64 and never get here.
if (!Subtarget.hasSSE2()) {
if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1}))
return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V1);
if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 2, 3}))
return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V1, V1);
}
// Otherwise, use a straight shuffle of a single input vector. We pass the
// input vector to both operands to simulate this with a SHUFPS.
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
if (Subtarget.hasAVX2())
if (SDValue Extract = lowerShuffleOfExtractsAsVperm(DL, V1, V2, Mask, DAG))
return Extract;
// There are special ways we can lower some single-element blends. However, we
// have custom ways we can lower more complex single-element blends below that
// we defer to if both this and BLENDPS fail to match, so restrict this to
// when the V2 input is targeting element 0 of the mask -- that is the fast
// case here.
if (NumV2Elements == 1 && Mask[0] >= 4)
if (SDValue V = lowerShuffleAsElementInsertion(
DL, MVT::v4f32, V1, V2, Mask, Zeroable, Subtarget, DAG))
return V;
if (Subtarget.hasSSE41()) {
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use INSERTPS if we can complete the shuffle efficiently.
if (SDValue V = lowerShuffleAsInsertPS(DL, V1, V2, Mask, Zeroable, DAG))
return V;
if (!isSingleSHUFPSMask(Mask))
if (SDValue BlendPerm = lowerShuffleAsBlendAndPermute(DL, MVT::v4f32, V1,
V2, Mask, DAG))
return BlendPerm;
}
// Use low/high mov instructions. These are only valid in SSE1 because
// otherwise they are widened to v2f64 and never get here.
if (!Subtarget.hasSSE2()) {
if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5}))
return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V2);
if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 6, 7}))
return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V2, V1);
}
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG))
return V;
// Otherwise fall back to a SHUFPS lowering strategy.
return lowerShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
}
/// Lower 4-lane i32 vector shuffles.
///
/// We try to handle these with integer-domain shuffles where we can, but for
/// blends we use the floating point domain blend instructions.
static SDValue lowerV4I32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return ZExt;
int NumV2Elements = count_if(Mask, [](int M) { return M >= 4; });
if (NumV2Elements == 0) {
// Try to use broadcast unless the mask only has one non-undef element.
if (count_if(Mask, [](int M) { return M >= 0 && M < 4; }) > 1) {
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v4i32, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
}
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
// We coerce the shuffle pattern to be compatible with UNPCK instructions
// but we aren't actually going to use the UNPCK instruction because doing
// so prevents folding a load into this instruction or making a copy.
const int UnpackLoMask[] = {0, 0, 1, 1};
const int UnpackHiMask[] = {2, 2, 3, 3};
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
Mask = UnpackLoMask;
else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
Mask = UnpackHiMask;
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
if (Subtarget.hasAVX2())
if (SDValue Extract = lowerShuffleOfExtractsAsVperm(DL, V1, V2, Mask, DAG))
return Extract;
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// There are special ways we can lower some single-element blends.
if (NumV2Elements == 1)
if (SDValue V = lowerShuffleAsElementInsertion(
DL, MVT::v4i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
return V;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
if (SDValue Masked = lowerShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG))
return V;
// Try to use byte rotation instructions.
// Its more profitable for pre-SSSE3 to use shuffles/unpacks.
if (Subtarget.hasSSSE3()) {
if (Subtarget.hasVLX())
if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v4i32, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v4i32, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
}
// Assume that a single SHUFPS is faster than an alternative sequence of
// multiple instructions (even if the CPU has a domain penalty).
// If some CPU is harmed by the domain switch, we can fix it in a later pass.
if (!isSingleSHUFPSMask(Mask)) {
// If we have direct support for blends, we should lower by decomposing into
// a permute. That will be faster than the domain cross.
if (IsBlendSupported)
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2, Mask,
Subtarget, DAG);
// Try to lower by permuting the inputs into an unpack instruction.
if (SDValue Unpack = lowerShuffleAsPermuteAndUnpack(DL, MVT::v4i32, V1, V2,
Mask, Subtarget, DAG))
return Unpack;
}
// We implement this with SHUFPS because it can blend from two vectors.
// Because we're going to eventually use SHUFPS, we use SHUFPS even to build
// up the inputs, bypassing domain shift penalties that we would incur if we
// directly used PSHUFD on Nehalem and older. For newer chips, this isn't
// relevant.
SDValue CastV1 = DAG.getBitcast(MVT::v4f32, V1);
SDValue CastV2 = DAG.getBitcast(MVT::v4f32, V2);
SDValue ShufPS = DAG.getVectorShuffle(MVT::v4f32, DL, CastV1, CastV2, Mask);
return DAG.getBitcast(MVT::v4i32, ShufPS);
}
/// Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
/// shuffle lowering, and the most complex part.
///
/// The lowering strategy is to try to form pairs of input lanes which are
/// targeted at the same half of the final vector, and then use a dword shuffle
/// to place them onto the right half, and finally unpack the paired lanes into
/// their final position.
///
/// The exact breakdown of how to form these dword pairs and align them on the
/// correct sides is really tricky. See the comments within the function for
/// more of the details.
///
/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
/// vector, form the analogous 128-bit 8-element Mask.
static SDValue lowerV8I16GeneralSingleInputShuffle(
const SDLoc &DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!");
MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
assert(Mask.size() == 8 && "Shuffle mask length doesn't match!");
MutableArrayRef<int> LoMask = Mask.slice(0, 4);
MutableArrayRef<int> HiMask = Mask.slice(4, 4);
// Attempt to directly match PSHUFLW or PSHUFHW.
if (isUndefOrInRange(LoMask, 0, 4) &&
isSequentialOrUndefInRange(HiMask, 0, 4, 4)) {
return DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
}
if (isUndefOrInRange(HiMask, 4, 8) &&
isSequentialOrUndefInRange(LoMask, 0, 4, 0)) {
for (int i = 0; i != 4; ++i)
HiMask[i] = (HiMask[i] < 0 ? HiMask[i] : (HiMask[i] - 4));
return DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
}
SmallVector<int, 4> LoInputs;
copy_if(LoMask, std::back_inserter(LoInputs), [](int M) { return M >= 0; });
array_pod_sort(LoInputs.begin(), LoInputs.end());
LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
SmallVector<int, 4> HiInputs;
copy_if(HiMask, std::back_inserter(HiInputs), [](int M) { return M >= 0; });
array_pod_sort(HiInputs.begin(), HiInputs.end());
HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
int NumLToL = llvm::lower_bound(LoInputs, 4) - LoInputs.begin();
int NumHToL = LoInputs.size() - NumLToL;
int NumLToH = llvm::lower_bound(HiInputs, 4) - HiInputs.begin();
int NumHToH = HiInputs.size() - NumLToH;
MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
// If we are shuffling values from one half - check how many different DWORD
// pairs we need to create. If only 1 or 2 then we can perform this as a
// PSHUFLW/PSHUFHW + PSHUFD instead of the PSHUFD+PSHUFLW+PSHUFHW chain below.
auto ShuffleDWordPairs = [&](ArrayRef<int> PSHUFHalfMask,
ArrayRef<int> PSHUFDMask, unsigned ShufWOp) {
V = DAG.getNode(ShufWOp, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
V = DAG.getBitcast(PSHUFDVT, V);
V = DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, V,
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
return DAG.getBitcast(VT, V);
};
if ((NumHToL + NumHToH) == 0 || (NumLToL + NumLToH) == 0) {
int PSHUFDMask[4] = { -1, -1, -1, -1 };
SmallVector<std::pair<int, int>, 4> DWordPairs;
int DOffset = ((NumHToL + NumHToH) == 0 ? 0 : 2);
// Collect the different DWORD pairs.
for (int DWord = 0; DWord != 4; ++DWord) {
int M0 = Mask[2 * DWord + 0];
int M1 = Mask[2 * DWord + 1];
M0 = (M0 >= 0 ? M0 % 4 : M0);
M1 = (M1 >= 0 ? M1 % 4 : M1);
if (M0 < 0 && M1 < 0)
continue;
bool Match = false;
for (int j = 0, e = DWordPairs.size(); j < e; ++j) {
auto &DWordPair = DWordPairs[j];
if ((M0 < 0 || isUndefOrEqual(DWordPair.first, M0)) &&
(M1 < 0 || isUndefOrEqual(DWordPair.second, M1))) {
DWordPair.first = (M0 >= 0 ? M0 : DWordPair.first);
DWordPair.second = (M1 >= 0 ? M1 : DWordPair.second);
PSHUFDMask[DWord] = DOffset + j;
Match = true;
break;
}
}
if (!Match) {
PSHUFDMask[DWord] = DOffset + DWordPairs.size();
DWordPairs.push_back(std::make_pair(M0, M1));
}
}
if (DWordPairs.size() <= 2) {
DWordPairs.resize(2, std::make_pair(-1, -1));
int PSHUFHalfMask[4] = {DWordPairs[0].first, DWordPairs[0].second,
DWordPairs[1].first, DWordPairs[1].second};
if ((NumHToL + NumHToH) == 0)
return ShuffleDWordPairs(PSHUFHalfMask, PSHUFDMask, X86ISD::PSHUFLW);
if ((NumLToL + NumLToH) == 0)
return ShuffleDWordPairs(PSHUFHalfMask, PSHUFDMask, X86ISD::PSHUFHW);
}
}
// Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
// such inputs we can swap two of the dwords across the half mark and end up
// with <=2 inputs to each half in each half. Once there, we can fall through
// to the generic code below. For example:
//
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
// Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
//
// However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
// and an existing 2-into-2 on the other half. In this case we may have to
// pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
// 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
// Fortunately, we don't have to handle anything but a 2-into-2 pattern
// because any other situation (including a 3-into-1 or 1-into-3 in the other
// half than the one we target for fixing) will be fixed when we re-enter this
// path. We will also combine away any sequence of PSHUFD instructions that
// result into a single instruction. Here is an example of the tricky case:
//
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
//
// This now has a 1-into-3 in the high half! Instead, we do two shuffles:
//
// Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
//
// Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
//
// The result is fine to be handled by the generic logic.
auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
int AOffset, int BOffset) {
assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
"Must call this with A having 3 or 1 inputs from the A half.");
assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
"Must call this with B having 1 or 3 inputs from the B half.");
assert(AToAInputs.size() + BToAInputs.size() == 4 &&
"Must call this with either 3:1 or 1:3 inputs (summing to 4).");
bool ThreeAInputs = AToAInputs.size() == 3;
// Compute the index of dword with only one word among the three inputs in
// a half by taking the sum of the half with three inputs and subtracting
// the sum of the actual three inputs. The difference is the remaining
// slot.
int ADWord = 0, BDWord = 0;
int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
int TripleNonInputIdx =
TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
TripleDWord = TripleNonInputIdx / 2;
// We use xor with one to compute the adjacent DWord to whichever one the
// OneInput is in.
OneInputDWord = (OneInput / 2) ^ 1;
// Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
// and BToA inputs. If there is also such a problem with the BToB and AToB
// inputs, we don't try to fix it necessarily -- we'll recurse and see it in
// the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
// is essential that we don't *create* a 3<-1 as then we might oscillate.
if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
// Compute how many inputs will be flipped by swapping these DWords. We
// need
// to balance this to ensure we don't form a 3-1 shuffle in the other
// half.
int NumFlippedAToBInputs =
std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
int NumFlippedBToBInputs =
std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
if ((NumFlippedAToBInputs == 1 &&
(NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
(NumFlippedBToBInputs == 1 &&
(NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
// We choose whether to fix the A half or B half based on whether that
// half has zero flipped inputs. At zero, we may not be able to fix it
// with that half. We also bias towards fixing the B half because that
// will more commonly be the high half, and we have to bias one way.
auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
ArrayRef<int> Inputs) {
int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
bool IsFixIdxInput = is_contained(Inputs, PinnedIdx ^ 1);
// Determine whether the free index is in the flipped dword or the
// unflipped dword based on where the pinned index is. We use this bit
// in an xor to conditionally select the adjacent dword.
int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
bool IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
if (IsFixIdxInput == IsFixFreeIdxInput)
FixFreeIdx += 1;
IsFixFreeIdxInput = is_contained(Inputs, FixFreeIdx);
assert(IsFixIdxInput != IsFixFreeIdxInput &&
"We need to be changing the number of flipped inputs!");
int PSHUFHalfMask[] = {0, 1, 2, 3};
std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
V = DAG.getNode(
FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
MVT::getVectorVT(MVT::i16, V.getValueSizeInBits() / 16), V,
getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
for (int &M : Mask)
if (M >= 0 && M == FixIdx)
M = FixFreeIdx;
else if (M >= 0 && M == FixFreeIdx)
M = FixIdx;
};
if (NumFlippedBToBInputs != 0) {
int BPinnedIdx =
BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
} else {
assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
}
}
}
int PSHUFDMask[] = {0, 1, 2, 3};
PSHUFDMask[ADWord] = BDWord;
PSHUFDMask[BDWord] = ADWord;
V = DAG.getBitcast(
VT,
DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
// Adjust the mask to match the new locations of A and B.
for (int &M : Mask)
if (M >= 0 && M/2 == ADWord)
M = 2 * BDWord + M % 2;
else if (M >= 0 && M/2 == BDWord)
M = 2 * ADWord + M % 2;
// Recurse back into this routine to re-compute state now that this isn't
// a 3 and 1 problem.
return lowerV8I16GeneralSingleInputShuffle(DL, VT, V, Mask, Subtarget, DAG);
};
if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
// At this point there are at most two inputs to the low and high halves from
// each half. That means the inputs can always be grouped into dwords and
// those dwords can then be moved to the correct half with a dword shuffle.
// We use at most one low and one high word shuffle to collect these paired
// inputs into dwords, and finally a dword shuffle to place them.
int PSHUFLMask[4] = {-1, -1, -1, -1};
int PSHUFHMask[4] = {-1, -1, -1, -1};
int PSHUFDMask[4] = {-1, -1, -1, -1};
// First fix the masks for all the inputs that are staying in their
// original halves. This will then dictate the targets of the cross-half
// shuffles.
auto fixInPlaceInputs =
[&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
MutableArrayRef<int> SourceHalfMask,
MutableArrayRef<int> HalfMask, int HalfOffset) {
if (InPlaceInputs.empty())
return;
if (InPlaceInputs.size() == 1) {
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
InPlaceInputs[0] - HalfOffset;
PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
return;
}
if (IncomingInputs.empty()) {
// Just fix all of the in place inputs.
for (int Input : InPlaceInputs) {
SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
PSHUFDMask[Input / 2] = Input / 2;
}
return;
}
assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
InPlaceInputs[0] - HalfOffset;
// Put the second input next to the first so that they are packed into
// a dword. We find the adjacent index by toggling the low bit.
int AdjIndex = InPlaceInputs[0] ^ 1;
SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
};
fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
// Now gather the cross-half inputs and place them into a free dword of
// their target half.
// FIXME: This operation could almost certainly be simplified dramatically to
// look more like the 3-1 fixing operation.
auto moveInputsToRightHalf = [&PSHUFDMask](
MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
int DestOffset) {
auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
return SourceHalfMask[Word] >= 0 && SourceHalfMask[Word] != Word;
};
auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
int Word) {
int LowWord = Word & ~1;
int HighWord = Word | 1;
return isWordClobbered(SourceHalfMask, LowWord) ||
isWordClobbered(SourceHalfMask, HighWord);
};
if (IncomingInputs.empty())
return;
if (ExistingInputs.empty()) {
// Map any dwords with inputs from them into the right half.
for (int Input : IncomingInputs) {
// If the source half mask maps over the inputs, turn those into
// swaps and use the swapped lane.
if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] < 0) {
SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
Input - SourceOffset;
// We have to swap the uses in our half mask in one sweep.
for (int &M : HalfMask)
if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
M = Input;
else if (M == Input)
M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
} else {
assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
Input - SourceOffset &&
"Previous placement doesn't match!");
}
// Note that this correctly re-maps both when we do a swap and when
// we observe the other side of the swap above. We rely on that to
// avoid swapping the members of the input list directly.
Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
}
// Map the input's dword into the correct half.
if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] < 0)
PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
else
assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
Input / 2 &&
"Previous placement doesn't match!");
}
// And just directly shift any other-half mask elements to be same-half
// as we will have mirrored the dword containing the element into the
// same position within that half.
for (int &M : HalfMask)
if (M >= SourceOffset && M < SourceOffset + 4) {
M = M - SourceOffset + DestOffset;
assert(M >= 0 && "This should never wrap below zero!");
}
return;
}
// Ensure we have the input in a viable dword of its current half. This
// is particularly tricky because the original position may be clobbered
// by inputs being moved and *staying* in that half.
if (IncomingInputs.size() == 1) {
if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
int InputFixed = find(SourceHalfMask, -1) - std::begin(SourceHalfMask) +
SourceOffset;
SourceHalfMask[InputFixed - SourceOffset] =
IncomingInputs[0] - SourceOffset;
std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
InputFixed);
IncomingInputs[0] = InputFixed;
}
} else if (IncomingInputs.size() == 2) {
if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
// We have two non-adjacent or clobbered inputs we need to extract from
// the source half. To do this, we need to map them into some adjacent
// dword slot in the source mask.
int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
IncomingInputs[1] - SourceOffset};
// If there is a free slot in the source half mask adjacent to one of
// the inputs, place the other input in it. We use (Index XOR 1) to
// compute an adjacent index.
if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
SourceHalfMask[InputsFixed[0] ^ 1] < 0) {
SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
InputsFixed[1] = InputsFixed[0] ^ 1;
} else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
SourceHalfMask[InputsFixed[1] ^ 1] < 0) {
SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
InputsFixed[0] = InputsFixed[1] ^ 1;
} else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] < 0 &&
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] < 0) {
// The two inputs are in the same DWord but it is clobbered and the
// adjacent DWord isn't used at all. Move both inputs to the free
// slot.
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
} else {
// The only way we hit this point is if there is no clobbering
// (because there are no off-half inputs to this half) and there is no
// free slot adjacent to one of the inputs. In this case, we have to
// swap an input with a non-input.
for (int i = 0; i < 4; ++i)
assert((SourceHalfMask[i] < 0 || SourceHalfMask[i] == i) &&
"We can't handle any clobbers here!");
assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
"Cannot have adjacent inputs here!");
SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
// We also have to update the final source mask in this case because
// it may need to undo the above swap.
for (int &M : FinalSourceHalfMask)
if (M == (InputsFixed[0] ^ 1) + SourceOffset)
M = InputsFixed[1] + SourceOffset;
else if (M == InputsFixed[1] + SourceOffset)
M = (InputsFixed[0] ^ 1) + SourceOffset;
InputsFixed[1] = InputsFixed[0] ^ 1;
}
// Point everything at the fixed inputs.
for (int &M : HalfMask)
if (M == IncomingInputs[0])
M = InputsFixed[0] + SourceOffset;
else if (M == IncomingInputs[1])
M = InputsFixed[1] + SourceOffset;
IncomingInputs[0] = InputsFixed[0] + SourceOffset;
IncomingInputs[1] = InputsFixed[1] + SourceOffset;
}
} else {
llvm_unreachable("Unhandled input size!");
}
// Now hoist the DWord down to the right half.
int FreeDWord = (PSHUFDMask[DestOffset / 2] < 0 ? 0 : 1) + DestOffset / 2;
assert(PSHUFDMask[FreeDWord] < 0 && "DWord not free");
PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
for (int &M : HalfMask)
for (int Input : IncomingInputs)
if (M == Input)
M = FreeDWord * 2 + Input % 2;
};
moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
/*SourceOffset*/ 4, /*DestOffset*/ 0);
moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
/*SourceOffset*/ 0, /*DestOffset*/ 4);
// Now enact all the shuffles we've computed to move the inputs into their
// target half.
if (!isNoopShuffleMask(PSHUFLMask))
V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
if (!isNoopShuffleMask(PSHUFHMask))
V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
if (!isNoopShuffleMask(PSHUFDMask))
V = DAG.getBitcast(
VT,
DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
// At this point, each half should contain all its inputs, and we can then
// just shuffle them into their final position.
assert(count_if(LoMask, [](int M) { return M >= 4; }) == 0 &&
"Failed to lift all the high half inputs to the low mask!");
assert(count_if(HiMask, [](int M) { return M >= 0 && M < 4; }) == 0 &&
"Failed to lift all the low half inputs to the high mask!");
// Do a half shuffle for the low mask.
if (!isNoopShuffleMask(LoMask))
V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
// Do a half shuffle with the high mask after shifting its values down.
for (int &M : HiMask)
if (M >= 0)
M -= 4;
if (!isNoopShuffleMask(HiMask))
V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
return V;
}
/// Helper to form a PSHUFB-based shuffle+blend, opportunistically avoiding the
/// blend if only one input is used.
static SDValue lowerShuffleAsBlendOfPSHUFBs(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable, SelectionDAG &DAG, bool &V1InUse, bool &V2InUse) {
assert(!is128BitLaneCrossingShuffleMask(VT, Mask) &&
"Lane crossing shuffle masks not supported");
int NumBytes = VT.getSizeInBits() / 8;
int Size = Mask.size();
int Scale = NumBytes / Size;
SmallVector<SDValue, 64> V1Mask(NumBytes, DAG.getUNDEF(MVT::i8));
SmallVector<SDValue, 64> V2Mask(NumBytes, DAG.getUNDEF(MVT::i8));
V1InUse = false;
V2InUse = false;
for (int i = 0; i < NumBytes; ++i) {
int M = Mask[i / Scale];
if (M < 0)
continue;
const int ZeroMask = 0x80;
int V1Idx = M < Size ? M * Scale + i % Scale : ZeroMask;
int V2Idx = M < Size ? ZeroMask : (M - Size) * Scale + i % Scale;
if (Zeroable[i / Scale])
V1Idx = V2Idx = ZeroMask;
V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
V1InUse |= (ZeroMask != V1Idx);
V2InUse |= (ZeroMask != V2Idx);
}
MVT ShufVT = MVT::getVectorVT(MVT::i8, NumBytes);
if (V1InUse)
V1 = DAG.getNode(X86ISD::PSHUFB, DL, ShufVT, DAG.getBitcast(ShufVT, V1),
DAG.getBuildVector(ShufVT, DL, V1Mask));
if (V2InUse)
V2 = DAG.getNode(X86ISD::PSHUFB, DL, ShufVT, DAG.getBitcast(ShufVT, V2),
DAG.getBuildVector(ShufVT, DL, V2Mask));
// If we need shuffled inputs from both, blend the two.
SDValue V;
if (V1InUse && V2InUse)
V = DAG.getNode(ISD::OR, DL, ShufVT, V1, V2);
else
V = V1InUse ? V1 : V2;
// Cast the result back to the correct type.
return DAG.getBitcast(VT, V);
}
/// Generic lowering of 8-lane i16 shuffles.
///
/// This handles both single-input shuffles and combined shuffle/blends with
/// two inputs. The single input shuffles are immediately delegated to
/// a dedicated lowering routine.
///
/// The blends are lowered in one of three fundamental ways. If there are few
/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
/// of the input is significantly cheaper when lowered as an interleaving of
/// the two inputs, try to interleave them. Otherwise, blend the low and high
/// halves of the inputs separately (making them have relatively few inputs)
/// and then concatenate them.
static SDValue lowerV8I16Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return ZExt;
int NumV2Inputs = count_if(Mask, [](int M) { return M >= 8; });
if (NumV2Inputs == 0) {
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v8i16, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v8i16, V1, V1, Mask,
Subtarget, DAG))
return Rotate;
// Make a copy of the mask so it can be modified.
SmallVector<int, 8> MutableMask(Mask.begin(), Mask.end());
return lowerV8I16GeneralSingleInputShuffle(DL, MVT::v8i16, V1, MutableMask,
Subtarget, DAG);
}
assert(llvm::any_of(Mask, [](int M) { return M >= 0 && M < 8; }) &&
"All single-input shuffles should be canonicalized to be V1-input "
"shuffles.");
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// See if we can use SSE4A Extraction / Insertion.
if (Subtarget.hasSSE4A())
if (SDValue V = lowerShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, DAG))
return V;
// There are special ways we can lower some single-element blends.
if (NumV2Inputs == 1)
if (SDValue V = lowerShuffleAsElementInsertion(
DL, MVT::v8i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
return V;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
if (SDValue Masked = lowerShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithPACK(DL, MVT::v8i16, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v8i16, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
if (SDValue BitBlend =
lowerShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
return BitBlend;
// Try to use byte shift instructions to mask.
if (SDValue V = lowerShuffleAsByteShiftMask(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return V;
// Try to lower by permuting the inputs into an unpack instruction.
if (SDValue Unpack = lowerShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1, V2,
Mask, Subtarget, DAG))
return Unpack;
// If we can't directly blend but can use PSHUFB, that will be better as it
// can both shuffle and set up the inefficient blend.
if (!IsBlendSupported && Subtarget.hasSSSE3()) {
bool V1InUse, V2InUse;
return lowerShuffleAsBlendOfPSHUFBs(DL, MVT::v8i16, V1, V2, Mask,
Zeroable, DAG, V1InUse, V2InUse);
}
// We can always bit-blend if we have to so the fallback strategy is to
// decompose into single-input permutes and blends.
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
Mask, Subtarget, DAG);
}
/// Check whether a compaction lowering can be done by dropping even
/// elements and compute how many times even elements must be dropped.
///
/// This handles shuffles which take every Nth element where N is a power of
/// two. Example shuffle masks:
///
/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14
/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12
/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28
/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8
/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24
///
/// Any of these lanes can of course be undef.
///
/// This routine only supports N <= 3.
/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
/// for larger N.
///
/// \returns N above, or the number of times even elements must be dropped if
/// there is such a number. Otherwise returns zero.
static int canLowerByDroppingEvenElements(ArrayRef<int> Mask,
bool IsSingleInput) {
// The modulus for the shuffle vector entries is based on whether this is
// a single input or not.
int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
"We should only be called with masks with a power-of-2 size!");
uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
// We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
// and 2^3 simultaneously. This is because we may have ambiguity with
// partially undef inputs.
bool ViableForN[3] = {true, true, true};
for (int i = 0, e = Mask.size(); i < e; ++i) {
// Ignore undef lanes, we'll optimistically collapse them to the pattern we
// want.
if (Mask[i] < 0)
continue;
bool IsAnyViable = false;
for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
if (ViableForN[j]) {
uint64_t N = j + 1;
// The shuffle mask must be equal to (i * 2^N) % M.
if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
IsAnyViable = true;
else
ViableForN[j] = false;
}
// Early exit if we exhaust the possible powers of two.
if (!IsAnyViable)
break;
}
for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
if (ViableForN[j])
return j + 1;
// Return 0 as there is no viable power of two.
return 0;
}
static SDValue lowerShuffleWithPERMV(const SDLoc &DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true);
if (V2.isUndef())
return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2);
}
/// Generic lowering of v16i8 shuffles.
///
/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
/// detect any complexity reducing interleaving. If that doesn't help, it uses
/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
/// back together.
static SDValue lowerV16I8Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v16i8, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithPACK(DL, MVT::v16i8, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use a zext lowering.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return ZExt;
// See if we can use SSE4A Extraction / Insertion.
if (Subtarget.hasSSE4A())
if (SDValue V = lowerShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, DAG))
return V;
int NumV2Elements = count_if(Mask, [](int M) { return M >= 16; });
// For single-input shuffles, there are some nicer lowering tricks we can use.
if (NumV2Elements == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v16i8, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
return V;
// Check whether we can widen this to an i16 shuffle by duplicating bytes.
// Notably, this handles splat and partial-splat shuffles more efficiently.
// However, it only makes sense if the pre-duplication shuffle simplifies
// things significantly. Currently, this means we need to be able to
// express the pre-duplication shuffle as an i16 shuffle.
//
// FIXME: We should check for other patterns which can be widened into an
// i16 shuffle as well.
auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
for (int i = 0; i < 16; i += 2)
if (Mask[i] >= 0 && Mask[i + 1] >= 0 && Mask[i] != Mask[i + 1])
return false;
return true;
};
auto tryToWidenViaDuplication = [&]() -> SDValue {
if (!canWidenViaDuplication(Mask))
return SDValue();
SmallVector<int, 4> LoInputs;
copy_if(Mask, std::back_inserter(LoInputs),
[](int M) { return M >= 0 && M < 8; });
array_pod_sort(LoInputs.begin(), LoInputs.end());
LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
LoInputs.end());
SmallVector<int, 4> HiInputs;
copy_if(Mask, std::back_inserter(HiInputs), [](int M) { return M >= 8; });
array_pod_sort(HiInputs.begin(), HiInputs.end());
HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
HiInputs.end());
bool TargetLo = LoInputs.size() >= HiInputs.size();
ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
SmallDenseMap<int, int, 8> LaneMap;
for (int I : InPlaceInputs) {
PreDupI16Shuffle[I/2] = I/2;
LaneMap[I] = I;
}
int j = TargetLo ? 0 : 4, je = j + 4;
for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
// Check if j is already a shuffle of this input. This happens when
// there are two adjacent bytes after we move the low one.
if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
// If we haven't yet mapped the input, search for a slot into which
// we can map it.
while (j < je && PreDupI16Shuffle[j] >= 0)
++j;
if (j == je)
// We can't place the inputs into a single half with a simple i16 shuffle, so bail.
return SDValue();
// Map this input with the i16 shuffle.
PreDupI16Shuffle[j] = MovingInputs[i] / 2;
}
// Update the lane map based on the mapping we ended up with.
LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
}
V1 = DAG.getBitcast(
MVT::v16i8,
DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
// Unpack the bytes to form the i16s that will be shuffled into place.
bool EvenInUse = false, OddInUse = false;
for (int i = 0; i < 16; i += 2) {
EvenInUse |= (Mask[i + 0] >= 0);
OddInUse |= (Mask[i + 1] >= 0);
if (EvenInUse && OddInUse)
break;
}
V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
MVT::v16i8, EvenInUse ? V1 : DAG.getUNDEF(MVT::v16i8),
OddInUse ? V1 : DAG.getUNDEF(MVT::v16i8));
int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
for (int i = 0; i < 16; ++i)
if (Mask[i] >= 0) {
int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
if (PostDupI16Shuffle[i / 2] < 0)
PostDupI16Shuffle[i / 2] = MappedMask;
else
assert(PostDupI16Shuffle[i / 2] == MappedMask &&
"Conflicting entries in the original shuffle!");
}
return DAG.getBitcast(
MVT::v16i8,
DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
};
if (SDValue V = tryToWidenViaDuplication())
return V;
}
if (SDValue Masked = lowerShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
return V;
// Try to use byte shift instructions to mask.
if (SDValue V = lowerShuffleAsByteShiftMask(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return V;
// Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
// with PSHUFB. It is important to do this before we attempt to generate any
// blends but after all of the single-input lowerings. If the single input
// lowerings can find an instruction sequence that is faster than a PSHUFB, we
// want to preserve that and we can DAG combine any longer sequences into
// a PSHUFB in the end. But once we start blending from multiple inputs,
// the complexity of DAG combining bad patterns back into PSHUFB is too high,
// and there are *very* few patterns that would actually be faster than the
// PSHUFB approach because of its ability to zero lanes.
//
// FIXME: The only exceptions to the above are blends which are exact
// interleavings with direct instructions supporting them. We currently don't
// handle those well here.
if (Subtarget.hasSSSE3()) {
bool V1InUse = false;
bool V2InUse = false;
SDValue PSHUFB = lowerShuffleAsBlendOfPSHUFBs(
DL, MVT::v16i8, V1, V2, Mask, Zeroable, DAG, V1InUse, V2InUse);
// If both V1 and V2 are in use and we can use a direct blend or an unpack,
// do so. This avoids using them to handle blends-with-zero which is
// important as a single pshufb is significantly faster for that.
if (V1InUse && V2InUse) {
if (Subtarget.hasSSE41())
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v16i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// We can use an unpack to do the blending rather than an or in some
// cases. Even though the or may be (very minorly) more efficient, we
// preference this lowering because there are common cases where part of
// the complexity of the shuffles goes away when we do the final blend as
// an unpack.
// FIXME: It might be worth trying to detect if the unpack-feeding
// shuffles will both be pshufb, in which case we shouldn't bother with
// this.
if (SDValue Unpack = lowerShuffleAsPermuteAndUnpack(
DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
return Unpack;
// If we have VBMI we can use one VPERM instead of multiple PSHUFBs.
if (Subtarget.hasVBMI() && Subtarget.hasVLX())
return lowerShuffleWithPERMV(DL, MVT::v16i8, Mask, V1, V2, DAG);
// Use PALIGNR+Permute if possible - permute might become PSHUFB but the
// PALIGNR will be cheaper than the second PSHUFB+OR.
if (SDValue V = lowerShuffleAsByteRotateAndPermute(
DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
return V;
}
return PSHUFB;
}
// There are special ways we can lower some single-element blends.
if (NumV2Elements == 1)
if (SDValue V = lowerShuffleAsElementInsertion(
DL, MVT::v16i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
return V;
if (SDValue Blend = lowerShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
return Blend;
// Check whether a compaction lowering can be done. This handles shuffles
// which take every Nth element for some even N. See the helper function for
// details.
//
// We special case these as they can be particularly efficiently handled with
// the PACKUSB instruction on x86 and they show up in common patterns of
// rearranging bytes to truncate wide elements.
bool IsSingleInput = V2.isUndef();
if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask, IsSingleInput)) {
// NumEvenDrops is the power of two stride of the elements. Another way of
// thinking about it is that we need to drop the even elements this many
// times to get the original input.
// First we need to zero all the dropped bytes.
assert(NumEvenDrops <= 3 &&
"No support for dropping even elements more than 3 times.");
SmallVector<SDValue, 16> ByteClearOps(16, DAG.getConstant(0, DL, MVT::i8));
for (unsigned i = 0; i != 16; i += 1 << NumEvenDrops)
ByteClearOps[i] = DAG.getConstant(0xFF, DL, MVT::i8);
SDValue ByteClearMask = DAG.getBuildVector(MVT::v16i8, DL, ByteClearOps);
V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
if (!IsSingleInput)
V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
// Now pack things back together.
V1 = DAG.getBitcast(MVT::v8i16, V1);
V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
for (int i = 1; i < NumEvenDrops; ++i) {
Result = DAG.getBitcast(MVT::v8i16, Result);
Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
}
return Result;
}
// Handle multi-input cases by blending single-input shuffles.
if (NumV2Elements > 0)
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2, Mask,
Subtarget, DAG);
// The fallback path for single-input shuffles widens this into two v8i16
// vectors with unpacks, shuffles those, and then pulls them back together
// with a pack.
SDValue V = V1;
std::array<int, 8> LoBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
std::array<int, 8> HiBlendMask = {{-1, -1, -1, -1, -1, -1, -1, -1}};
for (int i = 0; i < 16; ++i)
if (Mask[i] >= 0)
(i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
SDValue VLoHalf, VHiHalf;
// Check if any of the odd lanes in the v16i8 are used. If not, we can mask
// them out and avoid using UNPCK{L,H} to extract the elements of V as
// i16s.
if (none_of(LoBlendMask, [](int M) { return M >= 0 && M % 2 == 1; }) &&
none_of(HiBlendMask, [](int M) { return M >= 0 && M % 2 == 1; })) {
// Use a mask to drop the high bytes.
VLoHalf = DAG.getBitcast(MVT::v8i16, V);
VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
DAG.getConstant(0x00FF, DL, MVT::v8i16));
// This will be a single vector shuffle instead of a blend so nuke VHiHalf.
VHiHalf = DAG.getUNDEF(MVT::v8i16);
// Squash the masks to point directly into VLoHalf.
for (int &M : LoBlendMask)
if (M >= 0)
M /= 2;
for (int &M : HiBlendMask)
if (M >= 0)
M /= 2;
} else {
// Otherwise just unpack the low half of V into VLoHalf and the high half into
// VHiHalf so that we can blend them as i16s.
SDValue Zero = getZeroVector(MVT::v16i8, Subtarget, DAG, DL);
VLoHalf = DAG.getBitcast(
MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
VHiHalf = DAG.getBitcast(
MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
}
SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
}
/// Dispatching routine to lower various 128-bit x86 vector shuffles.
///
/// This routine breaks down the specific type of 128-bit shuffle and
/// dispatches to the lowering routines accordingly.
static SDValue lower128BitShuffle(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
switch (VT.SimpleTy) {
case MVT::v2i64:
return lowerV2I64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v2f64:
return lowerV2F64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v4i32:
return lowerV4I32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v4f32:
return lowerV4F32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v8i16:
return lowerV8I16Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v16i8:
return lowerV16I8Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
default:
llvm_unreachable("Unimplemented!");
}
}
/// Generic routine to split vector shuffle into half-sized shuffles.
///
/// This routine just extracts two subvectors, shuffles them independently, and
/// then concatenates them back together. This should work effectively with all
/// AVX vector shuffle types.
static SDValue splitAndLowerShuffle(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(VT.getSizeInBits() >= 256 &&
"Only for 256-bit or wider vector shuffles!");
assert(V1.getSimpleValueType() == VT && "Bad operand type!");
assert(V2.getSimpleValueType() == VT && "Bad operand type!");
ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
int NumElements = VT.getVectorNumElements();
int SplitNumElements = NumElements / 2;
MVT ScalarVT = VT.getVectorElementType();
MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
// Rather than splitting build-vectors, just build two narrower build
// vectors. This helps shuffling with splats and zeros.
auto SplitVector = [&](SDValue V) {
V = peekThroughBitcasts(V);
MVT OrigVT = V.getSimpleValueType();
int OrigNumElements = OrigVT.getVectorNumElements();
int OrigSplitNumElements = OrigNumElements / 2;
MVT OrigScalarVT = OrigVT.getVectorElementType();
MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
SDValue LoV, HiV;
auto *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV) {
LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
DAG.getIntPtrConstant(0, DL));
HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
DAG.getIntPtrConstant(OrigSplitNumElements, DL));
} else {
SmallVector<SDValue, 16> LoOps, HiOps;
for (int i = 0; i < OrigSplitNumElements; ++i) {
LoOps.push_back(BV->getOperand(i));
HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
}
LoV = DAG.getBuildVector(OrigSplitVT, DL, LoOps);
HiV = DAG.getBuildVector(OrigSplitVT, DL, HiOps);
}
return std::make_pair(DAG.getBitcast(SplitVT, LoV),
DAG.getBitcast(SplitVT, HiV));
};
SDValue LoV1, HiV1, LoV2, HiV2;
std::tie(LoV1, HiV1) = SplitVector(V1);
std::tie(LoV2, HiV2) = SplitVector(V2);
// Now create two 4-way blends of these half-width vectors.
auto HalfBlend = [&](ArrayRef<int> HalfMask) {
bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
SmallVector<int, 32> V1BlendMask((unsigned)SplitNumElements, -1);
SmallVector<int, 32> V2BlendMask((unsigned)SplitNumElements, -1);
SmallVector<int, 32> BlendMask((unsigned)SplitNumElements, -1);
for (int i = 0; i < SplitNumElements; ++i) {
int M = HalfMask[i];
if (M >= NumElements) {
if (M >= NumElements + SplitNumElements)
UseHiV2 = true;
else
UseLoV2 = true;
V2BlendMask[i] = M - NumElements;
BlendMask[i] = SplitNumElements + i;
} else if (M >= 0) {
if (M >= SplitNumElements)
UseHiV1 = true;
else
UseLoV1 = true;
V1BlendMask[i] = M;
BlendMask[i] = i;
}
}
// Because the lowering happens after all combining takes place, we need to
// manually combine these blend masks as much as possible so that we create
// a minimal number of high-level vector shuffle nodes.
// First try just blending the halves of V1 or V2.
if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
return DAG.getUNDEF(SplitVT);
if (!UseLoV2 && !UseHiV2)
return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
if (!UseLoV1 && !UseHiV1)
return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
SDValue V1Blend, V2Blend;
if (UseLoV1 && UseHiV1) {
V1Blend =
DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
} else {
// We only use half of V1 so map the usage down into the final blend mask.
V1Blend = UseLoV1 ? LoV1 : HiV1;
for (int i = 0; i < SplitNumElements; ++i)
if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
}
if (UseLoV2 && UseHiV2) {
V2Blend =
DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
} else {
// We only use half of V2 so map the usage down into the final blend mask.
V2Blend = UseLoV2 ? LoV2 : HiV2;
for (int i = 0; i < SplitNumElements; ++i)
if (BlendMask[i] >= SplitNumElements)
BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
}
return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
};
SDValue Lo = HalfBlend(LoMask);
SDValue Hi = HalfBlend(HiMask);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
/// Either split a vector in halves or decompose the shuffles and the
/// blend.
///
/// This is provided as a good fallback for many lowerings of non-single-input
/// shuffles with more than one 128-bit lane. In those cases, we want to select
/// between splitting the shuffle into 128-bit components and stitching those
/// back together vs. extracting the single-input shuffles and blending those
/// results.
static SDValue lowerShuffleAsSplitOrBlend(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(!V2.isUndef() && "This routine must not be used to lower single-input "
"shuffles as it could then recurse on itself.");
int Size = Mask.size();
// If this can be modeled as a broadcast of two elements followed by a blend,
// prefer that lowering. This is especially important because broadcasts can
// often fold with memory operands.
auto DoBothBroadcast = [&] {
int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
for (int M : Mask)
if (M >= Size) {
if (V2BroadcastIdx < 0)
V2BroadcastIdx = M - Size;
else if (M - Size != V2BroadcastIdx)
return false;
} else if (M >= 0) {
if (V1BroadcastIdx < 0)
V1BroadcastIdx = M;
else if (M != V1BroadcastIdx)
return false;
}
return true;
};
if (DoBothBroadcast())
return lowerShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
Subtarget, DAG);
// If the inputs all stem from a single 128-bit lane of each input, then we
// split them rather than blending because the split will decompose to
// unusually few instructions.
int LaneCount = VT.getSizeInBits() / 128;
int LaneSize = Size / LaneCount;
SmallBitVector LaneInputs[2];
LaneInputs[0].resize(LaneCount, false);
LaneInputs[1].resize(LaneCount, false);
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0)
LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
return splitAndLowerShuffle(DL, VT, V1, V2, Mask, DAG);
// Otherwise, just fall back to decomposed shuffles and a blend. This requires
// that the decomposed single-input shuffles don't end up here.
return lowerShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, Subtarget,
DAG);
}
// Lower as SHUFPD(VPERM2F128(V1, V2), VPERM2F128(V1, V2)).
// TODO: Extend to support v8f32 (+ 512-bit shuffles).
static SDValue lowerShuffleAsLanePermuteAndSHUFP(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(VT == MVT::v4f64 && "Only for v4f64 shuffles");
int LHSMask[4] = {-1, -1, -1, -1};
int RHSMask[4] = {-1, -1, -1, -1};
unsigned SHUFPMask = 0;
// As SHUFPD uses a single LHS/RHS element per lane, we can always
// perform the shuffle once the lanes have been shuffled in place.
for (int i = 0; i != 4; ++i) {
int M = Mask[i];
if (M < 0)
continue;
int LaneBase = i & ~1;
auto &LaneMask = (i & 1) ? RHSMask : LHSMask;
LaneMask[LaneBase + (M & 1)] = M;
SHUFPMask |= (M & 1) << i;
}
SDValue LHS = DAG.getVectorShuffle(VT, DL, V1, V2, LHSMask);
SDValue RHS = DAG.getVectorShuffle(VT, DL, V1, V2, RHSMask);
return DAG.getNode(X86ISD::SHUFP, DL, VT, LHS, RHS,
DAG.getTargetConstant(SHUFPMask, DL, MVT::i8));
}
/// Lower a vector shuffle crossing multiple 128-bit lanes as
/// a lane permutation followed by a per-lane permutation.
///
/// This is mainly for cases where we can have non-repeating permutes
/// in each lane.
///
/// TODO: This is very similar to lowerShuffleAsLanePermuteAndRepeatedMask,
/// we should investigate merging them.
static SDValue lowerShuffleAsLanePermuteAndPermute(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG, const X86Subtarget &Subtarget) {
int NumElts = VT.getVectorNumElements();
int NumLanes = VT.getSizeInBits() / 128;
int NumEltsPerLane = NumElts / NumLanes;
SmallVector<int, 4> SrcLaneMask(NumLanes, SM_SentinelUndef);
SmallVector<int, 16> PermMask(NumElts, SM_SentinelUndef);
for (int i = 0; i != NumElts; ++i) {
int M = Mask[i];
if (M < 0)
continue;
// Ensure that each lane comes from a single source lane.
int SrcLane = M / NumEltsPerLane;
int DstLane = i / NumEltsPerLane;
if (!isUndefOrEqual(SrcLaneMask[DstLane], SrcLane))
return SDValue();
SrcLaneMask[DstLane] = SrcLane;
PermMask[i] = (DstLane * NumEltsPerLane) + (M % NumEltsPerLane);
}
// Make sure we set all elements of the lane mask, to avoid undef propagation.
SmallVector<int, 16> LaneMask(NumElts, SM_SentinelUndef);
for (int DstLane = 0; DstLane != NumLanes; ++DstLane) {
int SrcLane = SrcLaneMask[DstLane];
if (0 <= SrcLane)
for (int j = 0; j != NumEltsPerLane; ++j) {
LaneMask[(DstLane * NumEltsPerLane) + j] =
(SrcLane * NumEltsPerLane) + j;
}
}
// If we're only shuffling a single lowest lane and the rest are identity
// then don't bother.
// TODO - isShuffleMaskInputInPlace could be extended to something like this.
int NumIdentityLanes = 0;
bool OnlyShuffleLowestLane = true;
for (int i = 0; i != NumLanes; ++i) {
if (isSequentialOrUndefInRange(PermMask, i * NumEltsPerLane, NumEltsPerLane,
i * NumEltsPerLane))
NumIdentityLanes++;
else if (SrcLaneMask[i] != 0 && SrcLaneMask[i] != NumLanes)
OnlyShuffleLowestLane = false;
}
if (OnlyShuffleLowestLane && NumIdentityLanes == (NumLanes - 1))
return SDValue();
SDValue LanePermute = DAG.getVectorShuffle(VT, DL, V1, V2, LaneMask);
return DAG.getVectorShuffle(VT, DL, LanePermute, DAG.getUNDEF(VT), PermMask);
}
/// Lower a vector shuffle crossing multiple 128-bit lanes by shuffling one
/// source with a lane permutation.
///
/// This lowering strategy results in four instructions in the worst case for a
/// single-input cross lane shuffle which is lower than any other fully general
/// cross-lane shuffle strategy I'm aware of. Special cases for each particular
/// shuffle pattern should be handled prior to trying this lowering.
static SDValue lowerShuffleAsLanePermuteAndShuffle(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG, const X86Subtarget &Subtarget) {
// FIXME: This should probably be generalized for 512-bit vectors as well.
assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!");
int Size = Mask.size();
int LaneSize = Size / 2;
// Fold to SHUFPD(VPERM2F128(V1, V2), VPERM2F128(V1, V2)).
// Only do this if the elements aren't all from the lower lane,
// otherwise we're (probably) better off doing a split.
if (VT == MVT::v4f64 &&
!all_of(Mask, [LaneSize](int M) { return M < LaneSize; }))
if (SDValue V =
lowerShuffleAsLanePermuteAndSHUFP(DL, VT, V1, V2, Mask, DAG))
return V;
// If there are only inputs from one 128-bit lane, splitting will in fact be
// less expensive. The flags track whether the given lane contains an element
// that crosses to another lane.
if (!Subtarget.hasAVX2()) {
bool LaneCrossing[2] = {false, false};
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0 && ((Mask[i] % Size) / LaneSize) != (i / LaneSize))
LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
if (!LaneCrossing[0] || !LaneCrossing[1])
return splitAndLowerShuffle(DL, VT, V1, V2, Mask, DAG);
} else {
bool LaneUsed[2] = {false, false};
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0)
LaneUsed[(Mask[i] % Size) / LaneSize] = true;
if (!LaneUsed[0] || !LaneUsed[1])
return splitAndLowerShuffle(DL, VT, V1, V2, Mask, DAG);
}
// TODO - we could support shuffling V2 in the Flipped input.
assert(V2.isUndef() &&
"This last part of this routine only works on single input shuffles");
SmallVector<int, 32> InLaneMask(Mask.begin(), Mask.end());
for (int i = 0; i < Size; ++i) {
int &M = InLaneMask[i];
if (M < 0)
continue;
if (((M % Size) / LaneSize) != (i / LaneSize))
M = (M % LaneSize) + ((i / LaneSize) * LaneSize) + Size;
}
assert(!is128BitLaneCrossingShuffleMask(VT, InLaneMask) &&
"In-lane shuffle mask expected");
// Flip the lanes, and shuffle the results which should now be in-lane.
MVT PVT = VT.isFloatingPoint() ? MVT::v4f64 : MVT::v4i64;
SDValue Flipped = DAG.getBitcast(PVT, V1);
Flipped =
DAG.getVectorShuffle(PVT, DL, Flipped, DAG.getUNDEF(PVT), {2, 3, 0, 1});
Flipped = DAG.getBitcast(VT, Flipped);
return DAG.getVectorShuffle(VT, DL, V1, Flipped, InLaneMask);
}
/// Handle lowering 2-lane 128-bit shuffles.
static SDValue lowerV2X128Shuffle(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// With AVX2, use VPERMQ/VPERMPD for unary shuffles to allow memory folding.
if (Subtarget.hasAVX2() && V2.isUndef())
return SDValue();
bool V2IsZero = !V2.isUndef() && ISD::isBuildVectorAllZeros(V2.getNode());
SmallVector<int, 4> WidenedMask;
if (!canWidenShuffleElements(Mask, Zeroable, V2IsZero, WidenedMask))
return SDValue();
bool IsLowZero = (Zeroable & 0x3) == 0x3;
bool IsHighZero = (Zeroable & 0xc) == 0xc;
// Try to use an insert into a zero vector.
if (WidenedMask[0] == 0 && IsHighZero) {
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
getZeroVector(VT, Subtarget, DAG, DL), LoV,
DAG.getIntPtrConstant(0, DL));
}
// TODO: If minimizing size and one of the inputs is a zero vector and the
// the zero vector has only one use, we could use a VPERM2X128 to save the
// instruction bytes needed to explicitly generate the zero vector.
// Blends are faster and handle all the non-lane-crossing cases.
if (SDValue Blend = lowerShuffleAsBlend(DL, VT, V1, V2, Mask, Zeroable,
Subtarget, DAG))
return Blend;
// If either input operand is a zero vector, use VPERM2X128 because its mask
// allows us to replace the zero input with an implicit zero.
if (!IsLowZero && !IsHighZero) {
// Check for patterns which can be matched with a single insert of a 128-bit
// subvector.
bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
// With AVX1, use vperm2f128 (below) to allow load folding. Otherwise,
// this will likely become vinsertf128 which can't fold a 256-bit memop.
if (!isa<LoadSDNode>(peekThroughBitcasts(V1))) {
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
OnlyUsesV1 ? V1 : V2,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, V1, SubVec,
DAG.getIntPtrConstant(2, DL));
}
}
// Try to use SHUF128 if possible.
if (Subtarget.hasVLX()) {
if (WidenedMask[0] < 2 && WidenedMask[1] >= 2) {
unsigned PermMask = ((WidenedMask[0] % 2) << 0) |
((WidenedMask[1] % 2) << 1);
return DAG.getNode(X86ISD::SHUF128, DL, VT, V1, V2,
DAG.getTargetConstant(PermMask, DL, MVT::i8));
}
}
}
// Otherwise form a 128-bit permutation. After accounting for undefs,
// convert the 64-bit shuffle mask selection values into 128-bit
// selection bits by dividing the indexes by 2 and shifting into positions
// defined by a vperm2*128 instruction's immediate control byte.
// The immediate permute control byte looks like this:
// [1:0] - select 128 bits from sources for low half of destination
// [2] - ignore
// [3] - zero low half of destination
// [5:4] - select 128 bits from sources for high half of destination
// [6] - ignore
// [7] - zero high half of destination
assert((WidenedMask[0] >= 0 || IsLowZero) &&
(WidenedMask[1] >= 0 || IsHighZero) && "Undef half?");
unsigned PermMask = 0;
PermMask |= IsLowZero ? 0x08 : (WidenedMask[0] << 0);
PermMask |= IsHighZero ? 0x80 : (WidenedMask[1] << 4);
// Check the immediate mask and replace unused sources with undef.
if ((PermMask & 0x0a) != 0x00 && (PermMask & 0xa0) != 0x00)
V1 = DAG.getUNDEF(VT);
if ((PermMask & 0x0a) != 0x02 && (PermMask & 0xa0) != 0x20)
V2 = DAG.getUNDEF(VT);
return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
DAG.getTargetConstant(PermMask, DL, MVT::i8));
}
/// Lower a vector shuffle by first fixing the 128-bit lanes and then
/// shuffling each lane.
///
/// This attempts to create a repeated lane shuffle where each lane uses one
/// or two of the lanes of the inputs. The lanes of the input vectors are
/// shuffled in one or two independent shuffles to get the lanes into the
/// position needed by the final shuffle.
static SDValue lowerShuffleAsLanePermuteAndRepeatedMask(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(!V2.isUndef() && "This is only useful with multiple inputs.");
if (is128BitLaneRepeatedShuffleMask(VT, Mask))
return SDValue();
int NumElts = Mask.size();
int NumLanes = VT.getSizeInBits() / 128;
int NumLaneElts = 128 / VT.getScalarSizeInBits();
SmallVector<int, 16> RepeatMask(NumLaneElts, -1);
SmallVector<std::array<int, 2>, 2> LaneSrcs(NumLanes, {{-1, -1}});
// First pass will try to fill in the RepeatMask from lanes that need two
// sources.
for (int Lane = 0; Lane != NumLanes; ++Lane) {
int Srcs[2] = {-1, -1};
SmallVector<int, 16> InLaneMask(NumLaneElts, -1);
for (int i = 0; i != NumLaneElts; ++i) {
int M = Mask[(Lane * NumLaneElts) + i];
if (M < 0)
continue;
// Determine which of the possible input lanes (NumLanes from each source)
// this element comes from. Assign that as one of the sources for this
// lane. We can assign up to 2 sources for this lane. If we run out
// sources we can't do anything.
int LaneSrc = M / NumLaneElts;
int Src;
if (Srcs[0] < 0 || Srcs[0] == LaneSrc)
Src = 0;
else if (Srcs[1] < 0 || Srcs[1] == LaneSrc)
Src = 1;
else
return SDValue();
Srcs[Src] = LaneSrc;
InLaneMask[i] = (M % NumLaneElts) + Src * NumElts;
}
// If this lane has two sources, see if it fits with the repeat mask so far.
if (Srcs[1] < 0)
continue;
LaneSrcs[Lane][0] = Srcs[0];
LaneSrcs[Lane][1] = Srcs[1];
auto MatchMasks = [](ArrayRef<int> M1, ArrayRef<int> M2) {
assert(M1.size() == M2.size() && "Unexpected mask size");
for (int i = 0, e = M1.size(); i != e; ++i)
if (M1[i] >= 0 && M2[i] >= 0 && M1[i] != M2[i])
return false;
return true;
};
auto MergeMasks = [](ArrayRef<int> Mask, MutableArrayRef<int> MergedMask) {
assert(Mask.size() == MergedMask.size() && "Unexpected mask size");
for (int i = 0, e = MergedMask.size(); i != e; ++i) {
int M = Mask[i];
if (M < 0)
continue;
assert((MergedMask[i] < 0 || MergedMask[i] == M) &&
"Unexpected mask element");
MergedMask[i] = M;
}
};
if (MatchMasks(InLaneMask, RepeatMask)) {
// Merge this lane mask into the final repeat mask.
MergeMasks(InLaneMask, RepeatMask);
continue;
}
// Didn't find a match. Swap the operands and try again.
std::swap(LaneSrcs[Lane][0], LaneSrcs[Lane][1]);
ShuffleVectorSDNode::commuteMask(InLaneMask);
if (MatchMasks(InLaneMask, RepeatMask)) {
// Merge this lane mask into the final repeat mask.
MergeMasks(InLaneMask, RepeatMask);
continue;
}
// Couldn't find a match with the operands in either order.
return SDValue();
}
// Now handle any lanes with only one source.
for (int Lane = 0; Lane != NumLanes; ++Lane) {
// If this lane has already been processed, skip it.
if (LaneSrcs[Lane][0] >= 0)
continue;
for (int i = 0; i != NumLaneElts; ++i) {
int M = Mask[(Lane * NumLaneElts) + i];
if (M < 0)
continue;
// If RepeatMask isn't defined yet we can define it ourself.
if (RepeatMask[i] < 0)
RepeatMask[i] = M % NumLaneElts;
if (RepeatMask[i] < NumElts) {
if (RepeatMask[i] != M % NumLaneElts)
return SDValue();
LaneSrcs[Lane][0] = M / NumLaneElts;
} else {
if (RepeatMask[i] != ((M % NumLaneElts) + NumElts))
return SDValue();
LaneSrcs[Lane][1] = M / NumLaneElts;
}
}
if (LaneSrcs[Lane][0] < 0 && LaneSrcs[Lane][1] < 0)
return SDValue();
}
SmallVector<int, 16> NewMask(NumElts, -1);
for (int Lane = 0; Lane != NumLanes; ++Lane) {
int Src = LaneSrcs[Lane][0];
for (int i = 0; i != NumLaneElts; ++i) {
int M = -1;
if (Src >= 0)
M = Src * NumLaneElts + i;
NewMask[Lane * NumLaneElts + i] = M;
}
}
SDValue NewV1 = DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
// Ensure we didn't get back the shuffle we started with.
// FIXME: This is a hack to make up for some splat handling code in
// getVectorShuffle.
if (isa<ShuffleVectorSDNode>(NewV1) &&
cast<ShuffleVectorSDNode>(NewV1)->getMask() == Mask)
return SDValue();
for (int Lane = 0; Lane != NumLanes; ++Lane) {
int Src = LaneSrcs[Lane][1];
for (int i = 0; i != NumLaneElts; ++i) {
int M = -1;
if (Src >= 0)
M = Src * NumLaneElts + i;
NewMask[Lane * NumLaneElts + i] = M;
}
}
SDValue NewV2 = DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
// Ensure we didn't get back the shuffle we started with.
// FIXME: This is a hack to make up for some splat handling code in
// getVectorShuffle.
if (isa<ShuffleVectorSDNode>(NewV2) &&
cast<ShuffleVectorSDNode>(NewV2)->getMask() == Mask)
return SDValue();
for (int i = 0; i != NumElts; ++i) {
NewMask[i] = RepeatMask[i % NumLaneElts];
if (NewMask[i] < 0)
continue;
NewMask[i] += (i / NumLaneElts) * NumLaneElts;
}
return DAG.getVectorShuffle(VT, DL, NewV1, NewV2, NewMask);
}
/// If the input shuffle mask results in a vector that is undefined in all upper
/// or lower half elements and that mask accesses only 2 halves of the
/// shuffle's operands, return true. A mask of half the width with mask indexes
/// adjusted to access the extracted halves of the original shuffle operands is
/// returned in HalfMask. HalfIdx1 and HalfIdx2 return whether the upper or
/// lower half of each input operand is accessed.
static bool
getHalfShuffleMask(ArrayRef<int> Mask, MutableArrayRef<int> HalfMask,
int &HalfIdx1, int &HalfIdx2) {
assert((Mask.size() == HalfMask.size() * 2) &&
"Expected input mask to be twice as long as output");
// Exactly one half of the result must be undef to allow narrowing.
bool UndefLower = isUndefLowerHalf(Mask);
bool UndefUpper = isUndefUpperHalf(Mask);
if (UndefLower == UndefUpper)
return false;
unsigned HalfNumElts = HalfMask.size();
unsigned MaskIndexOffset = UndefLower ? HalfNumElts : 0;
HalfIdx1 = -1;
HalfIdx2 = -1;
for (unsigned i = 0; i != HalfNumElts; ++i) {
int M = Mask[i + MaskIndexOffset];
if (M < 0) {
HalfMask[i] = M;
continue;
}
// Determine which of the 4 half vectors this element is from.
// i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2.
int HalfIdx = M / HalfNumElts;
// Determine the element index into its half vector source.
int HalfElt = M % HalfNumElts;
// We can shuffle with up to 2 half vectors, set the new 'half'
// shuffle mask accordingly.
if (HalfIdx1 < 0 || HalfIdx1 == HalfIdx) {
HalfMask[i] = HalfElt;
HalfIdx1 = HalfIdx;
continue;
}
if (HalfIdx2 < 0 || HalfIdx2 == HalfIdx) {
HalfMask[i] = HalfElt + HalfNumElts;
HalfIdx2 = HalfIdx;
continue;
}
// Too many half vectors referenced.
return false;
}
return true;
}
/// Given the output values from getHalfShuffleMask(), create a half width
/// shuffle of extracted vectors followed by an insert back to full width.
static SDValue getShuffleHalfVectors(const SDLoc &DL, SDValue V1, SDValue V2,
ArrayRef<int> HalfMask, int HalfIdx1,
int HalfIdx2, bool UndefLower,
SelectionDAG &DAG, bool UseConcat = false) {
assert(V1.getValueType() == V2.getValueType() && "Different sized vectors?");
assert(V1.getValueType().isSimple() && "Expecting only simple types");
MVT VT = V1.getSimpleValueType();
MVT HalfVT = VT.getHalfNumVectorElementsVT();
unsigned HalfNumElts = HalfVT.getVectorNumElements();
auto getHalfVector = [&](int HalfIdx) {
if (HalfIdx < 0)
return DAG.getUNDEF(HalfVT);
SDValue V = (HalfIdx < 2 ? V1 : V2);
HalfIdx = (HalfIdx % 2) * HalfNumElts;
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V,
DAG.getIntPtrConstant(HalfIdx, DL));
};
// ins undef, (shuf (ext V1, HalfIdx1), (ext V2, HalfIdx2), HalfMask), Offset
SDValue Half1 = getHalfVector(HalfIdx1);
SDValue Half2 = getHalfVector(HalfIdx2);
SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask);
if (UseConcat) {
SDValue Op0 = V;
SDValue Op1 = DAG.getUNDEF(HalfVT);
if (UndefLower)
std::swap(Op0, Op1);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Op0, Op1);
}
unsigned Offset = UndefLower ? HalfNumElts : 0;
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V,
DAG.getIntPtrConstant(Offset, DL));
}
/// Lower shuffles where an entire half of a 256 or 512-bit vector is UNDEF.
/// This allows for fast cases such as subvector extraction/insertion
/// or shuffling smaller vector types which can lower more efficiently.
static SDValue lowerShuffleWithUndefHalf(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert((VT.is256BitVector() || VT.is512BitVector()) &&
"Expected 256-bit or 512-bit vector");
bool UndefLower = isUndefLowerHalf(Mask);
if (!UndefLower && !isUndefUpperHalf(Mask))
return SDValue();
assert((!UndefLower || !isUndefUpperHalf(Mask)) &&
"Completely undef shuffle mask should have been simplified already");
// Upper half is undef and lower half is whole upper subvector.
// e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
MVT HalfVT = VT.getHalfNumVectorElementsVT();
unsigned HalfNumElts = HalfVT.getVectorNumElements();
if (!UndefLower &&
isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) {
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
DAG.getIntPtrConstant(HalfNumElts, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
DAG.getIntPtrConstant(0, DL));
}
// Lower half is undef and upper half is whole lower subvector.
// e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
if (UndefLower &&
isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) {
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
DAG.getIntPtrConstant(HalfNumElts, DL));
}
int HalfIdx1, HalfIdx2;
SmallVector<int, 8> HalfMask(HalfNumElts);
if (!getHalfShuffleMask(Mask, HalfMask, HalfIdx1, HalfIdx2))
return SDValue();
assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length");
// Only shuffle the halves of the inputs when useful.
unsigned NumLowerHalves =
(HalfIdx1 == 0 || HalfIdx1 == 2) + (HalfIdx2 == 0 || HalfIdx2 == 2);
unsigned NumUpperHalves =
(HalfIdx1 == 1 || HalfIdx1 == 3) + (HalfIdx2 == 1 || HalfIdx2 == 3);
assert(NumLowerHalves + NumUpperHalves <= 2 && "Only 1 or 2 halves allowed");
// Determine the larger pattern of undef/halves, then decide if it's worth
// splitting the shuffle based on subtarget capabilities and types.
unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
if (!UndefLower) {
// XXXXuuuu: no insert is needed.
// Always extract lowers when setting lower - these are all free subreg ops.
if (NumUpperHalves == 0)
return getShuffleHalfVectors(DL, V1, V2, HalfMask, HalfIdx1, HalfIdx2,
UndefLower, DAG);
if (NumUpperHalves == 1) {
// AVX2 has efficient 32/64-bit element cross-lane shuffles.
if (Subtarget.hasAVX2()) {
// extract128 + vunpckhps/vshufps, is better than vblend + vpermps.
if (EltWidth == 32 && NumLowerHalves && HalfVT.is128BitVector() &&
!is128BitUnpackShuffleMask(HalfMask) &&
(!isSingleSHUFPSMask(HalfMask) ||
Subtarget.hasFastVariableShuffle()))
return SDValue();
// If this is a unary shuffle (assume that the 2nd operand is
// canonicalized to undef), then we can use vpermpd. Otherwise, we
// are better off extracting the upper half of 1 operand and using a
// narrow shuffle.
if (EltWidth == 64 && V2.isUndef())
return SDValue();
}
// AVX512 has efficient cross-lane shuffles for all legal 512-bit types.
if (Subtarget.hasAVX512() && VT.is512BitVector())
return SDValue();
// Extract + narrow shuffle is better than the wide alternative.
return getShuffleHalfVectors(DL, V1, V2, HalfMask, HalfIdx1, HalfIdx2,
UndefLower, DAG);
}
// Don't extract both uppers, instead shuffle and then extract.
assert(NumUpperHalves == 2 && "Half vector count went wrong");
return SDValue();
}
// UndefLower - uuuuXXXX: an insert to high half is required if we split this.
if (NumUpperHalves == 0) {
// AVX2 has efficient 64-bit element cross-lane shuffles.
// TODO: Refine to account for unary shuffle, splat, and other masks?
if (Subtarget.hasAVX2() && EltWidth == 64)
return SDValue();
// AVX512 has efficient cross-lane shuffles for all legal 512-bit types.
if (Subtarget.hasAVX512() && VT.is512BitVector())
return SDValue();
// Narrow shuffle + insert is better than the wide alternative.
return getShuffleHalfVectors(DL, V1, V2, HalfMask, HalfIdx1, HalfIdx2,
UndefLower, DAG);
}
// NumUpperHalves != 0: don't bother with extract, shuffle, and then insert.
return SDValue();
}
/// Test whether the specified input (0 or 1) is in-place blended by the
/// given mask.
///
/// This returns true if the elements from a particular input are already in the
/// slot required by the given mask and require no permutation.
static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
int Size = Mask.size();
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
return false;
return true;
}
/// Handle case where shuffle sources are coming from the same 128-bit lane and
/// every lane can be represented as the same repeating mask - allowing us to
/// shuffle the sources with the repeating shuffle and then permute the result
/// to the destination lanes.
static SDValue lowerShuffleAsRepeatedMaskAndLanePermute(
const SDLoc &DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
int NumElts = VT.getVectorNumElements();
int NumLanes = VT.getSizeInBits() / 128;
int NumLaneElts = NumElts / NumLanes;
// On AVX2 we may be able to just shuffle the lowest elements and then
// broadcast the result.
if (Subtarget.hasAVX2()) {
for (unsigned BroadcastSize : {16, 32, 64}) {
if (BroadcastSize <= VT.getScalarSizeInBits())
continue;
int NumBroadcastElts = BroadcastSize / VT.getScalarSizeInBits();
// Attempt to match a repeating pattern every NumBroadcastElts,
// accounting for UNDEFs but only references the lowest 128-bit
// lane of the inputs.
auto FindRepeatingBroadcastMask = [&](SmallVectorImpl<int> &RepeatMask) {
for (int i = 0; i != NumElts; i += NumBroadcastElts)
for (int j = 0; j != NumBroadcastElts; ++j) {
int M = Mask[i + j];
if (M < 0)
continue;
int &R = RepeatMask[j];
if (0 != ((M % NumElts) / NumLaneElts))
return false;
if (0 <= R && R != M)
return false;
R = M;
}
return true;
};
SmallVector<int, 8> RepeatMask((unsigned)NumElts, -1);
if (!FindRepeatingBroadcastMask(RepeatMask))
continue;
// Shuffle the (lowest) repeated elements in place for broadcast.
SDValue RepeatShuf = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatMask);
// Shuffle the actual broadcast.
SmallVector<int, 8> BroadcastMask((unsigned)NumElts, -1);
for (int i = 0; i != NumElts; i += NumBroadcastElts)
for (int j = 0; j != NumBroadcastElts; ++j)
BroadcastMask[i + j] = j;
return DAG.getVectorShuffle(VT, DL, RepeatShuf, DAG.getUNDEF(VT),
BroadcastMask);
}
}
// Bail if the shuffle mask doesn't cross 128-bit lanes.
if (!is128BitLaneCrossingShuffleMask(VT, Mask))
return SDValue();
// Bail if we already have a repeated lane shuffle mask.
SmallVector<int, 8> RepeatedShuffleMask;
if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedShuffleMask))
return SDValue();
// On AVX2 targets we can permute 256-bit vectors as 64-bit sub-lanes
// (with PERMQ/PERMPD), otherwise we can only permute whole 128-bit lanes.
int SubLaneScale = Subtarget.hasAVX2() && VT.is256BitVector() ? 2 : 1;
int NumSubLanes = NumLanes * SubLaneScale;
int NumSubLaneElts = NumLaneElts / SubLaneScale;
// Check that all the sources are coming from the same lane and see if we can
// form a repeating shuffle mask (local to each sub-lane). At the same time,
// determine the source sub-lane for each destination sub-lane.
int TopSrcSubLane = -1;
SmallVector<int, 8> Dst2SrcSubLanes((unsigned)NumSubLanes, -1);
SmallVector<int, 8> RepeatedSubLaneMasks[2] = {
SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef),
SmallVector<int, 8>((unsigned)NumSubLaneElts, SM_SentinelUndef)};
for (int DstSubLane = 0; DstSubLane != NumSubLanes; ++DstSubLane) {
// Extract the sub-lane mask, check that it all comes from the same lane
// and normalize the mask entries to come from the first lane.
int SrcLane = -1;
SmallVector<int, 8> SubLaneMask((unsigned)NumSubLaneElts, -1);
for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
int M = Mask[(DstSubLane * NumSubLaneElts) + Elt];
if (M < 0)
continue;
int Lane = (M % NumElts) / NumLaneElts;
if ((0 <= SrcLane) && (SrcLane != Lane))
return SDValue();
SrcLane = Lane;
int LocalM = (M % NumLaneElts) + (M < NumElts ? 0 : NumElts);
SubLaneMask[Elt] = LocalM;
}
// Whole sub-lane is UNDEF.
if (SrcLane < 0)
continue;
// Attempt to match against the candidate repeated sub-lane masks.
for (int SubLane = 0; SubLane != SubLaneScale; ++SubLane) {
auto MatchMasks = [NumSubLaneElts](ArrayRef<int> M1, ArrayRef<int> M2) {
for (int i = 0; i != NumSubLaneElts; ++i) {
if (M1[i] < 0 || M2[i] < 0)
continue;
if (M1[i] != M2[i])
return false;
}
return true;
};
auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane];
if (!MatchMasks(SubLaneMask, RepeatedSubLaneMask))
continue;
// Merge the sub-lane mask into the matching repeated sub-lane mask.
for (int i = 0; i != NumSubLaneElts; ++i) {
int M = SubLaneMask[i];
if (M < 0)
continue;
assert((RepeatedSubLaneMask[i] < 0 || RepeatedSubLaneMask[i] == M) &&
"Unexpected mask element");
RepeatedSubLaneMask[i] = M;
}
// Track the top most source sub-lane - by setting the remaining to UNDEF
// we can greatly simplify shuffle matching.
int SrcSubLane = (SrcLane * SubLaneScale) + SubLane;
TopSrcSubLane = std::max(TopSrcSubLane, SrcSubLane);
Dst2SrcSubLanes[DstSubLane] = SrcSubLane;
break;
}
// Bail if we failed to find a matching repeated sub-lane mask.
if (Dst2SrcSubLanes[DstSubLane] < 0)
return SDValue();
}
assert(0 <= TopSrcSubLane && TopSrcSubLane < NumSubLanes &&
"Unexpected source lane");
// Create a repeating shuffle mask for the entire vector.
SmallVector<int, 8> RepeatedMask((unsigned)NumElts, -1);
for (int SubLane = 0; SubLane <= TopSrcSubLane; ++SubLane) {
int Lane = SubLane / SubLaneScale;
auto &RepeatedSubLaneMask = RepeatedSubLaneMasks[SubLane % SubLaneScale];
for (int Elt = 0; Elt != NumSubLaneElts; ++Elt) {
int M = RepeatedSubLaneMask[Elt];
if (M < 0)
continue;
int Idx = (SubLane * NumSubLaneElts) + Elt;
RepeatedMask[Idx] = M + (Lane * NumLaneElts);
}
}
SDValue RepeatedShuffle = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatedMask);
// Shuffle each source sub-lane to its destination.
SmallVector<int, 8> SubLaneMask((unsigned)NumElts, -1);
for (int i = 0; i != NumElts; i += NumSubLaneElts) {
int SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts];
if (SrcSubLane < 0)
continue;
for (int j = 0; j != NumSubLaneElts; ++j)
SubLaneMask[i + j] = j + (SrcSubLane * NumSubLaneElts);
}
return DAG.getVectorShuffle(VT, DL, RepeatedShuffle, DAG.getUNDEF(VT),
SubLaneMask);
}
static bool matchShuffleWithSHUFPD(MVT VT, SDValue &V1, SDValue &V2,
bool &ForceV1Zero, bool &ForceV2Zero,
unsigned &ShuffleImm, ArrayRef<int> Mask,
const APInt &Zeroable) {
int NumElts = VT.getVectorNumElements();
assert(VT.getScalarSizeInBits() == 64 &&
(NumElts == 2 || NumElts == 4 || NumElts == 8) &&
"Unexpected data type for VSHUFPD");
assert(isUndefOrZeroOrInRange(Mask, 0, 2 * NumElts) &&
"Illegal shuffle mask");
bool ZeroLane[2] = { true, true };
for (int i = 0; i < NumElts; ++i)
ZeroLane[i & 1] &= Zeroable[i];
// Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, ..
// Mask for V4F64; 0/1, 4/5, 2/3, 6/7..
ShuffleImm = 0;
bool ShufpdMask = true;
bool CommutableMask = true;
for (int i = 0; i < NumElts; ++i) {
if (Mask[i] == SM_SentinelUndef || ZeroLane[i & 1])
continue;
if (Mask[i] < 0)
return false;
int Val = (i & 6) + NumElts * (i & 1);
int CommutVal = (i & 0xe) + NumElts * ((i & 1) ^ 1);
if (Mask[i] < Val || Mask[i] > Val + 1)
ShufpdMask = false;
if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1)
CommutableMask = false;
ShuffleImm |= (Mask[i] % 2) << i;
}
if (!ShufpdMask && !CommutableMask)
return false;
if (!ShufpdMask && CommutableMask)
std::swap(V1, V2);
ForceV1Zero = ZeroLane[0];
ForceV2Zero = ZeroLane[1];
return true;
}
static SDValue lowerShuffleWithSHUFPD(const SDLoc &DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert((VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v8f64) &&
"Unexpected data type for VSHUFPD");
unsigned Immediate = 0;
bool ForceV1Zero = false, ForceV2Zero = false;
if (!matchShuffleWithSHUFPD(VT, V1, V2, ForceV1Zero, ForceV2Zero, Immediate,
Mask, Zeroable))
return SDValue();
// Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
if (ForceV1Zero)
V1 = getZeroVector(VT, Subtarget, DAG, DL);
if (ForceV2Zero)
V2 = getZeroVector(VT, Subtarget, DAG, DL);
return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
DAG.getTargetConstant(Immediate, DL, MVT::i8));
}
// Look for {0, 8, 16, 24, 32, 40, 48, 56 } in the first 8 elements. Followed
// by zeroable elements in the remaining 24 elements. Turn this into two
// vmovqb instructions shuffled together.
static SDValue lowerShuffleAsVTRUNCAndUnpack(const SDLoc &DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
const APInt &Zeroable,
SelectionDAG &DAG) {
assert(VT == MVT::v32i8 && "Unexpected type!");
// The first 8 indices should be every 8th element.
if (!isSequentialOrUndefInRange(Mask, 0, 8, 0, 8))
return SDValue();
// Remaining elements need to be zeroable.
if (Zeroable.countLeadingOnes() < (Mask.size() - 8))
return SDValue();
V1 = DAG.getBitcast(MVT::v4i64, V1);
V2 = DAG.getBitcast(MVT::v4i64, V2);
V1 = DAG.getNode(X86ISD::VTRUNC, DL, MVT::v16i8, V1);
V2 = DAG.getNode(X86ISD::VTRUNC, DL, MVT::v16i8, V2);
// The VTRUNCs will put 0s in the upper 12 bytes. Use them to put zeroes in
// the upper bits of the result using an unpckldq.
SDValue Unpack = DAG.getVectorShuffle(MVT::v16i8, DL, V1, V2,
{ 0, 1, 2, 3, 16, 17, 18, 19,
4, 5, 6, 7, 20, 21, 22, 23 });
// Insert the unpckldq into a zero vector to widen to v32i8.
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v32i8,
DAG.getConstant(0, DL, MVT::v32i8), Unpack,
DAG.getIntPtrConstant(0, DL));
}
/// Handle lowering of 4-lane 64-bit floating point shuffles.
///
/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
/// isn't available.
static SDValue lowerV4F64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
if (SDValue V = lowerV2X128Shuffle(DL, MVT::v4f64, V1, V2, Mask, Zeroable,
Subtarget, DAG))
return V;
if (V2.isUndef()) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v4f64, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// Use low duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
// Non-half-crossing single input shuffles can be lowered with an
// interleaved permutation.
unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
DAG.getTargetConstant(VPERMILPMask, DL, MVT::i8));
}
// With AVX2 we have direct support for this permutation.
if (Subtarget.hasAVX2())
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return V;
// Try to permute the lanes and then use a per-lane permute.
if (SDValue V = lowerShuffleAsLanePermuteAndPermute(DL, MVT::v4f64, V1, V2,
Mask, DAG, Subtarget))
return V;
// Otherwise, fall back.
return lowerShuffleAsLanePermuteAndShuffle(DL, MVT::v4f64, V1, V2, Mask,
DAG, Subtarget);
}
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG))
return V;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Check if the blend happens to exactly fit that of SHUFPD.
if (SDValue Op = lowerShuffleWithSHUFPD(DL, MVT::v4f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Op;
// If we have lane crossing shuffles AND they don't all come from the lower
// lane elements, lower to SHUFPD(VPERM2F128(V1, V2), VPERM2F128(V1, V2)).
// TODO: Handle BUILD_VECTOR sources which getVectorShuffle currently
// canonicalize to a blend of splat which isn't necessary for this combine.
if (is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask) &&
!all_of(Mask, [](int M) { return M < 2 || (4 <= M && M < 6); }) &&
(V1.getOpcode() != ISD::BUILD_VECTOR) &&
(V2.getOpcode() != ISD::BUILD_VECTOR))
if (SDValue Op = lowerShuffleAsLanePermuteAndSHUFP(DL, MVT::v4f64, V1, V2,
Mask, DAG))
return Op;
// If we have one input in place, then we can permute the other input and
// blend the result.
if (isShuffleMaskInputInPlace(0, Mask) || isShuffleMaskInputInPlace(1, Mask))
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, Mask,
Subtarget, DAG);
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return V;
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle. However, if we have AVX2 and either inputs are already in place,
// we will be able to shuffle even across lanes the other input in a single
// instruction so skip this pattern.
if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
isShuffleMaskInputInPlace(1, Mask))))
if (SDValue V = lowerShuffleAsLanePermuteAndRepeatedMask(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return V;
// If we have VLX support, we can use VEXPAND.
if (Subtarget.hasVLX())
if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v4f64, Zeroable, Mask, V1, V2,
DAG, Subtarget))
return V;
// If we have AVX2 then we always want to lower with a blend because an v4 we
// can fully permute the elements.
if (Subtarget.hasAVX2())
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2, Mask,
Subtarget, DAG);
// Otherwise fall back on generic lowering.
return lowerShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask,
Subtarget, DAG);
}
/// Handle lowering of 4-lane 64-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v4i64 shuffling..
static SDValue lowerV4I64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v4i64 with AVX2!");
if (SDValue V = lowerV2X128Shuffle(DL, MVT::v4i64, V1, V2, Mask, Zeroable,
Subtarget, DAG))
return V;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v4i64, V1, V2, Mask,
Subtarget, DAG))
return Broadcast;
if (V2.isUndef()) {
// When the shuffle is mirrored between the 128-bit lanes of the unit, we
// can use lower latency instructions that will operate on both lanes.
SmallVector<int, 2> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
SmallVector<int, 4> PSHUFDMask;
scaleShuffleMask<int>(2, RepeatedMask, PSHUFDMask);
return DAG.getBitcast(
MVT::v4i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
DAG.getBitcast(MVT::v8i32, V1),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
// AVX2 provides a direct instruction for permuting a single input across
// lanes.
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// If we have VLX support, we can use VALIGN or VEXPAND.
if (Subtarget.hasVLX()) {
if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v4i64, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v4i64, Zeroable, Mask, V1, V2,
DAG, Subtarget))
return V;
}
// Try to use PALIGNR.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v4i64, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG))
return V;
// If we have one input in place, then we can permute the other input and
// blend the result.
if (isShuffleMaskInputInPlace(0, Mask) || isShuffleMaskInputInPlace(1, Mask))
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, Mask,
Subtarget, DAG);
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
return V;
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle. However, if we have AVX2 and either inputs are already in place,
// we will be able to shuffle even across lanes the other input in a single
// instruction so skip this pattern.
if (!isShuffleMaskInputInPlace(0, Mask) &&
!isShuffleMaskInputInPlace(1, Mask))
if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic blend lowering.
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2, Mask,
Subtarget, DAG);
}
/// Handle lowering of 8-lane 32-bit floating point shuffles.
///
/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
/// isn't available.
static SDValue lowerV8F32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v8f32, V1, V2, Mask,
Subtarget, DAG))
return Broadcast;
// If the shuffle mask is repeated in each 128-bit lane, we have many more
// options to efficiently lower the shuffle.
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
assert(RepeatedMask.size() == 4 &&
"Repeated masks must be half the mask width!");
// Use even/odd duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
if (V2.isUndef())
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG))
return V;
// Otherwise, fall back to a SHUFPS sequence. Here it is important that we
// have already handled any direct blends.
return lowerShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
}
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
return V;
// If we have a single input shuffle with different shuffle patterns in the
// two 128-bit lanes use the variable mask to VPERMILPS.
if (V2.isUndef()) {
SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, V1, VPermMask);
if (Subtarget.hasAVX2())
return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32, VPermMask, V1);
// Otherwise, fall back.
return lowerShuffleAsLanePermuteAndShuffle(DL, MVT::v8f32, V1, V2, Mask,
DAG, Subtarget);
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
return Result;
// If we have VLX support, we can use VEXPAND.
if (Subtarget.hasVLX())
if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v8f32, Zeroable, Mask, V1, V2,
DAG, Subtarget))
return V;
// For non-AVX512 if the Mask is of 16bit elements in lane then try to split
// since after split we get a more efficient code using vpunpcklwd and
// vpunpckhwd instrs than vblend.
if (!Subtarget.hasAVX512() && isUnpackWdShuffleMask(Mask, MVT::v8f32))
if (SDValue V = lowerShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask,
Subtarget, DAG))
return V;
// If we have AVX2 then we always want to lower with a blend because at v8 we
// can fully permute the elements.
if (Subtarget.hasAVX2())
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2, Mask,
Subtarget, DAG);
// Otherwise fall back on generic lowering.
return lowerShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask,
Subtarget, DAG);
}
/// Handle lowering of 8-lane 32-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v8i32 shuffling..
static SDValue lowerV8I32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v8i32 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return ZExt;
// For non-AVX512 if the Mask is of 16bit elements in lane then try to split
// since after split we get a more efficient code than vblend by using
// vpunpcklwd and vpunpckhwd instrs.
if (isUnpackWdShuffleMask(Mask, MVT::v8i32) && !V2.isUndef() &&
!Subtarget.hasAVX512())
if (SDValue V = lowerShuffleAsSplitOrBlend(DL, MVT::v8i32, V1, V2, Mask,
Subtarget, DAG))
return V;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v8i32, V1, V2, Mask,
Subtarget, DAG))
return Broadcast;
// If the shuffle mask is repeated in each 128-bit lane we can use more
// efficient instructions that mirror the shuffles across the two 128-bit
// lanes.
SmallVector<int, 4> RepeatedMask;
bool Is128BitLaneRepeatedShuffle =
is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask);
if (Is128BitLaneRepeatedShuffle) {
assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
if (V2.isUndef())
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG))
return V;
}
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// If we have VLX support, we can use VALIGN or EXPAND.
if (Subtarget.hasVLX()) {
if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v8i32, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v8i32, Zeroable, Mask, V1, V2,
DAG, Subtarget))
return V;
}
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v8i32, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
return V;
// If the shuffle patterns aren't repeated but it is a single input, directly
// generate a cross-lane VPERMD instruction.
if (V2.isUndef()) {
SDValue VPermMask = getConstVector(Mask, MVT::v8i32, DAG, DL, true);
return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8i32, VPermMask, V1);
}
// Assume that a single SHUFPS is faster than an alternative sequence of
// multiple instructions (even if the CPU has a domain penalty).
// If some CPU is harmed by the domain switch, we can fix it in a later pass.
if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
SDValue CastV1 = DAG.getBitcast(MVT::v8f32, V1);
SDValue CastV2 = DAG.getBitcast(MVT::v8f32, V2);
SDValue ShufPS = lowerShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask,
CastV1, CastV2, DAG);
return DAG.getBitcast(MVT::v8i32, ShufPS);
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic blend lowering.
return lowerShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2, Mask,
Subtarget, DAG);
}
/// Handle lowering of 16-lane 16-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v16i16 shuffling..
static SDValue lowerV16I16Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v16i16 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(
DL, MVT::v16i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v16i16, V1, V2, Mask,
Subtarget, DAG))
return Broadcast;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithPACK(DL, MVT::v16i16, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v16i16, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
return V;
if (V2.isUndef()) {
// There are no generalized cross-lane shuffle operations available on i16
// element types.
if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask)) {
if (SDValue V = lowerShuffleAsLanePermuteAndPermute(
DL, MVT::v16i16, V1, V2, Mask, DAG, Subtarget))
return V;
return lowerShuffleAsLanePermuteAndShuffle(DL, MVT::v16i16, V1, V2, Mask,
DAG, Subtarget);
}
SmallVector<int, 8> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
// As this is a single-input shuffle, the repeated mask should be
// a strictly valid v8i16 mask that we can pass through to the v8i16
// lowering to handle even the v16 case.
return lowerV8I16GeneralSingleInputShuffle(
DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
}
}
if (SDValue PSHUFB = lowerShuffleWithPSHUFB(DL, MVT::v16i16, Mask, V1, V2,
Zeroable, Subtarget, DAG))
return PSHUFB;
// AVX512BWVL can lower to VPERMW.
if (Subtarget.hasBWI() && Subtarget.hasVLX())
return lowerShuffleWithPERMV(DL, MVT::v16i16, Mask, V1, V2, DAG);
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
return Result;
// Try to permute the lanes and then use a per-lane permute.
if (SDValue V = lowerShuffleAsLanePermuteAndPermute(
DL, MVT::v16i16, V1, V2, Mask, DAG, Subtarget))
return V;
// Otherwise fall back on generic lowering.
return lowerShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask,
Subtarget, DAG);
}
/// Handle lowering of 32-lane 8-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v32i8 shuffling..
static SDValue lowerV32I8Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v32i8 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return ZExt;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, MVT::v32i8, V1, V2, Mask,
Subtarget, DAG))
return Broadcast;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithPACK(DL, MVT::v32i8, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v32i8, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
return V;
// There are no generalized cross-lane shuffle operations available on i8
// element types.
if (V2.isUndef() && is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask)) {
if (SDValue V = lowerShuffleAsLanePermuteAndPermute(
DL, MVT::v32i8, V1, V2, Mask, DAG, Subtarget))
return V;
return lowerShuffleAsLanePermuteAndShuffle(DL, MVT::v32i8, V1, V2, Mask,
DAG, Subtarget);
}
if (SDValue PSHUFB = lowerShuffleWithPSHUFB(DL, MVT::v32i8, Mask, V1, V2,
Zeroable, Subtarget, DAG))
return PSHUFB;
// AVX512VBMIVL can lower to VPERMB.
if (Subtarget.hasVBMI() && Subtarget.hasVLX())
return lowerShuffleWithPERMV(DL, MVT::v32i8, Mask, V1, V2, DAG);
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
return Result;
// Try to permute the lanes and then use a per-lane permute.
if (SDValue V = lowerShuffleAsLanePermuteAndPermute(
DL, MVT::v32i8, V1, V2, Mask, DAG, Subtarget))
return V;
// Look for {0, 8, 16, 24, 32, 40, 48, 56 } in the first 8 elements. Followed
// by zeroable elements in the remaining 24 elements. Turn this into two
// vmovqb instructions shuffled together.
if (Subtarget.hasVLX())
if (SDValue V = lowerShuffleAsVTRUNCAndUnpack(DL, MVT::v32i8, V1, V2,
Mask, Zeroable, DAG))
return V;
// Otherwise fall back on generic lowering.
return lowerShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask,
Subtarget, DAG);
}
/// High-level routine to lower various 256-bit x86 vector shuffles.
///
/// This routine either breaks down the specific type of a 256-bit x86 vector
/// shuffle or splits it into two 128-bit shuffles and fuses the results back
/// together based on the available instructions.
static SDValue lower256BitShuffle(const SDLoc &DL, ArrayRef<int> Mask, MVT VT,
SDValue V1, SDValue V2, const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// If we have a single input to the zero element, insert that into V1 if we
// can do so cheaply.
int NumElts = VT.getVectorNumElements();
int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
if (NumV2Elements == 1 && Mask[0] >= NumElts)
if (SDValue Insertion = lowerShuffleAsElementInsertion(
DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Insertion;
// Handle special cases where the lower or upper half is UNDEF.
if (SDValue V =
lowerShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
return V;
// There is a really nice hard cut-over between AVX1 and AVX2 that means we
// can check for those subtargets here and avoid much of the subtarget
// querying in the per-vector-type lowering routines. With AVX1 we have
// essentially *zero* ability to manipulate a 256-bit vector with integer
// types. Since we'll use floating point types there eventually, just
// immediately cast everything to a float and operate entirely in that domain.
if (VT.isInteger() && !Subtarget.hasAVX2()) {
int ElementBits = VT.getScalarSizeInBits();
if (ElementBits < 32) {
// No floating point type available, if we can't use the bit operations
// for masking/blending then decompose into 128-bit vectors.
if (SDValue V = lowerShuffleAsBitMask(DL, VT, V1, V2, Mask, Zeroable,
Subtarget, DAG))
return V;
if (SDValue V = lowerShuffleAsBitBlend(DL, VT, V1, V2, Mask, DAG))
return V;
return splitAndLowerShuffle(DL, VT, V1, V2, Mask, DAG);
}
MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
VT.getVectorNumElements());
V1 = DAG.getBitcast(FpVT, V1);
V2 = DAG.getBitcast(FpVT, V2);
return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
}
switch (VT.SimpleTy) {
case MVT::v4f64:
return lowerV4F64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v4i64:
return lowerV4I64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v8f32:
return lowerV8F32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v8i32:
return lowerV8I32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v16i16:
return lowerV16I16Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v32i8:
return lowerV32I8Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
default:
llvm_unreachable("Not a valid 256-bit x86 vector type!");
}
}
/// Try to lower a vector shuffle as a 128-bit shuffles.
static SDValue lowerV4X128Shuffle(const SDLoc &DL, MVT VT, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(VT.getScalarSizeInBits() == 64 &&
"Unexpected element type size for 128bit shuffle.");
// To handle 256 bit vector requires VLX and most probably
// function lowerV2X128VectorShuffle() is better solution.
assert(VT.is512BitVector() && "Unexpected vector size for 512bit shuffle.");
// TODO - use Zeroable like we do for lowerV2X128VectorShuffle?
SmallVector<int, 4> WidenedMask;
if (!canWidenShuffleElements(Mask, WidenedMask))
return SDValue();
// Try to use an insert into a zero vector.
if (WidenedMask[0] == 0 && (Zeroable & 0xf0) == 0xf0 &&
(WidenedMask[1] == 1 || (Zeroable & 0x0c) == 0x0c)) {
unsigned NumElts = ((Zeroable & 0x0c) == 0x0c) ? 2 : 4;
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
getZeroVector(VT, Subtarget, DAG, DL), LoV,
DAG.getIntPtrConstant(0, DL));
}
// Check for patterns which can be matched with a single insert of a 256-bit
// subvector.
bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask,
{0, 1, 2, 3, 0, 1, 2, 3});
if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask,
{0, 1, 2, 3, 8, 9, 10, 11})) {
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 4);
SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
OnlyUsesV1 ? V1 : V2,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, V1, SubVec,
DAG.getIntPtrConstant(4, DL));
}
assert(WidenedMask.size() == 4);
// See if this is an insertion of the lower 128-bits of V2 into V1.
bool IsInsert = true;
int V2Index = -1;
for (int i = 0; i < 4; ++i) {
assert(WidenedMask[i] >= -1);
if (WidenedMask[i] < 0)
continue;
// Make sure all V1 subvectors are in place.
if (WidenedMask[i] < 4) {
if (WidenedMask[i] != i) {
IsInsert = false;
break;
}
} else {
// Make sure we only have a single V2 index and its the lowest 128-bits.
if (V2Index >= 0 || WidenedMask[i] != 4) {
IsInsert = false;
break;
}
V2Index = i;
}
}
if (IsInsert && V2Index >= 0) {
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(), 2);
SDValue Subvec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V2,
DAG.getIntPtrConstant(0, DL));
return insert128BitVector(V1, Subvec, V2Index * 2, DAG, DL);
}
// Try to lower to vshuf64x2/vshuf32x4.
SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)};
unsigned PermMask = 0;
// Insure elements came from the same Op.
for (int i = 0; i < 4; ++i) {
assert(WidenedMask[i] >= -1);
if (WidenedMask[i] < 0)
continue;
SDValue Op = WidenedMask[i] >= 4 ? V2 : V1;
unsigned OpIndex = i / 2;
if (Ops[OpIndex].isUndef())
Ops[OpIndex] = Op;
else if (Ops[OpIndex] != Op)
return SDValue();
// Convert the 128-bit shuffle mask selection values into 128-bit selection
// bits defined by a vshuf64x2 instruction's immediate control byte.
PermMask |= (WidenedMask[i] % 4) << (i * 2);
}
return DAG.getNode(X86ISD::SHUF128, DL, VT, Ops[0], Ops[1],
DAG.getTargetConstant(PermMask, DL, MVT::i8));
}
/// Handle lowering of 8-lane 64-bit floating point shuffles.
static SDValue lowerV8F64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (V2.isUndef()) {
// Use low duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v8f64, V1);
if (!is128BitLaneCrossingShuffleMask(MVT::v8f64, Mask)) {
// Non-half-crossing single input shuffles can be lowered with an
// interleaved permutation.
unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3) |
((Mask[4] == 5) << 4) | ((Mask[5] == 5) << 5) |
((Mask[6] == 7) << 6) | ((Mask[7] == 7) << 7);
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f64, V1,
DAG.getTargetConstant(VPERMILPMask, DL, MVT::i8));
}
SmallVector<int, 4> RepeatedMask;
if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask))
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8f64, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
}
if (SDValue Shuf128 = lowerV4X128Shuffle(DL, MVT::v8f64, Mask, Zeroable, V1,
V2, Subtarget, DAG))
return Shuf128;
if (SDValue Unpck = lowerShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG))
return Unpck;
// Check if the blend happens to exactly fit that of SHUFPD.
if (SDValue Op = lowerShuffleWithSHUFPD(DL, MVT::v8f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Op;
if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v8f64, Zeroable, Mask, V1, V2,
DAG, Subtarget))
return V;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8f64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
return lowerShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG);
}
/// Handle lowering of 16-lane 32-bit floating point shuffles.
static SDValue lowerV16F32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
// If the shuffle mask is repeated in each 128-bit lane, we have many more
// options to efficiently lower the shuffle.
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v16f32, Mask, RepeatedMask)) {
assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
// Use even/odd duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, RepeatedMask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v16f32, V1);
if (isShuffleEquivalent(V1, V2, RepeatedMask, {1, 1, 3, 3}))
return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v16f32, V1);
if (V2.isUndef())
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v16f32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG))
return V;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v16f32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Otherwise, fall back to a SHUFPS sequence.
return lowerShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask, V1, V2, DAG);
}
// If we have a single input shuffle with different shuffle patterns in the
// 128-bit lanes and don't lane cross, use variable mask VPERMILPS.
if (V2.isUndef() &&
!is128BitLaneCrossingShuffleMask(MVT::v16f32, Mask)) {
SDValue VPermMask = getConstVector(Mask, MVT::v16i32, DAG, DL, true);
return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v16f32, V1, VPermMask);
}
// If we have AVX512F support, we can use VEXPAND.
if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v16f32, Zeroable, Mask,
V1, V2, DAG, Subtarget))
return V;
return lowerShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG);
}
/// Handle lowering of 8-lane 64-bit integer shuffles.
static SDValue lowerV8I64Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (V2.isUndef()) {
// When the shuffle is mirrored between the 128-bit lanes of the unit, we
// can use lower latency instructions that will operate on all four
// 128-bit lanes.
SmallVector<int, 2> Repeated128Mask;
if (is128BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated128Mask)) {
SmallVector<int, 4> PSHUFDMask;
scaleShuffleMask<int>(2, Repeated128Mask, PSHUFDMask);
return DAG.getBitcast(
MVT::v8i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32,
DAG.getBitcast(MVT::v16i32, V1),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
SmallVector<int, 4> Repeated256Mask;
if (is256BitLaneRepeatedShuffleMask(MVT::v8i64, Mask, Repeated256Mask))
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v8i64, V1,
getV4X86ShuffleImm8ForMask(Repeated256Mask, DL, DAG));
}
if (SDValue Shuf128 = lowerV4X128Shuffle(DL, MVT::v8i64, Mask, Zeroable, V1,
V2, Subtarget, DAG))
return Shuf128;
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v8i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use VALIGN.
if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v8i64, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
// Try to use PALIGNR.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v8i64, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
if (SDValue Unpck = lowerShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG))
return Unpck;
// If we have AVX512F support, we can use VEXPAND.
if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v8i64, Zeroable, Mask, V1, V2,
DAG, Subtarget))
return V;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v8i64, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
return lowerShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG);
}
/// Handle lowering of 16-lane 32-bit integer shuffles.
static SDValue lowerV16I32Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(
DL, MVT::v16i32, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// If the shuffle mask is repeated in each 128-bit lane we can use more
// efficient instructions that mirror the shuffles across the four 128-bit
// lanes.
SmallVector<int, 4> RepeatedMask;
bool Is128BitLaneRepeatedShuffle =
is128BitLaneRepeatedShuffleMask(MVT::v16i32, Mask, RepeatedMask);
if (Is128BitLaneRepeatedShuffle) {
assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
if (V2.isUndef())
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v16i32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG))
return V;
}
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v16i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use VALIGN.
if (SDValue Rotate = lowerShuffleAsRotate(DL, MVT::v16i32, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
// Try to use byte rotation instructions.
if (Subtarget.hasBWI())
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v16i32, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
// Assume that a single SHUFPS is faster than using a permv shuffle.
// If some CPU is harmed by the domain switch, we can fix it in a later pass.
if (Is128BitLaneRepeatedShuffle && isSingleSHUFPSMask(RepeatedMask)) {
SDValue CastV1 = DAG.getBitcast(MVT::v16f32, V1);
SDValue CastV2 = DAG.getBitcast(MVT::v16f32, V2);
SDValue ShufPS = lowerShuffleWithSHUFPS(DL, MVT::v16f32, RepeatedMask,
CastV1, CastV2, DAG);
return DAG.getBitcast(MVT::v16i32, ShufPS);
}
// If we have AVX512F support, we can use VEXPAND.
if (SDValue V = lowerShuffleToEXPAND(DL, MVT::v16i32, Zeroable, Mask, V1, V2,
DAG, Subtarget))
return V;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v16i32, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
return lowerShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG);
}
/// Handle lowering of 32-lane 16-bit integer shuffles.
static SDValue lowerV32I16Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
assert(Subtarget.hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(
DL, MVT::v32i16, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v32i16, Mask, V1, V2, DAG))
return V;
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v32i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v32i16, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
if (V2.isUndef()) {
SmallVector<int, 8> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v32i16, Mask, RepeatedMask)) {
// As this is a single-input shuffle, the repeated mask should be
// a strictly valid v8i16 mask that we can pass through to the v8i16
// lowering to handle even the v32 case.
return lowerV8I16GeneralSingleInputShuffle(
DL, MVT::v32i16, V1, RepeatedMask, Subtarget, DAG);
}
}
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v32i16, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
if (SDValue PSHUFB = lowerShuffleWithPSHUFB(DL, MVT::v32i16, Mask, V1, V2,
Zeroable, Subtarget, DAG))
return PSHUFB;
return lowerShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG);
}
/// Handle lowering of 64-lane 8-bit integer shuffles.
static SDValue lowerV64I8Shuffle(const SDLoc &DL, ArrayRef<int> Mask,
const APInt &Zeroable, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
assert(Subtarget.hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerShuffleAsZeroOrAnyExtend(
DL, MVT::v64i8, V1, V2, Mask, Zeroable, Subtarget, DAG))
return ZExt;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithUNPCK(DL, MVT::v64i8, Mask, V1, V2, DAG))
return V;
// Use dedicated pack instructions for masks that match their pattern.
if (SDValue V = lowerShuffleWithPACK(DL, MVT::v64i8, Mask, V1, V2, DAG,
Subtarget))
return V;
// Try to use shift instructions.
if (SDValue Shift = lowerShuffleAsShift(DL, MVT::v64i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerShuffleAsByteRotate(DL, MVT::v64i8, V1, V2, Mask,
Subtarget, DAG))
return Rotate;
if (SDValue PSHUFB = lowerShuffleWithPSHUFB(DL, MVT::v64i8, Mask, V1, V2,
Zeroable, Subtarget, DAG))
return PSHUFB;
// VBMI can use VPERMV/VPERMV3 byte shuffles.
if (Subtarget.hasVBMI())
return lowerShuffleWithPERMV(DL, MVT::v64i8, Mask, V1, V2, DAG);
// Try to create an in-lane repeating shuffle mask and then shuffle the
// results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
return V;
if (SDValue Blend = lowerShuffleAsBlend(DL, MVT::v64i8, V1, V2, Mask,
Zeroable, Subtarget, DAG))
return Blend;
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (!V2.isUndef())
if (SDValue Result = lowerShuffleAsLanePermuteAndRepeatedMask(
DL, MVT::v64i8, V1, V2, Mask, Subtarget, DAG))
return Result;
// FIXME: Implement direct support for this type!
return splitAndLowerShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
}
/// High-level routine to lower various 512-bit x86 vector shuffles.
///
/// This routine either breaks down the specific type of a 512-bit x86 vector
/// shuffle or splits it into two 256-bit shuffles and fuses the results back
/// together based on the available instructions.
static SDValue lower512BitShuffle(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX512() &&
"Cannot lower 512-bit vectors w/ basic ISA!");
// If we have a single input to the zero element, insert that into V1 if we
// can do so cheaply.
int NumElts = Mask.size();
int NumV2Elements = count_if(Mask, [NumElts](int M) { return M >= NumElts; });
if (NumV2Elements == 1 && Mask[0] >= NumElts)
if (SDValue Insertion = lowerShuffleAsElementInsertion(
DL, VT, V1, V2, Mask, Zeroable, Subtarget, DAG))
return Insertion;
// Handle special cases where the lower or upper half is UNDEF.
if (SDValue V =
lowerShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
return V;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, VT, V1, V2, Mask,
Subtarget, DAG))
return Broadcast;
// Dispatch to each element type for lowering. If we don't have support for
// specific element type shuffles at 512 bits, immediately split them and
// lower them. Each lowering routine of a given type is allowed to assume that
// the requisite ISA extensions for that element type are available.
switch (VT.SimpleTy) {
case MVT::v8f64:
return lowerV8F64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v16f32:
return lowerV16F32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v8i64:
return lowerV8I64Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v16i32:
return lowerV16I32Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v32i16:
return lowerV32I16Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
case MVT::v64i8:
return lowerV64I8Shuffle(DL, Mask, Zeroable, V1, V2, Subtarget, DAG);
default:
llvm_unreachable("Not a valid 512-bit x86 vector type!");
}
}
static SDValue lower1BitShuffleAsKSHIFTR(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// Shuffle should be unary.
if (!V2.isUndef())
return SDValue();
int ShiftAmt = -1;
int NumElts = Mask.size();
for (int i = 0; i != NumElts; ++i) {
int M = Mask[i];
assert((M == SM_SentinelUndef || (0 <= M && M < NumElts)) &&
"Unexpected mask index.");
if (M < 0)
continue;
// The first non-undef element determines our shift amount.
if (ShiftAmt < 0) {
ShiftAmt = M - i;
// Need to be shifting right.
if (ShiftAmt <= 0)
return SDValue();
}
// All non-undef elements must shift by the same amount.
if (ShiftAmt != M - i)
return SDValue();
}
assert(ShiftAmt >= 0 && "All undef?");
// Great we found a shift right.
MVT WideVT = VT;
if ((!Subtarget.hasDQI() && NumElts == 8) || NumElts < 8)
WideVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideVT,
DAG.getUNDEF(WideVT), V1,
DAG.getIntPtrConstant(0, DL));
Res = DAG.getNode(X86ISD::KSHIFTR, DL, WideVT, Res,
DAG.getTargetConstant(ShiftAmt, DL, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
}
// Determine if this shuffle can be implemented with a KSHIFT instruction.
// Returns the shift amount if possible or -1 if not. This is a simplified
// version of matchShuffleAsShift.
static int match1BitShuffleAsKSHIFT(unsigned &Opcode, ArrayRef<int> Mask,
int MaskOffset, const APInt &Zeroable) {
int Size = Mask.size();
auto CheckZeros = [&](int Shift, bool Left) {
for (int j = 0; j < Shift; ++j)
if (!Zeroable[j + (Left ? 0 : (Size - Shift))])
return false;
return true;
};
auto MatchShift = [&](int Shift, bool Left) {
unsigned Pos = Left ? Shift : 0;
unsigned Low = Left ? 0 : Shift;
unsigned Len = Size - Shift;
return isSequentialOrUndefInRange(Mask, Pos, Len, Low + MaskOffset);
};
for (int Shift = 1; Shift != Size; ++Shift)
for (bool Left : {true, false})
if (CheckZeros(Shift, Left) && MatchShift(Shift, Left)) {
Opcode = Left ? X86ISD::KSHIFTL : X86ISD::KSHIFTR;
return Shift;
}
return -1;
}
// Lower vXi1 vector shuffles.
// There is no a dedicated instruction on AVX-512 that shuffles the masks.
// The only way to shuffle bits is to sign-extend the mask vector to SIMD
// vector, shuffle and then truncate it back.
static SDValue lower1BitShuffle(const SDLoc &DL, ArrayRef<int> Mask,
MVT VT, SDValue V1, SDValue V2,
const APInt &Zeroable,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX512() &&
"Cannot lower 512-bit vectors w/o basic ISA!");
int NumElts = Mask.size();
// Try to recognize shuffles that are just padding a subvector with zeros.
int SubvecElts = 0;
int Src = -1;
for (int i = 0; i != NumElts; ++i) {
if (Mask[i] >= 0) {
// Grab the source from the first valid mask. All subsequent elements need
// to use this same source.
if (Src < 0)
Src = Mask[i] / NumElts;
if (Src != (Mask[i] / NumElts) || (Mask[i] % NumElts) != i)
break;
}
++SubvecElts;
}
assert(SubvecElts != NumElts && "Identity shuffle?");
// Clip to a power 2.
SubvecElts = PowerOf2Floor(SubvecElts);
// Make sure the number of zeroable bits in the top at least covers the bits
// not covered by the subvector.
if ((int)Zeroable.countLeadingOnes() >= (NumElts - SubvecElts)) {
assert(Src >= 0 && "Expected a source!");
MVT ExtractVT = MVT::getVectorVT(MVT::i1, SubvecElts);
SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtractVT,
Src == 0 ? V1 : V2,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
DAG.getConstant(0, DL, VT),
Extract, DAG.getIntPtrConstant(0, DL));
}
// Try a simple shift right with undef elements. Later we'll try with zeros.
if (SDValue Shift = lower1BitShuffleAsKSHIFTR(DL, Mask, VT, V1, V2, Subtarget,
DAG))
return Shift;
// Try to match KSHIFTs.
unsigned Offset = 0;
for (SDValue V : { V1, V2 }) {
unsigned Opcode;
int ShiftAmt = match1BitShuffleAsKSHIFT(Opcode, Mask, Offset, Zeroable);
if (ShiftAmt >= 0) {
MVT WideVT = VT;
if ((!Subtarget.hasDQI() && NumElts == 8) || NumElts < 8)
WideVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideVT,
DAG.getUNDEF(WideVT), V,
DAG.getIntPtrConstant(0, DL));
// Widened right shifts need two shifts to ensure we shift in zeroes.
if (Opcode == X86ISD::KSHIFTR && WideVT != VT) {
int WideElts = WideVT.getVectorNumElements();
// Shift left to put the original vector in the MSBs of the new size.
Res = DAG.getNode(X86ISD::KSHIFTL, DL, WideVT, Res,
DAG.getTargetConstant(WideElts - NumElts, DL, MVT::i8));
// Increase the shift amount to account for the left shift.
ShiftAmt += WideElts - NumElts;
}
Res = DAG.getNode(Opcode, DL, WideVT, Res,
DAG.getTargetConstant(ShiftAmt, DL, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
}
Offset += NumElts; // Increment for next iteration.
}
MVT ExtVT;
switch (VT.SimpleTy) {
default:
llvm_unreachable("Expected a vector of i1 elements");
case MVT::v2i1:
ExtVT = MVT::v2i64;
break;
case MVT::v4i1:
ExtVT = MVT::v4i32;
break;
case MVT::v8i1:
// Take 512-bit type, more shuffles on KNL. If we have VLX use a 256-bit
// shuffle.
ExtVT = Subtarget.hasVLX() ? MVT::v8i32 : MVT::v8i64;
break;
case MVT::v16i1:
// Take 512-bit type, unless we are avoiding 512-bit types and have the
// 256-bit operation available.
ExtVT = Subtarget.canExtendTo512DQ() ? MVT::v16i32 : MVT::v16i16;
break;
case MVT::v32i1:
// Take 512-bit type, unless we are avoiding 512-bit types and have the
// 256-bit operation available.
assert(Subtarget.hasBWI() && "Expected AVX512BW support");
ExtVT = Subtarget.canExtendTo512BW() ? MVT::v32i16 : MVT::v32i8;
break;
case MVT::v64i1:
// Fall back to scalarization. FIXME: We can do better if the shuffle
// can be partitioned cleanly.
if (!Subtarget.useBWIRegs())
return SDValue();
ExtVT = MVT::v64i8;
break;
}
V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1);
V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2);
SDValue Shuffle = DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask);
// i1 was sign extended we can use X86ISD::CVT2MASK.
int NumElems = VT.getVectorNumElements();
if ((Subtarget.hasBWI() && (NumElems >= 32)) ||
(Subtarget.hasDQI() && (NumElems < 32)))
return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, ExtVT),
Shuffle, ISD::SETGT);
return DAG.getNode(ISD::TRUNCATE, DL, VT, Shuffle);
}
/// Helper function that returns true if the shuffle mask should be
/// commuted to improve canonicalization.
static bool canonicalizeShuffleMaskWithCommute(ArrayRef<int> Mask) {
int NumElements = Mask.size();
int NumV1Elements = 0, NumV2Elements = 0;
for (int M : Mask)
if (M < 0)
continue;
else if (M < NumElements)
++NumV1Elements;
else
++NumV2Elements;
// Commute the shuffle as needed such that more elements come from V1 than
// V2. This allows us to match the shuffle pattern strictly on how many
// elements come from V1 without handling the symmetric cases.
if (NumV2Elements > NumV1Elements)
return true;
assert(NumV1Elements > 0 && "No V1 indices");
if (NumV2Elements == 0)
return false;
// When the number of V1 and V2 elements are the same, try to minimize the
// number of uses of V2 in the low half of the vector. When that is tied,
// ensure that the sum of indices for V1 is equal to or lower than the sum
// indices for V2. When those are equal, try to ensure that the number of odd
// indices for V1 is lower than the number of odd indices for V2.
if (NumV1Elements == NumV2Elements) {
int LowV1Elements = 0, LowV2Elements = 0;
for (int M : Mask.slice(0, NumElements / 2))
if (M >= NumElements)
++LowV2Elements;
else if (M >= 0)
++LowV1Elements;
if (LowV2Elements > LowV1Elements)
return true;
if (LowV2Elements == LowV1Elements) {
int SumV1Indices = 0, SumV2Indices = 0;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] >= NumElements)
SumV2Indices += i;
else if (Mask[i] >= 0)
SumV1Indices += i;
if (SumV2Indices < SumV1Indices)
return true;
if (SumV2Indices == SumV1Indices) {
int NumV1OddIndices = 0, NumV2OddIndices = 0;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] >= NumElements)
NumV2OddIndices += i % 2;
else if (Mask[i] >= 0)
NumV1OddIndices += i % 2;
if (NumV2OddIndices < NumV1OddIndices)
return true;
}
}
}
return false;
}
/// Top-level lowering for x86 vector shuffles.
///
/// This handles decomposition, canonicalization, and lowering of all x86
/// vector shuffles. Most of the specific lowering strategies are encapsulated
/// above in helper routines. The canonicalization attempts to widen shuffles
/// to involve fewer lanes of wider elements, consolidate symmetric patterns
/// s.t. only one of the two inputs needs to be tested, etc.
static SDValue lowerVECTOR_SHUFFLE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> OrigMask = SVOp->getMask();
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
MVT VT = Op.getSimpleValueType();
int NumElements = VT.getVectorNumElements();
SDLoc DL(Op);
bool Is1BitVector = (VT.getVectorElementType() == MVT::i1);
assert((VT.getSizeInBits() != 64 || Is1BitVector) &&
"Can't lower MMX shuffles");
bool V1IsUndef = V1.isUndef();
bool V2IsUndef = V2.isUndef();
if (V1IsUndef && V2IsUndef)
return DAG.getUNDEF(VT);
// When we create a shuffle node we put the UNDEF node to second operand,
// but in some cases the first operand may be transformed to UNDEF.
// In this case we should just commute the node.
if (V1IsUndef)
return DAG.getCommutedVectorShuffle(*SVOp);
// Check for non-undef masks pointing at an undef vector and make the masks
// undef as well. This makes it easier to match the shuffle based solely on
// the mask.
if (V2IsUndef &&
any_of(OrigMask, [NumElements](int M) { return M >= NumElements; })) {
SmallVector<int, 8> NewMask(OrigMask.begin(), OrigMask.end());
for (int &M : NewMask)
if (M >= NumElements)
M = -1;
return DAG.getVectorShuffle(VT, DL, V1, V2, NewMask);
}
// Check for illegal shuffle mask element index values.
int MaskUpperLimit = OrigMask.size() * (V2IsUndef ? 1 : 2);
(void)MaskUpperLimit;
assert(llvm::all_of(OrigMask,
[&](int M) { return -1 <= M && M < MaskUpperLimit; }) &&
"Out of bounds shuffle index");
// We actually see shuffles that are entirely re-arrangements of a set of
// zero inputs. This mostly happens while decomposing complex shuffles into
// simple ones. Directly lower these as a buildvector of zeros.
APInt KnownUndef, KnownZero;
computeZeroableShuffleElements(OrigMask, V1, V2, KnownUndef, KnownZero);
APInt Zeroable = KnownUndef | KnownZero;
if (Zeroable.isAllOnesValue())
return getZeroVector(VT, Subtarget, DAG, DL);
bool V2IsZero = !V2IsUndef && ISD::isBuildVectorAllZeros(V2.getNode());
// Try to collapse shuffles into using a vector type with fewer elements but
// wider element types. We cap this to not form integers or floating point
// elements wider than 64 bits, but it might be interesting to form i128
// integers to handle flipping the low and high halves of AVX 256-bit vectors.
SmallVector<int, 16> WidenedMask;
if (VT.getScalarSizeInBits() < 64 && !Is1BitVector &&
canWidenShuffleElements(OrigMask, Zeroable, V2IsZero, WidenedMask)) {
// Shuffle mask widening should not interfere with a broadcast opportunity
// by obfuscating the operands with bitcasts.
// TODO: Avoid lowering directly from this top-level function: make this
// a query (canLowerAsBroadcast) and defer lowering to the type-based calls.
if (SDValue Broadcast = lowerShuffleAsBroadcast(DL, VT, V1, V2, OrigMask,
Subtarget, DAG))
return Broadcast;
MVT NewEltVT = VT.isFloatingPoint()
? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
: MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
int NewNumElts = NumElements / 2;
MVT NewVT = MVT::getVectorVT(NewEltVT, NewNumElts);
// Make sure that the new vector type is legal. For example, v2f64 isn't
// legal on SSE1.
if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
if (V2IsZero) {
// Modify the new Mask to take all zeros from the all-zero vector.
// Choose indices that are blend-friendly.
bool UsedZeroVector = false;
assert(find(WidenedMask, SM_SentinelZero) != WidenedMask.end() &&
"V2's non-undef elements are used?!");
for (int i = 0; i != NewNumElts; ++i)
if (WidenedMask[i] == SM_SentinelZero) {
WidenedMask[i] = i + NewNumElts;
UsedZeroVector = true;
}
// Ensure all elements of V2 are zero - isBuildVectorAllZeros permits
// some elements to be undef.
if (UsedZeroVector)
V2 = getZeroVector(NewVT, Subtarget, DAG, DL);
}
V1 = DAG.getBitcast(NewVT, V1);
V2 = DAG.getBitcast(NewVT, V2);
return DAG.getBitcast(
VT, DAG.getVectorShuffle(NewVT, DL, V1, V2, WidenedMask));
}
}
// Commute the shuffle if it will improve canonicalization.
SmallVector<int, 64> Mask(OrigMask.begin(), OrigMask.end());
if (canonicalizeShuffleMaskWithCommute(Mask)) {
ShuffleVectorSDNode::commuteMask(Mask);
std::swap(V1, V2);
}
if (SDValue V = lowerShuffleWithVPMOV(DL, Mask, VT, V1, V2, DAG, Subtarget))
return V;
// For each vector width, delegate to a specialized lowering routine.
if (VT.is128BitVector())
return lower128BitShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, DAG);
if (VT.is256BitVector())
return lower256BitShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, DAG);
if (VT.is512BitVector())
return lower512BitShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, DAG);
if (Is1BitVector)
return lower1BitShuffle(DL, Mask, VT, V1, V2, Zeroable, Subtarget, DAG);
llvm_unreachable("Unimplemented!");
}
/// Try to lower a VSELECT instruction to a vector shuffle.
static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Cond = Op.getOperand(0);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
MVT VT = Op.getSimpleValueType();
// Only non-legal VSELECTs reach this lowering, convert those into generic
// shuffles and re-use the shuffle lowering path for blends.
SmallVector<int, 32> Mask;
if (createShuffleMaskFromVSELECT(Mask, Cond))
return DAG.getVectorShuffle(VT, SDLoc(Op), LHS, RHS, Mask);
return SDValue();
}
SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond = Op.getOperand(0);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
// A vselect where all conditions and data are constants can be optimized into
// a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
if (ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()) &&
ISD::isBuildVectorOfConstantSDNodes(LHS.getNode()) &&
ISD::isBuildVectorOfConstantSDNodes(RHS.getNode()))
return SDValue();
// Try to lower this to a blend-style vector shuffle. This can handle all
// constant condition cases.
if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
return BlendOp;
// If this VSELECT has a vector if i1 as a mask, it will be directly matched
// with patterns on the mask registers on AVX-512.
MVT CondVT = Cond.getSimpleValueType();
unsigned CondEltSize = Cond.getScalarValueSizeInBits();
if (CondEltSize == 1)
return Op;
// Variable blends are only legal from SSE4.1 onward.
if (!Subtarget.hasSSE41())
return SDValue();
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
unsigned EltSize = VT.getScalarSizeInBits();
unsigned NumElts = VT.getVectorNumElements();
// If the VSELECT is on a 512-bit type, we have to convert a non-i1 condition
// into an i1 condition so that we can use the mask-based 512-bit blend
// instructions.
if (VT.getSizeInBits() == 512) {
// Build a mask by testing the condition against zero.
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
SDValue Mask = DAG.getSetCC(dl, MaskVT, Cond,
DAG.getConstant(0, dl, CondVT),
ISD::SETNE);
// Now return a new VSELECT using the mask.
return DAG.getSelect(dl, VT, Mask, LHS, RHS);
}
// SEXT/TRUNC cases where the mask doesn't match the destination size.
if (CondEltSize != EltSize) {
// If we don't have a sign splat, rely on the expansion.
if (CondEltSize != DAG.ComputeNumSignBits(Cond))
return SDValue();
MVT NewCondSVT = MVT::getIntegerVT(EltSize);
MVT NewCondVT = MVT::getVectorVT(NewCondSVT, NumElts);
Cond = DAG.getSExtOrTrunc(Cond, dl, NewCondVT);
return DAG.getNode(ISD::VSELECT, dl, VT, Cond, LHS, RHS);
}
// Only some types will be legal on some subtargets. If we can emit a legal
// VSELECT-matching blend, return Op, and but if we need to expand, return
// a null value.
switch (VT.SimpleTy) {
default:
// Most of the vector types have blends past SSE4.1.
return Op;
case MVT::v32i8:
// The byte blends for AVX vectors were introduced only in AVX2.
if (Subtarget.hasAVX2())
return Op;
return SDValue();
case MVT::v8i16:
case MVT::v16i16: {
// Bitcast everything to the vXi8 type and use a vXi8 vselect.
MVT CastVT = MVT::getVectorVT(MVT::i8, NumElts * 2);
Cond = DAG.getBitcast(CastVT, Cond);
LHS = DAG.getBitcast(CastVT, LHS);
RHS = DAG.getBitcast(CastVT, RHS);
SDValue Select = DAG.getNode(ISD::VSELECT, dl, CastVT, Cond, LHS, RHS);
return DAG.getBitcast(VT, Select);
}
}
}
static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
return SDValue();
if (VT.getSizeInBits() == 8) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract);
}
if (VT == MVT::f32) {
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
// the result back to FR32 register. It's only worth matching if the
// result has a single use which is a store or a bitcast to i32. And in
// the case of a store, it's not worth it if the index is a constant 0,
// because a MOVSSmr can be used instead, which is smaller and faster.
if (!Op.hasOneUse())
return SDValue();
SDNode *User = *Op.getNode()->use_begin();
if ((User->getOpcode() != ISD::STORE ||
isNullConstant(Op.getOperand(1))) &&
(User->getOpcode() != ISD::BITCAST ||
User->getValueType(0) != MVT::i32))
return SDValue();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
Op.getOperand(1));
return DAG.getBitcast(MVT::f32, Extract);
}
if (VT == MVT::i32 || VT == MVT::i64) {
// ExtractPS/pextrq works with constant index.
if (isa<ConstantSDNode>(Op.getOperand(1)))
return Op;
}
return SDValue();
}
/// Extract one bit from mask vector, like v16i1 or v8i1.
/// AVX-512 feature.
static SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Vec = Op.getOperand(0);
SDLoc dl(Vec);
MVT VecVT = Vec.getSimpleValueType();
SDValue Idx = Op.getOperand(1);
MVT EltVT = Op.getSimpleValueType();
assert((VecVT.getVectorNumElements() <= 16 || Subtarget.hasBWI()) &&
"Unexpected vector type in ExtractBitFromMaskVector");
// variable index can't be handled in mask registers,
// extend vector to VR512/128
if (!isa<ConstantSDNode>(Idx)) {
unsigned NumElts = VecVT.getVectorNumElements();
// Extending v8i1/v16i1 to 512-bit get better performance on KNL
// than extending to 128/256bit.
MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8;
MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts);
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ExtEltVT, Ext, Idx);
return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
}
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal == 0) // the operation is legal
return Op;
// Extend to natively supported kshift.
unsigned NumElems = VecVT.getVectorNumElements();
MVT WideVecVT = VecVT;
if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8) {
WideVecVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVecVT,
DAG.getUNDEF(WideVecVT), Vec,
DAG.getIntPtrConstant(0, dl));
}
// Use kshiftr instruction to move to the lower element.
Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideVecVT, Vec,
DAG.getTargetConstant(IdxVal, dl, MVT::i8));
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
DAG.getIntPtrConstant(0, dl));
}
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
MVT VecVT = Vec.getSimpleValueType();
SDValue Idx = Op.getOperand(1);
if (VecVT.getVectorElementType() == MVT::i1)
return ExtractBitFromMaskVector(Op, DAG, Subtarget);
if (!isa<ConstantSDNode>(Idx)) {
// Its more profitable to go through memory (1 cycles throughput)
// than using VMOVD + VPERMV/PSHUFB sequence ( 2/3 cycles throughput)
// IACA tool was used to get performance estimation
// (https://software.intel.com/en-us/articles/intel-architecture-code-analyzer)
//
// example : extractelement <16 x i8> %a, i32 %i
//
// Block Throughput: 3.00 Cycles
// Throughput Bottleneck: Port5
//
// | Num Of | Ports pressure in cycles | |
// | Uops | 0 - DV | 5 | 6 | 7 | |
// ---------------------------------------------
// | 1 | | 1.0 | | | CP | vmovd xmm1, edi
// | 1 | | 1.0 | | | CP | vpshufb xmm0, xmm0, xmm1
// | 2 | 1.0 | 1.0 | | | CP | vpextrb eax, xmm0, 0x0
// Total Num Of Uops: 4
//
//
// Block Throughput: 1.00 Cycles
// Throughput Bottleneck: PORT2_AGU, PORT3_AGU, Port4
//
// | | Ports pressure in cycles | |
// |Uops| 1 | 2 - D |3 - D | 4 | 5 | |
// ---------------------------------------------------------
// |2^ | | 0.5 | 0.5 |1.0| |CP| vmovaps xmmword ptr [rsp-0x18], xmm0
// |1 |0.5| | | |0.5| | lea rax, ptr [rsp-0x18]
// |1 | |0.5, 0.5|0.5, 0.5| | |CP| mov al, byte ptr [rdi+rax*1]
// Total Num Of Uops: 4
return SDValue();
}
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
// If this is a 256-bit vector result, first extract the 128-bit vector and
// then extract the element from the 128-bit vector.
if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
// Get the 128-bit vector.
Vec = extract128BitVector(Vec, IdxVal, DAG, dl);
MVT EltVT = VecVT.getVectorElementType();
unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2
// this can be done with a mask.
IdxVal &= ElemsPerChunk - 1;
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
DAG.getIntPtrConstant(IdxVal, dl));
}
assert(VecVT.is128BitVector() && "Unexpected vector length");
MVT VT = Op.getSimpleValueType();
if (VT.getSizeInBits() == 16) {
// If IdxVal is 0, it's cheaper to do a move instead of a pextrw, unless
// we're going to zero extend the register or fold the store (SSE41 only).
if (IdxVal == 0 && !MayFoldIntoZeroExtend(Op) &&
!(Subtarget.hasSSE41() && MayFoldIntoStore(Op)))
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Vec), Idx));
// Transform it so it match pextrw which produces a 32-bit result.
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Extract);
}
if (Subtarget.hasSSE41())
if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
return Res;
// TODO: We only extract a single element from v16i8, we can probably afford
// to be more aggressive here before using the default approach of spilling to
// stack.
if (VT.getSizeInBits() == 8 && Op->isOnlyUserOf(Vec.getNode())) {
// Extract either the lowest i32 or any i16, and extract the sub-byte.
int DWordIdx = IdxVal / 4;
if (DWordIdx == 0) {
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Vec),
DAG.getIntPtrConstant(DWordIdx, dl));
int ShiftVal = (IdxVal % 4) * 8;
if (ShiftVal != 0)
Res = DAG.getNode(ISD::SRL, dl, MVT::i32, Res,
DAG.getConstant(ShiftVal, dl, MVT::i8));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
}
int WordIdx = IdxVal / 2;
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
DAG.getBitcast(MVT::v8i16, Vec),
DAG.getIntPtrConstant(WordIdx, dl));
int ShiftVal = (IdxVal % 2) * 8;
if (ShiftVal != 0)
Res = DAG.getNode(ISD::SRL, dl, MVT::i16, Res,
DAG.getConstant(ShiftVal, dl, MVT::i8));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
}
if (VT.getSizeInBits() == 32) {
if (IdxVal == 0)
return Op;
// SHUFPS the element to the lowest double word, then movss.
int Mask[4] = { static_cast<int>(IdxVal), -1, -1, -1 };
Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0, dl));
}
if (VT.getSizeInBits() == 64) {
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
// to match extract_elt for f64.
if (IdxVal == 0)
return Op;
// UNPCKHPD the element to the lowest double word, then movsd.
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
int Mask[2] = { 1, -1 };
Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0, dl));
}
return SDValue();
}
/// Insert one bit to mask vector, like v16i1 or v8i1.
/// AVX-512 feature.
static SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue Elt = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
MVT VecVT = Vec.getSimpleValueType();
if (!isa<ConstantSDNode>(Idx)) {
// Non constant index. Extend source and destination,
// insert element and then truncate the result.
unsigned NumElts = VecVT.getVectorNumElements();
MVT ExtEltVT = (NumElts <= 8) ? MVT::getIntegerVT(128 / NumElts) : MVT::i8;
MVT ExtVecVT = MVT::getVectorVT(ExtEltVT, NumElts);
SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
DAG.getNode(ISD::SIGN_EXTEND, dl, ExtVecVT, Vec),
DAG.getNode(ISD::SIGN_EXTEND, dl, ExtEltVT, Elt), Idx);
return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
}
// Copy into a k-register, extract to v1i1 and insert_subvector.
SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i1, Elt);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VecVT, Vec, EltInVec,
Op.getOperand(2));
}
SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
if (EltVT == MVT::i1)
return InsertBitToMaskVector(Op, DAG, Subtarget);
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
auto *N2C = dyn_cast<ConstantSDNode>(N2);
if (!N2C || N2C->getAPIntValue().uge(NumElts))
return SDValue();
uint64_t IdxVal = N2C->getZExtValue();
bool IsZeroElt = X86::isZeroNode(N1);
bool IsAllOnesElt = VT.isInteger() && llvm::isAllOnesConstant(N1);
// If we are inserting a element, see if we can do this more efficiently with
// a blend shuffle with a rematerializable vector than a costly integer
// insertion.
if ((IsZeroElt || IsAllOnesElt) && Subtarget.hasSSE41() &&
16 <= EltVT.getSizeInBits()) {
SmallVector<int, 8> BlendMask;
for (unsigned i = 0; i != NumElts; ++i)
BlendMask.push_back(i == IdxVal ? i + NumElts : i);
SDValue CstVector = IsZeroElt ? getZeroVector(VT, Subtarget, DAG, dl)
: getOnesVector(VT, DAG, dl);
return DAG.getVectorShuffle(VT, dl, N0, CstVector, BlendMask);
}
// If the vector is wider than 128 bits, extract the 128-bit subvector, insert
// into that, and then insert the subvector back into the result.
if (VT.is256BitVector() || VT.is512BitVector()) {
// With a 256-bit vector, we can insert into the zero element efficiently
// using a blend if we have AVX or AVX2 and the right data type.
if (VT.is256BitVector() && IdxVal == 0) {
// TODO: It is worthwhile to cast integer to floating point and back
// and incur a domain crossing penalty if that's what we'll end up
// doing anyway after extracting to a 128-bit vector.
if ((Subtarget.hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
(Subtarget.hasAVX2() && EltVT == MVT::i32)) {
SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec,
DAG.getTargetConstant(1, dl, MVT::i8));
}
}
// Get the desired 128-bit vector chunk.
SDValue V = extract128BitVector(N0, IdxVal, DAG, dl);
// Insert the element into the desired chunk.
unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
assert(isPowerOf2_32(NumEltsIn128));
// Since NumEltsIn128 is a power of 2 we can use mask instead of modulo.
unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1);
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
DAG.getIntPtrConstant(IdxIn128, dl));
// Insert the changed part back into the bigger vector
return insert128BitVector(N0, V, IdxVal, DAG, dl);
}
assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
// This will be just movd/movq/movss/movsd.
if (IdxVal == 0 && ISD::isBuildVectorAllZeros(N0.getNode()) &&
(EltVT == MVT::i32 || EltVT == MVT::f32 || EltVT == MVT::f64 ||
EltVT == MVT::i64)) {
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
return getShuffleVectorZeroOrUndef(N1, 0, true, Subtarget, DAG);
}
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
// argument. SSE41 required for pinsrb.
if (VT == MVT::v8i16 || (VT == MVT::v16i8 && Subtarget.hasSSE41())) {
unsigned Opc;
if (VT == MVT::v8i16) {
assert(Subtarget.hasSSE2() && "SSE2 required for PINSRW");
Opc = X86ISD::PINSRW;
} else {
assert(VT == MVT::v16i8 && "PINSRB requires v16i8 vector");
assert(Subtarget.hasSSE41() && "SSE41 required for PINSRB");
Opc = X86ISD::PINSRB;
}
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
}
if (Subtarget.hasSSE41()) {
if (EltVT == MVT::f32) {
// Bits [7:6] of the constant are the source select. This will always be
// zero here. The DAG Combiner may combine an extract_elt index into
// these bits. For example (insert (extract, 3), 2) could be matched by
// putting the '3' into bits [7:6] of X86ISD::INSERTPS.
// Bits [5:4] of the constant are the destination select. This is the
// value of the incoming immediate.
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
bool MinSize = DAG.getMachineFunction().getFunction().hasMinSize();
if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
// If this is an insertion of 32-bits into the low 32-bits of
// a vector, we prefer to generate a blend with immediate rather
// than an insertps. Blends are simpler operations in hardware and so
// will always have equal or better performance than insertps.
// But if optimizing for size and there's a load folding opportunity,
// generate insertps because blendps does not have a 32-bit memory
// operand form.
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1,
DAG.getTargetConstant(1, dl, MVT::i8));
}
// Create this as a scalar to vector..
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1,
DAG.getTargetConstant(IdxVal << 4, dl, MVT::i8));
}
// PINSR* works with constant index.
if (EltVT == MVT::i32 || EltVT == MVT::i64)
return Op;
}
return SDValue();
}
static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
MVT OpVT = Op.getSimpleValueType();
// It's always cheaper to replace a xor+movd with xorps and simplifies further
// combines.
if (X86::isZeroNode(Op.getOperand(0)))
return getZeroVector(OpVT, Subtarget, DAG, dl);
// If this is a 256-bit vector result, first insert into a 128-bit
// vector and then insert into the 256-bit vector.
if (!OpVT.is128BitVector()) {
// Insert into a 128-bit vector.
unsigned SizeFactor = OpVT.getSizeInBits() / 128;
MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
OpVT.getVectorNumElements() / SizeFactor);
Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
// Insert the 128-bit vector.
return insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
}
assert(OpVT.is128BitVector() && OpVT.isInteger() && OpVT != MVT::v2i64 &&
"Expected an SSE type!");
// Pass through a v4i32 SCALAR_TO_VECTOR as that's what we use in tblgen.
if (OpVT == MVT::v4i32)
return Op;
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
return DAG.getBitcast(
OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
}
// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
// simple superregister reference or explicit instructions to insert
// the upper bits of a vector.
static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1);
return insert1BitVector(Op, DAG, Subtarget);
}
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getSimpleValueType().getVectorElementType() == MVT::i1 &&
"Only vXi1 extract_subvectors need custom lowering");
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
if (!isa<ConstantSDNode>(Idx))
return SDValue();
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal == 0) // the operation is legal
return Op;
MVT VecVT = Vec.getSimpleValueType();
unsigned NumElems = VecVT.getVectorNumElements();
// Extend to natively supported kshift.
MVT WideVecVT = VecVT;
if ((!Subtarget.hasDQI() && NumElems == 8) || NumElems < 8) {
WideVecVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVecVT,
DAG.getUNDEF(WideVecVT), Vec,
DAG.getIntPtrConstant(0, dl));
}
// Shift to the LSB.
Vec = DAG.getNode(X86ISD::KSHIFTR, dl, WideVecVT, Vec,
DAG.getTargetConstant(IdxVal, dl, MVT::i8));
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, Op.getValueType(), Vec,
DAG.getIntPtrConstant(0, dl));
}
// Returns the appropriate wrapper opcode for a global reference.
unsigned X86TargetLowering::getGlobalWrapperKind(
const GlobalValue *GV, const unsigned char OpFlags) const {
// References to absolute symbols are never PC-relative.
if (GV && GV->isAbsoluteSymbolRef())
return X86ISD::Wrapper;
CodeModel::Model M = getTargetMachine().getCodeModel();
if (Subtarget.isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
return X86ISD::WrapperRIP;
// GOTPCREL references must always use RIP.
if (OpFlags == X86II::MO_GOTPCREL)
return X86ISD::WrapperRIP;
return X86ISD::Wrapper;
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target counterpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDValue
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetConstantPool(
CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag);
SDLoc DL(CP);
Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag) {
Result =
DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
}
return Result;
}
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
SDLoc DL(JT);
Result = DAG.getNode(getGlobalWrapperKind(), DL, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag)
Result =
DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
return Result;
}
SDValue X86TargetLowering::LowerExternalSymbol(SDValue Op,
SelectionDAG &DAG) const {
return LowerGlobalOrExternal(Op, DAG, /*ForCall=*/false);
}
SDValue
X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
// Create the TargetBlockAddressAddress node.
unsigned char OpFlags =
Subtarget.classifyBlockAddressReference();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
Result = DAG.getNode(getGlobalWrapperKind(), dl, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
}
return Result;
}
/// Creates target global address or external symbol nodes for calls or
/// other uses.
SDValue X86TargetLowering::LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
bool ForCall) const {
// Unpack the global address or external symbol.
const SDLoc &dl = SDLoc(Op);
const GlobalValue *GV = nullptr;
int64_t Offset = 0;
const char *ExternalSym = nullptr;
if (const auto *G = dyn_cast<GlobalAddressSDNode>(Op)) {
GV = G->getGlobal();
Offset = G->getOffset();
} else {
const auto *ES = cast<ExternalSymbolSDNode>(Op);
ExternalSym = ES->getSymbol();
}
// Calculate some flags for address lowering.
const Module &Mod = *DAG.getMachineFunction().getFunction().getParent();
unsigned char OpFlags;
if (ForCall)
OpFlags = Subtarget.classifyGlobalFunctionReference(GV, Mod);
else
OpFlags = Subtarget.classifyGlobalReference(GV, Mod);
bool HasPICReg = isGlobalRelativeToPICBase(OpFlags);
bool NeedsLoad = isGlobalStubReference(OpFlags);
CodeModel::Model M = DAG.getTarget().getCodeModel();
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result;
if (GV) {
// Create a target global address if this is a global. If possible, fold the
// offset into the global address reference. Otherwise, ADD it on later.
int64_t GlobalOffset = 0;
if (OpFlags == X86II::MO_NO_FLAG &&
X86::isOffsetSuitableForCodeModel(Offset, M)) {
std::swap(GlobalOffset, Offset);
}
Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, GlobalOffset, OpFlags);
} else {
// If this is not a global address, this must be an external symbol.
Result = DAG.getTargetExternalSymbol(ExternalSym, PtrVT, OpFlags);
}
// If this is a direct call, avoid the wrapper if we don't need to do any
// loads or adds. This allows SDAG ISel to match direct calls.
if (ForCall && !NeedsLoad && !HasPICReg && Offset == 0)
return Result;
Result = DAG.getNode(getGlobalWrapperKind(GV, OpFlags), dl, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (HasPICReg) {
Result = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
}
// For globals that require a load from a stub to get the address, emit the
// load.
if (NeedsLoad)
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result,
DAG.getConstant(Offset, dl, PtrVT));
return Result;
}
SDValue
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
return LowerGlobalOrExternal(Op, DAG, /*ForCall=*/false);
}
static SDValue
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
unsigned char OperandFlags, bool LocalDynamic = false) {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDLoc dl(GA);
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(),
OperandFlags);
X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
: X86ISD::TLSADDR;
if (InFlag) {
SDValue Ops[] = { Chain, TGA, *InFlag };
Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
} else {
SDValue Ops[] = { Chain, TGA };
Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
}
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
MFI.setAdjustsStack(true);
MFI.setHasCalls(true);
SDValue Flag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
SDValue InFlag;
SDLoc dl(GA); // ? function entry point might be better
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg,
SDLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
static SDValue
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
X86::RAX, X86II::MO_TLSGD);
}
static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
const EVT PtrVT,
bool is64Bit) {
SDLoc dl(GA);
// Get the start address of the TLS block for this module.
X86MachineFunctionInfo *MFI = DAG.getMachineFunction()
.getInfo<X86MachineFunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
SDValue Base;
if (is64Bit) {
Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
X86II::MO_TLSLD, /*LocalDynamic=*/true);
} else {
SDValue InFlag;
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
X86II::MO_TLSLDM, /*LocalDynamic=*/true);
}
// Note: the CleanupLocalDynamicTLSPass will remove redundant computations
// of Base.
// Build x@dtpoff.
unsigned char OperandFlags = X86II::MO_DTPOFF;
unsigned WrapperKind = X86ISD::Wrapper;
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
// Add x@dtpoff with the base.
return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
}
// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT, TLSModel::Model model,
bool is64Bit, bool isPIC) {
SDLoc dl(GA);
// Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
is64Bit ? 257 : 256));
SDValue ThreadPointer =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
MachinePointerInfo(Ptr));
unsigned char OperandFlags = 0;
// Most TLS accesses are not RIP relative, even on x86-64. One exception is
// initialexec.
unsigned WrapperKind = X86ISD::Wrapper;
if (model == TLSModel::LocalExec) {
OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
} else if (model == TLSModel::InitialExec) {
if (is64Bit) {
OperandFlags = X86II::MO_GOTTPOFF;
WrapperKind = X86ISD::WrapperRIP;
} else {
OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
}
} else {
llvm_unreachable("Unexpected model");
}
// emit "addl x@ntpoff,%eax" (local exec)
// or "addl x@indntpoff,%eax" (initial exec)
// or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
SDValue TGA =
DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
if (model == TLSModel::InitialExec) {
if (isPIC && !is64Bit) {
Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
Offset);
}
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
const GlobalValue *GV = GA->getGlobal();
auto PtrVT = getPointerTy(DAG.getDataLayout());
bool PositionIndependent = isPositionIndependent();
if (Subtarget.isTargetELF()) {
TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
switch (model) {
case TLSModel::GeneralDynamic:
if (Subtarget.is64Bit())
return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT);
return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT);
case TLSModel::LocalDynamic:
return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT,
Subtarget.is64Bit());
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget.is64Bit(),
PositionIndependent);
}
llvm_unreachable("Unknown TLS model.");
}
if (Subtarget.isTargetDarwin()) {
// Darwin only has one model of TLS. Lower to that.
unsigned char OpFlag = 0;
unsigned WrapperKind = Subtarget.isPICStyleRIPRel() ?
X86ISD::WrapperRIP : X86ISD::Wrapper;
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
bool PIC32 = PositionIndependent && !Subtarget.is64Bit();
if (PIC32)
OpFlag = X86II::MO_TLVP_PIC_BASE;
else
OpFlag = X86II::MO_TLVP;
SDLoc DL(Op);
SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
GA->getValueType(0),
GA->getOffset(), OpFlag);
SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result);
// With PIC32, the address is actually $g + Offset.
if (PIC32)
Offset = DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
Offset);
// Lowering the machine isd will make sure everything is in the right
// location.
SDValue Chain = DAG.getEntryNode();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
SDValue Args[] = { Chain, Offset };
Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
DAG.getIntPtrConstant(0, DL, true),
Chain.getValue(1), DL);
// TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setAdjustsStack(true);
// And our return value (tls address) is in the standard call return value
// location.
unsigned Reg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1));
}
if (Subtarget.isOSWindows()) {
// Just use the implicit TLS architecture
// Need to generate something similar to:
// mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
// ; from TEB
// mov ecx, dword [rel _tls_index]: Load index (from C runtime)
// mov rcx, qword [rdx+rcx*8]
// mov eax, .tls$:tlsvar
// [rax+rcx] contains the address
// Windows 64bit: gs:0x58
// Windows 32bit: fs:__tls_array
SDLoc dl(GA);
SDValue Chain = DAG.getEntryNode();
// Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
// %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
// use its literal value of 0x2C.
Value *Ptr = Constant::getNullValue(Subtarget.is64Bit()
? Type::getInt8PtrTy(*DAG.getContext(),
256)
: Type::getInt32PtrTy(*DAG.getContext(),
257));
SDValue TlsArray = Subtarget.is64Bit()
? DAG.getIntPtrConstant(0x58, dl)
: (Subtarget.isTargetWindowsGNU()
? DAG.getIntPtrConstant(0x2C, dl)
: DAG.getExternalSymbol("_tls_array", PtrVT));
SDValue ThreadPointer =
DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr));
SDValue res;
if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
res = ThreadPointer;
} else {
// Load the _tls_index variable
SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT);
if (Subtarget.is64Bit())
IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX,
MachinePointerInfo(), MVT::i32);
else
IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo());
auto &DL = DAG.getDataLayout();
SDValue Scale =
DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, MVT::i8);
IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale);
res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX);
}
res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo());
// Get the offset of start of .tls section
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(), X86II::MO_SECREL);
SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset);
}
llvm_unreachable("TLS not implemented for this target.");
}
/// Lower SRA_PARTS and friends, which return two i32 values
/// and take a 2 x i32 value to shift plus a shift amount.
/// TODO: Can this be moved to general expansion code?
static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
MVT VT = Op.getSimpleValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
// ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
// ISD::SRA/L nodes haven't. Insert an AND to be safe, it's optimized away
// during isel.
SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits - 1, dl, MVT::i8));
SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, dl, MVT::i8))
: DAG.getConstant(0, dl, VT);
SDValue Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
} else {
Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
}
// If the shift amount is larger or equal than the width of a part we can't
// rely on the results of shld/shrd. Insert a test and select the appropriate
// values for large shift amounts.
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i8));
SDValue Cond = DAG.getSetCC(dl, MVT::i8, AndNode,
DAG.getConstant(0, dl, MVT::i8), ISD::SETNE);
SDValue Hi, Lo;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
} else {
Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
}
return DAG.getMergeValues({ Lo, Hi }, dl);
}
static SDValue LowerFunnelShift(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert((Op.getOpcode() == ISD::FSHL || Op.getOpcode() == ISD::FSHR) &&
"Unexpected funnel shift opcode!");
SDLoc DL(Op);
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Amt = Op.getOperand(2);
bool IsFSHR = Op.getOpcode() == ISD::FSHR;
if (VT.isVector()) {
assert(Subtarget.hasVBMI2() && "Expected VBMI2");
if (IsFSHR)
std::swap(Op0, Op1);
APInt APIntShiftAmt;
if (X86::isConstantSplat(Amt, APIntShiftAmt)) {
uint64_t ShiftAmt = APIntShiftAmt.urem(VT.getScalarSizeInBits());
return DAG.getNode(IsFSHR ? X86ISD::VSHRD : X86ISD::VSHLD, DL, VT, Op0,
Op1, DAG.getTargetConstant(ShiftAmt, DL, MVT::i8));
}
return DAG.getNode(IsFSHR ? X86ISD::VSHRDV : X86ISD::VSHLDV, DL, VT,
Op0, Op1, Amt);
}
assert((VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) &&
"Unexpected funnel shift type!");
// Expand slow SHLD/SHRD cases if we are not optimizing for size.
bool OptForSize = DAG.shouldOptForSize();
if (!OptForSize && Subtarget.isSHLDSlow())
return SDValue();
if (IsFSHR)
std::swap(Op0, Op1);
// i16 needs to modulo the shift amount, but i32/i64 have implicit modulo.
if (VT == MVT::i16)
Amt = DAG.getNode(ISD::AND, DL, Amt.getValueType(), Amt,
DAG.getConstant(15, DL, Amt.getValueType()));
unsigned SHDOp = (IsFSHR ? X86ISD::SHRD : X86ISD::SHLD);
return DAG.getNode(SHDOp, DL, VT, Op0, Op1, Amt);
}
// Try to use a packed vector operation to handle i64 on 32-bit targets when
// AVX512DQ is enabled.
static SDValue LowerI64IntToFP_AVX512DQ(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert((Op.getOpcode() == ISD::SINT_TO_FP ||
Op.getOpcode() == ISD::STRICT_SINT_TO_FP ||
Op.getOpcode() == ISD::STRICT_UINT_TO_FP ||
Op.getOpcode() == ISD::UINT_TO_FP) &&
"Unexpected opcode!");
bool IsStrict = Op->isStrictFPOpcode();
unsigned OpNo = IsStrict ? 1 : 0;
SDValue Src = Op.getOperand(OpNo);
MVT SrcVT = Src.getSimpleValueType();
MVT VT = Op.getSimpleValueType();
if (!Subtarget.hasDQI() || SrcVT != MVT::i64 || Subtarget.is64Bit() ||
(VT != MVT::f32 && VT != MVT::f64))
return SDValue();
// Pack the i64 into a vector, do the operation and extract.
// Using 256-bit to ensure result is 128-bits for f32 case.
unsigned NumElts = Subtarget.hasVLX() ? 4 : 8;
MVT VecInVT = MVT::getVectorVT(MVT::i64, NumElts);
MVT VecVT = MVT::getVectorVT(VT, NumElts);
SDLoc dl(Op);
SDValue InVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecInVT, Src);
if (IsStrict) {
SDValue CvtVec = DAG.getNode(Op.getOpcode(), dl, {VecVT, MVT::Other},
{Op.getOperand(0), InVec});
SDValue Chain = CvtVec.getValue(1);
SDValue Value = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, CvtVec,
DAG.getIntPtrConstant(0, dl));
return DAG.getMergeValues({Value, Chain}, dl);
}
SDValue CvtVec = DAG.getNode(Op.getOpcode(), dl, VecVT, InVec);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, CvtVec,
DAG.getIntPtrConstant(0, dl));
}
static bool useVectorCast(unsigned Opcode, MVT FromVT, MVT ToVT,
const X86Subtarget &Subtarget) {
switch (Opcode) {
case ISD::SINT_TO_FP:
// TODO: Handle wider types with AVX/AVX512.
if (!Subtarget.hasSSE2() || FromVT != MVT::v4i32)
return false;
// CVTDQ2PS or (V)CVTDQ2PD
return ToVT == MVT::v4f32 || (Subtarget.hasAVX() && ToVT == MVT::v4f64);
case ISD::UINT_TO_FP:
// TODO: Handle wider types and i64 elements.
if (!Subtarget.hasAVX512() || FromVT != MVT::v4i32)
return false;
// VCVTUDQ2PS or VCVTUDQ2PD
return ToVT == MVT::v4f32 || ToVT == MVT::v4f64;
default:
return false;
}
}
/// Given a scalar cast operation that is extracted from a vector, try to
/// vectorize the cast op followed by extraction. This will avoid an expensive
/// round-trip between XMM and GPR.
static SDValue vectorizeExtractedCast(SDValue Cast, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// TODO: This could be enhanced to handle smaller integer types by peeking
// through an extend.
SDValue Extract = Cast.getOperand(0);
MVT DestVT = Cast.getSimpleValueType();
if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Extract.getOperand(1)))
return SDValue();
// See if we have a 128-bit vector cast op for this type of cast.
SDValue VecOp = Extract.getOperand(0);
MVT FromVT = VecOp.getSimpleValueType();
unsigned NumEltsInXMM = 128 / FromVT.getScalarSizeInBits();
MVT Vec128VT = MVT::getVectorVT(FromVT.getScalarType(), NumEltsInXMM);
MVT ToVT = MVT::getVectorVT(DestVT, NumEltsInXMM);
if (!useVectorCast(Cast.getOpcode(), Vec128VT, ToVT, Subtarget))
return SDValue();
// If we are extracting from a non-zero element, first shuffle the source
// vector to allow extracting from element zero.
SDLoc DL(Cast);
if (!isNullConstant(Extract.getOperand(1))) {
SmallVector<int, 16> Mask(FromVT.getVectorNumElements(), -1);
Mask[0] = Extract.getConstantOperandVal(1);
VecOp = DAG.getVectorShuffle(FromVT, DL, VecOp, DAG.getUNDEF(FromVT), Mask);
}
// If the source vector is wider than 128-bits, extract the low part. Do not
// create an unnecessarily wide vector cast op.
if (FromVT != Vec128VT)
VecOp = extract128BitVector(VecOp, 0, DAG, DL);
// cast (extelt V, 0) --> extelt (cast (extract_subv V)), 0
// cast (extelt V, C) --> extelt (cast (extract_subv (shuffle V, [C...]))), 0
SDValue VCast = DAG.getNode(Cast.getOpcode(), DL, ToVT, VecOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, DestVT, VCast,
DAG.getIntPtrConstant(0, DL));
}
static SDValue lowerINT_TO_FP_vXi64(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(Op);
bool IsStrict = Op->isStrictFPOpcode();
MVT VT = Op->getSimpleValueType(0);
SDValue Src = Op->getOperand(IsStrict ? 1 : 0);
if (Subtarget.hasDQI()) {
assert(!Subtarget.hasVLX() && "Unexpected features");
assert((Src.getSimpleValueType() == MVT::v2i64 ||
Src.getSimpleValueType() == MVT::v4i64) &&
"Unsupported custom type");
// With AVX512DQ, but not VLX we need to widen to get a 512-bit result type.
assert((VT == MVT::v4f32 || VT == MVT::v2f64 || VT == MVT::v4f64) &&
"Unexpected VT!");
MVT WideVT = VT == MVT::v4f32 ? MVT::v8f32 : MVT::v8f64;
// Need to concat with zero vector for strict fp to avoid spurious
// exceptions.
SDValue Tmp = IsStrict ? DAG.getConstant(0, DL, MVT::v8i64)
: DAG.getUNDEF(MVT::v8i64);
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i64, Tmp, Src,
DAG.getIntPtrConstant(0, DL));
SDValue Res, Chain;
if (IsStrict) {
Res = DAG.getNode(Op.getOpcode(), DL, {WideVT, MVT::Other},
{Op->getOperand(0), Src});
Chain = Res.getValue(1);
} else {
Res = DAG.getNode(Op.getOpcode(), DL, WideVT, Src);
}
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
if (IsStrict)
return DAG.getMergeValues({Res, Chain}, DL);
return Res;
}
bool IsSigned = Op->getOpcode() == ISD::SINT_TO_FP ||
Op->getOpcode() == ISD::STRICT_SINT_TO_FP;
if (VT != MVT::v4f32 || IsSigned)
return SDValue();
SDValue Zero = DAG.getConstant(0, DL, MVT::v4i64);
SDValue One = DAG.getConstant(1, DL, MVT::v4i64);
SDValue Sign = DAG.getNode(ISD::OR, DL, MVT::v4i64,
DAG.getNode(ISD::SRL, DL, MVT::v4i64, Src, One),
DAG.getNode(ISD::AND, DL, MVT::v4i64, Src, One));
SDValue IsNeg = DAG.getSetCC(DL, MVT::v4i64, Src, Zero, ISD::SETLT);
SDValue SignSrc = DAG.getSelect(DL, MVT::v4i64, IsNeg, Sign, Src);
SmallVector<SDValue, 4> SignCvts(4);
SmallVector<SDValue, 4> Chains(4);
for (int i = 0; i != 4; ++i) {
SDValue Src = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, SignSrc,
DAG.getIntPtrConstant(i, DL));
if (IsStrict) {
SignCvts[i] =
DAG.getNode(ISD::STRICT_SINT_TO_FP, DL, {MVT::f32, MVT::Other},
{Op.getOperand(0), Src});
Chains[i] = SignCvts[i].getValue(1);
} else {
SignCvts[i] = DAG.getNode(ISD::SINT_TO_FP, DL, MVT::f32, Src);
}
}
SDValue SignCvt = DAG.getBuildVector(VT, DL, SignCvts);
SDValue Slow, Chain;
if (IsStrict) {
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
Slow = DAG.getNode(ISD::STRICT_FADD, DL, {MVT::v4f32, MVT::Other},
{Chain, SignCvt, SignCvt});
Chain = Slow.getValue(1);
} else {
Slow = DAG.getNode(ISD::FADD, DL, MVT::v4f32, SignCvt, SignCvt);
}
IsNeg = DAG.getNode(ISD::TRUNCATE, DL, MVT::v4i32, IsNeg);
SDValue Cvt = DAG.getSelect(DL, MVT::v4f32, IsNeg, Slow, SignCvt);
if (IsStrict)
return DAG.getMergeValues({Cvt, Chain}, DL);
return Cvt;
}
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
unsigned OpNo = IsStrict ? 1 : 0;
SDValue Src = Op.getOperand(OpNo);
SDValue Chain = IsStrict ? Op->getOperand(0) : DAG.getEntryNode();
MVT SrcVT = Src.getSimpleValueType();
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
if (SDValue Extract = vectorizeExtractedCast(Op, DAG, Subtarget))
return Extract;
if (SrcVT.isVector()) {
if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
// Note: Since v2f64 is a legal type. We don't need to zero extend the
// source for strict FP.
if (IsStrict)
return DAG.getNode(
X86ISD::STRICT_CVTSI2P, dl, {VT, MVT::Other},
{Chain, DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
DAG.getUNDEF(SrcVT))});
return DAG.getNode(X86ISD::CVTSI2P, dl, VT,
DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
DAG.getUNDEF(SrcVT)));
}
if (SrcVT == MVT::v2i64 || SrcVT == MVT::v4i64)
return lowerINT_TO_FP_vXi64(Op, DAG, Subtarget);
return SDValue();
}
assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
bool UseSSEReg = isScalarFPTypeInSSEReg(VT);
// These are really Legal; return the operand so the caller accepts it as
// Legal.
if (SrcVT == MVT::i32 && UseSSEReg)
return Op;
if (SrcVT == MVT::i64 && UseSSEReg && Subtarget.is64Bit())
return Op;
if (SDValue V = LowerI64IntToFP_AVX512DQ(Op, DAG, Subtarget))
return V;
// SSE doesn't have an i16 conversion so we need to promote.
if (SrcVT == MVT::i16 && (UseSSEReg || VT == MVT::f128)) {
SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, Src);
if (IsStrict)
return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {VT, MVT::Other},
{Chain, Ext});
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Ext);
}
if (VT == MVT::f128)
return LowerF128Call(Op, DAG, RTLIB::getSINTTOFP(SrcVT, VT));
SDValue ValueToStore = Src;
if (SrcVT == MVT::i64 && UseSSEReg && !Subtarget.is64Bit())
// Bitcasting to f64 here allows us to do a single 64-bit store from
// an SSE register, avoiding the store forwarding penalty that would come
// with two 32-bit stores.
ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
auto PtrVT = getPointerTy(MF.getDataLayout());
int SSFI = MF.getFrameInfo().CreateStackObject(Size, Size, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
Chain = DAG.getStore(
Chain, dl, ValueToStore, StackSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
std::pair<SDValue, SDValue> Tmp = BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
if (IsStrict)
return DAG.getMergeValues({Tmp.first, Tmp.second}, dl);
return Tmp.first;
}
std::pair<SDValue, SDValue> X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
SDValue StackSlot,
SelectionDAG &DAG) const {
// Build the FILD
SDLoc DL(Op);
SDVTList Tys;
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
if (useSSE)
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
else
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
unsigned ByteSize = SrcVT.getSizeInBits() / 8;
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
MachineMemOperand *LoadMMO;
if (FI) {
int SSFI = FI->getIndex();
LoadMMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOLoad, ByteSize, ByteSize);
} else {
LoadMMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
StackSlot = StackSlot.getOperand(1);
}
SDValue FILDOps[] = {Chain, StackSlot};
SDValue Result =
DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, DL,
Tys, FILDOps, SrcVT, LoadMMO);
Chain = Result.getValue(1);
if (useSSE) {
SDValue InFlag = Result.getValue(2);
// FIXME: Currently the FST is glued to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
unsigned SSFISize = Op.getValueSizeInBits() / 8;
int SSFI = MF.getFrameInfo().CreateStackObject(SSFISize, SSFISize, false);
auto PtrVT = getPointerTy(MF.getDataLayout());
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
Tys = DAG.getVTList(MVT::Other);
SDValue FSTOps[] = {Chain, Result, StackSlot, InFlag};
MachineMemOperand *StoreMMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOStore, SSFISize, SSFISize);
Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, FSTOps,
Op.getValueType(), StoreMMO);
Result = DAG.getLoad(
Op.getValueType(), DL, Chain, StackSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI));
Chain = Result.getValue(1);
}
return { Result, Chain };
}
/// Horizontal vector math instructions may be slower than normal math with
/// shuffles. Limit horizontal op codegen based on size/speed trade-offs, uarch
/// implementation, and likely shuffle complexity of the alternate sequence.
static bool shouldUseHorizontalOp(bool IsSingleSource, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
bool IsOptimizingSize = DAG.shouldOptForSize();
bool HasFastHOps = Subtarget.hasFastHorizontalOps();
return !IsSingleSource || IsOptimizingSize || HasFastHOps;
}
/// 64-bit unsigned integer to double expansion.
static SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// This algorithm is not obvious. Here it is what we're trying to output:
/*
movq %rax, %xmm0
punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
#ifdef __SSE3__
haddpd %xmm0, %xmm0
#else
pshufd $0x4e, %xmm0, %xmm1
addpd %xmm1, %xmm0
#endif
*/
bool IsStrict = Op->isStrictFPOpcode();
unsigned OpNo = IsStrict ? 1 : 0;
SDLoc dl(Op);
LLVMContext *Context = DAG.getContext();
// Build some magic constants.
static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
Constant *C0 = ConstantDataVector::get(*Context, CV0);
auto PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16);
SmallVector<Constant*,2> CV1;
CV1.push_back(
ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
APInt(64, 0x4330000000000000ULL))));
CV1.push_back(
ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble(),
APInt(64, 0x4530000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
// Load the 64-bit value into an XMM register.
SDValue XR1 =
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Op.getOperand(OpNo));
SDValue CLod0 =
DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
/* Alignment = */ 16);
SDValue Unpck1 =
getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
SDValue CLod1 =
DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
/* Alignment = */ 16);
SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
SDValue Sub;
SDValue Chain;
// TODO: Are there any fast-math-flags to propagate here?
if (IsStrict) {
Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::v2f64, MVT::Other},
{Op.getOperand(0), XR2F, CLod1});
Chain = Sub.getValue(1);
} else
Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
SDValue Result;
if (!IsStrict && Subtarget.hasSSE3() &&
shouldUseHorizontalOp(true, DAG, Subtarget)) {
// FIXME: Do we need a STRICT version of FHADD?
Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
} else {
SDValue Shuffle = DAG.getVectorShuffle(MVT::v2f64, dl, Sub, Sub, {1,-1});
if (IsStrict) {
Result = DAG.getNode(ISD::STRICT_FADD, dl, {MVT::v2f64, MVT::Other},
{Chain, Shuffle, Sub});
Chain = Result.getValue(1);
} else
Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuffle, Sub);
}
Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
DAG.getIntPtrConstant(0, dl));
if (IsStrict)
return DAG.getMergeValues({Result, Chain}, dl);
return Result;
}
/// 32-bit unsigned integer to float expansion.
static SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned OpNo = Op.getNode()->isStrictFPOpcode() ? 1 : 0;
SDLoc dl(Op);
// FP constant to bias correct the final result.
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
MVT::f64);
// Load the 32-bit value into an XMM register.
SDValue Load =
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Op.getOperand(OpNo));
// Zero out the upper parts of the register.
Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
// Or the load with the bias.
SDValue Or = DAG.getNode(
ISD::OR, dl, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, Load),
DAG.getBitcast(MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
Or =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
if (Op.getNode()->isStrictFPOpcode()) {
// Subtract the bias.
// TODO: Are there any fast-math-flags to propagate here?
SDValue Chain = Op.getOperand(0);
SDValue Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::f64, MVT::Other},
{Chain, Or, Bias});
if (Op.getValueType() == Sub.getValueType())
return Sub;
// Handle final rounding.
std::pair<SDValue, SDValue> ResultPair = DAG.getStrictFPExtendOrRound(
Sub, Sub.getValue(1), dl, Op.getSimpleValueType());
return DAG.getMergeValues({ResultPair.first, ResultPair.second}, dl);
}
// Subtract the bias.
// TODO: Are there any fast-math-flags to propagate here?
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
// Handle final rounding.
return DAG.getFPExtendOrRound(Sub, dl, Op.getSimpleValueType());
}
static SDValue lowerUINT_TO_FP_v2i32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &DL) {
if (Op.getSimpleValueType() != MVT::v2f64)
return SDValue();
bool IsStrict = Op->isStrictFPOpcode();
SDValue N0 = Op.getOperand(IsStrict ? 1 : 0);
assert(N0.getSimpleValueType() == MVT::v2i32 && "Unexpected input type");
if (Subtarget.hasAVX512()) {
if (!Subtarget.hasVLX()) {
// Let generic type legalization widen this.
if (!IsStrict)
return SDValue();
// Otherwise pad the integer input with 0s and widen the operation.
N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
DAG.getConstant(0, DL, MVT::v2i32));
SDValue Res = DAG.getNode(Op->getOpcode(), DL, {MVT::v4f64, MVT::Other},
{Op.getOperand(0), N0});
SDValue Chain = Res.getValue(1);
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2f64, Res,
DAG.getIntPtrConstant(0, DL));
return DAG.getMergeValues({Res, Chain}, DL);
}
// Legalize to v4i32 type.
N0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
DAG.getUNDEF(MVT::v2i32));
if (IsStrict)
return DAG.getNode(X86ISD::STRICT_CVTUI2P, DL, {MVT::v2f64, MVT::Other},
{Op.getOperand(0), N0});
return DAG.getNode(X86ISD::CVTUI2P, DL, MVT::v2f64, N0);
}
// Zero extend to 2i64, OR with the floating point representation of 2^52.
// This gives us the floating point equivalent of 2^52 + the i32 integer
// since double has 52-bits of mantissa. Then subtract 2^52 in floating
// point leaving just our i32 integers in double format.
SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i64, N0);
SDValue VBias =
DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), DL, MVT::v2f64);
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::v2i64, ZExtIn,
DAG.getBitcast(MVT::v2i64, VBias));
Or = DAG.getBitcast(MVT::v2f64, Or);
if (IsStrict)
return DAG.getNode(ISD::STRICT_FSUB, DL, {MVT::v2f64, MVT::Other},
{Op.getOperand(0), Or, VBias});
return DAG.getNode(ISD::FSUB, DL, MVT::v2f64, Or, VBias);
}
static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(Op);
bool IsStrict = Op->isStrictFPOpcode();
SDValue V = Op->getOperand(IsStrict ? 1 : 0);
MVT VecIntVT = V.getSimpleValueType();
assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
"Unsupported custom type");
if (Subtarget.hasAVX512()) {
// With AVX512, but not VLX we need to widen to get a 512-bit result type.
assert(!Subtarget.hasVLX() && "Unexpected features");
MVT VT = Op->getSimpleValueType(0);
// v8i32->v8f64 is legal with AVX512 so just return it.
if (VT == MVT::v8f64)
return Op;
assert((VT == MVT::v4f32 || VT == MVT::v8f32 || VT == MVT::v4f64) &&
"Unexpected VT!");
MVT WideVT = VT == MVT::v4f64 ? MVT::v8f64 : MVT::v16f32;
MVT WideIntVT = VT == MVT::v4f64 ? MVT::v8i32 : MVT::v16i32;
// Need to concat with zero vector for strict fp to avoid spurious
// exceptions.
SDValue Tmp =
IsStrict ? DAG.getConstant(0, DL, WideIntVT) : DAG.getUNDEF(WideIntVT);
V = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideIntVT, Tmp, V,
DAG.getIntPtrConstant(0, DL));
SDValue Res, Chain;
if (IsStrict) {
Res = DAG.getNode(ISD::STRICT_UINT_TO_FP, DL, {WideVT, MVT::Other},
{Op->getOperand(0), V});
Chain = Res.getValue(1);
} else {
Res = DAG.getNode(ISD::UINT_TO_FP, DL, WideVT, V);
}
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
if (IsStrict)
return DAG.getMergeValues({Res, Chain}, DL);
return Res;
}
if (Subtarget.hasAVX() && VecIntVT == MVT::v4i32 &&
Op->getSimpleValueType(0) == MVT::v4f64) {
SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i64, V);
Constant *Bias = ConstantFP::get(
*DAG.getContext(),
APFloat(APFloat::IEEEdouble(), APInt(64, 0x4330000000000000ULL)));
auto PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
SDValue CPIdx = DAG.getConstantPool(Bias, PtrVT, /*Alignment*/ 8);
SDVTList Tys = DAG.getVTList(MVT::v4f64, MVT::Other);
SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
SDValue VBias = DAG.getMemIntrinsicNode(
X86ISD::VBROADCAST_LOAD, DL, Tys, Ops, MVT::f64,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
/*Alignment*/ 8, MachineMemOperand::MOLoad);
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::v4i64, ZExtIn,
DAG.getBitcast(MVT::v4i64, VBias));
Or = DAG.getBitcast(MVT::v4f64, Or);
if (IsStrict)
return DAG.getNode(ISD::STRICT_FSUB, DL, {MVT::v4f64, MVT::Other},
{Op.getOperand(0), Or, VBias});
return DAG.getNode(ISD::FSUB, DL, MVT::v4f64, Or, VBias);
}
// The algorithm is the following:
// #ifdef __SSE4_1__
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
// (uint4) 0x53000000, 0xaa);
// #else
// uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
// uint4 hi = (v >> 16) | (uint4) 0x53000000;
// #endif
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
// return (float4) lo + fhi;
bool Is128 = VecIntVT == MVT::v4i32;
MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
// If we convert to something else than the supported type, e.g., to v4f64,
// abort early.
if (VecFloatVT != Op->getSimpleValueType(0))
return SDValue();
// In the #idef/#else code, we have in common:
// - The vector of constants:
// -- 0x4b000000
// -- 0x53000000
// - A shift:
// -- v >> 16
// Create the splat vector for 0x4b000000.
SDValue VecCstLow = DAG.getConstant(0x4b000000, DL, VecIntVT);
// Create the splat vector for 0x53000000.
SDValue VecCstHigh = DAG.getConstant(0x53000000, DL, VecIntVT);
// Create the right shift.
SDValue VecCstShift = DAG.getConstant(16, DL, VecIntVT);
SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
SDValue Low, High;
if (Subtarget.hasSSE41()) {
MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
// Low will be bitcasted right away, so do not bother bitcasting back to its
// original type.
Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
VecCstLowBitcast, DAG.getTargetConstant(0xaa, DL, MVT::i8));
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
// (uint4) 0x53000000, 0xaa);
SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
// High will be bitcasted right away, so do not bother bitcasting back to
// its original type.
High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
VecCstHighBitcast, DAG.getTargetConstant(0xaa, DL, MVT::i8));
} else {
SDValue VecCstMask = DAG.getConstant(0xffff, DL, VecIntVT);
// uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
// uint4 hi = (v >> 16) | (uint4) 0x53000000;
High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
}
// Create the vector constant for (0x1.0p39f + 0x1.0p23f).
SDValue VecCstFSub = DAG.getConstantFP(
APFloat(APFloat::IEEEsingle(), APInt(32, 0x53000080)), DL, VecFloatVT);
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
// NOTE: By using fsub of a positive constant instead of fadd of a negative
// constant, we avoid reassociation in MachineCombiner when unsafe-fp-math is
// enabled. See PR24512.
SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
// TODO: Are there any fast-math-flags to propagate here?
// (float4) lo;
SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
// return (float4) lo + fhi;
if (IsStrict) {
SDValue FHigh = DAG.getNode(ISD::STRICT_FSUB, DL, {VecFloatVT, MVT::Other},
{Op.getOperand(0), HighBitcast, VecCstFSub});
return DAG.getNode(ISD::STRICT_FADD, DL, {VecFloatVT, MVT::Other},
{FHigh.getValue(1), LowBitcast, FHigh});
}
SDValue FHigh =
DAG.getNode(ISD::FSUB, DL, VecFloatVT, HighBitcast, VecCstFSub);
return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
}
static SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned OpNo = Op.getNode()->isStrictFPOpcode() ? 1 : 0;
SDValue N0 = Op.getOperand(OpNo);
MVT SrcVT = N0.getSimpleValueType();
SDLoc dl(Op);
switch (SrcVT.SimpleTy) {
default:
llvm_unreachable("Custom UINT_TO_FP is not supported!");
case MVT::v2i32:
return lowerUINT_TO_FP_v2i32(Op, DAG, Subtarget, dl);
case MVT::v4i32:
case MVT::v8i32:
return lowerUINT_TO_FP_vXi32(Op, DAG, Subtarget);
case MVT::v2i64:
case MVT::v4i64:
return lowerINT_TO_FP_vXi64(Op, DAG, Subtarget);
}
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
unsigned OpNo = IsStrict ? 1 : 0;
SDValue Src = Op.getOperand(OpNo);
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
MVT SrcVT = Src.getSimpleValueType();
MVT DstVT = Op->getSimpleValueType(0);
SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
if (DstVT == MVT::f128)
return LowerF128Call(Op, DAG, RTLIB::getUINTTOFP(SrcVT, DstVT));
if (DstVT.isVector())
return lowerUINT_TO_FP_vec(Op, DAG, Subtarget);
if (SDValue Extract = vectorizeExtractedCast(Op, DAG, Subtarget))
return Extract;
if (Subtarget.hasAVX512() && isScalarFPTypeInSSEReg(DstVT) &&
(SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget.is64Bit()))) {
// Conversions from unsigned i32 to f32/f64 are legal,
// using VCVTUSI2SS/SD. Same for i64 in 64-bit mode.
return Op;
}
// Promote i32 to i64 and use a signed conversion on 64-bit targets.
if (SrcVT == MVT::i32 && Subtarget.is64Bit()) {
Src = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Src);
if (IsStrict)
return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {DstVT, MVT::Other},
{Chain, Src});
return DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
}
if (SDValue V = LowerI64IntToFP_AVX512DQ(Op, DAG, Subtarget))
return V;
if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
return LowerUINT_TO_FP_i64(Op, DAG, Subtarget);
if (SrcVT == MVT::i32 && X86ScalarSSEf64 && DstVT != MVT::f80)
return LowerUINT_TO_FP_i32(Op, DAG, Subtarget);
if (Subtarget.is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
return SDValue();
// Make a 64-bit buffer, and use it to build an FILD.
SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
if (SrcVT == MVT::i32) {
SDValue OffsetSlot = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
SDValue Store1 =
DAG.getStore(Chain, dl, Src, StackSlot, MachinePointerInfo());
SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
OffsetSlot, MachinePointerInfo());
std::pair<SDValue, SDValue> Tmp =
BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
if (IsStrict)
return DAG.getMergeValues({Tmp.first, Tmp.second}, dl);
return Tmp.first;
}
assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
SDValue ValueToStore = Src;
if (isScalarFPTypeInSSEReg(Op.getValueType()) && !Subtarget.is64Bit()) {
// Bitcasting to f64 here allows us to do a single 64-bit store from
// an SSE register, avoiding the store forwarding penalty that would come
// with two 32-bit stores.
ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
}
SDValue Store =
DAG.getStore(Chain, dl, ValueToStore, StackSlot, MachinePointerInfo());
// For i64 source, we need to add the appropriate power of 2 if the input
// was negative. This is the same as the optimization in
// DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
// we must be careful to do the computation in x87 extended precision, not
// in SSE. (The generic code can't know it's OK to do this, or how to.)
int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOLoad, 8, 8);
SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
SDValue Ops[] = { Store, StackSlot };
SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
MVT::i64, MMO);
Chain = Fild.getValue(1);
// Check whether the sign bit is set.
SDValue SignSet = DAG.getSetCC(
dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
Op.getOperand(OpNo), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
// Build a 64 bit pair (FF, 0) in the constant pool, with FF in the hi bits.
APInt FF(64, 0x5F80000000000000ULL);
SDValue FudgePtr = DAG.getConstantPool(
ConstantInt::get(*DAG.getContext(), FF), PtrVT);
// Get a pointer to FF if the sign bit was set, or to 0 otherwise.
SDValue Zero = DAG.getIntPtrConstant(0, dl);
SDValue Four = DAG.getIntPtrConstant(4, dl);
SDValue Offset = DAG.getSelect(dl, Zero.getValueType(), SignSet, Four, Zero);
FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset);
// Load the value out, extending it from f32 to f80.
SDValue Fudge = DAG.getExtLoad(
ISD::EXTLOAD, dl, MVT::f80, Chain, FudgePtr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
/* Alignment = */ 4);
Chain = Fudge.getValue(1);
// Extend everything to 80 bits to force it to be done on x87.
// TODO: Are there any fast-math-flags to propagate here?
if (IsStrict) {
SDValue Add = DAG.getNode(ISD::STRICT_FADD, dl, {MVT::f80, MVT::Other},
{Chain, Fild, Fudge});
// STRICT_FP_ROUND can't handle equal types.
if (DstVT == MVT::f80)
return Add;
return DAG.getNode(ISD::STRICT_FP_ROUND, dl, {DstVT, MVT::Other},
{Add.getValue(1), Add, DAG.getIntPtrConstant(0, dl)});
}
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
DAG.getIntPtrConstant(0, dl));
}
// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
// is legal, or has an fp128 or f16 source (which needs to be promoted to f32),
// just return an SDValue().
// Otherwise it is assumed to be a conversion from one of f32, f64 or f80
// to i16, i32 or i64, and we lower it to a legal sequence and return the
// result.
SDValue
X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
bool IsSigned, SDValue &Chain) const {
bool IsStrict = Op->isStrictFPOpcode();
SDLoc DL(Op);
EVT DstTy = Op.getValueType();
SDValue Value = Op.getOperand(IsStrict ? 1 : 0);
EVT TheVT = Value.getValueType();
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) {
// f16 must be promoted before using the lowering in this routine.
// fp128 does not use this lowering.
return SDValue();
}
// If using FIST to compute an unsigned i64, we'll need some fixup
// to handle values above the maximum signed i64. A FIST is always
// used for the 32-bit subtarget, but also for f80 on a 64-bit target.
bool UnsignedFixup = !IsSigned && DstTy == MVT::i64;
// FIXME: This does not generate an invalid exception if the input does not
// fit in i32. PR44019
if (!IsSigned && DstTy != MVT::i64) {
// Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
// The low 32 bits of the fist result will have the correct uint32 result.
assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
DstTy = MVT::i64;
}
assert(DstTy.getSimpleVT() <= MVT::i64 &&
DstTy.getSimpleVT() >= MVT::i16 &&
"Unknown FP_TO_INT to lower!");
// We lower FP->int64 into FISTP64 followed by a load from a temporary
// stack slot.
MachineFunction &MF = DAG.getMachineFunction();
unsigned MemSize = DstTy.getStoreSize();
int SSFI = MF.getFrameInfo().CreateStackObject(MemSize, MemSize, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
if (UnsignedFixup) {
//
// Conversion to unsigned i64 is implemented with a select,
// depending on whether the source value fits in the range
// of a signed i64. Let Thresh be the FP equivalent of
// 0x8000000000000000ULL.
//
// Adjust = (Value < Thresh) ? 0 : 0x80000000;
// FltOfs = (Value < Thresh) ? 0 : 0x80000000;
// FistSrc = (Value - FltOfs);
// Fist-to-mem64 FistSrc
// Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
// to XOR'ing the high 32 bits with Adjust.
//
// Being a power of 2, Thresh is exactly representable in all FP formats.
// For X87 we'd like to use the smallest FP type for this constant, but
// for DAG type consistency we have to match the FP operand type.
APFloat Thresh(APFloat::IEEEsingle(), APInt(32, 0x5f000000));
LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
bool LosesInfo = false;
if (TheVT == MVT::f64)
// The rounding mode is irrelevant as the conversion should be exact.
Status = Thresh.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&LosesInfo);
else if (TheVT == MVT::f80)
Status = Thresh.convert(APFloat::x87DoubleExtended(),
APFloat::rmNearestTiesToEven, &LosesInfo);
assert(Status == APFloat::opOK && !LosesInfo &&
"FP conversion should have been exact");
SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
EVT ResVT = getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), TheVT);
SDValue Cmp;
if (IsStrict) {
Cmp = DAG.getSetCC(DL, ResVT, Value, ThreshVal, ISD::SETLT,
Chain, /*IsSignaling*/ true);
Chain = Cmp.getValue(1);
} else {
Cmp = DAG.getSetCC(DL, ResVT, Value, ThreshVal, ISD::SETLT);
}
Adjust = DAG.getSelect(DL, MVT::i64, Cmp,
DAG.getConstant(0, DL, MVT::i64),
DAG.getConstant(APInt::getSignMask(64),
DL, MVT::i64));
SDValue FltOfs = DAG.getSelect(DL, TheVT, Cmp,
DAG.getConstantFP(0.0, DL, TheVT),
ThreshVal);
if (IsStrict) {
Value = DAG.getNode(ISD::STRICT_FSUB, DL, { TheVT, MVT::Other},
{ Chain, Value, FltOfs });
Chain = Value.getValue(1);
} else
Value = DAG.getNode(ISD::FSUB, DL, TheVT, Value, FltOfs);
}
MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, SSFI);
// FIXME This causes a redundant load/store if the SSE-class value is already
// in memory, such as if it is on the callstack.
if (isScalarFPTypeInSSEReg(TheVT)) {
assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
Chain = DAG.getStore(Chain, DL, Value, StackSlot, MPI);
SDVTList Tys = DAG.getVTList(TheVT, MVT::Other);
SDValue Ops[] = { Chain, StackSlot };
unsigned FLDSize = TheVT.getStoreSize();
assert(FLDSize <= MemSize && "Stack slot not big enough");
MachineMemOperand *MMO = MF.getMachineMemOperand(
MPI, MachineMemOperand::MOLoad, FLDSize, FLDSize);
Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, TheVT, MMO);
Chain = Value.getValue(1);
}
// Build the FP_TO_INT*_IN_MEM
MachineMemOperand *MMO = MF.getMachineMemOperand(
MPI, MachineMemOperand::MOStore, MemSize, MemSize);
SDValue Ops[] = { Chain, Value, StackSlot };
SDValue FIST = DAG.getMemIntrinsicNode(X86ISD::FP_TO_INT_IN_MEM, DL,
DAG.getVTList(MVT::Other),
Ops, DstTy, MMO);
SDValue Res = DAG.getLoad(Op.getValueType(), SDLoc(Op), FIST, StackSlot, MPI);
Chain = Res.getValue(1);
// If we need an unsigned fixup, XOR the result with adjust.
if (UnsignedFixup)
Res = DAG.getNode(ISD::XOR, DL, MVT::i64, Res, Adjust);
return Res;
}
static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT InVT = In.getSimpleValueType();
SDLoc dl(Op);
unsigned Opc = Op.getOpcode();
assert(VT.isVector() && InVT.isVector() && "Expected vector type");
assert((Opc == ISD::ANY_EXTEND || Opc == ISD::ZERO_EXTEND) &&
"Unexpected extension opcode");
assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
"Expected same number of elements");
assert((VT.getVectorElementType() == MVT::i16 ||
VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::i64) &&
"Unexpected element type");
assert((InVT.getVectorElementType() == MVT::i8 ||
InVT.getVectorElementType() == MVT::i16 ||
InVT.getVectorElementType() == MVT::i32) &&
"Unexpected element type");
unsigned ExtendInVecOpc = getOpcode_EXTEND_VECTOR_INREG(Opc);
// Custom legalize v8i8->v8i64 on CPUs without avx512bw.
if (InVT == MVT::v8i8) {
if (VT != MVT::v8i64)
return SDValue();
In = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op),
MVT::v16i8, In, DAG.getUNDEF(MVT::v8i8));
return DAG.getNode(ExtendInVecOpc, dl, VT, In);
}
if (Subtarget.hasInt256())
return Op;
// Optimize vectors in AVX mode:
//
// v8i16 -> v8i32
// Use vpmovzwd for 4 lower elements v8i16 -> v4i32.
// Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
// Concat upper and lower parts.
//
// v4i32 -> v4i64
// Use vpmovzdq for 4 lower elements v4i32 -> v2i64.
// Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
// Concat upper and lower parts.
//
MVT HalfVT = VT.getHalfNumVectorElementsVT();
SDValue OpLo = DAG.getNode(ExtendInVecOpc, dl, HalfVT, In);
// Short-circuit if we can determine that each 128-bit half is the same value.
// Otherwise, this is difficult to match and optimize.
if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(In))
if (hasIdenticalHalvesShuffleMask(Shuf->getMask()))
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpLo);
SDValue ZeroVec = DAG.getConstant(0, dl, InVT);
SDValue Undef = DAG.getUNDEF(InVT);
bool NeedZero = Opc == ISD::ZERO_EXTEND;
SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
OpHi = DAG.getBitcast(HalfVT, OpHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
// Helper to split and extend a v16i1 mask to v16i8 or v16i16.
static SDValue SplitAndExtendv16i1(unsigned ExtOpc, MVT VT, SDValue In,
const SDLoc &dl, SelectionDAG &DAG) {
assert((VT == MVT::v16i8 || VT == MVT::v16i16) && "Unexpected VT.");
SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i1, In,
DAG.getIntPtrConstant(0, dl));
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i1, In,
DAG.getIntPtrConstant(8, dl));
Lo = DAG.getNode(ExtOpc, dl, MVT::v8i16, Lo);
Hi = DAG.getNode(ExtOpc, dl, MVT::v8i16, Hi);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i16, Lo, Hi);
return DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
}
static SDValue LowerZERO_EXTEND_Mask(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!");
SDLoc DL(Op);
unsigned NumElts = VT.getVectorNumElements();
// For all vectors, but vXi8 we can just emit a sign_extend and a shift. This
// avoids a constant pool load.
if (VT.getVectorElementType() != MVT::i8) {
SDValue Extend = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, In);
return DAG.getNode(ISD::SRL, DL, VT, Extend,
DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT));
}
// Extend VT if BWI is not supported.
MVT ExtVT = VT;
if (!Subtarget.hasBWI()) {
// If v16i32 is to be avoided, we'll need to split and concatenate.
if (NumElts == 16 && !Subtarget.canExtendTo512DQ())
return SplitAndExtendv16i1(ISD::ZERO_EXTEND, VT, In, DL, DAG);
ExtVT = MVT::getVectorVT(MVT::i32, NumElts);
}
// Widen to 512-bits if VLX is not supported.
MVT WideVT = ExtVT;
if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) {
NumElts *= 512 / ExtVT.getSizeInBits();
InVT = MVT::getVectorVT(MVT::i1, NumElts);
In = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT, DAG.getUNDEF(InVT),
In, DAG.getIntPtrConstant(0, DL));
WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(),
NumElts);
}
SDValue One = DAG.getConstant(1, DL, WideVT);
SDValue Zero = DAG.getConstant(0, DL, WideVT);
SDValue SelectedVal = DAG.getSelect(DL, WideVT, In, One, Zero);
// Truncate if we had to extend above.
if (VT != ExtVT) {
WideVT = MVT::getVectorVT(MVT::i8, NumElts);
SelectedVal = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SelectedVal);
}
// Extract back to 128/256-bit if we widened.
if (WideVT != VT)
SelectedVal = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SelectedVal,
DAG.getIntPtrConstant(0, DL));
return SelectedVal;
}
static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = Op.getOperand(0);
MVT SVT = In.getSimpleValueType();
if (SVT.getVectorElementType() == MVT::i1)
return LowerZERO_EXTEND_Mask(Op, Subtarget, DAG);
assert(Subtarget.hasAVX() && "Expected AVX support");
return LowerAVXExtend(Op, DAG, Subtarget);
}
/// Helper to recursively truncate vector elements in half with PACKSS/PACKUS.
/// It makes use of the fact that vectors with enough leading sign/zero bits
/// prevent the PACKSS/PACKUS from saturating the results.
/// AVX2 (Int256) sub-targets require extra shuffling as the PACK*S operates
/// within each 128-bit lane.
static SDValue truncateVectorWithPACK(unsigned Opcode, EVT DstVT, SDValue In,
const SDLoc &DL, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert((Opcode == X86ISD::PACKSS || Opcode == X86ISD::PACKUS) &&
"Unexpected PACK opcode");
assert(DstVT.isVector() && "VT not a vector?");
// Requires SSE2 but AVX512 has fast vector truncate.
if (!Subtarget.hasSSE2())
return SDValue();
EVT SrcVT = In.getValueType();
// No truncation required, we might get here due to recursive calls.
if (SrcVT == DstVT)
return In;
// We only support vector truncation to 64bits or greater from a
// 128bits or greater source.
unsigned DstSizeInBits = DstVT.getSizeInBits();
unsigned SrcSizeInBits = SrcVT.getSizeInBits();
if ((DstSizeInBits % 64) != 0 || (SrcSizeInBits % 128) != 0)
return SDValue();
unsigned NumElems = SrcVT.getVectorNumElements();
if (!isPowerOf2_32(NumElems))
return SDValue();
LLVMContext &Ctx = *DAG.getContext();
assert(DstVT.getVectorNumElements() == NumElems && "Illegal truncation");
assert(SrcSizeInBits > DstSizeInBits && "Illegal truncation");
EVT PackedSVT = EVT::getIntegerVT(Ctx, SrcVT.getScalarSizeInBits() / 2);
// Pack to the largest type possible:
// vXi64/vXi32 -> PACK*SDW and vXi16 -> PACK*SWB.
EVT InVT = MVT::i16, OutVT = MVT::i8;
if (SrcVT.getScalarSizeInBits() > 16 &&
(Opcode == X86ISD::PACKSS || Subtarget.hasSSE41())) {
InVT = MVT::i32;
OutVT = MVT::i16;
}
// 128bit -> 64bit truncate - PACK 128-bit src in the lower subvector.
if (SrcVT.is128BitVector()) {
InVT = EVT::getVectorVT(Ctx, InVT, 128 / InVT.getSizeInBits());
OutVT = EVT::getVectorVT(Ctx, OutVT, 128 / OutVT.getSizeInBits());
In = DAG.getBitcast(InVT, In);
SDValue Res = DAG.getNode(Opcode, DL, OutVT, In, In);
Res = extractSubVector(Res, 0, DAG, DL, 64);
return DAG.getBitcast(DstVT, Res);
}
// Extract lower/upper subvectors.
unsigned NumSubElts = NumElems / 2;
SDValue Lo = extractSubVector(In, 0 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
SDValue Hi = extractSubVector(In, 1 * NumSubElts, DAG, DL, SrcSizeInBits / 2);
unsigned SubSizeInBits = SrcSizeInBits / 2;
InVT = EVT::getVectorVT(Ctx, InVT, SubSizeInBits / InVT.getSizeInBits());
OutVT = EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
// 256bit -> 128bit truncate - PACK lower/upper 128-bit subvectors.
if (SrcVT.is256BitVector() && DstVT.is128BitVector()) {
Lo = DAG.getBitcast(InVT, Lo);
Hi = DAG.getBitcast(InVT, Hi);
SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi);
return DAG.getBitcast(DstVT, Res);
}
// AVX2: 512bit -> 256bit truncate - PACK lower/upper 256-bit subvectors.
// AVX2: 512bit -> 128bit truncate - PACK(PACK, PACK).
if (SrcVT.is512BitVector() && Subtarget.hasInt256()) {
Lo = DAG.getBitcast(InVT, Lo);
Hi = DAG.getBitcast(InVT, Hi);
SDValue Res = DAG.getNode(Opcode, DL, OutVT, Lo, Hi);
// 256-bit PACK(ARG0, ARG1) leaves us with ((LO0,LO1),(HI0,HI1)),
// so we need to shuffle to get ((LO0,HI0),(LO1,HI1)).
// Scale shuffle mask to avoid bitcasts and help ComputeNumSignBits.
SmallVector<int, 64> Mask;
int Scale = 64 / OutVT.getScalarSizeInBits();
scaleShuffleMask<int>(Scale, ArrayRef<int>({ 0, 2, 1, 3 }), Mask);
Res = DAG.getVectorShuffle(OutVT, DL, Res, Res, Mask);
if (DstVT.is256BitVector())
return DAG.getBitcast(DstVT, Res);
// If 512bit -> 128bit truncate another stage.
EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
Res = DAG.getBitcast(PackedVT, Res);
return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget);
}
// Recursively pack lower/upper subvectors, concat result and pack again.
assert(SrcSizeInBits >= 256 && "Expected 256-bit vector or greater");
EVT PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumSubElts);
Lo = truncateVectorWithPACK(Opcode, PackedVT, Lo, DL, DAG, Subtarget);
Hi = truncateVectorWithPACK(Opcode, PackedVT, Hi, DL, DAG, Subtarget);
PackedVT = EVT::getVectorVT(Ctx, PackedSVT, NumElems);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, PackedVT, Lo, Hi);
return truncateVectorWithPACK(Opcode, DstVT, Res, DL, DAG, Subtarget);
}
static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT InVT = In.getSimpleValueType();
assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type.");
// Shift LSB to MSB and use VPMOVB/W2M or TESTD/Q.
unsigned ShiftInx = InVT.getScalarSizeInBits() - 1;
if (InVT.getScalarSizeInBits() <= 16) {
if (Subtarget.hasBWI()) {
// legal, will go to VPMOVB2M, VPMOVW2M
if (DAG.ComputeNumSignBits(In) < InVT.getScalarSizeInBits()) {
// We need to shift to get the lsb into sign position.
// Shift packed bytes not supported natively, bitcast to word
MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16);
In = DAG.getNode(ISD::SHL, DL, ExtVT,
DAG.getBitcast(ExtVT, In),
DAG.getConstant(ShiftInx, DL, ExtVT));
In = DAG.getBitcast(InVT, In);
}
return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, InVT),
In, ISD::SETGT);
}
// Use TESTD/Q, extended vector to packed dword/qword.
assert((InVT.is256BitVector() || InVT.is128BitVector()) &&
"Unexpected vector type.");
unsigned NumElts = InVT.getVectorNumElements();
assert((NumElts == 8 || NumElts == 16) && "Unexpected number of elements");
// We need to change to a wider element type that we have support for.
// For 8 element vectors this is easy, we either extend to v8i32 or v8i64.
// For 16 element vectors we extend to v16i32 unless we are explicitly
// trying to avoid 512-bit vectors. If we are avoiding 512-bit vectors
// we need to split into two 8 element vectors which we can extend to v8i32,
// truncate and concat the results. There's an additional complication if
// the original type is v16i8. In that case we can't split the v16i8 so
// first we pre-extend it to v16i16 which we can split to v8i16, then extend
// to v8i32, truncate that to v8i1 and concat the two halves.
if (NumElts == 16 && !Subtarget.canExtendTo512DQ()) {
if (InVT == MVT::v16i8) {
// First we need to sign extend up to 256-bits so we can split that.
InVT = MVT::v16i16;
In = DAG.getNode(ISD::SIGN_EXTEND, DL, InVT, In);
}
SDValue Lo = extract128BitVector(In, 0, DAG, DL);
SDValue Hi = extract128BitVector(In, 8, DAG, DL);
// We're split now, just emit two truncates and a concat. The two
// truncates will trigger legalization to come back to this function.
Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i1, Lo);
Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i1, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
// We either have 8 elements or we're allowed to use 512-bit vectors.
// If we have VLX, we want to use the narrowest vector that can get the
// job done so we use vXi32.
MVT EltVT = Subtarget.hasVLX() ? MVT::i32 : MVT::getIntegerVT(512/NumElts);
MVT ExtVT = MVT::getVectorVT(EltVT, NumElts);
In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
InVT = ExtVT;
ShiftInx = InVT.getScalarSizeInBits() - 1;
}
if (DAG.ComputeNumSignBits(In) < InVT.getScalarSizeInBits()) {
// We need to shift to get the lsb into sign position.
In = DAG.getNode(ISD::SHL, DL, InVT, In,
DAG.getConstant(ShiftInx, DL, InVT));
}
// If we have DQI, emit a pattern that will be iseled as vpmovq2m/vpmovd2m.
if (Subtarget.hasDQI())
return DAG.getSetCC(DL, VT, DAG.getConstant(0, DL, InVT), In, ISD::SETGT);
return DAG.getSetCC(DL, VT, In, DAG.getConstant(0, DL, InVT), ISD::SETNE);
}
SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT InVT = In.getSimpleValueType();
unsigned InNumEltBits = InVT.getScalarSizeInBits();
assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
"Invalid TRUNCATE operation");
// If we're called by the type legalizer, handle a few cases.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(InVT)) {
if ((InVT == MVT::v8i64 || InVT == MVT::v16i32 || InVT == MVT::v16i64) &&
VT.is128BitVector()) {
assert(Subtarget.hasVLX() && "Unexpected subtarget!");
// The default behavior is to truncate one step, concatenate, and then
// truncate the remainder. We'd rather produce two 64-bit results and
// concatenate those.
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(In, DL);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
Lo = DAG.getNode(ISD::TRUNCATE, DL, LoVT, Lo);
Hi = DAG.getNode(ISD::TRUNCATE, DL, HiVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
// Otherwise let default legalization handle it.
return SDValue();
}
if (VT.getVectorElementType() == MVT::i1)
return LowerTruncateVecI1(Op, DAG, Subtarget);
// vpmovqb/w/d, vpmovdb/w, vpmovwb
if (Subtarget.hasAVX512()) {
// word to byte only under BWI. Otherwise we have to promoted to v16i32
// and then truncate that. But we should only do that if we haven't been
// asked to avoid 512-bit vectors. The actual promotion to v16i32 will be
// handled by isel patterns.
if (InVT != MVT::v16i16 || Subtarget.hasBWI() ||
Subtarget.canExtendTo512DQ())
return Op;
}
unsigned NumPackedSignBits = std::min<unsigned>(VT.getScalarSizeInBits(), 16);
unsigned NumPackedZeroBits = Subtarget.hasSSE41() ? NumPackedSignBits : 8;
// Truncate with PACKUS if we are truncating a vector with leading zero bits
// that extend all the way to the packed/truncated value.
// Pre-SSE41 we can only use PACKUSWB.
KnownBits Known = DAG.computeKnownBits(In);
if ((InNumEltBits - NumPackedZeroBits) <= Known.countMinLeadingZeros())
if (SDValue V =
truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget))
return V;
// Truncate with PACKSS if we are truncating a vector with sign-bits that
// extend all the way to the packed/truncated value.
if ((InNumEltBits - NumPackedSignBits) < DAG.ComputeNumSignBits(In))
if (SDValue V =
truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget))
return V;
// Handle truncation of V256 to V128 using shuffles.
assert(VT.is128BitVector() && InVT.is256BitVector() && "Unexpected types!");
if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
// On AVX2, v4i64 -> v4i32 becomes VPERMD.
if (Subtarget.hasInt256()) {
static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
In = DAG.getBitcast(MVT::v8i32, In);
In = DAG.getVectorShuffle(MVT::v8i32, DL, In, In, ShufMask);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
DAG.getIntPtrConstant(0, DL));
}
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(0, DL));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(2, DL));
OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
static const int ShufMask[] = {0, 2, 4, 6};
return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
}
if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
// On AVX2, v8i32 -> v8i16 becomes PSHUFB.
if (Subtarget.hasInt256()) {
In = DAG.getBitcast(MVT::v32i8, In);
// The PSHUFB mask:
static const int ShufMask1[] = { 0, 1, 4, 5, 8, 9, 12, 13,
-1, -1, -1, -1, -1, -1, -1, -1,
16, 17, 20, 21, 24, 25, 28, 29,
-1, -1, -1, -1, -1, -1, -1, -1 };
In = DAG.getVectorShuffle(MVT::v32i8, DL, In, In, ShufMask1);
In = DAG.getBitcast(MVT::v4i64, In);
static const int ShufMask2[] = {0, 2, -1, -1};
In = DAG.getVectorShuffle(MVT::v4i64, DL, In, In, ShufMask2);
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(0, DL));
return DAG.getBitcast(VT, In);
}
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
DAG.getIntPtrConstant(0, DL));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
DAG.getIntPtrConstant(4, DL));
OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
// The PSHUFB mask:
static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
-1, -1, -1, -1, -1, -1, -1, -1};
OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, OpLo, ShufMask1);
OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, OpHi, ShufMask1);
OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
// The MOVLHPS Mask:
static const int ShufMask2[] = {0, 1, 4, 5};
SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
return DAG.getBitcast(MVT::v8i16, res);
}
if (VT == MVT::v16i8 && InVT == MVT::v16i16) {
// Use an AND to zero uppper bits for PACKUS.
In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(255, DL, InVT));
SDValue InLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i16, In,
DAG.getIntPtrConstant(0, DL));
SDValue InHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i16, In,
DAG.getIntPtrConstant(8, DL));
return DAG.getNode(X86ISD::PACKUS, DL, VT, InLo, InHi);
}
llvm_unreachable("All 256->128 cases should have been handled above!");
}
SDValue X86TargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
MVT VT = Op->getSimpleValueType(0);
SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
MVT SrcVT = Src.getSimpleValueType();
SDLoc dl(Op);
if (VT.isVector()) {
if (VT == MVT::v2i1 && SrcVT == MVT::v2f64) {
MVT ResVT = MVT::v4i32;
MVT TruncVT = MVT::v4i1;
unsigned Opc;
if (IsStrict)
Opc = IsSigned ? X86ISD::STRICT_CVTTP2SI : X86ISD::STRICT_CVTTP2UI;
else
Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
if (!IsSigned && !Subtarget.hasVLX()) {
assert(Subtarget.useAVX512Regs() && "Unexpected features!");
// Widen to 512-bits.
ResVT = MVT::v8i32;
TruncVT = MVT::v8i1;
Opc = Op.getOpcode();
// Need to concat with zero vector for strict fp to avoid spurious
// exceptions.
// TODO: Should we just do this for non-strict as well?
SDValue Tmp = IsStrict ? DAG.getConstantFP(0.0, dl, MVT::v8f64)
: DAG.getUNDEF(MVT::v8f64);
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8f64, Tmp, Src,
DAG.getIntPtrConstant(0, dl));
}
SDValue Res, Chain;
if (IsStrict) {
Res =
DAG.getNode(Opc, dl, {ResVT, MVT::Other}, {Op->getOperand(0), Src});
Chain = Res.getValue(1);
} else {
Res = DAG.getNode(Opc, dl, ResVT, Src);
}
Res = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Res);
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i1, Res,
DAG.getIntPtrConstant(0, dl));
if (IsStrict)
return DAG.getMergeValues({Res, Chain}, dl);
return Res;
}
// v8f64->v8i32 is legal, but we need v8i32 to be custom for v8f32.
if (VT == MVT::v8i32 && SrcVT == MVT::v8f64) {
assert(!IsSigned && "Expected unsigned conversion!");
assert(Subtarget.useAVX512Regs() && "Requires avx512f");
return Op;
}
// Widen vXi32 fp_to_uint with avx512f to 512-bit source.
if ((VT == MVT::v4i32 || VT == MVT::v8i32) &&
(SrcVT == MVT::v4f64 || SrcVT == MVT::v4f32 || SrcVT == MVT::v8f32)) {
assert(!IsSigned && "Expected unsigned conversion!");
assert(Subtarget.useAVX512Regs() && !Subtarget.hasVLX() &&
"Unexpected features!");
MVT WideVT = SrcVT == MVT::v4f64 ? MVT::v8f64 : MVT::v16f32;
MVT ResVT = SrcVT == MVT::v4f64 ? MVT::v8i32 : MVT::v16i32;
// Need to concat with zero vector for strict fp to avoid spurious
// exceptions.
// TODO: Should we just do this for non-strict as well?
SDValue Tmp =
IsStrict ? DAG.getConstantFP(0.0, dl, WideVT) : DAG.getUNDEF(WideVT);
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVT, Tmp, Src,
DAG.getIntPtrConstant(0, dl));
SDValue Res, Chain;
if (IsStrict) {
Res = DAG.getNode(ISD::STRICT_FP_TO_UINT, dl, {ResVT, MVT::Other},
{Op->getOperand(0), Src});
Chain = Res.getValue(1);
} else {
Res = DAG.getNode(ISD::FP_TO_UINT, dl, ResVT, Src);
}
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Res,
DAG.getIntPtrConstant(0, dl));
if (IsStrict)
return DAG.getMergeValues({Res, Chain}, dl);
return Res;
}
// Widen vXi64 fp_to_uint/fp_to_sint with avx512dq to 512-bit source.
if ((VT == MVT::v2i64 || VT == MVT::v4i64) &&
(SrcVT == MVT::v2f64 || SrcVT == MVT::v4f64 || SrcVT == MVT::v4f32)) {
assert(Subtarget.useAVX512Regs() && Subtarget.hasDQI() &&
!Subtarget.hasVLX() && "Unexpected features!");
MVT WideVT = SrcVT == MVT::v4f32 ? MVT::v8f32 : MVT::v8f64;
// Need to concat with zero vector for strict fp to avoid spurious
// exceptions.
// TODO: Should we just do this for non-strict as well?
SDValue Tmp =
IsStrict ? DAG.getConstantFP(0.0, dl, WideVT) : DAG.getUNDEF(WideVT);
Src = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideVT, Tmp, Src,
DAG.getIntPtrConstant(0, dl));
SDValue Res, Chain;
if (IsStrict) {
Res = DAG.getNode(Op.getOpcode(), dl, {MVT::v8i64, MVT::Other},
{Op->getOperand(0), Src});
Chain = Res.getValue(1);
} else {
Res = DAG.getNode(Op.getOpcode(), dl, MVT::v8i64, Src);
}
Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Res,
DAG.getIntPtrConstant(0, dl));
if (IsStrict)
return DAG.getMergeValues({Res, Chain}, dl);
return Res;
}
if (VT == MVT::v2i64 && SrcVT == MVT::v2f32) {
assert(Subtarget.hasDQI() && Subtarget.hasVLX() && "Requires AVX512DQVL");
SDValue Tmp = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
DAG.getUNDEF(MVT::v2f32));
if (IsStrict) {
unsigned Opc = IsSigned ? X86ISD::STRICT_CVTTP2SI
: X86ISD::STRICT_CVTTP2UI;
return DAG.getNode(Opc, dl, {VT, MVT::Other}, {Op->getOperand(0), Tmp});
}
unsigned Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
return DAG.getNode(Opc, dl, VT, Tmp);
}
return SDValue();
}
assert(!VT.isVector());
bool UseSSEReg = isScalarFPTypeInSSEReg(SrcVT);
if (!IsSigned && UseSSEReg) {
// Conversions from f32/f64 with AVX512 should be legal.
if (Subtarget.hasAVX512())
return Op;
// Use default expansion for i64.
if (VT == MVT::i64)
return SDValue();
assert(VT == MVT::i32 && "Unexpected VT!");
// Promote i32 to i64 and use a signed operation on 64-bit targets.
// FIXME: This does not generate an invalid exception if the input does not
// fit in i32. PR44019
if (Subtarget.is64Bit()) {
SDValue Res, Chain;
if (IsStrict) {
Res = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { MVT::i64, MVT::Other},
{ Op.getOperand(0), Src });
Chain = Res.getValue(1);
} else
Res = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i64, Src);
Res = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
if (IsStrict)
return DAG.getMergeValues({ Res, Chain }, dl);
return Res;
}
// Use default expansion for SSE1/2 targets without SSE3. With SSE3 we can
// use fisttp which will be handled later.
if (!Subtarget.hasSSE3())
return SDValue();
}
// Promote i16 to i32 if we can use a SSE operation or the type is f128.
// FIXME: This does not generate an invalid exception if the input does not
// fit in i16. PR44019
if (VT == MVT::i16 && (UseSSEReg || SrcVT == MVT::f128)) {
assert(IsSigned && "Expected i16 FP_TO_UINT to have been promoted!");
SDValue Res, Chain;
if (IsStrict) {
Res = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { MVT::i32, MVT::Other},
{ Op.getOperand(0), Src });
Chain = Res.getValue(1);
} else
Res = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
Res = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
if (IsStrict)
return DAG.getMergeValues({ Res, Chain }, dl);
return Res;
}
// If this is a FP_TO_SINT using SSEReg we're done.
if (UseSSEReg && IsSigned)
return Op;
// fp128 needs to use a libcall.
if (SrcVT == MVT::f128) {
RTLIB::Libcall LC;
if (IsSigned)
LC = RTLIB::getFPTOSINT(SrcVT, VT);
else
LC = RTLIB::getFPTOUINT(SrcVT, VT);
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp = makeLibCall(DAG, LC, VT, Src, CallOptions,
SDLoc(Op), Chain);
if (IsStrict)
return DAG.getMergeValues({ Tmp.first, Tmp.second }, dl);
return Tmp.first;
}
// Fall back to X87.
SDValue Chain;
if (SDValue V = FP_TO_INTHelper(Op, DAG, IsSigned, Chain)) {
if (IsStrict)
return DAG.getMergeValues({V, Chain}, dl);
return V;
}
llvm_unreachable("Expected FP_TO_INTHelper to handle all remaining cases.");
}
SDValue X86TargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(IsStrict ? 1 : 0);
MVT SVT = In.getSimpleValueType();
if (VT == MVT::f128) {
RTLIB::Libcall LC = RTLIB::getFPEXT(SVT, VT);
return LowerF128Call(Op, DAG, LC);
}
assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
SDValue Res =
DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32, In, DAG.getUNDEF(SVT));
if (IsStrict)
return DAG.getNode(X86ISD::STRICT_VFPEXT, DL, {VT, MVT::Other},
{Op->getOperand(0), Res});
return DAG.getNode(X86ISD::VFPEXT, DL, VT, Res);
}
SDValue X86TargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
bool IsStrict = Op->isStrictFPOpcode();
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(IsStrict ? 1 : 0);
MVT SVT = In.getSimpleValueType();
// It's legal except when f128 is involved
if (SVT != MVT::f128)
return Op;
RTLIB::Libcall LC = RTLIB::getFPROUND(SVT, VT);
// FP_ROUND node has a second operand indicating whether it is known to be
// precise. That doesn't take part in the LibCall so we can't directly use
// LowerF128Call.
SDLoc dl(Op);
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp = makeLibCall(DAG, LC, VT, In, CallOptions,
dl, Chain);
if (IsStrict)
return DAG.getMergeValues({ Tmp.first, Tmp.second }, dl);
return Tmp.first;
}
/// Depending on uarch and/or optimizing for size, we might prefer to use a
/// vector operation in place of the typical scalar operation.
static SDValue lowerAddSubToHorizontalOp(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// If both operands have other uses, this is probably not profitable.
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
if (!LHS.hasOneUse() && !RHS.hasOneUse())
return Op;
// FP horizontal add/sub were added with SSE3. Integer with SSSE3.
bool IsFP = Op.getSimpleValueType().isFloatingPoint();
if (IsFP && !Subtarget.hasSSE3())
return Op;
if (!IsFP && !Subtarget.hasSSSE3())
return Op;
// Extract from a common vector.
if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
LHS.getOperand(0) != RHS.getOperand(0) ||
!isa<ConstantSDNode>(LHS.getOperand(1)) ||
!isa<ConstantSDNode>(RHS.getOperand(1)) ||
!shouldUseHorizontalOp(true, DAG, Subtarget))
return Op;
// Allow commuted 'hadd' ops.
// TODO: Allow commuted (f)sub by negating the result of (F)HSUB?
unsigned HOpcode;
switch (Op.getOpcode()) {
case ISD::ADD: HOpcode = X86ISD::HADD; break;
case ISD::SUB: HOpcode = X86ISD::HSUB; break;
case ISD::FADD: HOpcode = X86ISD::FHADD; break;
case ISD::FSUB: HOpcode = X86ISD::FHSUB; break;
default:
llvm_unreachable("Trying to lower unsupported opcode to horizontal op");
}
unsigned LExtIndex = LHS.getConstantOperandVal(1);
unsigned RExtIndex = RHS.getConstantOperandVal(1);
if ((LExtIndex & 1) == 1 && (RExtIndex & 1) == 0 &&
(HOpcode == X86ISD::HADD || HOpcode == X86ISD::FHADD))
std::swap(LExtIndex, RExtIndex);
if ((LExtIndex & 1) != 0 || RExtIndex != (LExtIndex + 1))
return Op;
SDValue X = LHS.getOperand(0);
EVT VecVT = X.getValueType();
unsigned BitWidth = VecVT.getSizeInBits();
unsigned NumLanes = BitWidth / 128;
unsigned NumEltsPerLane = VecVT.getVectorNumElements() / NumLanes;
assert((BitWidth == 128 || BitWidth == 256 || BitWidth == 512) &&
"Not expecting illegal vector widths here");
// Creating a 256-bit horizontal op would be wasteful, and there is no 512-bit
// equivalent, so extract the 256/512-bit source op to 128-bit if we can.
SDLoc DL(Op);
if (BitWidth == 256 || BitWidth == 512) {
unsigned LaneIdx = LExtIndex / NumEltsPerLane;
X = extract128BitVector(X, LaneIdx * NumEltsPerLane, DAG, DL);
LExtIndex %= NumEltsPerLane;
}
// add (extractelt (X, 0), extractelt (X, 1)) --> extractelt (hadd X, X), 0
// add (extractelt (X, 1), extractelt (X, 0)) --> extractelt (hadd X, X), 0
// add (extractelt (X, 2), extractelt (X, 3)) --> extractelt (hadd X, X), 1
// sub (extractelt (X, 0), extractelt (X, 1)) --> extractelt (hsub X, X), 0
SDValue HOp = DAG.getNode(HOpcode, DL, X.getValueType(), X, X);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getSimpleValueType(), HOp,
DAG.getIntPtrConstant(LExtIndex / 2, DL));
}
/// Depending on uarch and/or optimizing for size, we might prefer to use a
/// vector operation in place of the typical scalar operation.
SDValue X86TargetLowering::lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const {
assert((Op.getValueType() == MVT::f32 || Op.getValueType() == MVT::f64) &&
"Only expecting float/double");
return lowerAddSubToHorizontalOp(Op, DAG, Subtarget);
}
/// The only differences between FABS and FNEG are the mask and the logic op.
/// FNEG also has a folding opportunity for FNEG(FABS(x)).
static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
"Wrong opcode for lowering FABS or FNEG.");
bool IsFABS = (Op.getOpcode() == ISD::FABS);
// If this is a FABS and it has an FNEG user, bail out to fold the combination
// into an FNABS. We'll lower the FABS after that if it is still in use.
if (IsFABS)
for (SDNode *User : Op->uses())
if (User->getOpcode() == ISD::FNEG)
return Op;
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
bool IsF128 = (VT == MVT::f128);
assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 ||
VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) &&
"Unexpected type in LowerFABSorFNEG");
// FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
// decide if we should generate a 16-byte constant mask when we only need 4 or
// 8 bytes for the scalar case.
// There are no scalar bitwise logical SSE/AVX instructions, so we
// generate a 16-byte vector constant and logic op even for the scalar case.
// Using a 16-byte mask allows folding the load of the mask with
// the logic op, so it can save (~4 bytes) on code size.
bool IsFakeVector = !VT.isVector() && !IsF128;
MVT LogicVT = VT;
if (IsFakeVector)
LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
unsigned EltBits = VT.getScalarSizeInBits();
// For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
APInt MaskElt = IsFABS ? APInt::getSignedMaxValue(EltBits) :
APInt::getSignMask(EltBits);
const fltSemantics &Sem = SelectionDAG::EVTToAPFloatSemantics(VT);
SDValue Mask = DAG.getConstantFP(APFloat(Sem, MaskElt), dl, LogicVT);
SDValue Op0 = Op.getOperand(0);
bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
unsigned LogicOp = IsFABS ? X86ISD::FAND :
IsFNABS ? X86ISD::FOR :
X86ISD::FXOR;
SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
if (VT.isVector() || IsF128)
return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
// For the scalar case extend to a 128-bit vector, perform the logic op,
// and extract the scalar result back out.
Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue Mag = Op.getOperand(0);
SDValue Sign = Op.getOperand(1);
SDLoc dl(Op);
// If the sign operand is smaller, extend it first.
MVT VT = Op.getSimpleValueType();
if (Sign.getSimpleValueType().bitsLT(VT))
Sign = DAG.getNode(ISD::FP_EXTEND, dl, VT, Sign);
// And if it is bigger, shrink it first.
if (Sign.getSimpleValueType().bitsGT(VT))
Sign = DAG.getNode(ISD::FP_ROUND, dl, VT, Sign, DAG.getIntPtrConstant(1, dl));
// At this point the operands and the result should have the same
// type, and that won't be f80 since that is not custom lowered.
bool IsF128 = (VT == MVT::f128);
assert((VT == MVT::f64 || VT == MVT::f32 || VT == MVT::f128 ||
VT == MVT::v2f64 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
VT == MVT::v8f32 || VT == MVT::v8f64 || VT == MVT::v16f32) &&
"Unexpected type in LowerFCOPYSIGN");
const fltSemantics &Sem = SelectionDAG::EVTToAPFloatSemantics(VT);
// Perform all scalar logic operations as 16-byte vectors because there are no
// scalar FP logic instructions in SSE.
// TODO: This isn't necessary. If we used scalar types, we might avoid some
// unnecessary splats, but we might miss load folding opportunities. Should
// this decision be based on OptimizeForSize?
bool IsFakeVector = !VT.isVector() && !IsF128;
MVT LogicVT = VT;
if (IsFakeVector)
LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
// The mask constants are automatically splatted for vector types.
unsigned EltSizeInBits = VT.getScalarSizeInBits();
SDValue SignMask = DAG.getConstantFP(
APFloat(Sem, APInt::getSignMask(EltSizeInBits)), dl, LogicVT);
SDValue MagMask = DAG.getConstantFP(
APFloat(Sem, APInt::getSignedMaxValue(EltSizeInBits)), dl, LogicVT);
// First, clear all bits but the sign bit from the second operand (sign).
if (IsFakeVector)
Sign = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Sign);
SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Sign, SignMask);
// Next, clear the sign bit from the first operand (magnitude).
// TODO: If we had general constant folding for FP logic ops, this check
// wouldn't be necessary.
SDValue MagBits;
if (ConstantFPSDNode *Op0CN = isConstOrConstSplatFP(Mag)) {
APFloat APF = Op0CN->getValueAPF();
APF.clearSign();
MagBits = DAG.getConstantFP(APF, dl, LogicVT);
} else {
// If the magnitude operand wasn't a constant, we need to AND out the sign.
if (IsFakeVector)
Mag = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Mag);
MagBits = DAG.getNode(X86ISD::FAND, dl, LogicVT, Mag, MagMask);
}
// OR the magnitude value with the sign bit.
SDValue Or = DAG.getNode(X86ISD::FOR, dl, LogicVT, MagBits, SignBit);
return !IsFakeVector ? Or : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Or,
DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue N0 = Op.getOperand(0);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT OpVT = N0.getSimpleValueType();
assert((OpVT == MVT::f32 || OpVT == MVT::f64) &&
"Unexpected type for FGETSIGN");
// Lower ISD::FGETSIGN to (AND (X86ISD::MOVMSK ...) 1).
MVT VecVT = (OpVT == MVT::f32 ? MVT::v4f32 : MVT::v2f64);
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, N0);
Res = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32, Res);
Res = DAG.getZExtOrTrunc(Res, dl, VT);
Res = DAG.getNode(ISD::AND, dl, VT, Res, DAG.getConstant(1, dl, VT));
return Res;
}
/// Helper for creating a X86ISD::SETCC node.
static SDValue getSETCC(X86::CondCode Cond, SDValue EFLAGS, const SDLoc &dl,
SelectionDAG &DAG) {
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getTargetConstant(Cond, dl, MVT::i8), EFLAGS);
}
/// Helper for matching OR(EXTRACTELT(X,0),OR(EXTRACTELT(X,1),...))
/// style scalarized (associative) reduction patterns.
static bool matchScalarReduction(SDValue Op, ISD::NodeType BinOp,
SmallVectorImpl<SDValue> &SrcOps) {
SmallVector<SDValue, 8> Opnds;
DenseMap<SDValue, APInt> SrcOpMap;
EVT VT = MVT::Other;
// Recognize a special case where a vector is casted into wide integer to
// test all 0s.
assert(Op.getOpcode() == unsigned(BinOp) &&
"Unexpected bit reduction opcode");
Opnds.push_back(Op.getOperand(0));
Opnds.push_back(Op.getOperand(1));
for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
// BFS traverse all BinOp operands.
if (I->getOpcode() == unsigned(BinOp)) {
Opnds.push_back(I->getOperand(0));
Opnds.push_back(I->getOperand(1));
// Re-evaluate the number of nodes to be traversed.
e += 2; // 2 more nodes (LHS and RHS) are pushed.
continue;
}
// Quit if a non-EXTRACT_VECTOR_ELT
if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return false;
// Quit if without a constant index.
SDValue Idx = I->getOperand(1);
if (!isa<ConstantSDNode>(Idx))
return false;
SDValue Src = I->getOperand(0);
DenseMap<SDValue, APInt>::iterator M = SrcOpMap.find(Src);
if (M == SrcOpMap.end()) {
VT = Src.getValueType();
// Quit if not the same type.
if (SrcOpMap.begin() != SrcOpMap.end() &&
VT != SrcOpMap.begin()->first.getValueType())
return false;
unsigned NumElts = VT.getVectorNumElements();
APInt EltCount = APInt::getNullValue(NumElts);
M = SrcOpMap.insert(std::make_pair(Src, EltCount)).first;
SrcOps.push_back(Src);
}
// Quit if element already used.
unsigned CIdx = cast<ConstantSDNode>(Idx)->getZExtValue();
if (M->second[CIdx])
return false;
M->second.setBit(CIdx);
}
// Quit if not all elements are used.
for (DenseMap<SDValue, APInt>::const_iterator I = SrcOpMap.begin(),
E = SrcOpMap.end();
I != E; ++I) {
if (!I->second.isAllOnesValue())
return false;
}
return true;
}
// Check whether an OR'd tree is PTEST-able.
static SDValue LowerVectorAllZeroTest(SDValue Op, ISD::CondCode CC,
const X86Subtarget &Subtarget,
SelectionDAG &DAG, SDValue &X86CC) {
assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
if (!Subtarget.hasSSE41() || !Op->hasOneUse())
return SDValue();
SmallVector<SDValue, 8> VecIns;
if (!matchScalarReduction(Op, ISD::OR, VecIns))
return SDValue();
// Quit if not 128/256-bit vector.
EVT VT = VecIns[0].getValueType();
if (!VT.is128BitVector() && !VT.is256BitVector())
return SDValue();
SDLoc DL(Op);
MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
// Cast all vectors into TestVT for PTEST.
for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
// If more than one full vector is evaluated, OR them first before PTEST.
for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
// Each iteration will OR 2 nodes and append the result until there is only
// 1 node left, i.e. the final OR'd value of all vectors.
SDValue LHS = VecIns[Slot];
SDValue RHS = VecIns[Slot + 1];
VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
}
X86CC = DAG.getTargetConstant(CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE,
DL, MVT::i8);
return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIns.back(), VecIns.back());
}
/// return true if \c Op has a use that doesn't just read flags.
static bool hasNonFlagsUse(SDValue Op) {
for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
++UI) {
SDNode *User = *UI;
unsigned UOpNo = UI.getOperandNo();
if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
// Look pass truncate.
UOpNo = User->use_begin().getOperandNo();
User = *User->use_begin();
}
if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
!(User->getOpcode() == ISD::SELECT && UOpNo == 0))
return true;
}
return false;
}
// Transform to an x86-specific ALU node with flags if there is a chance of
// using an RMW op or only the flags are used. Otherwise, leave
// the node alone and emit a 'cmp' or 'test' instruction.
static bool isProfitableToUseFlagOp(SDValue Op) {
for (SDNode *U : Op->uses())
if (U->getOpcode() != ISD::CopyToReg &&
U->getOpcode() != ISD::SETCC &&
U->getOpcode() != ISD::STORE)
return false;
return true;
}
/// Emit nodes that will be selected as "test Op0,Op0", or something
/// equivalent.
static SDValue EmitTest(SDValue Op, unsigned X86CC, const SDLoc &dl,
SelectionDAG &DAG, const X86Subtarget &Subtarget) {
// CF and OF aren't always set the way we want. Determine which
// of these we need.
bool NeedCF = false;
bool NeedOF = false;
switch (X86CC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
NeedCF = true;
break;
case X86::COND_G: case X86::COND_GE:
case X86::COND_L: case X86::COND_LE:
case X86::COND_O: case X86::COND_NO: {
// Check if we really need to set the
// Overflow flag. If NoSignedWrap is present
// that is not actually needed.
switch (Op->getOpcode()) {
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SHL:
if (Op.getNode()->getFlags().hasNoSignedWrap())
break;
LLVM_FALLTHROUGH;
default:
NeedOF = true;
break;
}
break;
}
}
// See if we can use the EFLAGS value from the operand instead of
// doing a separate TEST. TEST always sets OF and CF to 0, so unless
// we prove that the arithmetic won't overflow, we can't use OF or CF.
if (Op.getResNo() != 0 || NeedOF || NeedCF) {
// Emit a CMP with 0, which is the TEST pattern.
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, dl, Op.getValueType()));
}
unsigned Opcode = 0;
unsigned NumOperands = 0;
SDValue ArithOp = Op;
// NOTICE: In the code below we use ArithOp to hold the arithmetic operation
// which may be the result of a CAST. We use the variable 'Op', which is the
// non-casted variable when we check for possible users.
switch (ArithOp.getOpcode()) {
case ISD::AND:
// If the primary 'and' result isn't used, don't bother using X86ISD::AND,
// because a TEST instruction will be better.
if (!hasNonFlagsUse(Op))
break;
LLVM_FALLTHROUGH;
case ISD::ADD:
case ISD::SUB:
case ISD::OR:
case ISD::XOR:
if (!isProfitableToUseFlagOp(Op))
break;
// Otherwise use a regular EFLAGS-setting instruction.
switch (ArithOp.getOpcode()) {
default: llvm_unreachable("unexpected operator!");
case ISD::ADD: Opcode = X86ISD::ADD; break;
case ISD::SUB: Opcode = X86ISD::SUB; break;
case ISD::XOR: Opcode = X86ISD::XOR; break;
case ISD::AND: Opcode = X86ISD::AND; break;
case ISD::OR: Opcode = X86ISD::OR; break;
}
NumOperands = 2;
break;
case X86ISD::ADD:
case X86ISD::SUB:
case X86ISD::OR:
case X86ISD::XOR:
case X86ISD::AND:
return SDValue(Op.getNode(), 1);
case ISD::SSUBO:
case ISD::USUBO: {
// /USUBO/SSUBO will become a X86ISD::SUB and we can use its Z flag.
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(X86ISD::SUB, dl, VTs, Op->getOperand(0),
Op->getOperand(1)).getValue(1);
}
default:
break;
}
if (Opcode == 0) {
// Emit a CMP with 0, which is the TEST pattern.
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, dl, Op.getValueType()));
}
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), New);
return SDValue(New.getNode(), 1);
}
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
/// equivalent.
static std::pair<SDValue, SDValue> EmitCmp(SDValue Op0, SDValue Op1,
unsigned X86CC, const SDLoc &dl,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
SDValue Chain, bool IsSignaling) {
if (isNullConstant(Op1))
return std::make_pair(EmitTest(Op0, X86CC, dl, DAG, Subtarget), Chain);
EVT CmpVT = Op0.getValueType();
if (CmpVT.isFloatingPoint()) {
if (Chain) {
SDValue Res =
DAG.getNode(IsSignaling ? X86ISD::STRICT_FCMPS : X86ISD::STRICT_FCMP,
dl, {MVT::i32, MVT::Other}, {Chain, Op0, Op1});
return std::make_pair(Res, Res.getValue(1));
}
return std::make_pair(DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1),
SDValue());
}
assert((CmpVT == MVT::i8 || CmpVT == MVT::i16 ||
CmpVT == MVT::i32 || CmpVT == MVT::i64) && "Unexpected VT!");
// Only promote the compare up to I32 if it is a 16 bit operation
// with an immediate. 16 bit immediates are to be avoided.
if (CmpVT == MVT::i16 && !Subtarget.isAtom() &&
!DAG.getMachineFunction().getFunction().hasMinSize()) {
ConstantSDNode *COp0 = dyn_cast<ConstantSDNode>(Op0);
ConstantSDNode *COp1 = dyn_cast<ConstantSDNode>(Op1);
// Don't do this if the immediate can fit in 8-bits.
if ((COp0 && !COp0->getAPIntValue().isSignedIntN(8)) ||
(COp1 && !COp1->getAPIntValue().isSignedIntN(8))) {
unsigned ExtendOp =
isX86CCSigned(X86CC) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
if (X86CC == X86::COND_E || X86CC == X86::COND_NE) {
// For equality comparisons try to use SIGN_EXTEND if the input was
// truncate from something with enough sign bits.
if (Op0.getOpcode() == ISD::TRUNCATE) {
SDValue In = Op0.getOperand(0);
unsigned EffBits =
In.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(In) + 1;
if (EffBits <= 16)
ExtendOp = ISD::SIGN_EXTEND;
} else if (Op1.getOpcode() == ISD::TRUNCATE) {
SDValue In = Op1.getOperand(0);
unsigned EffBits =
In.getScalarValueSizeInBits() - DAG.ComputeNumSignBits(In) + 1;
if (EffBits <= 16)
ExtendOp = ISD::SIGN_EXTEND;
}
}
CmpVT = MVT::i32;
Op0 = DAG.getNode(ExtendOp, dl, CmpVT, Op0);
Op1 = DAG.getNode(ExtendOp, dl, CmpVT, Op1);
}
}
// Try to shrink i64 compares if the input has enough zero bits.
// FIXME: Do this for non-constant compares for constant on LHS?
if (CmpVT == MVT::i64 && isa<ConstantSDNode>(Op1) && !isX86CCSigned(X86CC) &&
Op0.hasOneUse() && // Hacky way to not break CSE opportunities with sub.
cast<ConstantSDNode>(Op1)->getAPIntValue().getActiveBits() <= 32 &&
DAG.MaskedValueIsZero(Op0, APInt::getHighBitsSet(64, 32))) {
CmpVT = MVT::i32;
Op0 = DAG.getNode(ISD::TRUNCATE, dl, CmpVT, Op0);
Op1 = DAG.getNode(ISD::TRUNCATE, dl, CmpVT, Op1);
}
// Use SUB instead of CMP to enable CSE between SUB and CMP.
SDVTList VTs = DAG.getVTList(CmpVT, MVT::i32);
SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs, Op0, Op1);
return std::make_pair(Sub.getValue(1), SDValue());
}
/// Convert a comparison if required by the subtarget.
SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
SelectionDAG &DAG) const {
// If the subtarget does not support the FUCOMI instruction, floating-point
// comparisons have to be converted.
bool IsCmp = Cmp.getOpcode() == X86ISD::CMP;
bool IsStrictCmp = Cmp.getOpcode() == X86ISD::STRICT_FCMP ||
Cmp.getOpcode() == X86ISD::STRICT_FCMPS;
if (Subtarget.hasCMov() || (!IsCmp && !IsStrictCmp) ||
!Cmp.getOperand(IsStrictCmp ? 1 : 0).getValueType().isFloatingPoint() ||
!Cmp.getOperand(IsStrictCmp ? 2 : 1).getValueType().isFloatingPoint())
return Cmp;
// The instruction selector will select an FUCOM instruction instead of
// FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
// build an SDNode sequence that transfers the result from FPSW into EFLAGS:
// (X86sahf (trunc (srl (X86fp_stsw (trunc (X86any_fcmp ...)), 8))))
SDLoc dl(Cmp);
SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
DAG.getConstant(8, dl, MVT::i8));
SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
// Some 64-bit targets lack SAHF support, but they do support FCOMI.
assert(Subtarget.hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?");
return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
}
/// Check if replacement of SQRT with RSQRT should be disabled.
bool X86TargetLowering::isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
// We never want to use both SQRT and RSQRT instructions for the same input.
if (DAG.getNodeIfExists(X86ISD::FRSQRT, DAG.getVTList(VT), Op))
return false;
if (VT.isVector())
return Subtarget.hasFastVectorFSQRT();
return Subtarget.hasFastScalarFSQRT();
}
/// The minimum architected relative accuracy is 2^-12. We need one
/// Newton-Raphson step to have a good float result (24 bits of precision).
SDValue X86TargetLowering::getSqrtEstimate(SDValue Op,
SelectionDAG &DAG, int Enabled,
int &RefinementSteps,
bool &UseOneConstNR,
bool Reciprocal) const {
EVT VT = Op.getValueType();
// SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
// It is likely not profitable to do this for f64 because a double-precision
// rsqrt estimate with refinement on x86 prior to FMA requires at least 16
// instructions: convert to single, rsqrtss, convert back to double, refine
// (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
// along with FMA, this could be a throughput win.
// TODO: SQRT requires SSE2 to prevent the introduction of an illegal v4i32
// after legalize types.
if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
(VT == MVT::v4f32 && Subtarget.hasSSE1() && Reciprocal) ||
(VT == MVT::v4f32 && Subtarget.hasSSE2() && !Reciprocal) ||
(VT == MVT::v8f32 && Subtarget.hasAVX()) ||
(VT == MVT::v16f32 && Subtarget.useAVX512Regs())) {
if (RefinementSteps == ReciprocalEstimate::Unspecified)
RefinementSteps = 1;
UseOneConstNR = false;
// There is no FSQRT for 512-bits, but there is RSQRT14.
unsigned Opcode = VT == MVT::v16f32 ? X86ISD::RSQRT14 : X86ISD::FRSQRT;
return DAG.getNode(Opcode, SDLoc(Op), VT, Op);
}
return SDValue();
}
/// The minimum architected relative accuracy is 2^-12. We need one
/// Newton-Raphson step to have a good float result (24 bits of precision).
SDValue X86TargetLowering::getRecipEstimate(SDValue Op, SelectionDAG &DAG,
int Enabled,
int &RefinementSteps) const {
EVT VT = Op.getValueType();
// SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
// It is likely not profitable to do this for f64 because a double-precision
// reciprocal estimate with refinement on x86 prior to FMA requires
// 15 instructions: convert to single, rcpss, convert back to double, refine
// (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
// along with FMA, this could be a throughput win.
if ((VT == MVT::f32 && Subtarget.hasSSE1()) ||
(VT == MVT::v4f32 && Subtarget.hasSSE1()) ||
(VT == MVT::v8f32 && Subtarget.hasAVX()) ||
(VT == MVT::v16f32 && Subtarget.useAVX512Regs())) {
// Enable estimate codegen with 1 refinement step for vector division.
// Scalar division estimates are disabled because they break too much
// real-world code. These defaults are intended to match GCC behavior.
if (VT == MVT::f32 && Enabled == ReciprocalEstimate::Unspecified)
return SDValue();
if (RefinementSteps == ReciprocalEstimate::Unspecified)
RefinementSteps = 1;
// There is no FSQRT for 512-bits, but there is RCP14.
unsigned Opcode = VT == MVT::v16f32 ? X86ISD::RCP14 : X86ISD::FRCP;
return DAG.getNode(Opcode, SDLoc(Op), VT, Op);
}
return SDValue();
}
/// If we have at least two divisions that use the same divisor, convert to
/// multiplication by a reciprocal. This may need to be adjusted for a given
/// CPU if a division's cost is not at least twice the cost of a multiplication.
/// This is because we still need one division to calculate the reciprocal and
/// then we need two multiplies by that reciprocal as replacements for the
/// original divisions.
unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
return 2;
}
SDValue
X86TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const {
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
if (isIntDivCheap(N->getValueType(0), Attr))
return SDValue(N,0); // Lower SDIV as SDIV
assert((Divisor.isPowerOf2() || (-Divisor).isPowerOf2()) &&
"Unexpected divisor!");
// Only perform this transform if CMOV is supported otherwise the select
// below will become a branch.
if (!Subtarget.hasCMov())
return SDValue();
// fold (sdiv X, pow2)
EVT VT = N->getValueType(0);
// FIXME: Support i8.
if (VT != MVT::i16 && VT != MVT::i32 &&
!(Subtarget.is64Bit() && VT == MVT::i64))
return SDValue();
unsigned Lg2 = Divisor.countTrailingZeros();
// If the divisor is 2 or -2, the default expansion is better.
if (Lg2 == 1)
return SDValue();
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue Zero = DAG.getConstant(0, DL, VT);
APInt Lg2Mask = APInt::getLowBitsSet(VT.getSizeInBits(), Lg2);
SDValue Pow2MinusOne = DAG.getConstant(Lg2Mask, DL, VT);
// If N0 is negative, we need to add (Pow2 - 1) to it before shifting right.
SDValue Cmp = DAG.getSetCC(DL, MVT::i8, N0, Zero, ISD::SETLT);
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne);
SDValue CMov = DAG.getNode(ISD::SELECT, DL, VT, Cmp, Add, N0);
Created.push_back(Cmp.getNode());
Created.push_back(Add.getNode());
Created.push_back(CMov.getNode());
// Divide by pow2.
SDValue SRA =
DAG.getNode(ISD::SRA, DL, VT, CMov, DAG.getConstant(Lg2, DL, MVT::i8));
// If we're dividing by a positive value, we're done. Otherwise, we must
// negate the result.
if (Divisor.isNonNegative())
return SRA;
Created.push_back(SRA.getNode());
return DAG.getNode(ISD::SUB, DL, VT, Zero, SRA);
}
/// Result of 'and' is compared against zero. Change to a BT node if possible.
/// Returns the BT node and the condition code needed to use it.
static SDValue LowerAndToBT(SDValue And, ISD::CondCode CC,
const SDLoc &dl, SelectionDAG &DAG,
SDValue &X86CC) {
assert(And.getOpcode() == ISD::AND && "Expected AND node!");
SDValue Op0 = And.getOperand(0);
SDValue Op1 = And.getOperand(1);
if (Op0.getOpcode() == ISD::TRUNCATE)
Op0 = Op0.getOperand(0);
if (Op1.getOpcode() == ISD::TRUNCATE)
Op1 = Op1.getOperand(0);
SDValue Src, BitNo;
if (Op1.getOpcode() == ISD::SHL)
std::swap(Op0, Op1);
if (Op0.getOpcode() == ISD::SHL) {
if (isOneConstant(Op0.getOperand(0))) {
// If we looked past a truncate, check that it's only truncating away
// known zeros.
unsigned BitWidth = Op0.getValueSizeInBits();
unsigned AndBitWidth = And.getValueSizeInBits();
if (BitWidth > AndBitWidth) {
KnownBits Known = DAG.computeKnownBits(Op0);
if (Known.countMinLeadingZeros() < BitWidth - AndBitWidth)
return SDValue();
}
Src = Op1;
BitNo = Op0.getOperand(1);
}
} else if (Op1.getOpcode() == ISD::Constant) {
ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
uint64_t AndRHSVal = AndRHS->getZExtValue();
SDValue AndLHS = Op0;
if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
Src = AndLHS.getOperand(0);
BitNo = AndLHS.getOperand(1);
} else {
// Use BT if the immediate can't be encoded in a TEST instruction or we
// are optimizing for size and the immedaite won't fit in a byte.
bool OptForSize = DAG.shouldOptForSize();
if ((!isUInt<32>(AndRHSVal) || (OptForSize && !isUInt<8>(AndRHSVal))) &&
isPowerOf2_64(AndRHSVal)) {
Src = AndLHS;
BitNo = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl,
Src.getValueType());
}
}
}
// No patterns found, give up.
if (!Src.getNode())
return SDValue();
// If Src is i8, promote it to i32 with any_extend. There is no i8 BT
// instruction. Since the shift amount is in-range-or-undefined, we know
// that doing a bittest on the i32 value is ok. We extend to i32 because
// the encoding for the i16 version is larger than the i32 version.
// Also promote i16 to i32 for performance / code size reason.
if (Src.getValueType() == MVT::i8 || Src.getValueType() == MVT::i16)
Src = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Src);
// See if we can use the 32-bit instruction instead of the 64-bit one for a
// shorter encoding. Since the former takes the modulo 32 of BitNo and the
// latter takes the modulo 64, this is only valid if the 5th bit of BitNo is
// known to be zero.
if (Src.getValueType() == MVT::i64 &&
DAG.MaskedValueIsZero(BitNo, APInt(BitNo.getValueSizeInBits(), 32)))
Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
// If the operand types disagree, extend the shift amount to match. Since
// BT ignores high bits (like shifts) we can use anyextend.
if (Src.getValueType() != BitNo.getValueType())
BitNo = DAG.getNode(ISD::ANY_EXTEND, dl, Src.getValueType(), BitNo);
X86CC = DAG.getTargetConstant(CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B,
dl, MVT::i8);
return DAG.getNode(X86ISD::BT, dl, MVT::i32, Src, BitNo);
}
/// Turns an ISD::CondCode into a value suitable for SSE floating-point mask
/// CMPs.
static unsigned translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
SDValue &Op1, bool &IsAlwaysSignaling) {
unsigned SSECC;
bool Swap = false;
// SSE Condition code mapping:
// 0 - EQ
// 1 - LT
// 2 - LE
// 3 - UNORD
// 4 - NEQ
// 5 - NLT
// 6 - NLE
// 7 - ORD
switch (SetCCOpcode) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETOEQ:
case ISD::SETEQ: SSECC = 0; break;
case ISD::SETOGT:
case ISD::SETGT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETLT:
case ISD::SETOLT: SSECC = 1; break;
case ISD::SETOGE:
case ISD::SETGE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETLE:
case ISD::SETOLE: SSECC = 2; break;
case ISD::SETUO: SSECC = 3; break;
case ISD::SETUNE:
case ISD::SETNE: SSECC = 4; break;
case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETUGE: SSECC = 5; break;
case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
case ISD::SETUGT: SSECC = 6; break;
case ISD::SETO: SSECC = 7; break;
case ISD::SETUEQ: SSECC = 8; break;
case ISD::SETONE: SSECC = 12; break;
}
if (Swap)
std::swap(Op0, Op1);
switch (SetCCOpcode) {
default:
IsAlwaysSignaling = true;
break;
case ISD::SETEQ:
case ISD::SETOEQ:
case ISD::SETUEQ:
case ISD::SETNE:
case ISD::SETONE:
case ISD::SETUNE:
case ISD::SETO:
case ISD::SETUO:
IsAlwaysSignaling = false;
break;
}
return SSECC;
}
/// Break a VSETCC 256-bit integer VSETCC into two new 128 ones and then
/// concatenate the result back.
static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
SDValue CC = Op.getOperand(2);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
// Issue the operation on the smaller types and concatenate the result back
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
}
static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
assert(VT.getVectorElementType() == MVT::i1 &&
"Cannot set masked compare for this operation");
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
// Prefer SETGT over SETLT.
if (SetCCOpcode == ISD::SETLT) {
SetCCOpcode = ISD::getSetCCSwappedOperands(SetCCOpcode);
std::swap(Op0, Op1);
}
return DAG.getSetCC(dl, VT, Op0, Op1, SetCCOpcode);
}
/// Given a buildvector constant, return a new vector constant with each element
/// incremented or decremented. If incrementing or decrementing would result in
/// unsigned overflow or underflow or this is not a simple vector constant,
/// return an empty value.
static SDValue incDecVectorConstant(SDValue V, SelectionDAG &DAG, bool IsInc) {
auto *BV = dyn_cast<BuildVectorSDNode>(V.getNode());
if (!BV)
return SDValue();
MVT VT = V.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
SmallVector<SDValue, 8> NewVecC;
SDLoc DL(V);
for (unsigned i = 0; i < NumElts; ++i) {
auto *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EltVT)
return SDValue();
// Avoid overflow/underflow.
const APInt &EltC = Elt->getAPIntValue();
if ((IsInc && EltC.isMaxValue()) || (!IsInc && EltC.isNullValue()))
return SDValue();
NewVecC.push_back(DAG.getConstant(EltC + (IsInc ? 1 : -1), DL, EltVT));
}
return DAG.getBuildVector(VT, DL, NewVecC);
}
/// As another special case, use PSUBUS[BW] when it's profitable. E.g. for
/// Op0 u<= Op1:
/// t = psubus Op0, Op1
/// pcmpeq t, <0..0>
static SDValue LowerVSETCCWithSUBUS(SDValue Op0, SDValue Op1, MVT VT,
ISD::CondCode Cond, const SDLoc &dl,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (!Subtarget.hasSSE2())
return SDValue();
MVT VET = VT.getVectorElementType();
if (VET != MVT::i8 && VET != MVT::i16)
return SDValue();
switch (Cond) {
default:
return SDValue();
case ISD::SETULT: {
// If the comparison is against a constant we can turn this into a
// setule. With psubus, setule does not require a swap. This is
// beneficial because the constant in the register is no longer
// destructed as the destination so it can be hoisted out of a loop.
// Only do this pre-AVX since vpcmp* is no longer destructive.
if (Subtarget.hasAVX())
return SDValue();
SDValue ULEOp1 = incDecVectorConstant(Op1, DAG, /*IsInc*/false);
if (!ULEOp1)
return SDValue();
Op1 = ULEOp1;
break;
}
case ISD::SETUGT: {
// If the comparison is against a constant, we can turn this into a setuge.
// This is beneficial because materializing a constant 0 for the PCMPEQ is
// probably cheaper than XOR+PCMPGT using 2 different vector constants:
// cmpgt (xor X, SignMaskC) CmpC --> cmpeq (usubsat (CmpC+1), X), 0
SDValue UGEOp1 = incDecVectorConstant(Op1, DAG, /*IsInc*/true);
if (!UGEOp1)
return SDValue();
Op1 = Op0;
Op0 = UGEOp1;
break;
}
// Psubus is better than flip-sign because it requires no inversion.
case ISD::SETUGE:
std::swap(Op0, Op1);
break;
case ISD::SETULE:
break;
}
SDValue Result = DAG.getNode(ISD::USUBSAT, dl, VT, Op0, Op1);
return DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
DAG.getConstant(0, dl, VT));
}
static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
bool IsStrict = Op.getOpcode() == ISD::STRICT_FSETCC ||
Op.getOpcode() == ISD::STRICT_FSETCCS;
SDValue Op0 = Op.getOperand(IsStrict ? 1 : 0);
SDValue Op1 = Op.getOperand(IsStrict ? 2 : 1);
SDValue CC = Op.getOperand(IsStrict ? 3 : 2);
MVT VT = Op->getSimpleValueType(0);
ISD::CondCode Cond = cast<CondCodeSDNode>(CC)->get();
bool isFP = Op1.getSimpleValueType().isFloatingPoint();
SDLoc dl(Op);
if (isFP) {
#ifndef NDEBUG
MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
assert(EltVT == MVT::f32 || EltVT == MVT::f64);
#endif
bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
unsigned Opc;
if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) {
assert(VT.getVectorNumElements() <= 16);
Opc = IsStrict ? X86ISD::STRICT_CMPM : X86ISD::CMPM;
} else {
Opc = IsStrict ? X86ISD::STRICT_CMPP : X86ISD::CMPP;
// The SSE/AVX packed FP comparison nodes are defined with a
// floating-point vector result that matches the operand type. This allows
// them to work with an SSE1 target (integer vector types are not legal).
VT = Op0.getSimpleValueType();
}
SDValue Cmp;
bool IsAlwaysSignaling;
unsigned SSECC = translateX86FSETCC(Cond, Op0, Op1, IsAlwaysSignaling);
if (!Subtarget.hasAVX()) {
// TODO: We could use following steps to handle a quiet compare with
// signaling encodings.
// 1. Get ordered masks from a quiet ISD::SETO
// 2. Use the masks to mask potential unordered elements in operand A, B
// 3. Get the compare results of masked A, B
// 4. Calculating final result using the mask and result from 3
// But currently, we just fall back to scalar operations.
if (IsStrict && IsAlwaysSignaling && !IsSignaling)
return SDValue();
// Insert an extra signaling instruction to raise exception.
if (IsStrict && !IsAlwaysSignaling && IsSignaling) {
SDValue SignalCmp = DAG.getNode(
Opc, dl, {VT, MVT::Other},
{Chain, Op0, Op1, DAG.getTargetConstant(1, dl, MVT::i8)}); // LT_OS
// FIXME: It seems we need to update the flags of all new strict nodes.
// Otherwise, mayRaiseFPException in MI will return false due to
// NoFPExcept = false by default. However, I didn't find it in other
// patches.
SignalCmp->setFlags(Op->getFlags());
Chain = SignalCmp.getValue(1);
}
// In the two cases not handled by SSE compare predicates (SETUEQ/SETONE),
// emit two comparisons and a logic op to tie them together.
if (SSECC >= 8) {
// LLVM predicate is SETUEQ or SETONE.
unsigned CC0, CC1;
unsigned CombineOpc;
if (Cond == ISD::SETUEQ) {
CC0 = 3; // UNORD
CC1 = 0; // EQ
CombineOpc = X86ISD::FOR;
} else {
assert(Cond == ISD::SETONE);
CC0 = 7; // ORD
CC1 = 4; // NEQ
CombineOpc = X86ISD::FAND;
}
SDValue Cmp0, Cmp1;
if (IsStrict) {
Cmp0 = DAG.getNode(
Opc, dl, {VT, MVT::Other},
{Chain, Op0, Op1, DAG.getTargetConstant(CC0, dl, MVT::i8)});
Cmp1 = DAG.getNode(
Opc, dl, {VT, MVT::Other},
{Chain, Op0, Op1, DAG.getTargetConstant(CC1, dl, MVT::i8)});
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Cmp0.getValue(1),
Cmp1.getValue(1));
} else {
Cmp0 = DAG.getNode(
Opc, dl, VT, Op0, Op1, DAG.getTargetConstant(CC0, dl, MVT::i8));
Cmp1 = DAG.getNode(
Opc, dl, VT, Op0, Op1, DAG.getTargetConstant(CC1, dl, MVT::i8));
}
Cmp = DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
} else {
if (IsStrict) {
Cmp = DAG.getNode(
Opc, dl, {VT, MVT::Other},
{Chain, Op0, Op1, DAG.getTargetConstant(SSECC, dl, MVT::i8)});
Chain = Cmp.getValue(1);
} else
Cmp = DAG.getNode(
Opc, dl, VT, Op0, Op1, DAG.getTargetConstant(SSECC, dl, MVT::i8));
}
} else {
// Handle all other FP comparisons here.
if (IsStrict) {
// Make a flip on already signaling CCs before setting bit 4 of AVX CC.
SSECC |= (IsAlwaysSignaling ^ IsSignaling) << 4;
Cmp = DAG.getNode(
Opc, dl, {VT, MVT::Other},
{Chain, Op0, Op1, DAG.getTargetConstant(SSECC, dl, MVT::i8)});
Chain = Cmp.getValue(1);
} else
Cmp = DAG.getNode(
Opc, dl, VT, Op0, Op1, DAG.getTargetConstant(SSECC, dl, MVT::i8));
}
// If this is SSE/AVX CMPP, bitcast the result back to integer to match the
// result type of SETCC. The bitcast is expected to be optimized away
// during combining/isel.
Cmp = DAG.getBitcast(Op.getSimpleValueType(), Cmp);
if (IsStrict)
return DAG.getMergeValues({Cmp, Chain}, dl);
return Cmp;
}
assert(!IsStrict && "Strict SETCC only handles FP operands.");
MVT VTOp0 = Op0.getSimpleValueType();
(void)VTOp0;
assert(VTOp0 == Op1.getSimpleValueType() &&
"Expected operands with same type!");
assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() &&
"Invalid number of packed elements for source and destination!");
// The non-AVX512 code below works under the assumption that source and
// destination types are the same.
assert((Subtarget.hasAVX512() || (VT == VTOp0)) &&
"Value types for source and destination must be the same!");
// The result is boolean, but operands are int/float
if (VT.getVectorElementType() == MVT::i1) {
// In AVX-512 architecture setcc returns mask with i1 elements,
// But there is no compare instruction for i8 and i16 elements in KNL.
assert((VTOp0.getScalarSizeInBits() >= 32 || Subtarget.hasBWI()) &&
"Unexpected operand type");
return LowerIntVSETCC_AVX512(Op, DAG);
}
// Lower using XOP integer comparisons.
if (VT.is128BitVector() && Subtarget.hasXOP()) {
// Translate compare code to XOP PCOM compare mode.
unsigned CmpMode = 0;
switch (Cond) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETULT:
case ISD::SETLT: CmpMode = 0x00; break;
case ISD::SETULE:
case ISD::SETLE: CmpMode = 0x01; break;
case ISD::SETUGT:
case ISD::SETGT: CmpMode = 0x02; break;
case ISD::SETUGE:
case ISD::SETGE: CmpMode = 0x03; break;
case ISD::SETEQ: CmpMode = 0x04; break;
case ISD::SETNE: CmpMode = 0x05; break;
}
// Are we comparing unsigned or signed integers?
unsigned Opc =
ISD::isUnsignedIntSetCC(Cond) ? X86ISD::VPCOMU : X86ISD::VPCOM;
return DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getTargetConstant(CmpMode, dl, MVT::i8));
}
// (X & Y) != 0 --> (X & Y) == Y iff Y is power-of-2.
// Revert part of the simplifySetCCWithAnd combine, to avoid an invert.
if (Cond == ISD::SETNE && ISD::isBuildVectorAllZeros(Op1.getNode())) {
SDValue BC0 = peekThroughBitcasts(Op0);
if (BC0.getOpcode() == ISD::AND) {
APInt UndefElts;
SmallVector<APInt, 64> EltBits;
if (getTargetConstantBitsFromNode(BC0.getOperand(1),
VT.getScalarSizeInBits(), UndefElts,
EltBits, false, false)) {
if (llvm::all_of(EltBits, [](APInt &V) { return V.isPowerOf2(); })) {
Cond = ISD::SETEQ;
Op1 = DAG.getBitcast(VT, BC0.getOperand(1));
}
}
}
}
// ICMP_EQ(AND(X,C),C) -> SRA(SHL(X,LOG2(C)),BW-1) iff C is power-of-2.
if (Cond == ISD::SETEQ && Op0.getOpcode() == ISD::AND &&
Op0.getOperand(1) == Op1 && Op0.hasOneUse()) {
ConstantSDNode *C1 = isConstOrConstSplat(Op1);
if (C1 && C1->getAPIntValue().isPowerOf2()) {
unsigned BitWidth = VT.getScalarSizeInBits();
unsigned ShiftAmt = BitWidth - C1->getAPIntValue().logBase2() - 1;
SDValue Result = Op0.getOperand(0);
Result = DAG.getNode(ISD::SHL, dl, VT, Result,
DAG.getConstant(ShiftAmt, dl, VT));
Result = DAG.getNode(ISD::SRA, dl, VT, Result,
DAG.getConstant(BitWidth - 1, dl, VT));
return Result;
}
}
// Break 256-bit integer vector compare into smaller ones.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntVSETCC(Op, DAG);
// If this is a SETNE against the signed minimum value, change it to SETGT.
// If this is a SETNE against the signed maximum value, change it to SETLT.
// which will be swapped to SETGT.
// Otherwise we use PCMPEQ+invert.
APInt ConstValue;
if (Cond == ISD::SETNE &&
ISD::isConstantSplatVector(Op1.getNode(), ConstValue)) {
if (ConstValue.isMinSignedValue())
Cond = ISD::SETGT;
else if (ConstValue.isMaxSignedValue())
Cond = ISD::SETLT;
}
// If both operands are known non-negative, then an unsigned compare is the
// same as a signed compare and there's no need to flip signbits.
// TODO: We could check for more general simplifications here since we're
// computing known bits.
bool FlipSigns = ISD::isUnsignedIntSetCC(Cond) &&
!(DAG.SignBitIsZero(Op0) && DAG.SignBitIsZero(Op1));
// Special case: Use min/max operations for unsigned compares.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (ISD::isUnsignedIntSetCC(Cond) &&
(FlipSigns || ISD::isTrueWhenEqual(Cond)) &&
TLI.isOperationLegal(ISD::UMIN, VT)) {
// If we have a constant operand, increment/decrement it and change the
// condition to avoid an invert.
if (Cond == ISD::SETUGT) {
// X > C --> X >= (C+1) --> X == umax(X, C+1)
if (SDValue UGTOp1 = incDecVectorConstant(Op1, DAG, /*IsInc*/true)) {
Op1 = UGTOp1;
Cond = ISD::SETUGE;
}
}
if (Cond == ISD::SETULT) {
// X < C --> X <= (C-1) --> X == umin(X, C-1)
if (SDValue ULTOp1 = incDecVectorConstant(Op1, DAG, /*IsInc*/false)) {
Op1 = ULTOp1;
Cond = ISD::SETULE;
}
}
bool Invert = false;
unsigned Opc;
switch (Cond) {
default: llvm_unreachable("Unexpected condition code");
case ISD::SETUGT: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETULE: Opc = ISD::UMIN; break;
case ISD::SETULT: Invert = true; LLVM_FALLTHROUGH;
case ISD::SETUGE: Opc = ISD::UMAX; break;
}
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
// If the logical-not of the result is required, perform that now.
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
// Try to use SUBUS and PCMPEQ.
if (SDValue V = LowerVSETCCWithSUBUS(Op0, Op1, VT, Cond, dl, Subtarget, DAG))
return V;
// We are handling one of the integer comparisons here. Since SSE only has
// GT and EQ comparisons for integer, swapping operands and multiple
// operations may be required for some comparisons.
unsigned Opc = (Cond == ISD::SETEQ || Cond == ISD::SETNE) ? X86ISD::PCMPEQ
: X86ISD::PCMPGT;
bool Swap = Cond == ISD::SETLT || Cond == ISD::SETULT ||
Cond == ISD::SETGE || Cond == ISD::SETUGE;
bool Invert = Cond == ISD::SETNE ||
(Cond != ISD::SETEQ && ISD::isTrueWhenEqual(Cond));
if (Swap)
std::swap(Op0, Op1);
// Check that the operation in question is available (most are plain SSE2,
// but PCMPGTQ and PCMPEQQ have different requirements).
if (VT == MVT::v2i64) {
if (Opc == X86ISD::PCMPGT && !Subtarget.hasSSE42()) {
assert(Subtarget.hasSSE2() && "Don't know how to lower!");
// Special case for sign bit test. We can use a v4i32 PCMPGT and shuffle
// the odd elements over the even elements.
if (!FlipSigns && !Invert && ISD::isBuildVectorAllZeros(Op0.getNode())) {
Op0 = DAG.getConstant(0, dl, MVT::v4i32);
Op1 = DAG.getBitcast(MVT::v4i32, Op1);
SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
static const int MaskHi[] = { 1, 1, 3, 3 };
SDValue Result = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
return DAG.getBitcast(VT, Result);
}
if (!FlipSigns && !Invert && ISD::isBuildVectorAllOnes(Op1.getNode())) {
Op0 = DAG.getBitcast(MVT::v4i32, Op0);
Op1 = DAG.getConstant(-1, dl, MVT::v4i32);
SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
static const int MaskHi[] = { 1, 1, 3, 3 };
SDValue Result = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
return DAG.getBitcast(VT, Result);
}
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations. The lower
// compare is always unsigned.
SDValue SB;
if (FlipSigns) {
SB = DAG.getConstant(0x8000000080000000ULL, dl, MVT::v2i64);
} else {
SB = DAG.getConstant(0x0000000080000000ULL, dl, MVT::v2i64);
}
Op0 = DAG.getNode(ISD::XOR, dl, MVT::v2i64, Op0, SB);
Op1 = DAG.getNode(ISD::XOR, dl, MVT::v2i64, Op1, SB);
// Cast everything to the right type.
Op0 = DAG.getBitcast(MVT::v4i32, Op0);
Op1 = DAG.getBitcast(MVT::v4i32, Op1);
// Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
// Create masks for only the low parts/high parts of the 64 bit integers.
static const int MaskHi[] = { 1, 1, 3, 3 };
static const int MaskLo[] = { 0, 0, 2, 2 };
SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
if (Invert)
Result = DAG.getNOT(dl, Result, MVT::v4i32);
return DAG.getBitcast(VT, Result);
}
if (Opc == X86ISD::PCMPEQ && !Subtarget.hasSSE41()) {
// If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
// pcmpeqd + pshufd + pand.
assert(Subtarget.hasSSE2() && !FlipSigns && "Don't know how to lower!");
// First cast everything to the right type.
Op0 = DAG.getBitcast(MVT::v4i32, Op0);
Op1 = DAG.getBitcast(MVT::v4i32, Op1);
// Do the compare.
SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
// Make sure the lower and upper halves are both all-ones.
static const int Mask[] = { 1, 0, 3, 2 };
SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
if (Invert)
Result = DAG.getNOT(dl, Result, MVT::v4i32);
return DAG.getBitcast(VT, Result);
}
}
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations.
if (FlipSigns) {
MVT EltVT = VT.getVectorElementType();
SDValue SM = DAG.getConstant(APInt::getSignMask(EltVT.getSizeInBits()), dl,
VT);
Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SM);
Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SM);
}
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
// If the logical-not of the result is required, perform that now.
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
return Result;
}
// Try to select this as a KORTEST+SETCC or KTEST+SETCC if possible.
static SDValue EmitAVX512Test(SDValue Op0, SDValue Op1, ISD::CondCode CC,
const SDLoc &dl, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
SDValue &X86CC) {
// Only support equality comparisons.
if (CC != ISD::SETEQ && CC != ISD::SETNE)
return SDValue();
// Must be a bitcast from vXi1.
if (Op0.getOpcode() != ISD::BITCAST)
return SDValue();
Op0 = Op0.getOperand(0);
MVT VT = Op0.getSimpleValueType();
if (!(Subtarget.hasAVX512() && VT == MVT::v16i1) &&
!(Subtarget.hasDQI() && VT == MVT::v8i1) &&
!(Subtarget.hasBWI() && (VT == MVT::v32i1 || VT == MVT::v64i1)))
return SDValue();
X86::CondCode X86Cond;
if (isNullConstant(Op1)) {
X86Cond = CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE;
} else if (isAllOnesConstant(Op1)) {
// C flag is set for all ones.
X86Cond = CC == ISD::SETEQ ? X86::COND_B : X86::COND_AE;
} else
return SDValue();
// If the input is an AND, we can combine it's operands into the KTEST.
bool KTestable = false;
if (Subtarget.hasDQI() && (VT == MVT::v8i1 || VT == MVT::v16i1))
KTestable = true;
if (Subtarget.hasBWI() && (VT == MVT::v32i1 || VT == MVT::v64i1))
KTestable = true;
if (!isNullConstant(Op1))
KTestable = false;
if (KTestable && Op0.getOpcode() == ISD::AND && Op0.hasOneUse()) {
SDValue LHS = Op0.getOperand(0);
SDValue RHS = Op0.getOperand(1);
X86CC = DAG.getTargetConstant(X86Cond, dl, MVT::i8);
return DAG.getNode(X86ISD::KTEST, dl, MVT::i32, LHS, RHS);
}
// If the input is an OR, we can combine it's operands into the KORTEST.
SDValue LHS = Op0;
SDValue RHS = Op0;
if (Op0.getOpcode() == ISD::OR && Op0.hasOneUse()) {
LHS = Op0.getOperand(0);
RHS = Op0.getOperand(1);
}
X86CC = DAG.getTargetConstant(X86Cond, dl, MVT::i8);
return DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
}
/// Emit flags for the given setcc condition and operands. Also returns the
/// corresponding X86 condition code constant in X86CC.
SDValue X86TargetLowering::emitFlagsForSetcc(SDValue Op0, SDValue Op1,
ISD::CondCode CC, const SDLoc &dl,
SelectionDAG &DAG, SDValue &X86CC,
SDValue &Chain,
bool IsSignaling) const {
// Optimize to BT if possible.
// Lower (X & (1 << N)) == 0 to BT(X, N).
// Lower ((X >>u N) & 1) != 0 to BT(X, N).
// Lower ((X >>s N) & 1) != 0 to BT(X, N).
if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && isNullConstant(Op1) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
if (SDValue BT = LowerAndToBT(Op0, CC, dl, DAG, X86CC))
return BT;
}
// Try to use PTEST for a tree ORs equality compared with 0.
// TODO: We could do AND tree with all 1s as well by using the C flag.
if (Op0.getOpcode() == ISD::OR && isNullConstant(Op1) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
if (SDValue PTEST = LowerVectorAllZeroTest(Op0, CC, Subtarget, DAG, X86CC))
return PTEST;
}
// Try to lower using KORTEST or KTEST.
if (SDValue Test = EmitAVX512Test(Op0, Op1, CC, dl, DAG, Subtarget, X86CC))
return Test;
// Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
// these.
if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
// If the input is a setcc, then reuse the input setcc or use a new one with
// the inverted condition.
if (Op0.getOpcode() == X86ISD::SETCC) {
bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
X86CC = Op0.getOperand(0);
if (Invert) {
X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
X86CC = DAG.getTargetConstant(CCode, dl, MVT::i8);
}
return Op0.getOperand(1);
}
}
// Try to use the carry flag from the add in place of an separate CMP for:
// (seteq (add X, -1), -1). Similar for setne.
if (isAllOnesConstant(Op1) && Op0.getOpcode() == ISD::ADD &&
Op0.getOperand(1) == Op1 && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
if (isProfitableToUseFlagOp(Op0)) {
SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
SDValue New = DAG.getNode(X86ISD::ADD, dl, VTs, Op0.getOperand(0),
Op0.getOperand(1));
DAG.ReplaceAllUsesOfValueWith(SDValue(Op0.getNode(), 0), New);
X86::CondCode CCode = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
X86CC = DAG.getTargetConstant(CCode, dl, MVT::i8);
return SDValue(New.getNode(), 1);
}
}
bool IsFP = Op1.getSimpleValueType().isFloatingPoint();
X86::CondCode CondCode = TranslateX86CC(CC, dl, IsFP, Op0, Op1, DAG);
if (CondCode == X86::COND_INVALID)
return SDValue();
std::pair<SDValue, SDValue> Tmp =
EmitCmp(Op0, Op1, CondCode, dl, DAG, Subtarget, Chain, IsSignaling);
SDValue EFLAGS = Tmp.first;
if (Chain)
Chain = Tmp.second;
EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
X86CC = DAG.getTargetConstant(CondCode, dl, MVT::i8);
return EFLAGS;
}
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
bool IsStrict = Op.getOpcode() == ISD::STRICT_FSETCC ||
Op.getOpcode() == ISD::STRICT_FSETCCS;
MVT VT = Op->getSimpleValueType(0);
if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
SDValue Op0 = Op.getOperand(IsStrict ? 1 : 0);
SDValue Op1 = Op.getOperand(IsStrict ? 2 : 1);
SDLoc dl(Op);
ISD::CondCode CC =
cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
// Handle f128 first, since one possible outcome is a normal integer
// comparison which gets handled by emitFlagsForSetcc.
if (Op0.getValueType() == MVT::f128) {
softenSetCCOperands(DAG, MVT::f128, Op0, Op1, CC, dl, Op0, Op1, Chain,
Op.getOpcode() == ISD::STRICT_FSETCCS);
// If softenSetCCOperands returned a scalar, use it.
if (!Op1.getNode()) {
assert(Op0.getValueType() == Op.getValueType() &&
"Unexpected setcc expansion!");
if (IsStrict)
return DAG.getMergeValues({Op0, Chain}, dl);
return Op0;
}
}
SDValue X86CC;
SDValue EFLAGS = emitFlagsForSetcc(Op0, Op1, CC, dl, DAG, X86CC, Chain,
Op.getOpcode() == ISD::STRICT_FSETCCS);
if (!EFLAGS)
return SDValue();
SDValue Res = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, X86CC, EFLAGS);
if (IsStrict)
return DAG.getMergeValues({Res, Chain}, dl);
return Res;
}
SDValue X86TargetLowering::LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Carry = Op.getOperand(2);
SDValue Cond = Op.getOperand(3);
SDLoc DL(Op);
assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get());
// Recreate the carry if needed.
EVT CarryVT = Carry.getValueType();
APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32),
Carry, DAG.getConstant(NegOne, DL, CarryVT));
SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry.getValue(1));
return getSETCC(CC, Cmp.getValue(1), DL, DAG);
}
// This function returns three things: the arithmetic computation itself
// (Value), an EFLAGS result (Overflow), and a condition code (Cond). The
// flag and the condition code define the case in which the arithmetic
// computation overflows.
static std::pair<SDValue, SDValue>
getX86XALUOOp(X86::CondCode &Cond, SDValue Op, SelectionDAG &DAG) {
assert(Op.getResNo() == 0 && "Unexpected result number!");
SDValue Value, Overflow;
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
unsigned BaseOp = 0;
SDLoc DL(Op);
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown ovf instruction!");
case ISD::SADDO:
BaseOp = X86ISD::ADD;
Cond = X86::COND_O;
break;
case ISD::UADDO:
BaseOp = X86ISD::ADD;
Cond = isOneConstant(RHS) ? X86::COND_E : X86::COND_B;
break;
case ISD::SSUBO:
BaseOp = X86ISD::SUB;
Cond = X86::COND_O;
break;
case ISD::USUBO:
BaseOp = X86ISD::SUB;
Cond = X86::COND_B;
break;
case ISD::SMULO:
BaseOp = X86ISD::SMUL;
Cond = X86::COND_O;
break;
case ISD::UMULO:
BaseOp = X86ISD::UMUL;
Cond = X86::COND_O;
break;
}
if (BaseOp) {
// Also sets EFLAGS.
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Value = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
Overflow = Value.getValue(1);
}
return std::make_pair(Value, Overflow);
}
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
// Lower the "add/sub/mul with overflow" instruction into a regular ins plus
// a "setcc" instruction that checks the overflow flag. The "brcond" lowering
// looks for this combo and may remove the "setcc" instruction if the "setcc"
// has only one use.
SDLoc DL(Op);
X86::CondCode Cond;
SDValue Value, Overflow;
std::tie(Value, Overflow) = getX86XALUOOp(Cond, Op, DAG);
SDValue SetCC = getSETCC(Cond, Overflow, DL, DAG);
assert(Op->getValueType(1) == MVT::i8 && "Unexpected VT!");
return DAG.getNode(ISD::MERGE_VALUES, DL, Op->getVTList(), Value, SetCC);
}
/// Return true if opcode is a X86 logical comparison.
static bool isX86LogicalCmp(SDValue Op) {
unsigned Opc = Op.getOpcode();
if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
Opc == X86ISD::SAHF)
return true;
if (Op.getResNo() == 1 &&
(Opc == X86ISD::ADD || Opc == X86ISD::SUB || Opc == X86ISD::ADC ||
Opc == X86ISD::SBB || Opc == X86ISD::SMUL || Opc == X86ISD::UMUL ||
Opc == X86ISD::OR || Opc == X86ISD::XOR || Opc == X86ISD::AND))
return true;
return false;
}
static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
if (V.getOpcode() != ISD::TRUNCATE)
return false;
SDValue VOp0 = V.getOperand(0);
unsigned InBits = VOp0.getValueSizeInBits();
unsigned Bits = V.getValueSizeInBits();
return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
}
SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
bool AddTest = true;
SDValue Cond = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
SDLoc DL(Op);
MVT VT = Op1.getSimpleValueType();
SDValue CC;
// Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
// are available or VBLENDV if AVX is available.
// Otherwise FP cmovs get lowered into a less efficient branch sequence later.
if (Cond.getOpcode() == ISD::SETCC &&
((Subtarget.hasSSE2() && VT == MVT::f64) ||
(Subtarget.hasSSE1() && VT == MVT::f32)) &&
VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) {
SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
bool IsAlwaysSignaling;
unsigned SSECC =
translateX86FSETCC(cast<CondCodeSDNode>(Cond.getOperand(2))->get(),
CondOp0, CondOp1, IsAlwaysSignaling);
if (Subtarget.hasAVX512()) {
SDValue Cmp =
DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CondOp0, CondOp1,
DAG.getTargetConstant(SSECC, DL, MVT::i8));
assert(!VT.isVector() && "Not a scalar type?");
return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2);
}
if (SSECC < 8 || Subtarget.hasAVX()) {
SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
DAG.getTargetConstant(SSECC, DL, MVT::i8));
// If we have AVX, we can use a variable vector select (VBLENDV) instead
// of 3 logic instructions for size savings and potentially speed.
// Unfortunately, there is no scalar form of VBLENDV.
// If either operand is a +0.0 constant, don't try this. We can expect to
// optimize away at least one of the logic instructions later in that
// case, so that sequence would be faster than a variable blend.
// BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
// uses XMM0 as the selection register. That may need just as many
// instructions as the AND/ANDN/OR sequence due to register moves, so
// don't bother.
if (Subtarget.hasAVX() && !isNullFPConstant(Op1) &&
!isNullFPConstant(Op2)) {
// Convert to vectors, do a VSELECT, and convert back to scalar.
// All of the conversions should be optimized away.
MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
VCmp = DAG.getBitcast(VCmpVT, VCmp);
SDValue VSel = DAG.getSelect(DL, VecVT, VCmp, VOp1, VOp2);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
VSel, DAG.getIntPtrConstant(0, DL));
}
SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
}
}
// AVX512 fallback is to lower selects of scalar floats to masked moves.
if ((VT == MVT::f64 || VT == MVT::f32) && Subtarget.hasAVX512()) {
SDValue Cmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1, Cond);
return DAG.getNode(X86ISD::SELECTS, DL, VT, Cmp, Op1, Op2);
}
// For v64i1 without 64-bit support we need to split and rejoin.
if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
assert(Subtarget.hasBWI() && "Expected BWI to be legal");
SDValue Op1Lo = extractSubVector(Op1, 0, DAG, DL, 32);
SDValue Op2Lo = extractSubVector(Op2, 0, DAG, DL, 32);
SDValue Op1Hi = extractSubVector(Op1, 32, DAG, DL, 32);
SDValue Op2Hi = extractSubVector(Op2, 32, DAG, DL, 32);
SDValue Lo = DAG.getSelect(DL, MVT::v32i1, Cond, Op1Lo, Op2Lo);
SDValue Hi = DAG.getSelect(DL, MVT::v32i1, Cond, Op1Hi, Op2Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
SDValue Op1Scalar;
if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
Op1Scalar = ConvertI1VectorToInteger(Op1, DAG);
else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
Op1Scalar = Op1.getOperand(0);
SDValue Op2Scalar;
if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
Op2Scalar = ConvertI1VectorToInteger(Op2, DAG);
else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
Op2Scalar = Op2.getOperand(0);
if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
SDValue newSelect = DAG.getSelect(DL, Op1Scalar.getValueType(), Cond,
Op1Scalar, Op2Scalar);
if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
return DAG.getBitcast(VT, newSelect);
SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
DAG.getIntPtrConstant(0, DL));
}
}
if (Cond.getOpcode() == ISD::SETCC) {
if (SDValue NewCond = LowerSETCC(Cond, DAG)) {
Cond = NewCond;
// If the condition was updated, it's possible that the operands of the
// select were also updated (for example, EmitTest has a RAUW). Refresh
// the local references to the select operands in case they got stale.
Op1 = Op.getOperand(1);
Op2 = Op.getOperand(2);
}
}
// (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
// (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
// (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
// (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
// (select (and (x , 0x1) == 0), y, (z ^ y) ) -> (-(and (x , 0x1)) & z ) ^ y
// (select (and (x , 0x1) == 0), y, (z | y) ) -> (-(and (x , 0x1)) & z ) | y
if (Cond.getOpcode() == X86ISD::SETCC &&
Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
isNullConstant(Cond.getOperand(1).getOperand(1))) {
SDValue Cmp = Cond.getOperand(1);
unsigned CondCode = Cond.getConstantOperandVal(0);
if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
(CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
SDValue CmpOp0 = Cmp.getOperand(0);
// Apply further optimizations for special cases
// (select (x != 0), -1, 0) -> neg & sbb
// (select (x == 0), 0, -1) -> neg & sbb
if (isNullConstant(Y) &&
(isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) {
SDValue Zero = DAG.getConstant(0, DL, CmpOp0.getValueType());
SDValue CmpZero = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Zero, CmpOp0);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
Zero = DAG.getConstant(0, DL, Op.getValueType());
return DAG.getNode(X86ISD::SBB, DL, VTs, Zero, Zero, CmpZero);
}
Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
SDValue Zero = DAG.getConstant(0, DL, Op.getValueType());
SDValue Res = // Res = 0 or -1.
DAG.getNode(X86ISD::SBB, DL, VTs, Zero, Zero, Cmp);
if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E))
Res = DAG.getNOT(DL, Res, Res.getValueType());
if (!isNullConstant(Op2))
Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
return Res;
} else if (!Subtarget.hasCMov() && CondCode == X86::COND_E &&
Cmp.getOperand(0).getOpcode() == ISD::AND &&
isOneConstant(Cmp.getOperand(0).getOperand(1))) {
SDValue CmpOp0 = Cmp.getOperand(0);
SDValue Src1, Src2;
// true if Op2 is XOR or OR operator and one of its operands
// is equal to Op1
// ( a , a op b) || ( b , a op b)
auto isOrXorPattern = [&]() {
if ((Op2.getOpcode() == ISD::XOR || Op2.getOpcode() == ISD::OR) &&
(Op2.getOperand(0) == Op1 || Op2.getOperand(1) == Op1)) {
Src1 =
Op2.getOperand(0) == Op1 ? Op2.getOperand(1) : Op2.getOperand(0);
Src2 = Op1;
return true;
}
return false;
};
if (isOrXorPattern()) {
SDValue Neg;
unsigned int CmpSz = CmpOp0.getSimpleValueType().getSizeInBits();
// we need mask of all zeros or ones with same size of the other
// operands.
if (CmpSz > VT.getSizeInBits())
Neg = DAG.getNode(ISD::TRUNCATE, DL, VT, CmpOp0);
else if (CmpSz < VT.getSizeInBits())
Neg = DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(ISD::ANY_EXTEND, DL, VT, CmpOp0.getOperand(0)),
DAG.getConstant(1, DL, VT));
else
Neg = CmpOp0;
SDValue Mask = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
Neg); // -(and (x, 0x1))
SDValue And = DAG.getNode(ISD::AND, DL, VT, Mask, Src1); // Mask & z
return DAG.getNode(Op2.getOpcode(), DL, VT, And, Src2); // And Op y
}
}
}
// Look past (and (setcc_carry (cmp ...)), 1).
if (Cond.getOpcode() == ISD::AND &&
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
isOneConstant(Cond.getOperand(1)))
Cond = Cond.getOperand(0);
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
unsigned CondOpcode = Cond.getOpcode();
if (CondOpcode == X86ISD::SETCC ||
CondOpcode == X86ISD::SETCC_CARRY) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
bool IllegalFPCMov = false;
if (VT.isFloatingPoint() && !VT.isVector() &&
!isScalarFPTypeInSSEReg(VT)) // FPStack?
IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
Cmp.getOpcode() == X86ISD::BT) { // FIXME
Cond = Cmp;
AddTest = false;
}
} else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) {
SDValue Value;
X86::CondCode X86Cond;
std::tie(Value, Cond) = getX86XALUOOp(X86Cond, Cond.getValue(0), DAG);
CC = DAG.getTargetConstant(X86Cond, DL, MVT::i8);
AddTest = false;
}
if (AddTest) {
// Look past the truncate if the high bits are known zero.
if (isTruncWithZeroHighBitsInput(Cond, DAG))
Cond = Cond.getOperand(0);
// We know the result of AND is compared against zero. Try to match
// it to BT.
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
SDValue BTCC;
if (SDValue BT = LowerAndToBT(Cond, ISD::SETNE, DL, DAG, BTCC)) {
CC = BTCC;
Cond = BT;
AddTest = false;
}
}
}
if (AddTest) {
CC = DAG.getTargetConstant(X86::COND_NE, DL, MVT::i8);
Cond = EmitTest(Cond, X86::COND_NE, DL, DAG, Subtarget);
}
// a < b ? -1 : 0 -> RES = ~setcc_carry
// a < b ? 0 : -1 -> RES = setcc_carry
// a >= b ? -1 : 0 -> RES = setcc_carry
// a >= b ? 0 : -1 -> RES = ~setcc_carry
if (Cond.getOpcode() == X86ISD::SUB) {
Cond = ConvertCmpIfNecessary(Cond, DAG);
unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
(isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
(isNullConstant(Op1) || isNullConstant(Op2))) {
SDValue Res =
DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getTargetConstant(X86::COND_B, DL, MVT::i8), Cond);
if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B))
return DAG.getNOT(DL, Res, Res.getValueType());
return Res;
}
}
// X86 doesn't have an i8 cmov. If both operands are the result of a truncate
// widen the cmov and push the truncate through. This avoids introducing a new
// branch during isel and doesn't add any extensions.
if (Op.getValueType() == MVT::i8 &&
Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
if (T1.getValueType() == T2.getValueType() &&
// Blacklist CopyFromReg to avoid partial register stalls.
T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, T1.getValueType(), T2, T1,
CC, Cond);
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
}
}
// Or finally, promote i8 cmovs if we have CMOV,
// or i16 cmovs if it won't prevent folding a load.
// FIXME: we should not limit promotion of i8 case to only when the CMOV is
// legal, but EmitLoweredSelect() can not deal with these extensions
// being inserted between two CMOV's. (in i16 case too TBN)
// https://bugs.llvm.org/show_bug.cgi?id=40974
if ((Op.getValueType() == MVT::i8 && Subtarget.hasCMov()) ||
(Op.getValueType() == MVT::i16 && !MayFoldLoad(Op1) &&
!MayFoldLoad(Op2))) {
Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
SDValue Ops[] = { Op2, Op1, CC, Cond };
SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, MVT::i32, Ops);
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
}
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
// condition is true.
SDValue Ops[] = { Op2, Op1, CC, Cond };
return DAG.getNode(X86ISD::CMOV, DL, Op.getValueType(), Ops);
}
static SDValue LowerSIGN_EXTEND_Mask(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
assert(InVT.getVectorElementType() == MVT::i1 && "Unexpected input type!");
MVT VTElt = VT.getVectorElementType();
SDLoc dl(Op);
unsigned NumElts = VT.getVectorNumElements();
// Extend VT if the scalar type is i8/i16 and BWI is not supported.
MVT ExtVT = VT;
if (!Subtarget.hasBWI() && VTElt.getSizeInBits() <= 16) {
// If v16i32 is to be avoided, we'll need to split and concatenate.
if (NumElts == 16 && !Subtarget.canExtendTo512DQ())
return SplitAndExtendv16i1(Op.getOpcode(), VT, In, dl, DAG);
ExtVT = MVT::getVectorVT(MVT::i32, NumElts);
}
// Widen to 512-bits if VLX is not supported.
MVT WideVT = ExtVT;
if (!ExtVT.is512BitVector() && !Subtarget.hasVLX()) {
NumElts *= 512 / ExtVT.getSizeInBits();
InVT = MVT::getVectorVT(MVT::i1, NumElts);
In = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, InVT, DAG.getUNDEF(InVT),
In, DAG.getIntPtrConstant(0, dl));
WideVT = MVT::getVectorVT(ExtVT.getVectorElementType(), NumElts);
}
SDValue V;
MVT WideEltVT = WideVT.getVectorElementType();
if ((Subtarget.hasDQI() && WideEltVT.getSizeInBits() >= 32) ||
(Subtarget.hasBWI() && WideEltVT.getSizeInBits() <= 16)) {
V = DAG.getNode(Op.getOpcode(), dl, WideVT, In);
} else {
SDValue NegOne = DAG.getConstant(-1, dl, WideVT);
SDValue Zero = DAG.getConstant(0, dl, WideVT);
V = DAG.getSelect(dl, WideVT, In, NegOne, Zero);
}
// Truncate if we had to extend i16/i8 above.
if (VT != ExtVT) {
WideVT = MVT::getVectorVT(VTElt, NumElts);
V = DAG.getNode(ISD::TRUNCATE, dl, WideVT, V);
}
// Extract back to 128/256-bit if we widened.
if (WideVT != VT)
V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, V,
DAG.getIntPtrConstant(0, dl));
return V;
}
static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
if (InVT.getVectorElementType() == MVT::i1)
return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG);
assert(Subtarget.hasAVX() && "Expected AVX support");
return LowerAVXExtend(Op, DAG, Subtarget);
}
// Lowering for SIGN_EXTEND_VECTOR_INREG and ZERO_EXTEND_VECTOR_INREG.
// For sign extend this needs to handle all vector sizes and SSE4.1 and
// non-SSE4.1 targets. For zero extend this should only handle inputs of
// MVT::v64i8 when BWI is not supported, but AVX512 is.
static SDValue LowerEXTEND_VECTOR_INREG(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = Op->getOperand(0);
MVT VT = Op->getSimpleValueType(0);
MVT InVT = In.getSimpleValueType();
MVT SVT = VT.getVectorElementType();
MVT InSVT = InVT.getVectorElementType();
assert(SVT.getSizeInBits() > InSVT.getSizeInBits());
if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
return SDValue();
if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
return SDValue();
if (!(VT.is128BitVector() && Subtarget.hasSSE2()) &&
!(VT.is256BitVector() && Subtarget.hasAVX()) &&
!(VT.is512BitVector() && Subtarget.hasAVX512()))
return SDValue();
SDLoc dl(Op);
unsigned Opc = Op.getOpcode();
unsigned NumElts = VT.getVectorNumElements();
// For 256-bit vectors, we only need the lower (128-bit) half of the input.
// For 512-bit vectors, we need 128-bits or 256-bits.
if (InVT.getSizeInBits() > 128) {
// Input needs to be at least the same number of elements as output, and
// at least 128-bits.
int InSize = InSVT.getSizeInBits() * NumElts;
In = extractSubVector(In, 0, DAG, dl, std::max(InSize, 128));
InVT = In.getSimpleValueType();
}
// SSE41 targets can use the pmov[sz]x* instructions directly for 128-bit results,
// so are legal and shouldn't occur here. AVX2/AVX512 pmovsx* instructions still
// need to be handled here for 256/512-bit results.
if (Subtarget.hasInt256()) {
assert(VT.getSizeInBits() > 128 && "Unexpected 128-bit vector extension");
if (InVT.getVectorNumElements() != NumElts)
return DAG.getNode(Op.getOpcode(), dl, VT, In);
// FIXME: Apparently we create inreg operations that could be regular
// extends.
unsigned ExtOpc =
Opc == ISD::SIGN_EXTEND_VECTOR_INREG ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND;
return DAG.getNode(ExtOpc, dl, VT, In);
}
// pre-AVX2 256-bit extensions need to be split into 128-bit instructions.
if (Subtarget.hasAVX()) {
assert(VT.is256BitVector() && "256-bit vector expected");
MVT HalfVT = VT.getHalfNumVectorElementsVT();
int HalfNumElts = HalfVT.getVectorNumElements();
unsigned NumSrcElts = InVT.getVectorNumElements();
SmallVector<int, 16> HiMask(NumSrcElts, SM_SentinelUndef);
for (int i = 0; i != HalfNumElts; ++i)
HiMask[i] = HalfNumElts + i;
SDValue Lo = DAG.getNode(Opc, dl, HalfVT, In);
SDValue Hi = DAG.getVectorShuffle(InVT, dl, In, DAG.getUNDEF(InVT), HiMask);
Hi = DAG.getNode(Opc, dl, HalfVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
}
// We should only get here for sign extend.
assert(Opc == ISD::SIGN_EXTEND_VECTOR_INREG && "Unexpected opcode!");
assert(VT.is128BitVector() && InVT.is128BitVector() && "Unexpected VTs");
// pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
SDValue Curr = In;
SDValue SignExt = Curr;
// As SRAI is only available on i16/i32 types, we expand only up to i32
// and handle i64 separately.
if (InVT != MVT::v4i32) {
MVT DestVT = VT == MVT::v2i64 ? MVT::v4i32 : VT;
unsigned DestWidth = DestVT.getScalarSizeInBits();
unsigned Scale = DestWidth / InSVT.getSizeInBits();
unsigned InNumElts = InVT.getVectorNumElements();
unsigned DestElts = DestVT.getVectorNumElements();
// Build a shuffle mask that takes each input element and places it in the
// MSBs of the new element size.
SmallVector<int, 16> Mask(InNumElts, SM_SentinelUndef);
for (unsigned i = 0; i != DestElts; ++i)
Mask[i * Scale + (Scale - 1)] = i;
Curr = DAG.getVectorShuffle(InVT, dl, In, In, Mask);
Curr = DAG.getBitcast(DestVT, Curr);
unsigned SignExtShift = DestWidth - InSVT.getSizeInBits();
SignExt = DAG.getNode(X86ISD::VSRAI, dl, DestVT, Curr,
DAG.getTargetConstant(SignExtShift, dl, MVT::i8));
}
if (VT == MVT::v2i64) {
assert(Curr.getValueType() == MVT::v4i32 && "Unexpected input VT");
SDValue Zero = DAG.getConstant(0, dl, MVT::v4i32);
SDValue Sign = DAG.getSetCC(dl, MVT::v4i32, Zero, Curr, ISD::SETGT);
SignExt = DAG.getVectorShuffle(MVT::v4i32, dl, SignExt, Sign, {0, 4, 1, 5});
SignExt = DAG.getBitcast(VT, SignExt);
}
return SignExt;
}
static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
SDLoc dl(Op);
if (InVT.getVectorElementType() == MVT::i1)
return LowerSIGN_EXTEND_Mask(Op, Subtarget, DAG);
assert(VT.isVector() && InVT.isVector() && "Expected vector type");
assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
"Expected same number of elements");
assert((VT.getVectorElementType() == MVT::i16 ||
VT.getVectorElementType() == MVT::i32 ||
VT.getVectorElementType() == MVT::i64) &&
"Unexpected element type");
assert((InVT.getVectorElementType() == MVT::i8 ||
InVT.getVectorElementType() == MVT::i16 ||
InVT.getVectorElementType() == MVT::i32) &&
"Unexpected element type");
// Custom legalize v8i8->v8i64 on CPUs without avx512bw.
if (InVT == MVT::v8i8) {
if (VT != MVT::v8i64)
return SDValue();
In = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op),
MVT::v16i8, In, DAG.getUNDEF(MVT::v8i8));
return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, VT, In);
}
if (Subtarget.hasInt256())
return Op;
// Optimize vectors in AVX mode
// Sign extend v8i16 to v8i32 and
// v4i32 to v4i64
//
// Divide input vector into two parts
// for v4i32 the high shuffle mask will be {2, 3, -1, -1}
// use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
// concat the vectors to original VT
MVT HalfVT = VT.getHalfNumVectorElementsVT();
SDValue OpLo = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, HalfVT, In);
unsigned NumElems = InVT.getVectorNumElements();
SmallVector<int,8> ShufMask(NumElems, -1);
for (unsigned i = 0; i != NumElems/2; ++i)
ShufMask[i] = i + NumElems/2;
SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, In, ShufMask);
OpHi = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, HalfVT, OpHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
/// Change a vector store into a pair of half-size vector stores.
static SDValue splitVectorStore(StoreSDNode *Store, SelectionDAG &DAG) {
SDValue StoredVal = Store->getValue();
assert((StoredVal.getValueType().is256BitVector() ||
StoredVal.getValueType().is512BitVector()) &&
"Expecting 256/512-bit op");
// Splitting volatile memory ops is not allowed unless the operation was not
// legal to begin with. Assume the input store is legal (this transform is
// only used for targets with AVX). Note: It is possible that we have an
// illegal type like v2i128, and so we could allow splitting a volatile store
// in that case if that is important.
if (!Store->isSimple())
return SDValue();
EVT StoreVT = StoredVal.getValueType();
unsigned NumElems = StoreVT.getVectorNumElements();
unsigned HalfSize = StoredVal.getValueSizeInBits() / 2;
unsigned HalfAlign = (128 == HalfSize ? 16 : 32);
SDLoc DL(Store);
SDValue Value0 = extractSubVector(StoredVal, 0, DAG, DL, HalfSize);
SDValue Value1 = extractSubVector(StoredVal, NumElems / 2, DAG, DL, HalfSize);
SDValue Ptr0 = Store->getBasePtr();
SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, HalfAlign, DL);
unsigned Alignment = Store->getAlignment();
SDValue Ch0 =
DAG.getStore(Store->getChain(), DL, Value0, Ptr0, Store->getPointerInfo(),
Alignment, Store->getMemOperand()->getFlags());
SDValue Ch1 = DAG.getStore(Store->getChain(), DL, Value1, Ptr1,
Store->getPointerInfo().getWithOffset(HalfAlign),
MinAlign(Alignment, HalfAlign),
Store->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Ch0, Ch1);
}
/// Scalarize a vector store, bitcasting to TargetVT to determine the scalar
/// type.
static SDValue scalarizeVectorStore(StoreSDNode *Store, MVT StoreVT,
SelectionDAG &DAG) {
SDValue StoredVal = Store->getValue();
assert(StoreVT.is128BitVector() &&
StoredVal.getValueType().is128BitVector() && "Expecting 128-bit op");
StoredVal = DAG.getBitcast(StoreVT, StoredVal);
// Splitting volatile memory ops is not allowed unless the operation was not
// legal to begin with. We are assuming the input op is legal (this transform
// is only used for targets with AVX).
if (!Store->isSimple())
return SDValue();
MVT StoreSVT = StoreVT.getScalarType();
unsigned NumElems = StoreVT.getVectorNumElements();
unsigned ScalarSize = StoreSVT.getStoreSize();
unsigned Alignment = Store->getAlignment();
SDLoc DL(Store);
SmallVector<SDValue, 4> Stores;
for (unsigned i = 0; i != NumElems; ++i) {
unsigned Offset = i * ScalarSize;
SDValue Ptr = DAG.getMemBasePlusOffset(Store->getBasePtr(), Offset, DL);
SDValue Scl = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreSVT, StoredVal,
DAG.getIntPtrConstant(i, DL));
SDValue Ch = DAG.getStore(Store->getChain(), DL, Scl, Ptr,
Store->getPointerInfo().getWithOffset(Offset),
MinAlign(Alignment, Offset),
Store->getMemOperand()->getFlags());
Stores.push_back(Ch);
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
}
static SDValue LowerStore(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
StoreSDNode *St = cast<StoreSDNode>(Op.getNode());
SDLoc dl(St);
SDValue StoredVal = St->getValue();
// Without AVX512DQ, we need to use a scalar type for v2i1/v4i1/v8i1 stores.
if (StoredVal.getValueType().isVector() &&
StoredVal.getValueType().getVectorElementType() == MVT::i1) {
assert(StoredVal.getValueType().getVectorNumElements() <= 8 &&
"Unexpected VT");
assert(!St->isTruncatingStore() && "Expected non-truncating store");
assert(Subtarget.hasAVX512() && !Subtarget.hasDQI() &&
"Expected AVX512F without AVX512DQI");
StoredVal = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1,
DAG.getUNDEF(MVT::v16i1), StoredVal,
DAG.getIntPtrConstant(0, dl));
StoredVal = DAG.getBitcast(MVT::i16, StoredVal);
StoredVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, StoredVal);
return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
if (St->isTruncatingStore())
return SDValue();
// If this is a 256-bit store of concatenated ops, we are better off splitting
// that store into two 128-bit stores. This avoids spurious use of 256-bit ops
// and each half can execute independently. Some cores would split the op into
// halves anyway, so the concat (vinsertf128) is purely an extra op.
MVT StoreVT = StoredVal.getSimpleValueType();
if (StoreVT.is256BitVector()) {
SmallVector<SDValue, 4> CatOps;
if (StoredVal.hasOneUse() && collectConcatOps(StoredVal.getNode(), CatOps))
return splitVectorStore(St, DAG);
return SDValue();
}
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
assert(StoreVT.isVector() && StoreVT.getSizeInBits() == 64 &&
"Unexpected VT");
assert(TLI.getTypeAction(*DAG.getContext(), StoreVT) ==
TargetLowering::TypeWidenVector && "Unexpected type action!");
EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), StoreVT);
StoredVal = DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, StoredVal,
DAG.getUNDEF(StoreVT));
if (Subtarget.hasSSE2()) {
// Widen the vector, cast to a v2x64 type, extract the single 64-bit element
// and store it.
MVT StVT = Subtarget.is64Bit() && StoreVT.isInteger() ? MVT::i64 : MVT::f64;
MVT CastVT = MVT::getVectorVT(StVT, 2);
StoredVal = DAG.getBitcast(CastVT, StoredVal);
StoredVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, StVT, StoredVal,
DAG.getIntPtrConstant(0, dl));
return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
assert(Subtarget.hasSSE1() && "Expected SSE");
SDVTList Tys = DAG.getVTList(MVT::Other);
SDValue Ops[] = {St->getChain(), StoredVal, St->getBasePtr()};
return DAG.getMemIntrinsicNode(X86ISD::VEXTRACT_STORE, dl, Tys, Ops, MVT::i64,
St->getMemOperand());
}
// Lower vector extended loads using a shuffle. If SSSE3 is not available we
// may emit an illegal shuffle but the expansion is still better than scalar
// code. We generate sext/sext_invec for SEXTLOADs if it's available, otherwise
// we'll emit a shuffle and a arithmetic shift.
// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
// TODO: It is possible to support ZExt by zeroing the undef values during
// the shuffle phase or after the shuffle.
static SDValue LowerLoad(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT RegVT = Op.getSimpleValueType();
assert(RegVT.isVector() && "We only custom lower vector loads.");
assert(RegVT.isInteger() &&
"We only custom lower integer vector loads.");
LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
SDLoc dl(Ld);
// Without AVX512DQ, we need to use a scalar type for v2i1/v4i1/v8i1 loads.
if (RegVT.getVectorElementType() == MVT::i1) {
assert(EVT(RegVT) == Ld->getMemoryVT() && "Expected non-extending load");
assert(RegVT.getVectorNumElements() <= 8 && "Unexpected VT");
assert(Subtarget.hasAVX512() && !Subtarget.hasDQI() &&
"Expected AVX512F without AVX512DQI");
SDValue NewLd = DAG.getLoad(MVT::i8, dl, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
// Replace chain users with the new chain.
assert(NewLd->getNumValues() == 2 && "Loads must carry a chain!");
SDValue Val = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, NewLd);
Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RegVT,
DAG.getBitcast(MVT::v16i1, Val),
DAG.getIntPtrConstant(0, dl));
return DAG.getMergeValues({Val, NewLd.getValue(1)}, dl);
}
return SDValue();
}
/// Return true if node is an ISD::AND or ISD::OR of two X86ISD::SETCC nodes
/// each of which has no other use apart from the AND / OR.
static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
Opc = Op.getOpcode();
if (Opc != ISD::OR && Opc != ISD::AND)
return false;
return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
Op.getOperand(0).hasOneUse() &&
Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
Op.getOperand(1).hasOneUse());
}
/// Return true if node is an ISD::XOR of a X86ISD::SETCC and 1 and that the
/// SETCC node has a single use.
static bool isXor1OfSetCC(SDValue Op) {
if (Op.getOpcode() != ISD::XOR)
return false;
if (isOneConstant(Op.getOperand(1)))
return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
Op.getOperand(0).hasOneUse();
return false;
}
SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
bool addTest = true;
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
SDLoc dl(Op);
SDValue CC;
bool Inverted = false;
if (Cond.getOpcode() == ISD::SETCC) {
// Check for setcc([su]{add,sub,mul}o == 0).
if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
isNullConstant(Cond.getOperand(1)) &&
Cond.getOperand(0).getResNo() == 1 &&
(Cond.getOperand(0).getOpcode() == ISD::SADDO ||
Cond.getOperand(0).getOpcode() == ISD::UADDO ||
Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
Cond.getOperand(0).getOpcode() == ISD::USUBO ||
Cond.getOperand(0).getOpcode() == ISD::SMULO ||
Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
Inverted = true;
Cond = Cond.getOperand(0);
} else {
if (SDValue NewCond = LowerSETCC(Cond, DAG))
Cond = NewCond;
}
}
#if 0
// FIXME: LowerXALUO doesn't handle these!!
else if (Cond.getOpcode() == X86ISD::ADD ||
Cond.getOpcode() == X86ISD::SUB ||
Cond.getOpcode() == X86ISD::SMUL ||
Cond.getOpcode() == X86ISD::UMUL)
Cond = LowerXALUO(Cond, DAG);
#endif
// Look pass (and (setcc_carry (cmp ...)), 1).
if (Cond.getOpcode() == ISD::AND &&
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
isOneConstant(Cond.getOperand(1)))
Cond = Cond.getOperand(0);
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
unsigned CondOpcode = Cond.getOpcode();
if (CondOpcode == X86ISD::SETCC ||
CondOpcode == X86ISD::SETCC_CARRY) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
// FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
Cond = Cmp;
addTest = false;
} else {
switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
default: break;
case X86::COND_O:
case X86::COND_B:
// These can only come from an arithmetic instruction with overflow,
// e.g. SADDO, UADDO.
Cond = Cond.getOperand(1);
addTest = false;
break;
}
}
}
CondOpcode = Cond.getOpcode();
if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) {
SDValue Value;
X86::CondCode X86Cond;
std::tie(Value, Cond) = getX86XALUOOp(X86Cond, Cond.getValue(0), DAG);
if (Inverted)
X86Cond = X86::GetOppositeBranchCondition(X86Cond);
CC = DAG.getTargetConstant(X86Cond, dl, MVT::i8);
addTest = false;
} else {
unsigned CondOpc;
if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
SDValue Cmp = Cond.getOperand(0).getOperand(1);
if (CondOpc == ISD::OR) {
// Also, recognize the pattern generated by an FCMP_UNE. We can emit
// two branches instead of an explicit OR instruction with a
// separate test.
if (Cmp == Cond.getOperand(1).getOperand(1) &&
isX86LogicalCmp(Cmp)) {
CC = Cond.getOperand(0).getOperand(0);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = Cond.getOperand(1).getOperand(0);
Cond = Cmp;
addTest = false;
}
} else { // ISD::AND
// Also, recognize the pattern generated by an FCMP_OEQ. We can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Cmp == Cond.getOperand(1).getOperand(1) &&
isX86LogicalCmp(Cmp) &&
Op.getNode()->hasOneUse()) {
X86::CondCode CCode0 =
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
CCode0 = X86::GetOppositeBranchCondition(CCode0);
CC = DAG.getTargetConstant(CCode0, dl, MVT::i8);
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_OEQ.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
Dest = FalseBB;
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), Chain,
Dest, CC, Cmp);
X86::CondCode CCode1 =
(X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
CCode1 = X86::GetOppositeBranchCondition(CCode1);
CC = DAG.getTargetConstant(CCode1, dl, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
}
} else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
// Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
// It should be transformed during dag combiner except when the condition
// is set by a arithmetics with overflow node.
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getTargetConstant(CCode, dl, MVT::i8);
Cond = Cond.getOperand(0).getOperand(1);
addTest = false;
} else if (Cond.getOpcode() == ISD::SETCC &&
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
// For FCMP_OEQ, we can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Op.getNode()->hasOneUse()) {
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_OEQ.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
Dest = FalseBB;
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
Cond.getOperand(0), Cond.getOperand(1));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
CC = DAG.getTargetConstant(X86::COND_NE, dl, MVT::i8);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = DAG.getTargetConstant(X86::COND_P, dl, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
} else if (Cond.getOpcode() == ISD::SETCC &&
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
// For FCMP_UNE, we can emit
// two branches instead of an explicit OR instruction with a
// separate test.
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
Cond.getOperand(0), Cond.getOperand(1));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
CC = DAG.getTargetConstant(X86::COND_NE, dl, MVT::i8);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = DAG.getTargetConstant(X86::COND_P, dl, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
if (addTest) {
// Look pass the truncate if the high bits are known zero.
if (isTruncWithZeroHighBitsInput(Cond, DAG))
Cond = Cond.getOperand(0);
// We know the result of AND is compared against zero. Try to match
// it to BT.
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
SDValue BTCC;
if (SDValue BT = LowerAndToBT(Cond, ISD::SETNE, dl, DAG, BTCC)) {
CC = BTCC;
Cond = BT;
addTest = false;
}
}
}
if (addTest) {
X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
CC = DAG.getTargetConstant(X86Cond, dl, MVT::i8);
Cond = EmitTest(Cond, X86Cond, dl, DAG, Subtarget);
}
Cond = ConvertCmpIfNecessary(Cond, DAG);
return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cond);
}
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
// Calls to _alloca are needed to probe the stack when allocating more than 4k
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
// that the guard pages used by the OS virtual memory manager are allocated in
// correct sequence.
SDValue
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool SplitStack = MF.shouldSplitStack();
bool EmitStackProbe = !getStackProbeSymbolName(MF).empty();
bool Lower = (Subtarget.isOSWindows() && !Subtarget.isTargetMachO()) ||
SplitStack || EmitStackProbe;
SDLoc dl(Op);
// Get the inputs.
SDNode *Node = Op.getNode();
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
MaybeAlign Alignment(Op.getConstantOperandVal(2));
EVT VT = Node->getValueType(0);
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
bool Is64Bit = Subtarget.is64Bit();
MVT SPTy = getPointerTy(DAG.getDataLayout());
SDValue Result;
if (!Lower) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
" not tell us which reg is the stack pointer!");
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
Chain = SP.getValue(1);
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
const Align StackAlign(TFI.getStackAlignment());
Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
if (Alignment && Alignment > StackAlign)
Result =
DAG.getNode(ISD::AND, dl, VT, Result,
DAG.getConstant(~(Alignment->value() - 1ULL), dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain
} else if (SplitStack) {
MachineRegisterInfo &MRI = MF.getRegInfo();
if (Is64Bit) {
// The 64 bit implementation of segmented stacks needs to clobber both r10
// r11. This makes it impossible to use it along with nested parameters.
const Function &F = MF.getFunction();
for (const auto &A : F.args()) {
if (A.hasNestAttr())
report_fatal_error("Cannot use segmented stacks with functions that "
"have nested arguments.");
}
}
const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
Register Vreg = MRI.createVirtualRegister(AddrRegClass);
Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
DAG.getRegister(Vreg, SPTy));
} else {
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Size);
MF.getInfo<X86MachineFunctionInfo>()->setHasWinAlloca(true);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
Register SPReg = RegInfo->getStackRegister();
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
Chain = SP.getValue(1);
if (Alignment) {
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
DAG.getConstant(~(Alignment->value() - 1ULL), dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
}
Result = SP;
}
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
SDValue Ops[2] = {Result, Chain};
return DAG.getMergeValues(Ops, dl);
}
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto PtrVT = getPointerTy(MF.getDataLayout());
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SDLoc DL(Op);
if (!Subtarget.is64Bit() ||
Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv())) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV));
}
// __va_list_tag:
// gp_offset (0 - 6 * 8)
// fp_offset (48 - 48 + 8 * 16)
// overflow_arg_area (point to parameters coming in memory).
// reg_save_area
SmallVector<SDValue, 8> MemOps;
SDValue FIN = Op.getOperand(1);
// Store gp_offset
SDValue Store = DAG.getStore(
Op.getOperand(0), DL,
DAG.getConstant(FuncInfo->getVarArgsGPOffset(), DL, MVT::i32), FIN,
MachinePointerInfo(SV));
MemOps.push_back(Store);
// Store fp_offset
FIN = DAG.getMemBasePlusOffset(FIN, 4, DL);
Store = DAG.getStore(
Op.getOperand(0), DL,
DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL, MVT::i32), FIN,
MachinePointerInfo(SV, 4));
MemOps.push_back(Store);
// Store ptr to overflow_arg_area
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
Store =
DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, MachinePointerInfo(SV, 8));
MemOps.push_back(Store);
// Store ptr to reg_save_area.
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(
Subtarget.isTarget64BitLP64() ? 8 : 4, DL));
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT);
Store = DAG.getStore(
Op.getOperand(0), DL, RSFIN, FIN,
MachinePointerInfo(SV, Subtarget.isTarget64BitLP64() ? 16 : 12));
MemOps.push_back(Store);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget.is64Bit() &&
"LowerVAARG only handles 64-bit va_arg!");
assert(Op.getNumOperands() == 4);
MachineFunction &MF = DAG.getMachineFunction();
if (Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv()))
// The Win64 ABI uses char* instead of a structure.
return DAG.expandVAArg(Op.getNode());
SDValue Chain = Op.getOperand(0);
SDValue SrcPtr = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
unsigned Align = Op.getConstantOperandVal(3);
SDLoc dl(Op);
EVT ArgVT = Op.getNode()->getValueType(0);
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
uint8_t ArgMode;
// Decide which area this value should be read from.
// TODO: Implement the AMD64 ABI in its entirety. This simple
// selection mechanism works only for the basic types.
if (ArgVT == MVT::f80) {
llvm_unreachable("va_arg for f80 not yet implemented");
} else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
} else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
} else {
llvm_unreachable("Unhandled argument type in LowerVAARG");
}
if (ArgMode == 2) {
// Sanity Check: Make sure using fp_offset makes sense.
assert(!Subtarget.useSoftFloat() &&
!(MF.getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) &&
Subtarget.hasSSE1());
}
// Insert VAARG_64 node into the DAG
// VAARG_64 returns two values: Variable Argument Address, Chain
SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
DAG.getConstant(ArgMode, dl, MVT::i8),
DAG.getConstant(Align, dl, MVT::i32)};
SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other);
SDValue VAARG = DAG.getMemIntrinsicNode(
X86ISD::VAARG_64, dl,
VTs, InstOps, MVT::i64,
MachinePointerInfo(SV),
/*Align=*/0,
MachineMemOperand::MOLoad | MachineMemOperand::MOStore);
Chain = VAARG.getValue(1);
// Load the next argument and return it
return DAG.getLoad(ArgVT, dl, Chain, VAARG, MachinePointerInfo());
}
static SDValue LowerVACOPY(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
// where a va_list is still an i8*.
assert(Subtarget.is64Bit() && "This code only handles 64-bit va_copy!");
if (Subtarget.isCallingConvWin64(
DAG.getMachineFunction().getFunction().getCallingConv()))
// Probably a Win64 va_copy.
return DAG.expandVACopy(Op.getNode());
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
SDLoc DL(Op);
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
false, false,
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
}
// Helper to get immediate/variable SSE shift opcode from other shift opcodes.
static unsigned getTargetVShiftUniformOpcode(unsigned Opc, bool IsVariable) {
switch (Opc) {
case ISD::SHL:
case X86ISD::VSHL:
case X86ISD::VSHLI:
return IsVariable ? X86ISD::VSHL : X86ISD::VSHLI;
case ISD::SRL:
case X86ISD::VSRL:
case X86ISD::VSRLI:
return IsVariable ? X86ISD::VSRL : X86ISD::VSRLI;
case ISD::SRA:
case X86ISD::VSRA:
case X86ISD::VSRAI:
return IsVariable ? X86ISD::VSRA : X86ISD::VSRAI;
}
llvm_unreachable("Unknown target vector shift node");
}
/// Handle vector element shifts where the shift amount is a constant.
/// Takes immediate version of shift as input.
static SDValue getTargetVShiftByConstNode(unsigned Opc, const SDLoc &dl, MVT VT,
SDValue SrcOp, uint64_t ShiftAmt,
SelectionDAG &DAG) {
MVT ElementType = VT.getVectorElementType();
// Bitcast the source vector to the output type, this is mainly necessary for
// vXi8/vXi64 shifts.
if (VT != SrcOp.getSimpleValueType())
SrcOp = DAG.getBitcast(VT, SrcOp);
// Fold this packed shift into its first operand if ShiftAmt is 0.
if (ShiftAmt == 0)
return SrcOp;
// Check for ShiftAmt >= element width
if (ShiftAmt >= ElementType.getSizeInBits()) {
if (Opc == X86ISD::VSRAI)
ShiftAmt = ElementType.getSizeInBits() - 1;
else
return DAG.getConstant(0, dl, VT);
}
assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
&& "Unknown target vector shift-by-constant node");
// Fold this packed vector shift into a build vector if SrcOp is a
// vector of Constants or UNDEFs.
if (ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
SmallVector<SDValue, 8> Elts;
unsigned NumElts = SrcOp->getNumOperands();
switch (Opc) {
default: llvm_unreachable("Unknown opcode!");
case X86ISD::VSHLI:
for (unsigned i = 0; i != NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
auto *ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
}
break;
case X86ISD::VSRLI:
for (unsigned i = 0; i != NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
auto *ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
}
break;
case X86ISD::VSRAI:
for (unsigned i = 0; i != NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
auto *ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
}
break;
}
return DAG.getBuildVector(VT, dl, Elts);
}
return DAG.getNode(Opc, dl, VT, SrcOp,
DAG.getTargetConstant(ShiftAmt, dl, MVT::i8));
}
/// Handle vector element shifts where the shift amount may or may not be a
/// constant. Takes immediate version of shift as input.
static SDValue getTargetVShiftNode(unsigned Opc, const SDLoc &dl, MVT VT,
SDValue SrcOp, SDValue ShAmt,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT SVT = ShAmt.getSimpleValueType();
assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
// Catch shift-by-constant.
if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
CShAmt->getZExtValue(), DAG);
// Change opcode to non-immediate version.
Opc = getTargetVShiftUniformOpcode(Opc, true);
// Need to build a vector containing shift amount.
// SSE/AVX packed shifts only use the lower 64-bit of the shift count.
// +====================+============+=======================================+
// | ShAmt is | HasSSE4.1? | Construct ShAmt vector as |
// +====================+============+=======================================+
// | i64 | Yes, No | Use ShAmt as lowest elt |
// | i32 | Yes | zero-extend in-reg |
// | (i32 zext(i16/i8)) | Yes | zero-extend in-reg |
// | (i32 zext(i16/i8)) | No | byte-shift-in-reg |
// | i16/i32 | No | v4i32 build_vector(ShAmt, 0, ud, ud)) |
// +====================+============+=======================================+
if (SVT == MVT::i64)
ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v2i64, ShAmt);
else if (ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
ShAmt.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
(ShAmt.getOperand(0).getSimpleValueType() == MVT::i16 ||
ShAmt.getOperand(0).getSimpleValueType() == MVT::i8)) {
ShAmt = ShAmt.getOperand(0);
MVT AmtTy = ShAmt.getSimpleValueType() == MVT::i8 ? MVT::v16i8 : MVT::v8i16;
ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), AmtTy, ShAmt);
if (Subtarget.hasSSE41())
ShAmt = DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(ShAmt),
MVT::v2i64, ShAmt);
else {
SDValue ByteShift = DAG.getTargetConstant(
(128 - AmtTy.getScalarSizeInBits()) / 8, SDLoc(ShAmt), MVT::i8);
ShAmt = DAG.getBitcast(MVT::v16i8, ShAmt);
ShAmt = DAG.getNode(X86ISD::VSHLDQ, SDLoc(ShAmt), MVT::v16i8, ShAmt,
ByteShift);
ShAmt = DAG.getNode(X86ISD::VSRLDQ, SDLoc(ShAmt), MVT::v16i8, ShAmt,
ByteShift);
}
} else if (Subtarget.hasSSE41() &&
ShAmt.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
ShAmt = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(ShAmt), MVT::v4i32, ShAmt);
ShAmt = DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(ShAmt),
MVT::v2i64, ShAmt);
} else {
SDValue ShOps[4] = {ShAmt, DAG.getConstant(0, dl, SVT), DAG.getUNDEF(SVT),
DAG.getUNDEF(SVT)};
ShAmt = DAG.getBuildVector(MVT::v4i32, dl, ShOps);
}
// The return type has to be a 128-bit type with the same element
// type as the input type.
MVT EltVT = VT.getVectorElementType();
MVT ShVT = MVT::getVectorVT(EltVT, 128 / EltVT.getSizeInBits());
ShAmt = DAG.getBitcast(ShVT, ShAmt);
return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
}
/// Return Mask with the necessary casting or extending
/// for \p Mask according to \p MaskVT when lowering masking intrinsics
static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl) {
if (isAllOnesConstant(Mask))
return DAG.getConstant(1, dl, MaskVT);
if (X86::isZeroNode(Mask))
return DAG.getConstant(0, dl, MaskVT);
assert(MaskVT.bitsLE(Mask.getSimpleValueType()) && "Unexpected mask size!");
if (Mask.getSimpleValueType() == MVT::i64 && Subtarget.is32Bit()) {
assert(MaskVT == MVT::v64i1 && "Expected v64i1 mask!");
assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
// In case 32bit mode, bitcast i64 is illegal, extend/split it.
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
DAG.getConstant(0, dl, MVT::i32));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
DAG.getConstant(1, dl, MVT::i32));
Lo = DAG.getBitcast(MVT::v32i1, Lo);
Hi = DAG.getBitcast(MVT::v32i1, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
} else {
MVT BitcastVT = MVT::getVectorVT(MVT::i1,
Mask.getSimpleValueType().getSizeInBits());
// In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
// are extracted by EXTRACT_SUBVECTOR.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
DAG.getBitcast(BitcastVT, Mask),
DAG.getIntPtrConstant(0, dl));
}
}
/// Return (and \p Op, \p Mask) for compare instructions or
/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
/// necessary casting or extending for \p Mask when lowering masking intrinsics
static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
SDValue PreservedSrc,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
unsigned OpcodeSelect = ISD::VSELECT;
SDLoc dl(Op);
if (isAllOnesConstant(Mask))
return Op;
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
if (PreservedSrc.isUndef())
PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
}
/// Creates an SDNode for a predicated scalar operation.
/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
/// The mask is coming as MVT::i8 and it should be transformed
/// to MVT::v1i1 while lowering masking intrinsics.
/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
/// "X86select" instead of "vselect". We just can't create the "vselect" node
/// for a scalar instruction.
static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
SDValue PreservedSrc,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (auto *MaskConst = dyn_cast<ConstantSDNode>(Mask))
if (MaskConst->getZExtValue() & 0x1)
return Op;
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
assert(Mask.getValueType() == MVT::i8 && "Unexpect type");
SDValue IMask = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v1i1,
DAG.getBitcast(MVT::v8i1, Mask),
DAG.getIntPtrConstant(0, dl));
if (Op.getOpcode() == X86ISD::FSETCCM ||
Op.getOpcode() == X86ISD::FSETCCM_SAE ||
Op.getOpcode() == X86ISD::VFPCLASSS)
return DAG.getNode(ISD::AND, dl, VT, Op, IMask);
if (PreservedSrc.isUndef())
PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(X86ISD::SELECTS, dl, VT, IMask, Op, PreservedSrc);
}
static int getSEHRegistrationNodeSize(const Function *Fn) {
if (!Fn->hasPersonalityFn())
report_fatal_error(
"querying registration node size for function without personality");
// The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
// WinEHStatePass for the full struct definition.
switch (classifyEHPersonality(Fn->getPersonalityFn())) {
case EHPersonality::MSVC_X86SEH: return 24;
case EHPersonality::MSVC_CXX: return 16;
default: break;
}
report_fatal_error(
"can only recover FP for 32-bit MSVC EH personality functions");
}
/// When the MSVC runtime transfers control to us, either to an outlined
/// function or when returning to a parent frame after catching an exception, we
/// recover the parent frame pointer by doing arithmetic on the incoming EBP.
/// Here's the math:
/// RegNodeBase = EntryEBP - RegNodeSize
/// ParentFP = RegNodeBase - ParentFrameOffset
/// Subtracting RegNodeSize takes us to the offset of the registration node, and
/// subtracting the offset (negative on x86) takes us back to the parent FP.
static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
SDValue EntryEBP) {
MachineFunction &MF = DAG.getMachineFunction();
SDLoc dl;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
// It's possible that the parent function no longer has a personality function
// if the exceptional code was optimized away, in which case we just return
// the incoming EBP.
if (!Fn->hasPersonalityFn())
return EntryEBP;
// Get an MCSymbol that will ultimately resolve to the frame offset of the EH
// registration, or the .set_setframe offset.
MCSymbol *OffsetSym =
MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
GlobalValue::dropLLVMManglingEscape(Fn->getName()));
SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
SDValue ParentFrameOffset =
DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal);
// Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after
// prologue to RBP in the parent function.
const X86Subtarget &Subtarget =
static_cast<const X86Subtarget &>(DAG.getSubtarget());
if (Subtarget.is64Bit())
return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset);
int RegNodeSize = getSEHRegistrationNodeSize(Fn);
// RegNodeBase = EntryEBP - RegNodeSize
// ParentFP = RegNodeBase - ParentFrameOffset
SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
DAG.getConstant(RegNodeSize, dl, PtrVT));
return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset);
}
SDValue X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
// Helper to detect if the operand is CUR_DIRECTION rounding mode.
auto isRoundModeCurDirection = [](SDValue Rnd) {
if (auto *C = dyn_cast<ConstantSDNode>(Rnd))
return C->getAPIntValue() == X86::STATIC_ROUNDING::CUR_DIRECTION;
return false;
};
auto isRoundModeSAE = [](SDValue Rnd) {
if (auto *C = dyn_cast<ConstantSDNode>(Rnd)) {
unsigned RC = C->getZExtValue();
if (RC & X86::STATIC_ROUNDING::NO_EXC) {
// Clear the NO_EXC bit and check remaining bits.
RC ^= X86::STATIC_ROUNDING::NO_EXC;
// As a convenience we allow no other bits or explicitly
// current direction.
return RC == 0 || RC == X86::STATIC_ROUNDING::CUR_DIRECTION;
}
}
return false;
};
auto isRoundModeSAEToX = [](SDValue Rnd, unsigned &RC) {
if (auto *C = dyn_cast<ConstantSDNode>(Rnd)) {
RC = C->getZExtValue();
if (RC & X86::STATIC_ROUNDING::NO_EXC) {
// Clear the NO_EXC bit and check remaining bits.
RC ^= X86::STATIC_ROUNDING::NO_EXC;
return RC == X86::STATIC_ROUNDING::TO_NEAREST_INT ||
RC == X86::STATIC_ROUNDING::TO_NEG_INF ||
RC == X86::STATIC_ROUNDING::TO_POS_INF ||
RC == X86::STATIC_ROUNDING::TO_ZERO;
}
}
return false;
};
SDLoc dl(Op);
unsigned IntNo = Op.getConstantOperandVal(0);
MVT VT = Op.getSimpleValueType();
const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
if (IntrData) {
switch(IntrData->Type) {
case INTR_TYPE_1OP: {
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(2);
unsigned RC = 0;
if (isRoundModeSAEToX(Rnd, RC))
return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
Op.getOperand(1),
DAG.getTargetConstant(RC, dl, MVT::i32));
if (!isRoundModeCurDirection(Rnd))
return SDValue();
}
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(1));
}
case INTR_TYPE_1OP_SAE: {
SDValue Sae = Op.getOperand(2);
unsigned Opc;
if (isRoundModeCurDirection(Sae))
Opc = IntrData->Opc0;
else if (isRoundModeSAE(Sae))
Opc = IntrData->Opc1;
else
return SDValue();
return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1));
}
case INTR_TYPE_2OP: {
SDValue Src2 = Op.getOperand(2);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(3);
unsigned RC = 0;
if (isRoundModeSAEToX(Rnd, RC))
return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
Op.getOperand(1), Src2,
DAG.getTargetConstant(RC, dl, MVT::i32));
if (!isRoundModeCurDirection(Rnd))
return SDValue();
}
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(1), Src2);
}
case INTR_TYPE_2OP_SAE: {
SDValue Sae = Op.getOperand(3);
unsigned Opc;
if (isRoundModeCurDirection(Sae))
Opc = IntrData->Opc0;
else if (isRoundModeSAE(Sae))
Opc = IntrData->Opc1;
else
return SDValue();
return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
Op.getOperand(2));
}
case INTR_TYPE_3OP:
case INTR_TYPE_3OP_IMM8: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(4);
unsigned RC = 0;
if (isRoundModeSAEToX(Rnd, RC))
return DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
Src1, Src2, Src3,
DAG.getTargetConstant(RC, dl, MVT::i32));
if (!isRoundModeCurDirection(Rnd))
return SDValue();
}
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
{Src1, Src2, Src3});
}
case INTR_TYPE_4OP:
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
case INTR_TYPE_1OP_MASK: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
// We add rounding mode to the Node when
// - RC Opcode is specified and
// - RC is not "current direction".
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(4);
unsigned RC = 0;
if (isRoundModeSAEToX(Rnd, RC))
return getVectorMaskingNode(
DAG.getNode(IntrWithRoundingModeOpcode, dl, Op.getValueType(),
Src, DAG.getTargetConstant(RC, dl, MVT::i32)),
Mask, PassThru, Subtarget, DAG);
if (!isRoundModeCurDirection(Rnd))
return SDValue();
}
return getVectorMaskingNode(
DAG.getNode(IntrData->Opc0, dl, VT, Src), Mask, PassThru,
Subtarget, DAG);
}
case INTR_TYPE_1OP_MASK_SAE: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue Rnd = Op.getOperand(4);
unsigned Opc;
if (isRoundModeCurDirection(Rnd))
Opc = IntrData->Opc0;
else if (isRoundModeSAE(Rnd))
Opc = IntrData->Opc1;
else
return SDValue();
return getVectorMaskingNode(DAG.getNode(Opc, dl, VT, Src), Mask, PassThru,
Subtarget, DAG);
}
case INTR_TYPE_SCALAR_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue passThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
// There are 2 kinds of intrinsics in this group:
// (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
// (2) With rounding mode and sae - 7 operands.
bool HasRounding = IntrWithRoundingModeOpcode != 0;
if (Op.getNumOperands() == (5U + HasRounding)) {
if (HasRounding) {
SDValue Rnd = Op.getOperand(5);
unsigned RC = 0;
if (isRoundModeSAEToX(Rnd, RC))
return getScalarMaskingNode(
DAG.getNode(IntrWithRoundingModeOpcode, dl, VT, Src1, Src2,
DAG.getTargetConstant(RC, dl, MVT::i32)),
Mask, passThru, Subtarget, DAG);
if (!isRoundModeCurDirection(Rnd))
return SDValue();
}
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
Src2),
Mask, passThru, Subtarget, DAG);
}
assert(Op.getNumOperands() == (6U + HasRounding) &&
"Unexpected intrinsic form");
SDValue RoundingMode = Op.getOperand(5);
unsigned Opc = IntrData->Opc0;
if (HasRounding) {
SDValue Sae = Op.getOperand(6);
if (isRoundModeSAE(Sae))
Opc = IntrWithRoundingModeOpcode;
else if (!isRoundModeCurDirection(Sae))
return SDValue();
}
return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1,
Src2, RoundingMode),
Mask, passThru, Subtarget, DAG);
}
case INTR_TYPE_SCALAR_MASK_RND: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue passThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
SDValue Rnd = Op.getOperand(5);
SDValue NewOp;
unsigned RC = 0;
if (isRoundModeCurDirection(Rnd))
NewOp = DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2);
else if (isRoundModeSAEToX(Rnd, RC))
NewOp = DAG.getNode(IntrData->Opc1, dl, VT, Src1, Src2,
DAG.getTargetConstant(RC, dl, MVT::i32));
else
return SDValue();
return getScalarMaskingNode(NewOp, Mask, passThru, Subtarget, DAG);
}
case INTR_TYPE_SCALAR_MASK_SAE: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue passThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
SDValue Sae = Op.getOperand(5);
unsigned Opc;
if (isRoundModeCurDirection(Sae))
Opc = IntrData->Opc0;
else if (isRoundModeSAE(Sae))
Opc = IntrData->Opc1;
else
return SDValue();
return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2),
Mask, passThru, Subtarget, DAG);
}
case INTR_TYPE_2OP_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue PassThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
SDValue NewOp;
if (IntrData->Opc1 != 0) {
SDValue Rnd = Op.getOperand(5);
unsigned RC = 0;
if (isRoundModeSAEToX(Rnd, RC))
NewOp = DAG.getNode(IntrData->Opc1, dl, VT, Src1, Src2,
DAG.getTargetConstant(RC, dl, MVT::i32));
else if (!isRoundModeCurDirection(Rnd))
return SDValue();
}
if (!NewOp)
NewOp = DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2);
return getVectorMaskingNode(NewOp, Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_2OP_MASK_SAE: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue PassThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
unsigned Opc = IntrData->Opc0;
if (IntrData->Opc1 != 0) {
SDValue Sae = Op.getOperand(5);
if (isRoundModeSAE(Sae))
Opc = IntrData->Opc1;
else if (!isRoundModeCurDirection(Sae))
return SDValue();
}
return getVectorMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_3OP_SCALAR_MASK_SAE: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue PassThru = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Sae = Op.getOperand(6);
unsigned Opc;
if (isRoundModeCurDirection(Sae))
Opc = IntrData->Opc0;
else if (isRoundModeSAE(Sae))
Opc = IntrData->Opc1;
else
return SDValue();
return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2, Src3),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_3OP_MASK_SAE: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue PassThru = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
unsigned Opc = IntrData->Opc0;
if (IntrData->Opc1 != 0) {
SDValue Sae = Op.getOperand(6);
if (isRoundModeSAE(Sae))
Opc = IntrData->Opc1;
else if (!isRoundModeCurDirection(Sae))
return SDValue();
}
return getVectorMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2, Src3),
Mask, PassThru, Subtarget, DAG);
}
case BLENDV: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
EVT MaskVT = Src3.getValueType().changeVectorElementTypeToInteger();
Src3 = DAG.getBitcast(MaskVT, Src3);
// Reverse the operands to match VSELECT order.
return DAG.getNode(IntrData->Opc0, dl, VT, Src3, Src2, Src1);
}
case VPERM_2OP : {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
// Swap Src1 and Src2 in the node creation
return DAG.getNode(IntrData->Opc0, dl, VT,Src2, Src1);
}
case IFMA_OP:
// NOTE: We need to swizzle the operands to pass the multiply operands
// first.
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(1));
case FPCLASSS: {
SDValue Src1 = Op.getOperand(1);
SDValue Imm = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Imm);
SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask, SDValue(),
Subtarget, DAG);
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
DAG.getConstant(0, dl, MVT::v8i1),
FPclassMask, DAG.getIntPtrConstant(0, dl));
return DAG.getBitcast(MVT::i8, Ins);
}
case CMP_MASK_CC: {
MVT MaskVT = Op.getSimpleValueType();
SDValue CC = Op.getOperand(3);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
if (IntrData->Opc1 != 0) {
SDValue Sae = Op.getOperand(4);
if (isRoundModeSAE(Sae))
return DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
Op.getOperand(2), CC, Sae);
if (!isRoundModeCurDirection(Sae))
return SDValue();
}
//default rounding mode
return DAG.getNode(IntrData->Opc0, dl, MaskVT,
{Op.getOperand(1), Op.getOperand(2), CC});
}
case CMP_MASK_SCALAR_CC: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue CC = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
SDValue Cmp;
if (IntrData->Opc1 != 0) {
SDValue Sae = Op.getOperand(5);
if (isRoundModeSAE(Sae))
Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::v1i1, Src1, Src2, CC, Sae);
else if (!isRoundModeCurDirection(Sae))
return SDValue();
}
//default rounding mode
if (!Cmp.getNode())
Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::v1i1, Src1, Src2, CC);
SDValue CmpMask = getScalarMaskingNode(Cmp, Mask, SDValue(),
Subtarget, DAG);
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
DAG.getConstant(0, dl, MVT::v8i1),
CmpMask, DAG.getIntPtrConstant(0, dl));
return DAG.getBitcast(MVT::i8, Ins);
}
case COMI: { // Comparison intrinsics
ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDValue Comi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
SDValue InvComi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, RHS, LHS);
SDValue SetCC;
switch (CC) {
case ISD::SETEQ: { // (ZF = 0 and PF = 0)
SetCC = getSETCC(X86::COND_E, Comi, dl, DAG);
SDValue SetNP = getSETCC(X86::COND_NP, Comi, dl, DAG);
SetCC = DAG.getNode(ISD::AND, dl, MVT::i8, SetCC, SetNP);
break;
}
case ISD::SETNE: { // (ZF = 1 or PF = 1)
SetCC = getSETCC(X86::COND_NE, Comi, dl, DAG);
SDValue SetP = getSETCC(X86::COND_P, Comi, dl, DAG);
SetCC = DAG.getNode(ISD::OR, dl, MVT::i8, SetCC, SetP);
break;
}
case ISD::SETGT: // (CF = 0 and ZF = 0)
SetCC = getSETCC(X86::COND_A, Comi, dl, DAG);
break;
case ISD::SETLT: { // The condition is opposite to GT. Swap the operands.
SetCC = getSETCC(X86::COND_A, InvComi, dl, DAG);
break;
}
case ISD::SETGE: // CF = 0
SetCC = getSETCC(X86::COND_AE, Comi, dl, DAG);
break;
case ISD::SETLE: // The condition is opposite to GE. Swap the operands.
SetCC = getSETCC(X86::COND_AE, InvComi, dl, DAG);
break;
default:
llvm_unreachable("Unexpected illegal condition!");
}
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case COMI_RM: { // Comparison intrinsics with Sae
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
unsigned CondVal = Op.getConstantOperandVal(3);
SDValue Sae = Op.getOperand(4);
SDValue FCmp;
if (isRoundModeCurDirection(Sae))
FCmp = DAG.getNode(X86ISD::FSETCCM, dl, MVT::v1i1, LHS, RHS,
DAG.getTargetConstant(CondVal, dl, MVT::i8));
else if (isRoundModeSAE(Sae))
FCmp = DAG.getNode(X86ISD::FSETCCM_SAE, dl, MVT::v1i1, LHS, RHS,
DAG.getTargetConstant(CondVal, dl, MVT::i8), Sae);
else
return SDValue();
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v16i1,
DAG.getConstant(0, dl, MVT::v16i1),
FCmp, DAG.getIntPtrConstant(0, dl));
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32,
DAG.getBitcast(MVT::i16, Ins));
}
case VSHIFT:
return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
Op.getOperand(1), Op.getOperand(2), Subtarget,
DAG);
case COMPRESS_EXPAND_IN_REG: {
SDValue Mask = Op.getOperand(3);
SDValue DataToCompress = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
if (ISD::isBuildVectorAllOnes(Mask.getNode())) // return data as is
return Op.getOperand(1);
// Avoid false dependency.
if (PassThru.isUndef())
PassThru = DAG.getConstant(0, dl, VT);
return DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress, PassThru,
Mask);
}
case FIXUPIMM:
case FIXUPIMM_MASKZ: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue Imm = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Passthru = (IntrData->Type == FIXUPIMM)
? Src1
: getZeroVector(VT, Subtarget, DAG, dl);
unsigned Opc = IntrData->Opc0;
if (IntrData->Opc1 != 0) {
SDValue Sae = Op.getOperand(6);
if (isRoundModeSAE(Sae))
Opc = IntrData->Opc1;
else if (!isRoundModeCurDirection(Sae))
return SDValue();
}
SDValue FixupImm = DAG.getNode(Opc, dl, VT, Src1, Src2, Src3, Imm);
if (Opc == X86ISD::VFIXUPIMM || Opc == X86ISD::VFIXUPIMM_SAE)
return getVectorMaskingNode(FixupImm, Mask, Passthru, Subtarget, DAG);
return getScalarMaskingNode(FixupImm, Mask, Passthru, Subtarget, DAG);
}
case ROUNDP: {
assert(IntrData->Opc0 == X86ISD::VRNDSCALE && "Unexpected opcode");
// Clear the upper bits of the rounding immediate so that the legacy
// intrinsic can't trigger the scaling behavior of VRNDSCALE.
auto Round = cast<ConstantSDNode>(Op.getOperand(2));
SDValue RoundingMode =
DAG.getTargetConstant(Round->getZExtValue() & 0xf, dl, MVT::i32);
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(1), RoundingMode);
}
case ROUNDS: {
assert(IntrData->Opc0 == X86ISD::VRNDSCALES && "Unexpected opcode");
// Clear the upper bits of the rounding immediate so that the legacy
// intrinsic can't trigger the scaling behavior of VRNDSCALE.
auto Round = cast<ConstantSDNode>(Op.getOperand(3));
SDValue RoundingMode =
DAG.getTargetConstant(Round->getZExtValue() & 0xf, dl, MVT::i32);
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(1), Op.getOperand(2), RoundingMode);
}
case BEXTRI: {
assert(IntrData->Opc0 == X86ISD::BEXTR && "Unexpected opcode");
// The control is a TargetConstant, but we need to convert it to a
// ConstantSDNode.
uint64_t Imm = Op.getConstantOperandVal(2);
SDValue Control = DAG.getConstant(Imm, dl, Op.getValueType());
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(),
Op.getOperand(1), Control);
}
// ADC/ADCX/SBB
case ADX: {
SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::i32);
SDVTList VTs = DAG.getVTList(Op.getOperand(2).getValueType(), MVT::i32);
SDValue Res;
// If the carry in is zero, then we should just use ADD/SUB instead of
// ADC/SBB.
if (isNullConstant(Op.getOperand(1))) {
Res = DAG.getNode(IntrData->Opc1, dl, VTs, Op.getOperand(2),
Op.getOperand(3));
} else {
SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(1),
DAG.getConstant(-1, dl, MVT::i8));
Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(2),
Op.getOperand(3), GenCF.getValue(1));
}
SDValue SetCC = getSETCC(X86::COND_B, Res.getValue(1), dl, DAG);
SDValue Results[] = { SetCC, Res };
return DAG.getMergeValues(Results, dl);
}
case CVTPD2PS_MASK:
case CVTPD2DQ_MASK:
case CVTQQ2PS_MASK:
case TRUNCATE_TO_REG: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
if (isAllOnesConstant(Mask))
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src);
MVT SrcVT = Src.getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements());
Mask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return DAG.getNode(IntrData->Opc1, dl, Op.getValueType(),
{Src, PassThru, Mask});
}
case CVTPS2PH_MASK: {
SDValue Src = Op.getOperand(1);
SDValue Rnd = Op.getOperand(2);
SDValue PassThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
if (isAllOnesConstant(Mask))
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src, Rnd);
MVT SrcVT = Src.getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements());
Mask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return DAG.getNode(IntrData->Opc1, dl, Op.getValueType(), Src, Rnd,
PassThru, Mask);
}
case CVTNEPS2BF16_MASK: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
if (ISD::isBuildVectorAllOnes(Mask.getNode()))
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Src);
// Break false dependency.
if (PassThru.isUndef())
PassThru = DAG.getConstant(0, dl, PassThru.getValueType());
return DAG.getNode(IntrData->Opc1, dl, Op.getValueType(), Src, PassThru,
Mask);
}
default:
break;
}
}
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
// ptest and testp intrinsics. The intrinsic these come from are designed to
// return an integer value, not just an instruction so lower it to the ptest
// or testp pattern and a setcc for the result.
case Intrinsic::x86_avx512_ktestc_b:
case Intrinsic::x86_avx512_ktestc_w:
case Intrinsic::x86_avx512_ktestc_d:
case Intrinsic::x86_avx512_ktestc_q:
case Intrinsic::x86_avx512_ktestz_b:
case Intrinsic::x86_avx512_ktestz_w:
case Intrinsic::x86_avx512_ktestz_d:
case Intrinsic::x86_avx512_ktestz_q:
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_sse41_ptestnzc:
case Intrinsic::x86_avx_ptestz_256:
case Intrinsic::x86_avx_ptestc_256:
case Intrinsic::x86_avx_ptestnzc_256:
case Intrinsic::x86_avx_vtestz_ps:
case Intrinsic::x86_avx_vtestc_ps:
case Intrinsic::x86_avx_vtestnzc_ps:
case Intrinsic::x86_avx_vtestz_pd:
case Intrinsic::x86_avx_vtestc_pd:
case Intrinsic::x86_avx_vtestnzc_pd:
case Intrinsic::x86_avx_vtestz_ps_256:
case Intrinsic::x86_avx_vtestc_ps_256:
case Intrinsic::x86_avx_vtestnzc_ps_256:
case Intrinsic::x86_avx_vtestz_pd_256:
case Intrinsic::x86_avx_vtestc_pd_256:
case Intrinsic::x86_avx_vtestnzc_pd_256: {
unsigned TestOpc = X86ISD::PTEST;
X86::CondCode X86CC;
switch (IntNo) {
default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
case Intrinsic::x86_avx512_ktestc_b:
case Intrinsic::x86_avx512_ktestc_w:
case Intrinsic::x86_avx512_ktestc_d:
case Intrinsic::x86_avx512_ktestc_q:
// CF = 1
TestOpc = X86ISD::KTEST;
X86CC = X86::COND_B;
break;
case Intrinsic::x86_avx512_ktestz_b:
case Intrinsic::x86_avx512_ktestz_w:
case Intrinsic::x86_avx512_ktestz_d:
case Intrinsic::x86_avx512_ktestz_q:
TestOpc = X86ISD::KTEST;
X86CC = X86::COND_E;
break;
case Intrinsic::x86_avx_vtestz_ps:
case Intrinsic::x86_avx_vtestz_pd:
case Intrinsic::x86_avx_vtestz_ps_256:
case Intrinsic::x86_avx_vtestz_pd_256:
TestOpc = X86ISD::TESTP;
LLVM_FALLTHROUGH;
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_avx_ptestz_256:
// ZF = 1
X86CC = X86::COND_E;
break;
case Intrinsic::x86_avx_vtestc_ps:
case Intrinsic::x86_avx_vtestc_pd:
case Intrinsic::x86_avx_vtestc_ps_256:
case Intrinsic::x86_avx_vtestc_pd_256:
TestOpc = X86ISD::TESTP;
LLVM_FALLTHROUGH;
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_avx_ptestc_256:
// CF = 1
X86CC = X86::COND_B;
break;
case Intrinsic::x86_avx_vtestnzc_ps:
case Intrinsic::x86_avx_vtestnzc_pd:
case Intrinsic::x86_avx_vtestnzc_ps_256:
case Intrinsic::x86_avx_vtestnzc_pd_256:
TestOpc = X86ISD::TESTP;
LLVM_FALLTHROUGH;
case Intrinsic::x86_sse41_ptestnzc:
case Intrinsic::x86_avx_ptestnzc_256:
// ZF and CF = 0
X86CC = X86::COND_A;
break;
}
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
SDValue SetCC = getSETCC(X86CC, Test, dl, DAG);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case Intrinsic::x86_sse42_pcmpistria128:
case Intrinsic::x86_sse42_pcmpestria128:
case Intrinsic::x86_sse42_pcmpistric128:
case Intrinsic::x86_sse42_pcmpestric128:
case Intrinsic::x86_sse42_pcmpistrio128:
case Intrinsic::x86_sse42_pcmpestrio128:
case Intrinsic::x86_sse42_pcmpistris128:
case Intrinsic::x86_sse42_pcmpestris128:
case Intrinsic::x86_sse42_pcmpistriz128:
case Intrinsic::x86_sse42_pcmpestriz128: {
unsigned Opcode;
X86::CondCode X86CC;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
case Intrinsic::x86_sse42_pcmpistria128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_A;
break;
case Intrinsic::x86_sse42_pcmpestria128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_A;
break;
case Intrinsic::x86_sse42_pcmpistric128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_B;
break;
case Intrinsic::x86_sse42_pcmpestric128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_B;
break;
case Intrinsic::x86_sse42_pcmpistrio128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_O;
break;
case Intrinsic::x86_sse42_pcmpestrio128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_O;
break;
case Intrinsic::x86_sse42_pcmpistris128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_S;
break;
case Intrinsic::x86_sse42_pcmpestris128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_S;
break;
case Intrinsic::x86_sse42_pcmpistriz128:
Opcode = X86ISD::PCMPISTR;
X86CC = X86::COND_E;
break;
case Intrinsic::x86_sse42_pcmpestriz128:
Opcode = X86ISD::PCMPESTR;
X86CC = X86::COND_E;
break;
}
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps).getValue(2);
SDValue SetCC = getSETCC(X86CC, PCMP, dl, DAG);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case Intrinsic::x86_sse42_pcmpistri128:
case Intrinsic::x86_sse42_pcmpestri128: {
unsigned Opcode;
if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
Opcode = X86ISD::PCMPISTR;
else
Opcode = X86ISD::PCMPESTR;
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
return DAG.getNode(Opcode, dl, VTs, NewOps);
}
case Intrinsic::x86_sse42_pcmpistrm128:
case Intrinsic::x86_sse42_pcmpestrm128: {
unsigned Opcode;
if (IntNo == Intrinsic::x86_sse42_pcmpistrm128)
Opcode = X86ISD::PCMPISTR;
else
Opcode = X86ISD::PCMPESTR;
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::v16i8, MVT::i32);
return DAG.getNode(Opcode, dl, VTs, NewOps).getValue(1);
}
case Intrinsic::eh_sjlj_lsda: {
MachineFunction &MF = DAG.getMachineFunction();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
auto &Context = MF.getMMI().getContext();
MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
Twine(MF.getFunctionNumber()));
return DAG.getNode(getGlobalWrapperKind(), dl, VT,
DAG.getMCSymbol(S, PtrVT));
}
case Intrinsic::x86_seh_lsda: {
// Compute the symbol for the LSDA. We know it'll get emitted later.
MachineFunction &MF = DAG.getMachineFunction();
SDValue Op1 = Op.getOperand(1);
auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
GlobalValue::dropLLVMManglingEscape(Fn->getName()));
// Generate a simple absolute symbol reference. This intrinsic is only
// supported on 32-bit Windows, which isn't PIC.
SDValue Result = DAG.getMCSymbol(LSDASym, VT);
return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
}
case Intrinsic::eh_recoverfp: {
SDValue FnOp = Op.getOperand(1);
SDValue IncomingFPOp = Op.getOperand(2);
GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
if (!Fn)
report_fatal_error(
"llvm.eh.recoverfp must take a function as the first argument");
return recoverFramePointer(DAG, Fn, IncomingFPOp);
}
case Intrinsic::localaddress: {
// Returns one of the stack, base, or frame pointer registers, depending on
// which is used to reference local variables.
MachineFunction &MF = DAG.getMachineFunction();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned Reg;
if (RegInfo->hasBasePointer(MF))
Reg = RegInfo->getBaseRegister();
else { // Handles the SP or FP case.
bool CantUseFP = RegInfo->needsStackRealignment(MF);
if (CantUseFP)
Reg = RegInfo->getPtrSizedStackRegister(MF);
else
Reg = RegInfo->getPtrSizedFrameRegister(MF);
}
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
case Intrinsic::x86_avx512_vp2intersect_q_512:
case Intrinsic::x86_avx512_vp2intersect_q_256:
case Intrinsic::x86_avx512_vp2intersect_q_128:
case Intrinsic::x86_avx512_vp2intersect_d_512:
case Intrinsic::x86_avx512_vp2intersect_d_256:
case Intrinsic::x86_avx512_vp2intersect_d_128: {
MVT MaskVT = Op.getSimpleValueType();
SDVTList VTs = DAG.getVTList(MVT::Untyped, MVT::Other);
SDLoc DL(Op);
SDValue Operation =
DAG.getNode(X86ISD::VP2INTERSECT, DL, VTs,
Op->getOperand(1), Op->getOperand(2));
SDValue Result0 = DAG.getTargetExtractSubreg(X86::sub_mask_0, DL,
MaskVT, Operation);
SDValue Result1 = DAG.getTargetExtractSubreg(X86::sub_mask_1, DL,
MaskVT, Operation);
return DAG.getMergeValues({Result0, Result1}, DL);
}
case Intrinsic::x86_mmx_pslli_w:
case Intrinsic::x86_mmx_pslli_d:
case Intrinsic::x86_mmx_pslli_q:
case Intrinsic::x86_mmx_psrli_w:
case Intrinsic::x86_mmx_psrli_d:
case Intrinsic::x86_mmx_psrli_q:
case Intrinsic::x86_mmx_psrai_w:
case Intrinsic::x86_mmx_psrai_d: {
SDLoc DL(Op);
SDValue ShAmt = Op.getOperand(2);
// If the argument is a constant, convert it to a target constant.
if (auto *C = dyn_cast<ConstantSDNode>(ShAmt)) {
// Clamp out of bounds shift amounts since they will otherwise be masked
// to 8-bits which may make it no longer out of bounds.
unsigned ShiftAmount = C->getAPIntValue().getLimitedValue(255);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
Op.getOperand(0), Op.getOperand(1),
DAG.getTargetConstant(ShiftAmount, DL, MVT::i32));
}
unsigned NewIntrinsic;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
case Intrinsic::x86_mmx_pslli_w:
NewIntrinsic = Intrinsic::x86_mmx_psll_w;
break;
case Intrinsic::x86_mmx_pslli_d:
NewIntrinsic = Intrinsic::x86_mmx_psll_d;
break;
case Intrinsic::x86_mmx_pslli_q:
NewIntrinsic = Intrinsic::x86_mmx_psll_q;
break;
case Intrinsic::x86_mmx_psrli_w:
NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
break;
case Intrinsic::x86_mmx_psrli_d:
NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
break;
case Intrinsic::x86_mmx_psrli_q:
NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
break;
case Intrinsic::x86_mmx_psrai_w:
NewIntrinsic = Intrinsic::x86_mmx_psra_w;
break;
case Intrinsic::x86_mmx_psrai_d:
NewIntrinsic = Intrinsic::x86_mmx_psra_d;
break;
}
// The vector shift intrinsics with scalars uses 32b shift amounts but
// the sse2/mmx shift instructions reads 64 bits. Copy the 32 bits to an
// MMX register.
ShAmt = DAG.getNode(X86ISD::MMX_MOVW2D, DL, MVT::x86mmx, ShAmt);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
DAG.getConstant(NewIntrinsic, DL, MVT::i32),
Op.getOperand(1), ShAmt);
}
}
}
static SDValue getAVX2GatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Src, SDValue Mask, SDValue Base,
SDValue Index, SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
// Scale must be constant.
if (!C)
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl,
TLI.getPointerTy(DAG.getDataLayout()));
EVT MaskVT = Mask.getValueType().changeVectorElementTypeToInteger();
SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
// If source is undef or we know it won't be used, use a zero vector
// to break register dependency.
// TODO: use undef instead and let BreakFalseDeps deal with it?
if (Src.isUndef() || ISD::isBuildVectorAllOnes(Mask.getNode()))
Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
MemIntrinsicSDNode *MemIntr = cast<MemIntrinsicSDNode>(Op);
SDValue Ops[] = {Chain, Src, Mask, Base, Index, Scale };
SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
VTs, Ops, dl, MemIntr->getMemoryVT(), MemIntr->getMemOperand());
return DAG.getMergeValues({ Res, Res.getValue(2) }, dl);
}
static SDValue getGatherNode(SDValue Op, SelectionDAG &DAG,
SDValue Src, SDValue Mask, SDValue Base,
SDValue Index, SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
// Scale must be constant.
if (!C)
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl,
TLI.getPointerTy(DAG.getDataLayout()));
unsigned MinElts = std::min(Index.getSimpleValueType().getVectorNumElements(),
VT.getVectorNumElements());
MVT MaskVT = MVT::getVectorVT(MVT::i1, MinElts);
// We support two versions of the gather intrinsics. One with scalar mask and
// one with vXi1 mask. Convert scalar to vXi1 if necessary.
if (Mask.getValueType() != MaskVT)
Mask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
// If source is undef or we know it won't be used, use a zero vector
// to break register dependency.
// TODO: use undef instead and let BreakFalseDeps deal with it?
if (Src.isUndef() || ISD::isBuildVectorAllOnes(Mask.getNode()))
Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
MemIntrinsicSDNode *MemIntr = cast<MemIntrinsicSDNode>(Op);
SDValue Ops[] = {Chain, Src, Mask, Base, Index, Scale };
SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
VTs, Ops, dl, MemIntr->getMemoryVT(), MemIntr->getMemOperand());
return DAG.getMergeValues({ Res, Res.getValue(2) }, dl);
}
static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Src, SDValue Mask, SDValue Base,
SDValue Index, SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
// Scale must be constant.
if (!C)
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl,
TLI.getPointerTy(DAG.getDataLayout()));
unsigned MinElts = std::min(Index.getSimpleValueType().getVectorNumElements(),
Src.getSimpleValueType().getVectorNumElements());
MVT MaskVT = MVT::getVectorVT(MVT::i1, MinElts);
// We support two versions of the scatter intrinsics. One with scalar mask and
// one with vXi1 mask. Convert scalar to vXi1 if necessary.
if (Mask.getValueType() != MaskVT)
Mask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
MemIntrinsicSDNode *MemIntr = cast<MemIntrinsicSDNode>(Op);
SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
SDValue Ops[] = {Chain, Src, Mask, Base, Index, Scale};
SDValue Res = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
VTs, Ops, dl, MemIntr->getMemoryVT(), MemIntr->getMemOperand());
return Res.getValue(1);
}
static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Mask, SDValue Base, SDValue Index,
SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = dyn_cast<ConstantSDNode>(ScaleOp);
// Scale must be constant.
if (!C)
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl,
TLI.getPointerTy(DAG.getDataLayout()));
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
MVT MaskVT =
MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
SDValue Ops[] = {VMask, Base, Scale, Index, Disp, Segment, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
return SDValue(Res, 0);
}
/// Handles the lowering of builtin intrinsics with chain that return their
/// value into registers EDX:EAX.
/// If operand ScrReg is a valid register identifier, then operand 2 of N is
/// copied to SrcReg. The assumption is that SrcReg is an implicit input to
/// TargetOpcode.
/// Returns a Glue value which can be used to add extra copy-from-reg if the
/// expanded intrinsics implicitly defines extra registers (i.e. not just
/// EDX:EAX).
static SDValue expandIntrinsicWChainHelper(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG,
unsigned TargetOpcode,
unsigned SrcReg,
const X86Subtarget &Subtarget,
SmallVectorImpl<SDValue> &Results) {
SDValue Chain = N->getOperand(0);
SDValue Glue;
if (SrcReg) {
assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
Chain = DAG.getCopyToReg(Chain, DL, SrcReg, N->getOperand(2), Glue);
Glue = Chain.getValue(1);
}
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue N1Ops[] = {Chain, Glue};
SDNode *N1 = DAG.getMachineNode(
TargetOpcode, DL, Tys, ArrayRef<SDValue>(N1Ops, Glue.getNode() ? 2 : 1));
Chain = SDValue(N1, 0);
// Reads the content of XCR and returns it in registers EDX:EAX.
SDValue LO, HI;
if (Subtarget.is64Bit()) {
LO = DAG.getCopyFromReg(Chain, DL, X86::RAX, MVT::i64, SDValue(N1, 1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
LO.getValue(2));
} else {
LO = DAG.getCopyFromReg(Chain, DL, X86::EAX, MVT::i32, SDValue(N1, 1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
LO.getValue(2));
}
Chain = HI.getValue(1);
Glue = HI.getValue(2);
if (Subtarget.is64Bit()) {
// Merge the two 32-bit values into a 64-bit one.
SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
DAG.getConstant(32, DL, MVT::i8));
Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
Results.push_back(Chain);
return Glue;
}
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
SDValue Ops[] = { LO, HI };
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
Results.push_back(Pair);
Results.push_back(Chain);
return Glue;
}
/// Handles the lowering of builtin intrinsics that read the time stamp counter
/// (x86_rdtsc and x86_rdtscp). This function is also used to custom lower
/// READCYCLECOUNTER nodes.
static void getReadTimeStampCounter(SDNode *N, const SDLoc &DL, unsigned Opcode,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
SmallVectorImpl<SDValue> &Results) {
// The processor's time-stamp counter (a 64-bit MSR) is stored into the
// EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
// and the EAX register is loaded with the low-order 32 bits.
SDValue Glue = expandIntrinsicWChainHelper(N, DL, DAG, Opcode,
/* NoRegister */0, Subtarget,
Results);
if (Opcode != X86::RDTSCP)
return;
SDValue Chain = Results[1];
// Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
// the ECX register. Add 'ecx' explicitly to the chain.
SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32, Glue);
Results[1] = ecx;
Results.push_back(ecx.getValue(1));
}
static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SmallVector<SDValue, 3> Results;
SDLoc DL(Op);
getReadTimeStampCounter(Op.getNode(), DL, X86::RDTSC, DAG, Subtarget,
Results);
return DAG.getMergeValues(Results, DL);
}
static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue RegNode = Op.getOperand(2);
WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
if (!EHInfo)
report_fatal_error("EH registrations only live in functions using WinEH");
// Cast the operand to an alloca, and remember the frame index.
auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode);
if (!FINode)
report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca");
EHInfo->EHRegNodeFrameIndex = FINode->getIndex();
// Return the chain operand without making any DAG nodes.
return Chain;
}
static SDValue MarkEHGuard(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue EHGuard = Op.getOperand(2);
WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
if (!EHInfo)
report_fatal_error("EHGuard only live in functions using WinEH");
// Cast the operand to an alloca, and remember the frame index.
auto *FINode = dyn_cast<FrameIndexSDNode>(EHGuard);
if (!FINode)
report_fatal_error("llvm.x86.seh.ehguard expects a static alloca");
EHInfo->EHGuardFrameIndex = FINode->getIndex();
// Return the chain operand without making any DAG nodes.
return Chain;
}
/// Emit Truncating Store with signed or unsigned saturation.
static SDValue
EmitTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl, SDValue Val,
SDValue Ptr, EVT MemVT, MachineMemOperand *MMO,
SelectionDAG &DAG) {
SDVTList VTs = DAG.getVTList(MVT::Other);
SDValue Undef = DAG.getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
return SignedSat ?
DAG.getTargetMemSDNode<TruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
DAG.getTargetMemSDNode<TruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
}
/// Emit Masked Truncating Store with signed or unsigned saturation.
static SDValue
EmitMaskedTruncSStore(bool SignedSat, SDValue Chain, const SDLoc &Dl,
SDValue Val, SDValue Ptr, SDValue Mask, EVT MemVT,
MachineMemOperand *MMO, SelectionDAG &DAG) {
SDVTList VTs = DAG.getVTList(MVT::Other);
SDValue Ops[] = { Chain, Val, Ptr, Mask };
return SignedSat ?
DAG.getTargetMemSDNode<MaskedTruncSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO) :
DAG.getTargetMemSDNode<MaskedTruncUSStoreSDNode>(VTs, Ops, Dl, MemVT, MMO);
}
static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
unsigned IntNo = Op.getConstantOperandVal(1);
const IntrinsicData *IntrData = getIntrinsicWithChain(IntNo);
if (!IntrData) {
switch (IntNo) {
case llvm::Intrinsic::x86_seh_ehregnode:
return MarkEHRegistrationNode(Op, DAG);
case llvm::Intrinsic::x86_seh_ehguard:
return MarkEHGuard(Op, DAG);
case llvm::Intrinsic::x86_rdpkru: {
SDLoc dl(Op);
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
// Create a RDPKRU node and pass 0 to the ECX parameter.
return DAG.getNode(X86ISD::RDPKRU, dl, VTs, Op.getOperand(0),
DAG.getConstant(0, dl, MVT::i32));
}
case llvm::Intrinsic::x86_wrpkru: {
SDLoc dl(Op);
// Create a WRPKRU node, pass the input to the EAX parameter, and pass 0
// to the EDX and ECX parameters.
return DAG.getNode(X86ISD::WRPKRU, dl, MVT::Other,
Op.getOperand(0), Op.getOperand(2),
DAG.getConstant(0, dl, MVT::i32),
DAG.getConstant(0, dl, MVT::i32));
}
case llvm::Intrinsic::x86_flags_read_u32:
case llvm::Intrinsic::x86_flags_read_u64:
case llvm::Intrinsic::x86_flags_write_u32:
case llvm::Intrinsic::x86_flags_write_u64: {
// We need a frame pointer because this will get lowered to a PUSH/POP
// sequence.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setHasCopyImplyingStackAdjustment(true);
// Don't do anything here, we will expand these intrinsics out later
// during FinalizeISel in EmitInstrWithCustomInserter.
return Op;
}
case Intrinsic::x86_lwpins32:
case Intrinsic::x86_lwpins64:
case Intrinsic::x86_umwait:
case Intrinsic::x86_tpause: {
SDLoc dl(Op);
SDValue Chain = Op->getOperand(0);
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
unsigned Opcode;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic");
case Intrinsic::x86_umwait:
Opcode = X86ISD::UMWAIT;
break;
case Intrinsic::x86_tpause:
Opcode = X86ISD::TPAUSE;
break;
case Intrinsic::x86_lwpins32:
case Intrinsic::x86_lwpins64:
Opcode = X86ISD::LWPINS;
break;
}
SDValue Operation =
DAG.getNode(Opcode, dl, VTs, Chain, Op->getOperand(2),
Op->getOperand(3), Op->getOperand(4));
SDValue SetCC = getSETCC(X86::COND_B, Operation.getValue(0), dl, DAG);
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), SetCC,
Operation.getValue(1));
}
case Intrinsic::x86_enqcmd:
case Intrinsic::x86_enqcmds: {
SDLoc dl(Op);
SDValue Chain = Op.getOperand(0);
SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
unsigned Opcode;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic!");
case Intrinsic::x86_enqcmd:
Opcode = X86ISD::ENQCMD;
break;
case Intrinsic::x86_enqcmds:
Opcode = X86ISD::ENQCMDS;
break;
}
SDValue Operation = DAG.getNode(Opcode, dl, VTs, Chain, Op.getOperand(2),
Op.getOperand(3));
SDValue SetCC = getSETCC(X86::COND_E, Operation.getValue(0), dl, DAG);
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), SetCC,
Operation.getValue(1));
}
}
return SDValue();
}
SDLoc dl(Op);
switch(IntrData->Type) {
default: llvm_unreachable("Unknown Intrinsic Type");
case RDSEED:
case RDRAND: {
// Emit the node with the right value type.
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32, MVT::Other);
SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
// If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
// Otherwise return the value from Rand, which is always 0, casted to i32.
SDValue Ops[] = {DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
DAG.getConstant(1, dl, Op->getValueType(1)),
DAG.getTargetConstant(X86::COND_B, dl, MVT::i8),
SDValue(Result.getNode(), 1)};
SDValue isValid = DAG.getNode(X86ISD::CMOV, dl, Op->getValueType(1), Ops);
// Return { result, isValid, chain }.
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
SDValue(Result.getNode(), 2));
}
case GATHER_AVX2: {
SDValue Chain = Op.getOperand(0);
SDValue Src = Op.getOperand(2);
SDValue Base = Op.getOperand(3);
SDValue Index = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
return getAVX2GatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
Scale, Chain, Subtarget);
}
case GATHER: {
//gather(v1, mask, index, base, scale);
SDValue Chain = Op.getOperand(0);
SDValue Src = Op.getOperand(2);
SDValue Base = Op.getOperand(3);
SDValue Index = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
return getGatherNode(Op, DAG, Src, Mask, Base, Index, Scale,
Chain, Subtarget);
}
case SCATTER: {
//scatter(base, mask, index, v1, scale);
SDValue Chain = Op.getOperand(0);
SDValue Base = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue Index = Op.getOperand(4);
SDValue Src = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
Scale, Chain, Subtarget);
}
case PREFETCH: {
const APInt &HintVal = Op.getConstantOperandAPInt(6);
assert((HintVal == 2 || HintVal == 3) &&
"Wrong prefetch hint in intrinsic: should be 2 or 3");
unsigned Opcode = (HintVal == 2 ? IntrData->Opc1 : IntrData->Opc0);
SDValue Chain = Op.getOperand(0);
SDValue Mask = Op.getOperand(2);
SDValue Index = Op.getOperand(3);
SDValue Base = Op.getOperand(4);
SDValue Scale = Op.getOperand(5);
return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain,
Subtarget);
}
// Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
case RDTSC: {
SmallVector<SDValue, 2> Results;
getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
Results);
return DAG.getMergeValues(Results, dl);
}
// Read Performance Monitoring Counters.
case RDPMC:
// GetExtended Control Register.
case XGETBV: {
SmallVector<SDValue, 2> Results;
// RDPMC uses ECX to select the index of the performance counter to read.
// XGETBV uses ECX to select the index of the XCR register to return.
// The result is stored into registers EDX:EAX.
expandIntrinsicWChainHelper(Op.getNode(), dl, DAG, IntrData->Opc0, X86::ECX,
Subtarget, Results);
return DAG.getMergeValues(Results, dl);
}
// XTEST intrinsics.
case XTEST: {
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
SDValue SetCC = getSETCC(X86::COND_NE, InTrans, dl, DAG);
SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
Ret, SDValue(InTrans.getNode(), 1));
}
case TRUNCATE_TO_MEM_VI8:
case TRUNCATE_TO_MEM_VI16:
case TRUNCATE_TO_MEM_VI32: {
SDValue Mask = Op.getOperand(4);
SDValue DataToTruncate = Op.getOperand(3);
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
assert(MemIntr && "Expected MemIntrinsicSDNode!");
EVT MemVT = MemIntr->getMemoryVT();
uint16_t TruncationOp = IntrData->Opc0;
switch (TruncationOp) {
case X86ISD::VTRUNC: {
if (isAllOnesConstant(Mask)) // return just a truncate store
return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, MemVT,
MemIntr->getMemOperand());
MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
SDValue Offset = DAG.getUNDEF(VMask.getValueType());
return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, Offset, VMask,
MemVT, MemIntr->getMemOperand(), ISD::UNINDEXED,
true /* truncating */);
}
case X86ISD::VTRUNCUS:
case X86ISD::VTRUNCS: {
bool IsSigned = (TruncationOp == X86ISD::VTRUNCS);
if (isAllOnesConstant(Mask))
return EmitTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr, MemVT,
MemIntr->getMemOperand(), DAG);
MVT MaskVT = MVT::getVectorVT(MVT::i1, MemVT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return EmitMaskedTruncSStore(IsSigned, Chain, dl, DataToTruncate, Addr,
VMask, MemVT, MemIntr->getMemOperand(), DAG);
}
default:
llvm_unreachable("Unsupported truncstore intrinsic");
}
}
}
}
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
unsigned Depth = Op.getConstantOperandVal(0);
SDLoc dl(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
MachinePointerInfo());
}
// Just load the return address.
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
MachinePointerInfo());
}
SDValue X86TargetLowering::LowerADDROFRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
DAG.getMachineFunction().getFrameInfo().setReturnAddressIsTaken(true);
return getReturnAddressFrameIndex(DAG);
}
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
EVT VT = Op.getValueType();
MFI.setFrameAddressIsTaken(true);
if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
// Depth > 0 makes no sense on targets which use Windows unwind codes. It
// is not possible to crawl up the stack without looking at the unwind codes
// simultaneously.
int FrameAddrIndex = FuncInfo->getFAIndex();
if (!FrameAddrIndex) {
// Set up a frame object for the return address.
unsigned SlotSize = RegInfo->getSlotSize();
FrameAddrIndex = MF.getFrameInfo().CreateFixedObject(
SlotSize, /*SPOffset=*/0, /*IsImmutable=*/false);
FuncInfo->setFAIndex(FrameAddrIndex);
}
return DAG.getFrameIndex(FrameAddrIndex, VT);
}
unsigned FrameReg =
RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = Op.getConstantOperandVal(0);
assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
(FrameReg == X86::EBP && VT == MVT::i32)) &&
"Invalid Frame Register!");
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
Register X86TargetLowering::getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const {
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
Register Reg = StringSwitch<unsigned>(RegName)
.Case("esp", X86::ESP)
.Case("rsp", X86::RSP)
.Case("ebp", X86::EBP)
.Case("rbp", X86::RBP)
.Default(0);
if (Reg == X86::EBP || Reg == X86::RBP) {
if (!TFI.hasFP(MF))
report_fatal_error("register " + StringRef(RegName) +
" is allocatable: function has no frame pointer");
#ifndef NDEBUG
else {
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
Register FrameReg = RegInfo->getPtrSizedFrameRegister(MF);
assert((FrameReg == X86::EBP || FrameReg == X86::RBP) &&
"Invalid Frame Register!");
}
#endif
}
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
SelectionDAG &DAG) const {
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
}
unsigned X86TargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR)
return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
return Subtarget.isTarget64BitLP64() ? X86::RAX : X86::EAX;
}
unsigned X86TargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
// Funclet personalities don't use selectors (the runtime does the selection).
assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)));
return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
}
bool X86TargetLowering::needsFixedCatchObjects() const {
return Subtarget.isTargetWin64();
}
SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc dl (Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
Register FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
(FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
"Invalid Frame Register!");
SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
DAG.getIntPtrConstant(RegInfo->getSlotSize(),
dl));
StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
DAG.getRegister(StoreAddrReg, PtrVT));
}
SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// If the subtarget is not 64bit, we may need the global base reg
// after isel expand pseudo, i.e., after CGBR pass ran.
// Therefore, ask for the GlobalBaseReg now, so that the pass
// inserts the code for us in case we need it.
// Otherwise, we will end up in a situation where we will
// reference a virtual register that is not defined!
if (!Subtarget.is64Bit()) {
const X86InstrInfo *TII = Subtarget.getInstrInfo();
(void)TII->getGlobalBaseReg(&DAG.getMachineFunction());
}
return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
DAG.getVTList(MVT::i32, MVT::Other),
Op.getOperand(0), Op.getOperand(1));
}
SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
Op.getOperand(0), Op.getOperand(1));
}
SDValue X86TargetLowering::lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(X86ISD::EH_SJLJ_SETUP_DISPATCH, DL, MVT::Other,
Op.getOperand(0));
}
static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
return Op.getOperand(0);
}
SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
SDValue Root = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
SDLoc dl (Op);
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
if (Subtarget.is64Bit()) {
SDValue OutChains[6];
// Large code-model.
const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
// Load the pointer to the nested function into R11.
unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
SDValue Addr = Trmp;
OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(2, dl, MVT::i64));
OutChains[1] =
DAG.getStore(Root, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 2),
/* Alignment = */ 2);
// Load the 'nest' parameter value into R10.
// R10 is specified in X86CallingConv.td
OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(10, dl, MVT::i64));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr, 10));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(12, dl, MVT::i64));
OutChains[3] =
DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12),
/* Alignment = */ 2);
// Jump to the nested function.
OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(20, dl, MVT::i64));
OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr, 20));
unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(22, dl, MVT::i64));
OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
Addr, MachinePointerInfo(TrmpAddr, 22));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
} else {
const Function *Func =
cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
CallingConv::ID CC = Func->getCallingConv();
unsigned NestReg;
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::X86_StdCall: {
// Pass 'nest' parameter in ECX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::ECX;
// Check that ECX wasn't needed by an 'inreg' parameter.
FunctionType *FTy = Func->getFunctionType();
const AttributeList &Attrs = Func->getAttributes();
if (!Attrs.isEmpty() && !Func->isVarArg()) {
unsigned InRegCount = 0;
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I, ++Idx)
if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
auto &DL = DAG.getDataLayout();
// FIXME: should only count parameters that are lowered to integers.
InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
}
if (InRegCount > 2) {
report_fatal_error("Nest register in use - reduce number of inreg"
" parameters!");
}
}
break;
}
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::Fast:
case CallingConv::Tail:
// Pass 'nest' parameter in EAX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::EAX;
break;
}
SDValue OutChains[4];
SDValue Addr, Disp;
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(10, dl, MVT::i32));
Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
// This is storing the opcode for MOV32ri.
const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
OutChains[0] =
DAG.getStore(Root, dl, DAG.getConstant(MOV32ri | N86Reg, dl, MVT::i8),
Trmp, MachinePointerInfo(TrmpAddr));
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(1, dl, MVT::i32));
OutChains[1] =
DAG.getStore(Root, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 1),
/* Alignment = */ 1);
const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(5, dl, MVT::i32));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
Addr, MachinePointerInfo(TrmpAddr, 5),
/* Alignment = */ 1);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(6, dl, MVT::i32));
OutChains[3] =
DAG.getStore(Root, dl, Disp, Addr, MachinePointerInfo(TrmpAddr, 6),
/* Alignment = */ 1);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
}
SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
/*
The rounding mode is in bits 11:10 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to -inf
10 Round to +inf
11 Round to 0
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we do:
(((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
*/
MachineFunction &MF = DAG.getMachineFunction();
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
const Align StackAlignment(TFI.getStackAlignment());
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
// Save FP Control Word to stack slot
int SSFI =
MF.getFrameInfo().CreateStackObject(2, StackAlignment.value(), false);
SDValue StackSlot =
DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
MachineMemOperand::MOStore, 2, 2);
SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
DAG.getVTList(MVT::Other),
Ops, MVT::i16, MMO);
// Load FP Control Word from stack slot
SDValue CWD =
DAG.getLoad(MVT::i16, DL, Chain, StackSlot, MachinePointerInfo());
// Transform as necessary
SDValue CWD1 =
DAG.getNode(ISD::SRL, DL, MVT::i16,
DAG.getNode(ISD::AND, DL, MVT::i16,
CWD, DAG.getConstant(0x800, DL, MVT::i16)),
DAG.getConstant(11, DL, MVT::i8));
SDValue CWD2 =
DAG.getNode(ISD::SRL, DL, MVT::i16,
DAG.getNode(ISD::AND, DL, MVT::i16,
CWD, DAG.getConstant(0x400, DL, MVT::i16)),
DAG.getConstant(9, DL, MVT::i8));
SDValue RetVal =
DAG.getNode(ISD::AND, DL, MVT::i16,
DAG.getNode(ISD::ADD, DL, MVT::i16,
DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
DAG.getConstant(1, DL, MVT::i16)),
DAG.getConstant(3, DL, MVT::i16));
return DAG.getNode((VT.getSizeInBits() < 16 ?
ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
}
// Split an unary integer op into 2 half sized ops.
static SDValue LowerVectorIntUnary(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
unsigned NumElems = VT.getVectorNumElements();
unsigned SizeInBits = VT.getSizeInBits();
MVT EltVT = VT.getVectorElementType();
SDValue Src = Op.getOperand(0);
assert(EltVT == Src.getSimpleValueType().getVectorElementType() &&
"Src and Op should have the same element type!");
// Extract the Lo/Hi vectors
SDLoc dl(Op);
SDValue Lo = extractSubVector(Src, 0, DAG, dl, SizeInBits / 2);
SDValue Hi = extractSubVector(Src, NumElems / 2, DAG, dl, SizeInBits / 2);
MVT NewVT = MVT::getVectorVT(EltVT, NumElems / 2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, Lo),
DAG.getNode(Op.getOpcode(), dl, NewVT, Hi));
}
// Decompose 256-bit ops into smaller 128-bit ops.
static SDValue Lower256IntUnary(SDValue Op, SelectionDAG &DAG) {
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return LowerVectorIntUnary(Op, DAG);
}
// Decompose 512-bit ops into smaller 256-bit ops.
static SDValue Lower512IntUnary(SDValue Op, SelectionDAG &DAG) {
assert(Op.getSimpleValueType().is512BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 512-bit vector integer operation");
return LowerVectorIntUnary(Op, DAG);
}
/// Lower a vector CTLZ using native supported vector CTLZ instruction.
//
// i8/i16 vector implemented using dword LZCNT vector instruction
// ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal,
// split the vector, perform operation on it's Lo a Hi part and
// concatenate the results.
static SDValue LowerVectorCTLZ_AVX512CDI(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(Op.getOpcode() == ISD::CTLZ);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElems = VT.getVectorNumElements();
assert((EltVT == MVT::i8 || EltVT == MVT::i16) &&
"Unsupported element type");
// Split vector, it's Lo and Hi parts will be handled in next iteration.
if (NumElems > 16 ||
(NumElems == 16 && !Subtarget.canExtendTo512DQ()))
return LowerVectorIntUnary(Op, DAG);
MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
assert((NewVT.is256BitVector() || NewVT.is512BitVector()) &&
"Unsupported value type for operation");
// Use native supported vector instruction vplzcntd.
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0));
SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op);
SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode);
SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT);
return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta);
}
// Lower CTLZ using a PSHUFB lookup table implementation.
static SDValue LowerVectorCTLZInRegLUT(SDValue Op, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
int NumElts = VT.getVectorNumElements();
int NumBytes = NumElts * (VT.getScalarSizeInBits() / 8);
MVT CurrVT = MVT::getVectorVT(MVT::i8, NumBytes);
// Per-nibble leading zero PSHUFB lookup table.
const int LUT[16] = {/* 0 */ 4, /* 1 */ 3, /* 2 */ 2, /* 3 */ 2,
/* 4 */ 1, /* 5 */ 1, /* 6 */ 1, /* 7 */ 1,
/* 8 */ 0, /* 9 */ 0, /* a */ 0, /* b */ 0,
/* c */ 0, /* d */ 0, /* e */ 0, /* f */ 0};
SmallVector<SDValue, 64> LUTVec;
for (int i = 0; i < NumBytes; ++i)
LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
SDValue InRegLUT = DAG.getBuildVector(CurrVT, DL, LUTVec);
// Begin by bitcasting the input to byte vector, then split those bytes
// into lo/hi nibbles and use the PSHUFB LUT to perform CLTZ on each of them.
// If the hi input nibble is zero then we add both results together, otherwise
// we just take the hi result (by masking the lo result to zero before the
// add).
SDValue Op0 = DAG.getBitcast(CurrVT, Op.getOperand(0));
SDValue Zero = DAG.getConstant(0, DL, CurrVT);
SDValue NibbleShift = DAG.getConstant(0x4, DL, CurrVT);
SDValue Lo = Op0;
SDValue Hi = DAG.getNode(ISD::SRL, DL, CurrVT, Op0, NibbleShift);
SDValue HiZ;
if (CurrVT.is512BitVector()) {
MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements());
HiZ = DAG.getSetCC(DL, MaskVT, Hi, Zero, ISD::SETEQ);
HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ);
} else {
HiZ = DAG.getSetCC(DL, CurrVT, Hi, Zero, ISD::SETEQ);
}
Lo = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Lo);
Hi = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Hi);
Lo = DAG.getNode(ISD::AND, DL, CurrVT, Lo, HiZ);
SDValue Res = DAG.getNode(ISD::ADD, DL, CurrVT, Lo, Hi);
// Merge result back from vXi8 back to VT, working on the lo/hi halves
// of the current vector width in the same way we did for the nibbles.
// If the upper half of the input element is zero then add the halves'
// leading zero counts together, otherwise just use the upper half's.
// Double the width of the result until we are at target width.
while (CurrVT != VT) {
int CurrScalarSizeInBits = CurrVT.getScalarSizeInBits();
int CurrNumElts = CurrVT.getVectorNumElements();
MVT NextSVT = MVT::getIntegerVT(CurrScalarSizeInBits * 2);
MVT NextVT = MVT::getVectorVT(NextSVT, CurrNumElts / 2);
SDValue Shift = DAG.getConstant(CurrScalarSizeInBits, DL, NextVT);
// Check if the upper half of the input element is zero.
if (CurrVT.is512BitVector()) {
MVT MaskVT = MVT::getVectorVT(MVT::i1, CurrVT.getVectorNumElements());
HiZ = DAG.getSetCC(DL, MaskVT, DAG.getBitcast(CurrVT, Op0),
DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
HiZ = DAG.getNode(ISD::SIGN_EXTEND, DL, CurrVT, HiZ);
} else {
HiZ = DAG.getSetCC(DL, CurrVT, DAG.getBitcast(CurrVT, Op0),
DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
}
HiZ = DAG.getBitcast(NextVT, HiZ);
// Move the upper/lower halves to the lower bits as we'll be extending to
// NextVT. Mask the lower result to zero if HiZ is true and add the results
// together.
SDValue ResNext = Res = DAG.getBitcast(NextVT, Res);
SDValue R0 = DAG.getNode(ISD::SRL, DL, NextVT, ResNext, Shift);
SDValue R1 = DAG.getNode(ISD::SRL, DL, NextVT, HiZ, Shift);
R1 = DAG.getNode(ISD::AND, DL, NextVT, ResNext, R1);
Res = DAG.getNode(ISD::ADD, DL, NextVT, R0, R1);
CurrVT = NextVT;
}
return Res;
}
static SDValue LowerVectorCTLZ(SDValue Op, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (Subtarget.hasCDI() &&
// vXi8 vectors need to be promoted to 512-bits for vXi32.
(Subtarget.canExtendTo512DQ() || VT.getVectorElementType() != MVT::i8))
return LowerVectorCTLZ_AVX512CDI(Op, DAG, Subtarget);
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntUnary(Op, DAG);
// Decompose 512-bit ops into smaller 256-bit ops.
if (VT.is512BitVector() && !Subtarget.hasBWI())
return Lower512IntUnary(Op, DAG);
assert(Subtarget.hasSSSE3() && "Expected SSSE3 support for PSHUFB");
return LowerVectorCTLZInRegLUT(Op, DL, Subtarget, DAG);
}
static SDValue LowerCTLZ(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
SDLoc dl(Op);
unsigned Opc = Op.getOpcode();
if (VT.isVector())
return LowerVectorCTLZ(Op, dl, Subtarget, DAG);
Op = Op.getOperand(0);
if (VT == MVT::i8) {
// Zero extend to i32 since there is not an i8 bsr.
OpVT = MVT::i32;
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
}
// Issue a bsr (scan bits in reverse) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
if (Opc == ISD::CTLZ) {
// If src is zero (i.e. bsr sets ZF), returns NumBits.
SDValue Ops[] = {Op, DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
DAG.getTargetConstant(X86::COND_E, dl, MVT::i8),
Op.getValue(1)};
Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
}
// Finally xor with NumBits-1.
Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
DAG.getConstant(NumBits - 1, dl, OpVT));
if (VT == MVT::i8)
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
return Op;
}
static SDValue LowerCTTZ(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
unsigned NumBits = VT.getScalarSizeInBits();
SDValue N0 = Op.getOperand(0);
SDLoc dl(Op);
assert(!VT.isVector() && Op.getOpcode() == ISD::CTTZ &&
"Only scalar CTTZ requires custom lowering");
// Issue a bsf (scan bits forward) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
Op = DAG.getNode(X86ISD::BSF, dl, VTs, N0);
// If src is zero (i.e. bsf sets ZF), returns NumBits.
SDValue Ops[] = {Op, DAG.getConstant(NumBits, dl, VT),
DAG.getTargetConstant(X86::COND_E, dl, MVT::i8),
Op.getValue(1)};
return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
}
/// Break a 256-bit integer operation into two new 128-bit ones and then
/// concatenate the result back.
static SDValue split256IntArith(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is256BitVector() && VT.isInteger() &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
}
/// Break a 512-bit integer operation into two new 256-bit ones and then
/// concatenate the result back.
static SDValue split512IntArith(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is512BitVector() && VT.isInteger() &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract256BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract256BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract256BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract256BitVector(RHS, NumElems / 2, DAG, dl);
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
}
static SDValue lowerAddSub(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
if (VT == MVT::i16 || VT == MVT::i32)
return lowerAddSubToHorizontalOp(Op, DAG, Subtarget);
if (VT.getScalarType() == MVT::i1)
return DAG.getNode(ISD::XOR, SDLoc(Op), VT,
Op.getOperand(0), Op.getOperand(1));
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return split256IntArith(Op, DAG);
}
static SDValue LowerADDSAT_SUBSAT(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
unsigned Opcode = Op.getOpcode();
if (VT.getScalarType() == MVT::i1) {
SDLoc dl(Op);
switch (Opcode) {
default: llvm_unreachable("Expected saturated arithmetic opcode");
case ISD::UADDSAT:
case ISD::SADDSAT:
// *addsat i1 X, Y --> X | Y
return DAG.getNode(ISD::OR, dl, VT, X, Y);
case ISD::USUBSAT:
case ISD::SSUBSAT:
// *subsat i1 X, Y --> X & ~Y
return DAG.getNode(ISD::AND, dl, VT, X, DAG.getNOT(dl, Y, VT));
}
}
if (VT.is128BitVector()) {
// Avoid the generic expansion with min/max if we don't have pminu*/pmaxu*.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), VT);
SDLoc DL(Op);
if (Opcode == ISD::UADDSAT && !TLI.isOperationLegal(ISD::UMIN, VT)) {
// uaddsat X, Y --> (X >u (X + Y)) ? -1 : X + Y
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, X, Y);
SDValue Cmp = DAG.getSetCC(DL, SetCCResultType, X, Add, ISD::SETUGT);
return DAG.getSelect(DL, VT, Cmp, DAG.getAllOnesConstant(DL, VT), Add);
}
if (Opcode == ISD::USUBSAT && !TLI.isOperationLegal(ISD::UMAX, VT)) {
// usubsat X, Y --> (X >u Y) ? X - Y : 0
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, X, Y);
SDValue Cmp = DAG.getSetCC(DL, SetCCResultType, X, Y, ISD::SETUGT);
return DAG.getSelect(DL, VT, Cmp, Sub, DAG.getConstant(0, DL, VT));
}
// Use default expansion.
return SDValue();
}
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return split256IntArith(Op, DAG);
}
static SDValue LowerABS(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) {
// Since X86 does not have CMOV for 8-bit integer, we don't convert
// 8-bit integer abs to NEG and CMOV.
SDLoc DL(Op);
SDValue N0 = Op.getOperand(0);
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
DAG.getConstant(0, DL, VT), N0);
SDValue Ops[] = {N0, Neg, DAG.getTargetConstant(X86::COND_GE, DL, MVT::i8),
SDValue(Neg.getNode(), 1)};
return DAG.getNode(X86ISD::CMOV, DL, VT, Ops);
}
// ABS(vXi64 X) --> VPBLENDVPD(X, 0-X, X).
if ((VT == MVT::v2i64 || VT == MVT::v4i64) && Subtarget.hasSSE41()) {
SDLoc DL(Op);
SDValue Src = Op.getOperand(0);
SDValue Sub =
DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Src);
return DAG.getNode(X86ISD::BLENDV, DL, VT, Src, Sub, Src);
}
if (VT.is256BitVector() && !Subtarget.hasInt256()) {
assert(VT.isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntUnary(Op, DAG);
}
// Default to expand.
return SDValue();
}
static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
// For AVX1 cases, split to use legal ops (everything but v4i64).
if (VT.getScalarType() != MVT::i64 && VT.is256BitVector())
return split256IntArith(Op, DAG);
SDLoc DL(Op);
unsigned Opcode = Op.getOpcode();
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
// For pre-SSE41, we can perform UMIN/UMAX v8i16 by flipping the signbit,
// using the SMIN/SMAX instructions and flipping the signbit back.
if (VT == MVT::v8i16) {
assert((Opcode == ISD::UMIN || Opcode == ISD::UMAX) &&
"Unexpected MIN/MAX opcode");
SDValue Sign = DAG.getConstant(APInt::getSignedMinValue(16), DL, VT);
N0 = DAG.getNode(ISD::XOR, DL, VT, N0, Sign);
N1 = DAG.getNode(ISD::XOR, DL, VT, N1, Sign);
Opcode = (Opcode == ISD::UMIN ? ISD::SMIN : ISD::SMAX);
SDValue Result = DAG.getNode(Opcode, DL, VT, N0, N1);
return DAG.getNode(ISD::XOR, DL, VT, Result, Sign);
}
// Else, expand to a compare/select.
ISD::CondCode CC;
switch (Opcode) {
case ISD::SMIN: CC = ISD::CondCode::SETLT; break;
case ISD::SMAX: CC = ISD::CondCode::SETGT; break;
case ISD::UMIN: CC = ISD::CondCode::SETULT; break;
case ISD::UMAX: CC = ISD::CondCode::SETUGT; break;
default: llvm_unreachable("Unknown MINMAX opcode");
}
SDValue Cond = DAG.getSetCC(DL, VT, N0, N1, CC);
return DAG.getSelect(DL, VT, Cond, N0, N1);
}
static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
if (VT.getScalarType() == MVT::i1)
return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
// Decompose 256-bit ops into 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return split256IntArith(Op, DAG);
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
// Lower v16i8/v32i8/v64i8 mul as sign-extension to v8i16/v16i16/v32i16
// vector pairs, multiply and truncate.
if (VT == MVT::v16i8 || VT == MVT::v32i8 || VT == MVT::v64i8) {
unsigned NumElts = VT.getVectorNumElements();
if ((VT == MVT::v16i8 && Subtarget.hasInt256()) ||
(VT == MVT::v32i8 && Subtarget.canExtendTo512BW())) {
MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
return DAG.getNode(
ISD::TRUNCATE, dl, VT,
DAG.getNode(ISD::MUL, dl, ExVT,
DAG.getNode(ISD::ANY_EXTEND, dl, ExVT, A),
DAG.getNode(ISD::ANY_EXTEND, dl, ExVT, B)));
}
MVT ExVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
// Extract the lo/hi parts to any extend to i16.
// We're going to mask off the low byte of each result element of the
// pmullw, so it doesn't matter what's in the high byte of each 16-bit
// element.
SDValue Undef = DAG.getUNDEF(VT);
SDValue ALo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, A, Undef));
SDValue AHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, A, Undef));
SDValue BLo, BHi;
if (ISD::isBuildVectorOfConstantSDNodes(B.getNode())) {
// If the LHS is a constant, manually unpackl/unpackh.
SmallVector<SDValue, 16> LoOps, HiOps;
for (unsigned i = 0; i != NumElts; i += 16) {
for (unsigned j = 0; j != 8; ++j) {
LoOps.push_back(DAG.getAnyExtOrTrunc(B.getOperand(i + j), dl,
MVT::i16));
HiOps.push_back(DAG.getAnyExtOrTrunc(B.getOperand(i + j + 8), dl,
MVT::i16));
}
}
BLo = DAG.getBuildVector(ExVT, dl, LoOps);
BHi = DAG.getBuildVector(ExVT, dl, HiOps);
} else {
BLo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, B, Undef));
BHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, B, Undef));
}
// Multiply, mask the lower 8bits of the lo/hi results and pack.
SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
// Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
if (VT == MVT::v4i32) {
assert(Subtarget.hasSSE2() && !Subtarget.hasSSE41() &&
"Should not custom lower when pmulld is available!");
// Extract the odd parts.
static const int UnpackMask[] = { 1, -1, 3, -1 };
SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
// Multiply the even parts.
SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, A),
DAG.getBitcast(MVT::v2i64, B));
// Now multiply odd parts.
SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, Aodds),
DAG.getBitcast(MVT::v2i64, Bodds));
Evens = DAG.getBitcast(VT, Evens);
Odds = DAG.getBitcast(VT, Odds);
// Merge the two vectors back together with a shuffle. This expands into 2
// shuffles.
static const int ShufMask[] = { 0, 4, 2, 6 };
return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
}
assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
"Only know how to lower V2I64/V4I64/V8I64 multiply");
assert(!Subtarget.hasDQI() && "DQI should use MULLQ");
// Ahi = psrlqi(a, 32);
// Bhi = psrlqi(b, 32);
//
// AloBlo = pmuludq(a, b);
// AloBhi = pmuludq(a, Bhi);
// AhiBlo = pmuludq(Ahi, b);
//
// Hi = psllqi(AloBhi + AhiBlo, 32);
// return AloBlo + Hi;
KnownBits AKnown = DAG.computeKnownBits(A);
KnownBits BKnown = DAG.computeKnownBits(B);
APInt LowerBitsMask = APInt::getLowBitsSet(64, 32);
bool ALoIsZero = LowerBitsMask.isSubsetOf(AKnown.Zero);
bool BLoIsZero = LowerBitsMask.isSubsetOf(BKnown.Zero);
APInt UpperBitsMask = APInt::getHighBitsSet(64, 32);
bool AHiIsZero = UpperBitsMask.isSubsetOf(AKnown.Zero);
bool BHiIsZero = UpperBitsMask.isSubsetOf(BKnown.Zero);
SDValue Zero = DAG.getConstant(0, dl, VT);
// Only multiply lo/hi halves that aren't known to be zero.
SDValue AloBlo = Zero;
if (!ALoIsZero && !BLoIsZero)
AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
SDValue AloBhi = Zero;
if (!ALoIsZero && !BHiIsZero) {
SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
}
SDValue AhiBlo = Zero;
if (!AHiIsZero && !BLoIsZero) {
SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
}
SDValue Hi = DAG.getNode(ISD::ADD, dl, VT, AloBhi, AhiBlo);
Hi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Hi, 32, DAG);
return DAG.getNode(ISD::ADD, dl, VT, AloBlo, Hi);
}
static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
bool IsSigned = Op->getOpcode() == ISD::MULHS;
unsigned NumElts = VT.getVectorNumElements();
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
// Decompose 256-bit ops into 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return split256IntArith(Op, DAG);
if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32) {
assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) ||
(VT == MVT::v8i32 && Subtarget.hasInt256()) ||
(VT == MVT::v16i32 && Subtarget.hasAVX512()));
// PMULxD operations multiply each even value (starting at 0) of LHS with
// the related value of RHS and produce a widen result.
// E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
// => <2 x i64> <ae|cg>
//
// In other word, to have all the results, we need to perform two PMULxD:
// 1. one with the even values.
// 2. one with the odd values.
// To achieve #2, with need to place the odd values at an even position.
//
// Place the odd value at an even position (basically, shift all values 1
// step to the left):
const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1,
9, -1, 11, -1, 13, -1, 15, -1};
// <a|b|c|d> => <b|undef|d|undef>
SDValue Odd0 = DAG.getVectorShuffle(VT, dl, A, A,
makeArrayRef(&Mask[0], NumElts));
// <e|f|g|h> => <f|undef|h|undef>
SDValue Odd1 = DAG.getVectorShuffle(VT, dl, B, B,
makeArrayRef(&Mask[0], NumElts));
// Emit two multiplies, one for the lower 2 ints and one for the higher 2
// ints.
MVT MulVT = MVT::getVectorVT(MVT::i64, NumElts / 2);
unsigned Opcode =
(IsSigned && Subtarget.hasSSE41()) ? X86ISD::PMULDQ : X86ISD::PMULUDQ;
// PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
// => <2 x i64> <ae|cg>
SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT,
DAG.getBitcast(MulVT, A),
DAG.getBitcast(MulVT, B)));
// PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
// => <2 x i64> <bf|dh>
SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT,
DAG.getBitcast(MulVT, Odd0),
DAG.getBitcast(MulVT, Odd1)));
// Shuffle it back into the right order.
SmallVector<int, 16> ShufMask(NumElts);
for (int i = 0; i != (int)NumElts; ++i)
ShufMask[i] = (i / 2) * 2 + ((i % 2) * NumElts) + 1;
SDValue Res = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, ShufMask);
// If we have a signed multiply but no PMULDQ fix up the result of an
// unsigned multiply.
if (IsSigned && !Subtarget.hasSSE41()) {
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
DAG.getSetCC(dl, VT, Zero, A, ISD::SETGT), B);
SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
DAG.getSetCC(dl, VT, Zero, B, ISD::SETGT), A);
SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
Res = DAG.getNode(ISD::SUB, dl, VT, Res, Fixup);
}
return Res;
}
// Only i8 vectors should need custom lowering after this.
assert((VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget.hasInt256()) ||
(VT == MVT::v64i8 && Subtarget.hasBWI())) &&
"Unsupported vector type");
// Lower v16i8/v32i8 as extension to v8i16/v16i16 vector pairs, multiply,
// logical shift down the upper half and pack back to i8.
// With SSE41 we can use sign/zero extend, but for pre-SSE41 we unpack
// and then ashr/lshr the upper bits down to the lower bits before multiply.
unsigned ExAVX = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
if ((VT == MVT::v16i8 && Subtarget.hasInt256()) ||
(VT == MVT::v32i8 && Subtarget.canExtendTo512BW())) {
MVT ExVT = MVT::getVectorVT(MVT::i16, NumElts);
SDValue ExA = DAG.getNode(ExAVX, dl, ExVT, A);
SDValue ExB = DAG.getNode(ExAVX, dl, ExVT, B);
SDValue Mul = DAG.getNode(ISD::MUL, dl, ExVT, ExA, ExB);
Mul = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, Mul, 8, DAG);
return DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
}
// For signed 512-bit vectors, split into 256-bit vectors to allow the
// sign-extension to occur.
if (VT == MVT::v64i8 && IsSigned)
return split512IntArith(Op, DAG);
// Signed AVX2 implementation - extend xmm subvectors to ymm.
if (VT == MVT::v32i8 && IsSigned) {
MVT ExVT = MVT::v16i16;
SDValue ALo = extract128BitVector(A, 0, DAG, dl);
SDValue BLo = extract128BitVector(B, 0, DAG, dl);
SDValue AHi = extract128BitVector(A, NumElts / 2, DAG, dl);
SDValue BHi = extract128BitVector(B, NumElts / 2, DAG, dl);
ALo = DAG.getNode(ExAVX, dl, ExVT, ALo);
BLo = DAG.getNode(ExAVX, dl, ExVT, BLo);
AHi = DAG.getNode(ExAVX, dl, ExVT, AHi);
BHi = DAG.getNode(ExAVX, dl, ExVT, BHi);
SDValue Lo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
SDValue Hi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
Lo = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, Lo, 8, DAG);
Hi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, Hi, 8, DAG);
// Bitcast back to VT and then pack all the even elements from Lo and Hi.
// Shuffle lowering should turn this into PACKUS+PERMQ
Lo = DAG.getBitcast(VT, Lo);
Hi = DAG.getBitcast(VT, Hi);
return DAG.getVectorShuffle(VT, dl, Lo, Hi,
{ 0, 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22, 24, 26, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46,
48, 50, 52, 54, 56, 58, 60, 62});
}
// For signed v16i8 and all unsigned vXi8 we will unpack the low and high
// half of each 128 bit lane to widen to a vXi16 type. Do the multiplies,
// shift the results and pack the half lane results back together.
MVT ExVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
static const int PSHUFDMask[] = { 8, 9, 10, 11, 12, 13, 14, 15,
-1, -1, -1, -1, -1, -1, -1, -1};
// Extract the lo parts and zero/sign extend to i16.
// Only use SSE4.1 instructions for signed v16i8 where using unpack requires
// shifts to sign extend. Using unpack for unsigned only requires an xor to
// create zeros and a copy due to tied registers contraints pre-avx. But using
// zero_extend_vector_inreg would require an additional pshufd for the high
// part.
SDValue ALo, AHi;
if (IsSigned && VT == MVT::v16i8 && Subtarget.hasSSE41()) {
ALo = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, ExVT, A);
AHi = DAG.getVectorShuffle(VT, dl, A, A, PSHUFDMask);
AHi = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, ExVT, AHi);
} else if (IsSigned) {
ALo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, DAG.getUNDEF(VT), A));
AHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, DAG.getUNDEF(VT), A));
ALo = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, ALo, 8, DAG);
AHi = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, AHi, 8, DAG);
} else {
ALo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, A,
DAG.getConstant(0, dl, VT)));
AHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, A,
DAG.getConstant(0, dl, VT)));
}
SDValue BLo, BHi;
if (ISD::isBuildVectorOfConstantSDNodes(B.getNode())) {
// If the LHS is a constant, manually unpackl/unpackh and extend.
SmallVector<SDValue, 16> LoOps, HiOps;
for (unsigned i = 0; i != NumElts; i += 16) {
for (unsigned j = 0; j != 8; ++j) {
SDValue LoOp = B.getOperand(i + j);
SDValue HiOp = B.getOperand(i + j + 8);
if (IsSigned) {
LoOp = DAG.getSExtOrTrunc(LoOp, dl, MVT::i16);
HiOp = DAG.getSExtOrTrunc(HiOp, dl, MVT::i16);
} else {
LoOp = DAG.getZExtOrTrunc(LoOp, dl, MVT::i16);
HiOp = DAG.getZExtOrTrunc(HiOp, dl, MVT::i16);
}
LoOps.push_back(LoOp);
HiOps.push_back(HiOp);
}
}
BLo = DAG.getBuildVector(ExVT, dl, LoOps);
BHi = DAG.getBuildVector(ExVT, dl, HiOps);
} else if (IsSigned && VT == MVT::v16i8 && Subtarget.hasSSE41()) {
BLo = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, ExVT, B);
BHi = DAG.getVectorShuffle(VT, dl, B, B, PSHUFDMask);
BHi = DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, dl, ExVT, BHi);
} else if (IsSigned) {
BLo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, DAG.getUNDEF(VT), B));
BHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, DAG.getUNDEF(VT), B));
BLo = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, BLo, 8, DAG);
BHi = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, BHi, 8, DAG);
} else {
BLo = DAG.getBitcast(ExVT, getUnpackl(DAG, dl, VT, B,
DAG.getConstant(0, dl, VT)));
BHi = DAG.getBitcast(ExVT, getUnpackh(DAG, dl, VT, B,
DAG.getConstant(0, dl, VT)));
}
// Multiply, lshr the upper 8bits to the lower 8bits of the lo/hi results and
// pack back to vXi8.
SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
RLo = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, RLo, 8, DAG);
RHi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExVT, RHi, 8, DAG);
// Bitcast back to VT and then pack all the even elements from Lo and Hi.
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget.isTargetWin64() && "Unexpected target");
EVT VT = Op.getValueType();
assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
"Unexpected return type for lowering");
RTLIB::Libcall LC;
bool isSigned;
switch (Op->getOpcode()) {
default: llvm_unreachable("Unexpected request for libcall!");
case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break;
case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break;
case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break;
case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break;
case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break;
case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break;
}
SDLoc dl(Op);
SDValue InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
EVT ArgVT = Op->getOperand(i).getValueType();
assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
"Unexpected argument type for lowering");
SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
Entry.Node = StackPtr;
InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr,
MachinePointerInfo(), /* Alignment = */ 16);
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Ty = PointerType::get(ArgTy,0);
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy(DAG.getDataLayout()));
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(InChain)
.setLibCallee(
getLibcallCallingConv(LC),
static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()), Callee,
std::move(Args))
.setInRegister()
.setSExtResult(isSigned)
.setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
return DAG.getBitcast(VT, CallInfo.first);
}
// Return true if the required (according to Opcode) shift-imm form is natively
// supported by the Subtarget
static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
if (VT.getScalarSizeInBits() < 16)
return false;
if (VT.is512BitVector() && Subtarget.hasAVX512() &&
(VT.getScalarSizeInBits() > 16 || Subtarget.hasBWI()))
return true;
bool LShift = (VT.is128BitVector() && Subtarget.hasSSE2()) ||
(VT.is256BitVector() && Subtarget.hasInt256());
bool AShift = LShift && (Subtarget.hasAVX512() ||
(VT != MVT::v2i64 && VT != MVT::v4i64));
return (Opcode == ISD::SRA) ? AShift : LShift;
}
// The shift amount is a variable, but it is the same for all vector lanes.
// These instructions are defined together with shift-immediate.
static
bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
}
// Return true if the required (according to Opcode) variable-shift form is
// natively supported by the Subtarget
static bool SupportedVectorVarShift(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
if (!Subtarget.hasInt256() || VT.getScalarSizeInBits() < 16)
return false;
// vXi16 supported only on AVX-512, BWI
if (VT.getScalarSizeInBits() == 16 && !Subtarget.hasBWI())
return false;
if (Subtarget.hasAVX512())
return true;
bool LShift = VT.is128BitVector() || VT.is256BitVector();
bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64;
return (Opcode == ISD::SRA) ? AShift : LShift;
}
static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned X86Opc = getTargetVShiftUniformOpcode(Op.getOpcode(), false);
auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) {
assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type");
MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2);
SDValue Ex = DAG.getBitcast(ExVT, R);
// ashr(R, 63) === cmp_slt(R, 0)
if (ShiftAmt == 63 && Subtarget.hasSSE42()) {
assert((VT != MVT::v4i64 || Subtarget.hasInt256()) &&
"Unsupported PCMPGT op");
return DAG.getNode(X86ISD::PCMPGT, dl, VT, DAG.getConstant(0, dl, VT), R);
}
if (ShiftAmt >= 32) {
// Splat sign to upper i32 dst, and SRA upper i32 src to lower i32.
SDValue Upper =
getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG);
SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
ShiftAmt - 32, DAG);
if (VT == MVT::v2i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3});
if (VT == MVT::v4i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
{9, 1, 11, 3, 13, 5, 15, 7});
} else {
// SRA upper i32, SRL whole i64 and select lower i32.
SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
ShiftAmt, DAG);
SDValue Lower =
getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG);
Lower = DAG.getBitcast(ExVT, Lower);
if (VT == MVT::v2i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3});
if (VT == MVT::v4i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
{8, 1, 10, 3, 12, 5, 14, 7});
}
return DAG.getBitcast(VT, Ex);
};
// Optimize shl/srl/sra with constant shift amount.
APInt APIntShiftAmt;
if (!X86::isConstantSplat(Amt, APIntShiftAmt))
return SDValue();
// If the shift amount is out of range, return undef.
if (APIntShiftAmt.uge(VT.getScalarSizeInBits()))
return DAG.getUNDEF(VT);
uint64_t ShiftAmt = APIntShiftAmt.getZExtValue();
if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
// i64 SRA needs to be performed as partial shifts.
if (((!Subtarget.hasXOP() && VT == MVT::v2i64) ||
(Subtarget.hasInt256() && VT == MVT::v4i64)) &&
Op.getOpcode() == ISD::SRA)
return ArithmeticShiftRight64(ShiftAmt);
if (VT == MVT::v16i8 || (Subtarget.hasInt256() && VT == MVT::v32i8) ||
VT == MVT::v64i8) {
unsigned NumElts = VT.getVectorNumElements();
MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
// Simple i8 add case
if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1)
return DAG.getNode(ISD::ADD, dl, VT, R, R);
// ashr(R, 7) === cmp_slt(R, 0)
if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) {
SDValue Zeros = DAG.getConstant(0, dl, VT);
if (VT.is512BitVector()) {
assert(VT == MVT::v64i8 && "Unexpected element type!");
SDValue CMP = DAG.getSetCC(dl, MVT::v64i1, Zeros, R, ISD::SETGT);
return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, CMP);
}
return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
}
// XOP can shift v16i8 directly instead of as shift v8i16 + mask.
if (VT == MVT::v16i8 && Subtarget.hasXOP())
return SDValue();
if (Op.getOpcode() == ISD::SHL) {
// Make a large shift.
SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT, R,
ShiftAmt, DAG);
SHL = DAG.getBitcast(VT, SHL);
// Zero out the rightmost bits.
APInt Mask = APInt::getHighBitsSet(8, 8 - ShiftAmt);
return DAG.getNode(ISD::AND, dl, VT, SHL, DAG.getConstant(Mask, dl, VT));
}
if (Op.getOpcode() == ISD::SRL) {
// Make a large shift.
SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT, R,
ShiftAmt, DAG);
SRL = DAG.getBitcast(VT, SRL);
// Zero out the leftmost bits.
return DAG.getNode(ISD::AND, dl, VT, SRL,
DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT));
}
if (Op.getOpcode() == ISD::SRA) {
// ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT);
Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
return Res;
}
llvm_unreachable("Unknown shift opcode.");
}
return SDValue();
}
static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned Opcode = Op.getOpcode();
unsigned X86OpcI = getTargetVShiftUniformOpcode(Opcode, false);
unsigned X86OpcV = getTargetVShiftUniformOpcode(Opcode, true);
if (SDValue BaseShAmt = DAG.getSplatValue(Amt)) {
if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Opcode)) {
MVT EltVT = VT.getVectorElementType();
assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
else if (EltVT.bitsLT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, Subtarget, DAG);
}
// vXi8 shifts - shift as v8i16 + mask result.
if (((VT == MVT::v16i8 && !Subtarget.canExtendTo512DQ()) ||
(VT == MVT::v32i8 && !Subtarget.canExtendTo512BW()) ||
VT == MVT::v64i8) &&
!Subtarget.hasXOP()) {
unsigned NumElts = VT.getVectorNumElements();
MVT ExtVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
if (SupportedVectorShiftWithBaseAmnt(ExtVT, Subtarget, Opcode)) {
unsigned LogicalOp = (Opcode == ISD::SHL ? ISD::SHL : ISD::SRL);
unsigned LogicalX86Op = getTargetVShiftUniformOpcode(LogicalOp, false);
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
// Create the mask using vXi16 shifts. For shift-rights we need to move
// the upper byte down before splatting the vXi8 mask.
SDValue BitMask = DAG.getConstant(-1, dl, ExtVT);
BitMask = getTargetVShiftNode(LogicalX86Op, dl, ExtVT, BitMask,
BaseShAmt, Subtarget, DAG);
if (Opcode != ISD::SHL)
BitMask = getTargetVShiftByConstNode(LogicalX86Op, dl, ExtVT, BitMask,
8, DAG);
BitMask = DAG.getBitcast(VT, BitMask);
BitMask = DAG.getVectorShuffle(VT, dl, BitMask, BitMask,
SmallVector<int, 64>(NumElts, 0));
SDValue Res = getTargetVShiftNode(LogicalX86Op, dl, ExtVT,
DAG.getBitcast(ExtVT, R), BaseShAmt,
Subtarget, DAG);
Res = DAG.getBitcast(VT, Res);
Res = DAG.getNode(ISD::AND, dl, VT, Res, BitMask);
if (Opcode == ISD::SRA) {
// ashr(R, Amt) === sub(xor(lshr(R, Amt), SignMask), SignMask)
// SignMask = lshr(SignBit, Amt) - safe to do this with PSRLW.
SDValue SignMask = DAG.getConstant(0x8080, dl, ExtVT);
SignMask = getTargetVShiftNode(LogicalX86Op, dl, ExtVT, SignMask,
BaseShAmt, Subtarget, DAG);
SignMask = DAG.getBitcast(VT, SignMask);
Res = DAG.getNode(ISD::XOR, dl, VT, Res, SignMask);
Res = DAG.getNode(ISD::SUB, dl, VT, Res, SignMask);
}
return Res;
}
}
}
// Check cases (mainly 32-bit) where i64 is expanded into high and low parts.
if (VT == MVT::v2i64 && Amt.getOpcode() == ISD::BITCAST &&
Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
Amt = Amt.getOperand(0);
unsigned Ratio = 64 / Amt.getScalarValueSizeInBits();
std::vector<SDValue> Vals(Ratio);
for (unsigned i = 0; i != Ratio; ++i)
Vals[i] = Amt.getOperand(i);
for (unsigned i = Ratio, e = Amt.getNumOperands(); i != e; i += Ratio) {
for (unsigned j = 0; j != Ratio; ++j)
if (Vals[j] != Amt.getOperand(i + j))
return SDValue();
}
if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode()))
return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
}
return SDValue();
}
// Convert a shift/rotate left amount to a multiplication scale factor.
static SDValue convertShiftLeftToScale(SDValue Amt, const SDLoc &dl,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Amt.getSimpleValueType();
if (!(VT == MVT::v8i16 || VT == MVT::v4i32 ||
(Subtarget.hasInt256() && VT == MVT::v16i16) ||
(!Subtarget.hasAVX512() && VT == MVT::v16i8)))
return SDValue();
if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
SmallVector<SDValue, 8> Elts;
MVT SVT = VT.getVectorElementType();
unsigned SVTBits = SVT.getSizeInBits();
APInt One(SVTBits, 1);
unsigned NumElems = VT.getVectorNumElements();
for (unsigned i = 0; i != NumElems; ++i) {
SDValue Op = Amt->getOperand(i);
if (Op->isUndef()) {
Elts.push_back(Op);
continue;
}
ConstantSDNode *ND = cast<ConstantSDNode>(Op);
APInt C(SVTBits, ND->getZExtValue());
uint64_t ShAmt = C.getZExtValue();
if (ShAmt >= SVTBits) {
Elts.push_back(DAG.getUNDEF(SVT));
continue;
}
Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
}
return DAG.getBuildVector(VT, dl, Elts);
}
// If the target doesn't support variable shifts, use either FP conversion
// or integer multiplication to avoid shifting each element individually.
if (VT == MVT::v4i32) {
Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt,
DAG.getConstant(0x3f800000U, dl, VT));
Amt = DAG.getBitcast(MVT::v4f32, Amt);
return DAG.getNode(ISD::FP_TO_SINT, dl, VT, Amt);
}
// AVX2 can more effectively perform this as a zext/trunc to/from v8i32.
if (VT == MVT::v8i16 && !Subtarget.hasAVX2()) {
SDValue Z = DAG.getConstant(0, dl, VT);
SDValue Lo = DAG.getBitcast(MVT::v4i32, getUnpackl(DAG, dl, VT, Amt, Z));
SDValue Hi = DAG.getBitcast(MVT::v4i32, getUnpackh(DAG, dl, VT, Amt, Z));
Lo = convertShiftLeftToScale(Lo, dl, Subtarget, DAG);
Hi = convertShiftLeftToScale(Hi, dl, Subtarget, DAG);
if (Subtarget.hasSSE41())
return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
return DAG.getVectorShuffle(VT, dl, DAG.getBitcast(VT, Lo),
DAG.getBitcast(VT, Hi),
{0, 2, 4, 6, 8, 10, 12, 14});
}
return SDValue();
}
static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned EltSizeInBits = VT.getScalarSizeInBits();
bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
unsigned Opc = Op.getOpcode();
unsigned X86OpcV = getTargetVShiftUniformOpcode(Opc, true);
unsigned X86OpcI = getTargetVShiftUniformOpcode(Opc, false);
assert(VT.isVector() && "Custom lowering only for vector shifts!");
assert(Subtarget.hasSSE2() && "Only custom lower when we have SSE2!");
if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
return V;
if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
return V;
if (SupportedVectorVarShift(VT, Subtarget, Opc))
return Op;
// XOP has 128-bit variable logical/arithmetic shifts.
// +ve/-ve Amt = shift left/right.
if (Subtarget.hasXOP() && (VT == MVT::v2i64 || VT == MVT::v4i32 ||
VT == MVT::v8i16 || VT == MVT::v16i8)) {
if (Opc == ISD::SRL || Opc == ISD::SRA) {
SDValue Zero = DAG.getConstant(0, dl, VT);
Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt);
}
if (Opc == ISD::SHL || Opc == ISD::SRL)
return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt);
if (Opc == ISD::SRA)
return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt);
}
// 2i64 vector logical shifts can efficiently avoid scalarization - do the
// shifts per-lane and then shuffle the partial results back together.
if (VT == MVT::v2i64 && Opc != ISD::SRA) {
// Splat the shift amounts so the scalar shifts above will catch it.
SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0);
SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1);
return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
}
// i64 vector arithmetic shift can be emulated with the transform:
// M = lshr(SIGN_MASK, Amt)
// ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget.hasInt256())) &&
Opc == ISD::SRA) {
SDValue S = DAG.getConstant(APInt::getSignMask(64), dl, VT);
SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
R = DAG.getNode(ISD::XOR, dl, VT, R, M);
R = DAG.getNode(ISD::SUB, dl, VT, R, M);
return R;
}
// If possible, lower this shift as a sequence of two shifts by
// constant plus a BLENDing shuffle instead of scalarizing it.
// Example:
// (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
//
// Could be rewritten as:
// (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
//
// The advantage is that the two shifts from the example would be
// lowered as X86ISD::VSRLI nodes in parallel before blending.
if (ConstantAmt && (VT == MVT::v8i16 || VT == MVT::v4i32 ||
(VT == MVT::v16i16 && Subtarget.hasInt256()))) {
SDValue Amt1, Amt2;
unsigned NumElts = VT.getVectorNumElements();
SmallVector<int, 8> ShuffleMask;
for (unsigned i = 0; i != NumElts; ++i) {
SDValue A = Amt->getOperand(i);
if (A.isUndef()) {
ShuffleMask.push_back(SM_SentinelUndef);
continue;
}
if (!Amt1 || Amt1 == A) {
ShuffleMask.push_back(i);
Amt1 = A;
continue;
}
if (!Amt2 || Amt2 == A) {
ShuffleMask.push_back(i + NumElts);
Amt2 = A;
continue;
}
break;
}
// Only perform this blend if we can perform it without loading a mask.
if (ShuffleMask.size() == NumElts && Amt1 && Amt2 &&
(VT != MVT::v16i16 ||
is128BitLaneRepeatedShuffleMask(VT, ShuffleMask)) &&
(VT == MVT::v4i32 || Subtarget.hasSSE41() || Opc != ISD::SHL ||
canWidenShuffleElements(ShuffleMask))) {
auto *Cst1 = dyn_cast<ConstantSDNode>(Amt1);
auto *Cst2 = dyn_cast<ConstantSDNode>(Amt2);
if (Cst1 && Cst2 && Cst1->getAPIntValue().ult(EltSizeInBits) &&
Cst2->getAPIntValue().ult(EltSizeInBits)) {
SDValue Shift1 = getTargetVShiftByConstNode(X86OpcI, dl, VT, R,
Cst1->getZExtValue(), DAG);
SDValue Shift2 = getTargetVShiftByConstNode(X86OpcI, dl, VT, R,
Cst2->getZExtValue(), DAG);
return DAG.getVectorShuffle(VT, dl, Shift1, Shift2, ShuffleMask);
}
}
}
// If possible, lower this packed shift into a vector multiply instead of
// expanding it into a sequence of scalar shifts.
if (Opc == ISD::SHL)
if (SDValue Scale = convertShiftLeftToScale(Amt, dl, Subtarget, DAG))
return DAG.getNode(ISD::MUL, dl, VT, R, Scale);
// Constant ISD::SRL can be performed efficiently on vXi16 vectors as we
// can replace with ISD::MULHU, creating scale factor from (NumEltBits - Amt).
if (Opc == ISD::SRL && ConstantAmt &&
(VT == MVT::v8i16 || (VT == MVT::v16i16 && Subtarget.hasInt256()))) {
SDValue EltBits = DAG.getConstant(EltSizeInBits, dl, VT);
SDValue RAmt = DAG.getNode(ISD::SUB, dl, VT, EltBits, Amt);
if (SDValue Scale = convertShiftLeftToScale(RAmt, dl, Subtarget, DAG)) {
SDValue Zero = DAG.getConstant(0, dl, VT);
SDValue ZAmt = DAG.getSetCC(dl, VT, Amt, Zero, ISD::SETEQ);
SDValue Res = DAG.getNode(ISD::MULHU, dl, VT, R, Scale);
return DAG.getSelect(dl, VT, ZAmt, R, Res);
}
}
// Constant ISD::SRA can be performed efficiently on vXi16 vectors as we
// can replace with ISD::MULHS, creating scale factor from (NumEltBits - Amt).
// TODO: Special case handling for shift by 0/1, really we can afford either
// of these cases in pre-SSE41/XOP/AVX512 but not both.
if (Opc == ISD::SRA && ConstantAmt &&
(VT == MVT::v8i16 || (VT == MVT::v16i16 && Subtarget.hasInt256())) &&
((Subtarget.hasSSE41() && !Subtarget.hasXOP() &&
!Subtarget.hasAVX512()) ||
DAG.isKnownNeverZero(Amt))) {
SDValue EltBits = DAG.getConstant(EltSizeInBits, dl, VT);
SDValue RAmt = DAG.getNode(ISD::SUB, dl, VT, EltBits, Amt);
if (SDValue Scale = convertShiftLeftToScale(RAmt, dl, Subtarget, DAG)) {
SDValue Amt0 =
DAG.getSetCC(dl, VT, Amt, DAG.getConstant(0, dl, VT), ISD::SETEQ);
SDValue Amt1 =
DAG.getSetCC(dl, VT, Amt, DAG.getConstant(1, dl, VT), ISD::SETEQ);
SDValue Sra1 =
getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, R, 1, DAG);
SDValue Res = DAG.getNode(ISD::MULHS, dl, VT, R, Scale);
Res = DAG.getSelect(dl, VT, Amt0, R, Res);
return DAG.getSelect(dl, VT, Amt1, Sra1, Res);
}
}
// v4i32 Non Uniform Shifts.
// If the shift amount is constant we can shift each lane using the SSE2
// immediate shifts, else we need to zero-extend each lane to the lower i64
// and shift using the SSE2 variable shifts.
// The separate results can then be blended together.
if (VT == MVT::v4i32) {
SDValue Amt0, Amt1, Amt2, Amt3;
if (ConstantAmt) {
Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0});
Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1});
Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2});
Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3});
} else {
// The SSE2 shifts use the lower i64 as the same shift amount for
// all lanes and the upper i64 is ignored. On AVX we're better off
// just zero-extending, but for SSE just duplicating the top 16-bits is
// cheaper and has the same effect for out of range values.
if (Subtarget.hasAVX()) {
SDValue Z = DAG.getConstant(0, dl, VT);
Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1});
Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1});
Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1});
Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1});
} else {
SDValue Amt01 = DAG.getBitcast(MVT::v8i16, Amt);
SDValue Amt23 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
{4, 5, 6, 7, -1, -1, -1, -1});
Amt0 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
{0, 1, 1, 1, -1, -1, -1, -1});
Amt1 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt01, Amt01,
{2, 3, 3, 3, -1, -1, -1, -1});
Amt2 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt23, Amt23,
{0, 1, 1, 1, -1, -1, -1, -1});
Amt3 = DAG.getVectorShuffle(MVT::v8i16, dl, Amt23, Amt23,
{2, 3, 3, 3, -1, -1, -1, -1});
}
}
unsigned ShOpc = ConstantAmt ? Opc : X86OpcV;
SDValue R0 = DAG.getNode(ShOpc, dl, VT, R, DAG.getBitcast(VT, Amt0));
SDValue R1 = DAG.getNode(ShOpc, dl, VT, R, DAG.getBitcast(VT, Amt1));
SDValue R2 = DAG.getNode(ShOpc, dl, VT, R, DAG.getBitcast(VT, Amt2));
SDValue R3 = DAG.getNode(ShOpc, dl, VT, R, DAG.getBitcast(VT, Amt3));
// Merge the shifted lane results optimally with/without PBLENDW.
// TODO - ideally shuffle combining would handle this.
if (Subtarget.hasSSE41()) {
SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1});
SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7});
return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7});
}
SDValue R01 = DAG.getVectorShuffle(VT, dl, R0, R1, {0, -1, -1, 5});
SDValue R23 = DAG.getVectorShuffle(VT, dl, R2, R3, {2, -1, -1, 7});
return DAG.getVectorShuffle(VT, dl, R01, R23, {0, 3, 4, 7});
}
// It's worth extending once and using the vXi16/vXi32 shifts for smaller
// types, but without AVX512 the extra overheads to get from vXi8 to vXi32
// make the existing SSE solution better.
// NOTE: We honor prefered vector width before promoting to 512-bits.
if ((Subtarget.hasInt256() && VT == MVT::v8i16) ||
(Subtarget.canExtendTo512DQ() && VT == MVT::v16i16) ||
(Subtarget.canExtendTo512DQ() && VT == MVT::v16i8) ||
(Subtarget.canExtendTo512BW() && VT == MVT::v32i8) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() && VT == MVT::v16i8)) {
assert((!Subtarget.hasBWI() || VT == MVT::v32i8 || VT == MVT::v16i8) &&
"Unexpected vector type");
MVT EvtSVT = Subtarget.hasBWI() ? MVT::i16 : MVT::i32;
MVT ExtVT = MVT::getVectorVT(EvtSVT, VT.getVectorNumElements());
unsigned ExtOpc = Opc == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
R = DAG.getNode(ExtOpc, dl, ExtVT, R);
Amt = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Amt);
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(Opc, dl, ExtVT, R, Amt));
}
// Constant ISD::SRA/SRL can be performed efficiently on vXi8 vectors as we
// extend to vXi16 to perform a MUL scale effectively as a MUL_LOHI.
if (ConstantAmt && (Opc == ISD::SRA || Opc == ISD::SRL) &&
(VT == MVT::v16i8 || VT == MVT::v64i8 ||
(VT == MVT::v32i8 && Subtarget.hasInt256())) &&
!Subtarget.hasXOP()) {
int NumElts = VT.getVectorNumElements();
SDValue Cst8 = DAG.getTargetConstant(8, dl, MVT::i8);
// Extend constant shift amount to vXi16 (it doesn't matter if the type
// isn't legal).
MVT ExVT = MVT::getVectorVT(MVT::i16, NumElts);
Amt = DAG.getZExtOrTrunc(Amt, dl, ExVT);
Amt = DAG.getNode(ISD::SUB, dl, ExVT, DAG.getConstant(8, dl, ExVT), Amt);
Amt = DAG.getNode(ISD::SHL, dl, ExVT, DAG.getConstant(1, dl, ExVT), Amt);
assert(ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()) &&
"Constant build vector expected");
if (VT == MVT::v16i8 && Subtarget.hasInt256()) {
R = Opc == ISD::SRA ? DAG.getSExtOrTrunc(R, dl, ExVT)
: DAG.getZExtOrTrunc(R, dl, ExVT);
R = DAG.getNode(ISD::MUL, dl, ExVT, R, Amt);
R = DAG.getNode(X86ISD::VSRLI, dl, ExVT, R, Cst8);
return DAG.getZExtOrTrunc(R, dl, VT);
}
SmallVector<SDValue, 16> LoAmt, HiAmt;
for (int i = 0; i != NumElts; i += 16) {
for (int j = 0; j != 8; ++j) {
LoAmt.push_back(Amt.getOperand(i + j));
HiAmt.push_back(Amt.getOperand(i + j + 8));
}
}
MVT VT16 = MVT::getVectorVT(MVT::i16, NumElts / 2);
SDValue LoA = DAG.getBuildVector(VT16, dl, LoAmt);
SDValue HiA = DAG.getBuildVector(VT16, dl, HiAmt);
SDValue LoR = DAG.getBitcast(VT16, getUnpackl(DAG, dl, VT, R, R));
SDValue HiR = DAG.getBitcast(VT16, getUnpackh(DAG, dl, VT, R, R));
LoR = DAG.getNode(X86OpcI, dl, VT16, LoR, Cst8);
HiR = DAG.getNode(X86OpcI, dl, VT16, HiR, Cst8);
LoR = DAG.getNode(ISD::MUL, dl, VT16, LoR, LoA);
HiR = DAG.getNode(ISD::MUL, dl, VT16, HiR, HiA);
LoR = DAG.getNode(X86ISD::VSRLI, dl, VT16, LoR, Cst8);
HiR = DAG.getNode(X86ISD::VSRLI, dl, VT16, HiR, Cst8);
return DAG.getNode(X86ISD::PACKUS, dl, VT, LoR, HiR);
}
if (VT == MVT::v16i8 ||
(VT == MVT::v32i8 && Subtarget.hasInt256() && !Subtarget.hasXOP()) ||
(VT == MVT::v64i8 && Subtarget.hasBWI())) {
MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
if (VT.is512BitVector()) {
// On AVX512BW targets we make use of the fact that VSELECT lowers
// to a masked blend which selects bytes based just on the sign bit
// extracted to a mask.
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
V0 = DAG.getBitcast(VT, V0);
V1 = DAG.getBitcast(VT, V1);
Sel = DAG.getBitcast(VT, Sel);
Sel = DAG.getSetCC(dl, MaskVT, DAG.getConstant(0, dl, VT), Sel,
ISD::SETGT);
return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1));
} else if (Subtarget.hasSSE41()) {
// On SSE41 targets we make use of the fact that VSELECT lowers
// to PBLENDVB which selects bytes based just on the sign bit.
V0 = DAG.getBitcast(VT, V0);
V1 = DAG.getBitcast(VT, V1);
Sel = DAG.getBitcast(VT, Sel);
return DAG.getBitcast(SelVT, DAG.getSelect(dl, VT, Sel, V0, V1));
}
// On pre-SSE41 targets we test for the sign bit by comparing to
// zero - a negative value will set all bits of the lanes to true
// and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
SDValue Z = DAG.getConstant(0, dl, SelVT);
SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
return DAG.getSelect(dl, SelVT, C, V0, V1);
};
// Turn 'a' into a mask suitable for VSELECT: a = a << 5;
// We can safely do this using i16 shifts as we're only interested in
// the 3 lower bits of each byte.
Amt = DAG.getBitcast(ExtVT, Amt);
Amt = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ExtVT, Amt, 5, DAG);
Amt = DAG.getBitcast(VT, Amt);
if (Opc == ISD::SHL || Opc == ISD::SRL) {
// r = VSELECT(r, shift(r, 4), a);
SDValue M = DAG.getNode(Opc, dl, VT, R, DAG.getConstant(4, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 2), a);
M = DAG.getNode(Opc, dl, VT, R, DAG.getConstant(2, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// return VSELECT(r, shift(r, 1), a);
M = DAG.getNode(Opc, dl, VT, R, DAG.getConstant(1, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
return R;
}
if (Opc == ISD::SRA) {
// For SRA we need to unpack each byte to the higher byte of a i16 vector
// so we can correctly sign extend. We don't care what happens to the
// lower byte.
SDValue ALo = getUnpackl(DAG, dl, VT, DAG.getUNDEF(VT), Amt);
SDValue AHi = getUnpackh(DAG, dl, VT, DAG.getUNDEF(VT), Amt);
SDValue RLo = getUnpackl(DAG, dl, VT, DAG.getUNDEF(VT), R);
SDValue RHi = getUnpackh(DAG, dl, VT, DAG.getUNDEF(VT), R);
ALo = DAG.getBitcast(ExtVT, ALo);
AHi = DAG.getBitcast(ExtVT, AHi);
RLo = DAG.getBitcast(ExtVT, RLo);
RHi = DAG.getBitcast(ExtVT, RHi);
// r = VSELECT(r, shift(r, 4), a);
SDValue MLo = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RLo, 4, DAG);
SDValue MHi = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RHi, 4, DAG);
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// a += a
ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
// r = VSELECT(r, shift(r, 2), a);
MLo = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RLo, 2, DAG);
MHi = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RHi, 2, DAG);
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// a += a
ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
// r = VSELECT(r, shift(r, 1), a);
MLo = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RLo, 1, DAG);
MHi = getTargetVShiftByConstNode(X86OpcI, dl, ExtVT, RHi, 1, DAG);
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// Logical shift the result back to the lower byte, leaving a zero upper
// byte meaning that we can safely pack with PACKUSWB.
RLo = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExtVT, RLo, 8, DAG);
RHi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExtVT, RHi, 8, DAG);
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
}
if (Subtarget.hasInt256() && !Subtarget.hasXOP() && VT == MVT::v16i16) {
MVT ExtVT = MVT::v8i32;
SDValue Z = DAG.getConstant(0, dl, VT);
SDValue ALo = getUnpackl(DAG, dl, VT, Amt, Z);
SDValue AHi = getUnpackh(DAG, dl, VT, Amt, Z);
SDValue RLo = getUnpackl(DAG, dl, VT, Z, R);
SDValue RHi = getUnpackh(DAG, dl, VT, Z, R);
ALo = DAG.getBitcast(ExtVT, ALo);
AHi = DAG.getBitcast(ExtVT, AHi);
RLo = DAG.getBitcast(ExtVT, RLo);
RHi = DAG.getBitcast(ExtVT, RHi);
SDValue Lo = DAG.getNode(Opc, dl, ExtVT, RLo, ALo);
SDValue Hi = DAG.getNode(Opc, dl, ExtVT, RHi, AHi);
Lo = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExtVT, Lo, 16, DAG);
Hi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ExtVT, Hi, 16, DAG);
return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
}
if (VT == MVT::v8i16) {
// If we have a constant shift amount, the non-SSE41 path is best as
// avoiding bitcasts make it easier to constant fold and reduce to PBLENDW.
bool UseSSE41 = Subtarget.hasSSE41() &&
!ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
// On SSE41 targets we make use of the fact that VSELECT lowers
// to PBLENDVB which selects bytes based just on the sign bit.
if (UseSSE41) {
MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
V0 = DAG.getBitcast(ExtVT, V0);
V1 = DAG.getBitcast(ExtVT, V1);
Sel = DAG.getBitcast(ExtVT, Sel);
return DAG.getBitcast(VT, DAG.getSelect(dl, ExtVT, Sel, V0, V1));
}
// On pre-SSE41 targets we splat the sign bit - a negative value will
// set all bits of the lanes to true and VSELECT uses that in
// its OR(AND(V0,C),AND(V1,~C)) lowering.
SDValue C =
getTargetVShiftByConstNode(X86ISD::VSRAI, dl, VT, Sel, 15, DAG);
return DAG.getSelect(dl, VT, C, V0, V1);
};
// Turn 'a' into a mask suitable for VSELECT: a = a << 12;
if (UseSSE41) {
// On SSE41 targets we need to replicate the shift mask in both
// bytes for PBLENDVB.
Amt = DAG.getNode(
ISD::OR, dl, VT,
getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Amt, 4, DAG),
getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Amt, 12, DAG));
} else {
Amt = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, Amt, 12, DAG);
}
// r = VSELECT(r, shift(r, 8), a);
SDValue M = getTargetVShiftByConstNode(X86OpcI, dl, VT, R, 8, DAG);
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 4), a);
M = getTargetVShiftByConstNode(X86OpcI, dl, VT, R, 4, DAG);
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 2), a);
M = getTargetVShiftByConstNode(X86OpcI, dl, VT, R, 2, DAG);
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// return VSELECT(r, shift(r, 1), a);
M = getTargetVShiftByConstNode(X86OpcI, dl, VT, R, 1, DAG);
R = SignBitSelect(Amt, M, R);
return R;
}
// Decompose 256-bit shifts into 128-bit shifts.
if (VT.is256BitVector())
return split256IntArith(Op, DAG);
return SDValue();
}
static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.isVector() && "Custom lowering only for vector rotates!");
SDLoc DL(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned Opcode = Op.getOpcode();
unsigned EltSizeInBits = VT.getScalarSizeInBits();
int NumElts = VT.getVectorNumElements();
// Check for constant splat rotation amount.
APInt UndefElts;
SmallVector<APInt, 32> EltBits;
int CstSplatIndex = -1;
if (getTargetConstantBitsFromNode(Amt, EltSizeInBits, UndefElts, EltBits))
for (int i = 0; i != NumElts; ++i)
if (!UndefElts[i]) {
if (CstSplatIndex < 0 || EltBits[i] == EltBits[CstSplatIndex]) {
CstSplatIndex = i;
continue;
}
CstSplatIndex = -1;
break;
}
// AVX512 implicitly uses modulo rotation amounts.
if (Subtarget.hasAVX512() && 32 <= EltSizeInBits) {
// Attempt to rotate by immediate.
if (0 <= CstSplatIndex) {
unsigned Op = (Opcode == ISD::ROTL ? X86ISD::VROTLI : X86ISD::VROTRI);
uint64_t RotateAmt = EltBits[CstSplatIndex].urem(EltSizeInBits);
return DAG.getNode(Op, DL, VT, R,
DAG.getTargetConstant(RotateAmt, DL, MVT::i8));
}
// Else, fall-back on VPROLV/VPRORV.
return Op;
}
assert((Opcode == ISD::ROTL) && "Only ROTL supported");
// XOP has 128-bit vector variable + immediate rotates.
// +ve/-ve Amt = rotate left/right - just need to handle ISD::ROTL.
// XOP implicitly uses modulo rotation amounts.
if (Subtarget.hasXOP()) {
if (VT.is256BitVector())
return split256IntArith(Op, DAG);
assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
// Attempt to rotate by immediate.
if (0 <= CstSplatIndex) {
uint64_t RotateAmt = EltBits[CstSplatIndex].urem(EltSizeInBits);
return DAG.getNode(X86ISD::VROTLI, DL, VT, R,
DAG.getTargetConstant(RotateAmt, DL, MVT::i8));
}
// Use general rotate by variable (per-element).
return Op;
}
// Split 256-bit integers on pre-AVX2 targets.
if (VT.is256BitVector() && !Subtarget.hasAVX2())
return split256IntArith(Op, DAG);
assert((VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8 ||
((VT == MVT::v8i32 || VT == MVT::v16i16 || VT == MVT::v32i8) &&
Subtarget.hasAVX2())) &&
"Only vXi32/vXi16/vXi8 vector rotates supported");
// Rotate by an uniform constant - expand back to shifts.
if (0 <= CstSplatIndex)
return SDValue();
bool IsSplatAmt = DAG.isSplatValue(Amt);
// v16i8/v32i8: Split rotation into rot4/rot2/rot1 stages and select by
// the amount bit.
if (EltSizeInBits == 8 && !IsSplatAmt) {
if (ISD::isBuildVectorOfConstantSDNodes(Amt.getNode()))
return SDValue();
// We don't need ModuloAmt here as we just peek at individual bits.
MVT ExtVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
if (Subtarget.hasSSE41()) {
// On SSE41 targets we make use of the fact that VSELECT lowers
// to PBLENDVB which selects bytes based just on the sign bit.
V0 = DAG.getBitcast(VT, V0);
V1 = DAG.getBitcast(VT, V1);
Sel = DAG.getBitcast(VT, Sel);
return DAG.getBitcast(SelVT, DAG.getSelect(DL, VT, Sel, V0, V1));
}
// On pre-SSE41 targets we test for the sign bit by comparing to
// zero - a negative value will set all bits of the lanes to true
// and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
SDValue Z = DAG.getConstant(0, DL, SelVT);
SDValue C = DAG.getNode(X86ISD::PCMPGT, DL, SelVT, Z, Sel);
return DAG.getSelect(DL, SelVT, C, V0, V1);
};
// Turn 'a' into a mask suitable for VSELECT: a = a << 5;
// We can safely do this using i16 shifts as we're only interested in
// the 3 lower bits of each byte.
Amt = DAG.getBitcast(ExtVT, Amt);
Amt = DAG.getNode(ISD::SHL, DL, ExtVT, Amt, DAG.getConstant(5, DL, ExtVT));
Amt = DAG.getBitcast(VT, Amt);
// r = VSELECT(r, rot(r, 4), a);
SDValue M;
M = DAG.getNode(
ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(4, DL, VT)),
DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(4, DL, VT)));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, DL, VT, Amt, Amt);
// r = VSELECT(r, rot(r, 2), a);
M = DAG.getNode(
ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(2, DL, VT)),
DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(6, DL, VT)));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, DL, VT, Amt, Amt);
// return VSELECT(r, rot(r, 1), a);
M = DAG.getNode(
ISD::OR, DL, VT,
DAG.getNode(ISD::SHL, DL, VT, R, DAG.getConstant(1, DL, VT)),
DAG.getNode(ISD::SRL, DL, VT, R, DAG.getConstant(7, DL, VT)));
return SignBitSelect(VT, Amt, M, R);
}
// ISD::ROT* uses modulo rotate amounts.
Amt = DAG.getNode(ISD::AND, DL, VT, Amt,
DAG.getConstant(EltSizeInBits - 1, DL, VT));
bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
bool LegalVarShifts = SupportedVectorVarShift(VT, Subtarget, ISD::SHL) &&
SupportedVectorVarShift(VT, Subtarget, ISD::SRL);
// Fallback for splats + all supported variable shifts.
// Fallback for non-constants AVX2 vXi16 as well.
if (IsSplatAmt || LegalVarShifts || (Subtarget.hasAVX2() && !ConstantAmt)) {
SDValue AmtR = DAG.getConstant(EltSizeInBits, DL, VT);
AmtR = DAG.getNode(ISD::SUB, DL, VT, AmtR, Amt);
SDValue SHL = DAG.getNode(ISD::SHL, DL, VT, R, Amt);
SDValue SRL = DAG.getNode(ISD::SRL, DL, VT, R, AmtR);
return DAG.getNode(ISD::OR, DL, VT, SHL, SRL);
}
// As with shifts, convert the rotation amount to a multiplication factor.
SDValue Scale = convertShiftLeftToScale(Amt, DL, Subtarget, DAG);
assert(Scale && "Failed to convert ROTL amount to scale");
// v8i16/v16i16: perform unsigned multiply hi/lo and OR the results.
if (EltSizeInBits == 16) {
SDValue Lo = DAG.getNode(ISD::MUL, DL, VT, R, Scale);
SDValue Hi = DAG.getNode(ISD::MULHU, DL, VT, R, Scale);
return DAG.getNode(ISD::OR, DL, VT, Lo, Hi);
}
// v4i32: make use of the PMULUDQ instruction to multiply 2 lanes of v4i32
// to v2i64 results at a time. The upper 32-bits contain the wrapped bits
// that can then be OR'd with the lower 32-bits.
assert(VT == MVT::v4i32 && "Only v4i32 vector rotate expected");
static const int OddMask[] = {1, -1, 3, -1};
SDValue R13 = DAG.getVectorShuffle(VT, DL, R, R, OddMask);
SDValue Scale13 = DAG.getVectorShuffle(VT, DL, Scale, Scale, OddMask);
SDValue Res02 = DAG.getNode(X86ISD::PMULUDQ, DL, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, R),
DAG.getBitcast(MVT::v2i64, Scale));
SDValue Res13 = DAG.getNode(X86ISD::PMULUDQ, DL, MVT::v2i64,
DAG.getBitcast(MVT::v2i64, R13),
DAG.getBitcast(MVT::v2i64, Scale13));
Res02 = DAG.getBitcast(VT, Res02);
Res13 = DAG.getBitcast(VT, Res13);
return DAG.getNode(ISD::OR, DL, VT,
DAG.getVectorShuffle(VT, DL, Res02, Res13, {0, 4, 2, 6}),
DAG.getVectorShuffle(VT, DL, Res02, Res13, {1, 5, 3, 7}));
}
/// Returns true if the operand type is exactly twice the native width, and
/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
unsigned OpWidth = MemType->getPrimitiveSizeInBits();
if (OpWidth == 64)
return Subtarget.hasCmpxchg8b() && !Subtarget.is64Bit();
if (OpWidth == 128)
return Subtarget.hasCmpxchg16b();
return false;
}
// TODO: In 32-bit mode, use MOVLPS when SSE1 is available?
// TODO: In 32-bit mode, use FISTP when X87 is available?
bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
Type *MemType = SI->getValueOperand()->getType();
bool NoImplicitFloatOps =
SI->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat);
if (MemType->getPrimitiveSizeInBits() == 64 && !Subtarget.is64Bit() &&
!Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2())
return false;
return needsCmpXchgNb(MemType);
}
// Note: this turns large loads into lock cmpxchg8b/16b.
// TODO: In 32-bit mode, use MOVLPS when SSE1 is available?
TargetLowering::AtomicExpansionKind
X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
Type *MemType = LI->getType();
// If this a 64 bit atomic load on a 32-bit target and SSE2 is enabled, we
// can use movq to do the load. If we have X87 we can load into an 80-bit
// X87 register and store it to a stack temporary.
bool NoImplicitFloatOps =
LI->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat);
if (MemType->getPrimitiveSizeInBits() == 64 && !Subtarget.is64Bit() &&
!Subtarget.useSoftFloat() && !NoImplicitFloatOps &&
(Subtarget.hasSSE2() || Subtarget.hasX87()))
return AtomicExpansionKind::None;
return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
}
TargetLowering::AtomicExpansionKind
X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
Type *MemType = AI->getType();
// If the operand is too big, we must see if cmpxchg8/16b is available
// and default to library calls otherwise.
if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
}
AtomicRMWInst::BinOp Op = AI->getOperation();
switch (Op) {
default:
llvm_unreachable("Unknown atomic operation");
case AtomicRMWInst::Xchg:
case AtomicRMWInst::Add:
case AtomicRMWInst::Sub:
// It's better to use xadd, xsub or xchg for these in all cases.
return AtomicExpansionKind::None;
case AtomicRMWInst::Or:
case AtomicRMWInst::And:
case AtomicRMWInst::Xor:
// If the atomicrmw's result isn't actually used, we can just add a "lock"
// prefix to a normal instruction for these operations.
return !AI->use_empty() ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
case AtomicRMWInst::Nand:
case AtomicRMWInst::Max:
case AtomicRMWInst::Min:
case AtomicRMWInst::UMax:
case AtomicRMWInst::UMin:
case AtomicRMWInst::FAdd:
case AtomicRMWInst::FSub:
// These always require a non-trivial set of data operations on x86. We must
// use a cmpxchg loop.
return AtomicExpansionKind::CmpXChg;
}
}
LoadInst *
X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
Type *MemType = AI->getType();
// Accesses larger than the native width are turned into cmpxchg/libcalls, so
// there is no benefit in turning such RMWs into loads, and it is actually
// harmful as it introduces a mfence.
if (MemType->getPrimitiveSizeInBits() > NativeWidth)
return nullptr;
// If this is a canonical idempotent atomicrmw w/no uses, we have a better
// lowering available in lowerAtomicArith.
// TODO: push more cases through this path.
if (auto *C = dyn_cast<ConstantInt>(AI->getValOperand()))
if (AI->getOperation() == AtomicRMWInst::Or && C->isZero() &&
AI->use_empty())
return nullptr;
auto Builder = IRBuilder<>(AI);
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
auto SSID = AI->getSyncScopeID();
// We must restrict the ordering to avoid generating loads with Release or
// ReleaseAcquire orderings.
auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
// Before the load we need a fence. Here is an example lifted from
// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
// is required:
// Thread 0:
// x.store(1, relaxed);
// r1 = y.fetch_add(0, release);
// Thread 1:
// y.fetch_add(42, acquire);
// r2 = x.load(relaxed);
// r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
// lowered to just a load without a fence. A mfence flushes the store buffer,
// making the optimization clearly correct.
// FIXME: it is required if isReleaseOrStronger(Order) but it is not clear
// otherwise, we might be able to be more aggressive on relaxed idempotent
// rmw. In practice, they do not look useful, so we don't try to be
// especially clever.
if (SSID == SyncScope::SingleThread)
// FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
// the IR level, so we must wrap it in an intrinsic.
return nullptr;
if (!Subtarget.hasMFence())
// FIXME: it might make sense to use a locked operation here but on a
// different cache-line to prevent cache-line bouncing. In practice it
// is probably a small win, and x86 processors without mfence are rare
// enough that we do not bother.
return nullptr;
Function *MFence =
llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
Builder.CreateCall(MFence, {});
// Finally we can emit the atomic load.
LoadInst *Loaded =
Builder.CreateAlignedLoad(AI->getType(), AI->getPointerOperand(),
AI->getType()->getPrimitiveSizeInBits());
Loaded->setAtomic(Order, SSID);
AI->replaceAllUsesWith(Loaded);
AI->eraseFromParent();
return Loaded;
}
bool X86TargetLowering::lowerAtomicStoreAsStoreSDNode(const StoreInst &SI) const {
if (!SI.isUnordered())
return false;
return ExperimentalUnorderedISEL;
}
bool X86TargetLowering::lowerAtomicLoadAsLoadSDNode(const LoadInst &LI) const {
if (!LI.isUnordered())
return false;
return ExperimentalUnorderedISEL;
}
/// Emit a locked operation on a stack location which does not change any
/// memory location, but does involve a lock prefix. Location is chosen to be
/// a) very likely accessed only by a single thread to minimize cache traffic,
/// and b) definitely dereferenceable. Returns the new Chain result.
static SDValue emitLockedStackOp(SelectionDAG &DAG,
const X86Subtarget &Subtarget,
SDValue Chain, SDLoc DL) {
// Implementation notes:
// 1) LOCK prefix creates a full read/write reordering barrier for memory
// operations issued by the current processor. As such, the location
// referenced is not relevant for the ordering properties of the instruction.
// See: Intel® 64 and IA-32 ArchitecturesSoftware Developer’s Manual,
// 8.2.3.9 Loads and Stores Are Not Reordered with Locked Instructions
// 2) Using an immediate operand appears to be the best encoding choice
// here since it doesn't require an extra register.
// 3) OR appears to be very slightly faster than ADD. (Though, the difference
// is small enough it might just be measurement noise.)
// 4) When choosing offsets, there are several contributing factors:
// a) If there's no redzone, we default to TOS. (We could allocate a cache
// line aligned stack object to improve this case.)
// b) To minimize our chances of introducing a false dependence, we prefer
// to offset the stack usage from TOS slightly.
// c) To minimize concerns about cross thread stack usage - in particular,
// the idiomatic MyThreadPool.run([&StackVars]() {...}) pattern which
// captures state in the TOS frame and accesses it from many threads -
// we want to use an offset such that the offset is in a distinct cache
// line from the TOS frame.
//
// For a general discussion of the tradeoffs and benchmark results, see:
// https://shipilev.net/blog/2014/on-the-fence-with-dependencies/
auto &MF = DAG.getMachineFunction();
auto &TFL = *Subtarget.getFrameLowering();
const unsigned SPOffset = TFL.has128ByteRedZone(MF) ? -64 : 0;
if (Subtarget.is64Bit()) {
SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);
SDValue Ops[] = {
DAG.getRegister(X86::RSP, MVT::i64), // Base
DAG.getTargetConstant(1, DL, MVT::i8), // Scale
DAG.getRegister(0, MVT::i64), // Index
DAG.getTargetConstant(SPOffset, DL, MVT::i32), // Disp
DAG.getRegister(0, MVT::i16), // Segment.
Zero,
Chain};
SDNode *Res = DAG.getMachineNode(X86::OR32mi8Locked, DL, MVT::i32,
MVT::Other, Ops);
return SDValue(Res, 1);
}
SDValue Zero = DAG.getTargetConstant(0, DL, MVT::i32);
SDValue Ops[] = {
DAG.getRegister(X86::ESP, MVT::i32), // Base
DAG.getTargetConstant(1, DL, MVT::i8), // Scale
DAG.getRegister(0, MVT::i32), // Index
DAG.getTargetConstant(SPOffset, DL, MVT::i32), // Disp
DAG.getRegister(0, MVT::i16), // Segment.
Zero,
Chain
};
SDNode *Res = DAG.getMachineNode(X86::OR32mi8Locked, DL, MVT::i32,
MVT::Other, Ops);
return SDValue(Res, 1);
}
static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
AtomicOrdering FenceOrdering =
static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
SyncScope::ID FenceSSID =
static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
// The only fence that needs an instruction is a sequentially-consistent
// cross-thread fence.
if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
FenceSSID == SyncScope::System) {
if (Subtarget.hasMFence())
return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
SDValue Chain = Op.getOperand(0);
return emitLockedStackOp(DAG, Subtarget, Chain, dl);
}
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
}
static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT T = Op.getSimpleValueType();
SDLoc DL(Op);
unsigned Reg = 0;
unsigned size = 0;
switch(T.SimpleTy) {
default: llvm_unreachable("Invalid value type!");
case MVT::i8: Reg = X86::AL; size = 1; break;
case MVT::i16: Reg = X86::AX; size = 2; break;
case MVT::i32: Reg = X86::EAX; size = 4; break;
case MVT::i64:
assert(Subtarget.is64Bit() && "Node not type legal!");
Reg = X86::RAX; size = 8;
break;
}
SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
Op.getOperand(2), SDValue());
SDValue Ops[] = { cpIn.getValue(0),
Op.getOperand(1),
Op.getOperand(3),
DAG.getTargetConstant(size, DL, MVT::i8),
cpIn.getValue(1) };
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
Ops, T, MMO);
SDValue cpOut =
DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
MVT::i32, cpOut.getValue(2));
SDValue Success = getSETCC(X86::COND_E, EFLAGS, DL, DAG);
return DAG.getNode(ISD::MERGE_VALUES, DL, Op->getVTList(),
cpOut, Success, EFLAGS.getValue(1));
}
// Create MOVMSKB, taking into account whether we need to split for AVX1.
static SDValue getPMOVMSKB(const SDLoc &DL, SDValue V, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT InVT = V.getSimpleValueType();
if (InVT == MVT::v64i8) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(V, DL);
Lo = getPMOVMSKB(DL, Lo, DAG, Subtarget);
Hi = getPMOVMSKB(DL, Hi, DAG, Subtarget);
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Lo);
Hi = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Hi);
Hi = DAG.getNode(ISD::SHL, DL, MVT::i64, Hi,
DAG.getConstant(32, DL, MVT::i8));
return DAG.getNode(ISD::OR, DL, MVT::i64, Lo, Hi);
}
if (InVT == MVT::v32i8 && !Subtarget.hasInt256()) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(V, DL);
Lo = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Lo);
Hi = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Hi);
Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
DAG.getConstant(16, DL, MVT::i8));
return DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi);
}
return DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V);
}
static SDValue LowerBITCAST(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
MVT DstVT = Op.getSimpleValueType();
// Legalize (v64i1 (bitcast i64 (X))) by splitting the i64, bitcasting each
// half to v32i1 and concatenating the result.
if (SrcVT == MVT::i64 && DstVT == MVT::v64i1) {
assert(!Subtarget.is64Bit() && "Expected 32-bit mode");
assert(Subtarget.hasBWI() && "Expected BWI target");
SDLoc dl(Op);
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src,
DAG.getIntPtrConstant(0, dl));
Lo = DAG.getBitcast(MVT::v32i1, Lo);
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Src,
DAG.getIntPtrConstant(1, dl));
Hi = DAG.getBitcast(MVT::v32i1, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
}
// Custom splitting for BWI types when AVX512F is available but BWI isn't.
if ((SrcVT == MVT::v32i16 || SrcVT == MVT::v64i8) && DstVT.isVector() &&
DAG.getTargetLoweringInfo().isTypeLegal(DstVT)) {
SDLoc dl(Op);
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl);
MVT CastVT = DstVT.getHalfNumVectorElementsVT();
Lo = DAG.getBitcast(CastVT, Lo);
Hi = DAG.getBitcast(CastVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, DstVT, Lo, Hi);
}
// Use MOVMSK for vector to scalar conversion to prevent scalarization.
if ((SrcVT == MVT::v16i1 || SrcVT == MVT::v32i1) && DstVT.isScalarInteger()) {
assert(!Subtarget.hasAVX512() && "Should use K-registers with AVX512");
MVT SExtVT = SrcVT == MVT::v16i1 ? MVT::v16i8 : MVT::v32i8;
SDLoc DL(Op);
SDValue V = DAG.getSExtOrTrunc(Src, DL, SExtVT);
V = getPMOVMSKB(DL, V, DAG, Subtarget);
return DAG.getZExtOrTrunc(V, DL, DstVT);
}
assert((SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8 ||
SrcVT == MVT::i64) && "Unexpected VT!");
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
if (!(DstVT == MVT::f64 && SrcVT == MVT::i64) &&
!(DstVT == MVT::x86mmx && SrcVT.isVector()))
// This conversion needs to be expanded.
return SDValue();
SDLoc dl(Op);
if (SrcVT.isVector()) {
// Widen the vector in input in the case of MVT::v2i32.
// Example: from MVT::v2i32 to MVT::v4i32.
MVT NewVT = MVT::getVectorVT(SrcVT.getVectorElementType(),
SrcVT.getVectorNumElements() * 2);
Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewVT, Src,
DAG.getUNDEF(SrcVT));
} else {
assert(SrcVT == MVT::i64 && !Subtarget.is64Bit() &&
"Unexpected source type in LowerBITCAST");
Src = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Src);
}
MVT V2X64VT = DstVT == MVT::f64 ? MVT::v2f64 : MVT::v2i64;
Src = DAG.getNode(ISD::BITCAST, dl, V2X64VT, Src);
if (DstVT == MVT::x86mmx)
return DAG.getNode(X86ISD::MOVDQ2Q, dl, DstVT, Src);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, DstVT, Src,
DAG.getIntPtrConstant(0, dl));
}
/// Compute the horizontal sum of bytes in V for the elements of VT.
///
/// Requires V to be a byte vector and VT to be an integer vector type with
/// wider elements than V's type. The width of the elements of VT determines
/// how many bytes of V are summed horizontally to produce each element of the
/// result.
static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(V);
MVT ByteVecVT = V.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
"Expected value to have byte element type.");
assert(EltVT != MVT::i8 &&
"Horizontal byte sum only makes sense for wider elements!");
unsigned VecSize = VT.getSizeInBits();
assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
// PSADBW instruction horizontally add all bytes and leave the result in i64
// chunks, thus directly computes the pop count for v2i64 and v4i64.
if (EltVT == MVT::i64) {
SDValue Zeros = DAG.getConstant(0, DL, ByteVecVT);
MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros);
return DAG.getBitcast(VT, V);
}
if (EltVT == MVT::i32) {
// We unpack the low half and high half into i32s interleaved with zeros so
// that we can use PSADBW to horizontally sum them. The most useful part of
// this is that it lines up the results of two PSADBW instructions to be
// two v2i64 vectors which concatenated are the 4 population counts. We can
// then use PACKUSWB to shrink and concatenate them into a v4i32 again.
SDValue Zeros = DAG.getConstant(0, DL, VT);
SDValue V32 = DAG.getBitcast(VT, V);
SDValue Low = getUnpackl(DAG, DL, VT, V32, Zeros);
SDValue High = getUnpackh(DAG, DL, VT, V32, Zeros);
// Do the horizontal sums into two v2i64s.
Zeros = DAG.getConstant(0, DL, ByteVecVT);
MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
DAG.getBitcast(ByteVecVT, Low), Zeros);
High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
DAG.getBitcast(ByteVecVT, High), Zeros);
// Merge them together.
MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
DAG.getBitcast(ShortVecVT, Low),
DAG.getBitcast(ShortVecVT, High));
return DAG.getBitcast(VT, V);
}
// The only element type left is i16.
assert(EltVT == MVT::i16 && "Unknown how to handle type");
// To obtain pop count for each i16 element starting from the pop count for
// i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
// right by 8. It is important to shift as i16s as i8 vector shift isn't
// directly supported.
SDValue ShifterV = DAG.getConstant(8, DL, VT);
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
DAG.getBitcast(ByteVecVT, V));
return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
}
static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
int NumElts = VT.getVectorNumElements();
(void)EltVT;
assert(EltVT == MVT::i8 && "Only vXi8 vector CTPOP lowering supported.");
// Implement a lookup table in register by using an algorithm based on:
// http://wm.ite.pl/articles/sse-popcount.html
//
// The general idea is that every lower byte nibble in the input vector is an
// index into a in-register pre-computed pop count table. We then split up the
// input vector in two new ones: (1) a vector with only the shifted-right
// higher nibbles for each byte and (2) a vector with the lower nibbles (and
// masked out higher ones) for each byte. PSHUFB is used separately with both
// to index the in-register table. Next, both are added and the result is a
// i8 vector where each element contains the pop count for input byte.
const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
/* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
/* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
/* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
SmallVector<SDValue, 64> LUTVec;
for (int i = 0; i < NumElts; ++i)
LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
SDValue InRegLUT = DAG.getBuildVector(VT, DL, LUTVec);
SDValue M0F = DAG.getConstant(0x0F, DL, VT);
// High nibbles
SDValue FourV = DAG.getConstant(4, DL, VT);
SDValue HiNibbles = DAG.getNode(ISD::SRL, DL, VT, Op, FourV);
// Low nibbles
SDValue LoNibbles = DAG.getNode(ISD::AND, DL, VT, Op, M0F);
// The input vector is used as the shuffle mask that index elements into the
// LUT. After counting low and high nibbles, add the vector to obtain the
// final pop count per i8 element.
SDValue HiPopCnt = DAG.getNode(X86ISD::PSHUFB, DL, VT, InRegLUT, HiNibbles);
SDValue LoPopCnt = DAG.getNode(X86ISD::PSHUFB, DL, VT, InRegLUT, LoNibbles);
return DAG.getNode(ISD::ADD, DL, VT, HiPopCnt, LoPopCnt);
}
// Please ensure that any codegen change from LowerVectorCTPOP is reflected in
// updated cost models in X86TTIImpl::getIntrinsicInstrCost.
static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert((VT.is512BitVector() || VT.is256BitVector() || VT.is128BitVector()) &&
"Unknown CTPOP type to handle");
SDLoc DL(Op.getNode());
SDValue Op0 = Op.getOperand(0);
// TRUNC(CTPOP(ZEXT(X))) to make use of vXi32/vXi64 VPOPCNT instructions.
if (Subtarget.hasVPOPCNTDQ()) {
unsigned NumElems = VT.getVectorNumElements();
assert((VT.getVectorElementType() == MVT::i8 ||
VT.getVectorElementType() == MVT::i16) && "Unexpected type");
if (NumElems < 16 || (NumElems == 16 && Subtarget.canExtendTo512DQ())) {
MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
Op = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, Op0);
Op = DAG.getNode(ISD::CTPOP, DL, NewVT, Op);
return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
}
}
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntUnary(Op, DAG);
// Decompose 512-bit ops into smaller 256-bit ops.
if (VT.is512BitVector() && !Subtarget.hasBWI())
return Lower512IntUnary(Op, DAG);
// For element types greater than i8, do vXi8 pop counts and a bytesum.
if (VT.getScalarType() != MVT::i8) {
MVT ByteVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
SDValue ByteOp = DAG.getBitcast(ByteVT, Op0);
SDValue PopCnt8 = DAG.getNode(ISD::CTPOP, DL, ByteVT, ByteOp);
return LowerHorizontalByteSum(PopCnt8, VT, Subtarget, DAG);
}
// We can't use the fast LUT approach, so fall back on LegalizeDAG.
if (!Subtarget.hasSSSE3())
return SDValue();
return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
}
static SDValue LowerCTPOP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getSimpleValueType().isVector() &&
"We only do custom lowering for vector population count.");
return LowerVectorCTPOP(Op, Subtarget, DAG);
}
static SDValue LowerBITREVERSE_XOP(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
SDLoc DL(Op);
// For scalars, its still beneficial to transfer to/from the SIMD unit to
// perform the BITREVERSE.
if (!VT.isVector()) {
MVT VecVT = MVT::getVectorVT(VT, 128 / VT.getSizeInBits());
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, In);
Res = DAG.getNode(ISD::BITREVERSE, DL, VecVT, Res);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
}
int NumElts = VT.getVectorNumElements();
int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector())
return Lower256IntUnary(Op, DAG);
assert(VT.is128BitVector() &&
"Only 128-bit vector bitreverse lowering supported.");
// VPPERM reverses the bits of a byte with the permute Op (2 << 5), and we
// perform the BSWAP in the shuffle.
// Its best to shuffle using the second operand as this will implicitly allow
// memory folding for multiple vectors.
SmallVector<SDValue, 16> MaskElts;
for (int i = 0; i != NumElts; ++i) {
for (int j = ScalarSizeInBytes - 1; j >= 0; --j) {
int SourceByte = 16 + (i * ScalarSizeInBytes) + j;
int PermuteByte = SourceByte | (2 << 5);
MaskElts.push_back(DAG.getConstant(PermuteByte, DL, MVT::i8));
}
}
SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, MaskElts);
SDValue Res = DAG.getBitcast(MVT::v16i8, In);
Res = DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, DAG.getUNDEF(MVT::v16i8),
Res, Mask);
return DAG.getBitcast(VT, Res);
}
static SDValue LowerBITREVERSE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (Subtarget.hasXOP() && !VT.is512BitVector())
return LowerBITREVERSE_XOP(Op, DAG);
assert(Subtarget.hasSSSE3() && "SSSE3 required for BITREVERSE");
SDValue In = Op.getOperand(0);
SDLoc DL(Op);
// Split v8i64/v16i32 without BWI so that we can still use the PSHUFB
// lowering.
if (VT == MVT::v8i64 || VT == MVT::v16i32) {
assert(!Subtarget.hasBWI() && "BWI should Expand BITREVERSE");
return Lower512IntUnary(Op, DAG);
}
unsigned NumElts = VT.getVectorNumElements();
assert(VT.getScalarType() == MVT::i8 &&
"Only byte vector BITREVERSE supported");
// Decompose 256-bit ops into smaller 128-bit ops on pre-AVX2.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntUnary(Op, DAG);
// Perform BITREVERSE using PSHUFB lookups. Each byte is split into
// two nibbles and a PSHUFB lookup to find the bitreverse of each
// 0-15 value (moved to the other nibble).
SDValue NibbleMask = DAG.getConstant(0xF, DL, VT);
SDValue Lo = DAG.getNode(ISD::AND, DL, VT, In, NibbleMask);
SDValue Hi = DAG.getNode(ISD::SRL, DL, VT, In, DAG.getConstant(4, DL, VT));
const int LoLUT[16] = {
/* 0 */ 0x00, /* 1 */ 0x80, /* 2 */ 0x40, /* 3 */ 0xC0,
/* 4 */ 0x20, /* 5 */ 0xA0, /* 6 */ 0x60, /* 7 */ 0xE0,
/* 8 */ 0x10, /* 9 */ 0x90, /* a */ 0x50, /* b */ 0xD0,
/* c */ 0x30, /* d */ 0xB0, /* e */ 0x70, /* f */ 0xF0};
const int HiLUT[16] = {
/* 0 */ 0x00, /* 1 */ 0x08, /* 2 */ 0x04, /* 3 */ 0x0C,
/* 4 */ 0x02, /* 5 */ 0x0A, /* 6 */ 0x06, /* 7 */ 0x0E,
/* 8 */ 0x01, /* 9 */ 0x09, /* a */ 0x05, /* b */ 0x0D,
/* c */ 0x03, /* d */ 0x0B, /* e */ 0x07, /* f */ 0x0F};
SmallVector<SDValue, 16> LoMaskElts, HiMaskElts;
for (unsigned i = 0; i < NumElts; ++i) {
LoMaskElts.push_back(DAG.getConstant(LoLUT[i % 16], DL, MVT::i8));
HiMaskElts.push_back(DAG.getConstant(HiLUT[i % 16], DL, MVT::i8));
}
SDValue LoMask = DAG.getBuildVector(VT, DL, LoMaskElts);
SDValue HiMask = DAG.getBuildVector(VT, DL, HiMaskElts);
Lo = DAG.getNode(X86ISD::PSHUFB, DL, VT, LoMask, Lo);
Hi = DAG.getNode(X86ISD::PSHUFB, DL, VT, HiMask, Hi);
return DAG.getNode(ISD::OR, DL, VT, Lo, Hi);
}
static SDValue lowerAtomicArithWithLOCK(SDValue N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned NewOpc = 0;
switch (N->getOpcode()) {
case ISD::ATOMIC_LOAD_ADD:
NewOpc = X86ISD::LADD;
break;
case ISD::ATOMIC_LOAD_SUB:
NewOpc = X86ISD::LSUB;
break;
case ISD::ATOMIC_LOAD_OR:
NewOpc = X86ISD::LOR;
break;
case ISD::ATOMIC_LOAD_XOR:
NewOpc = X86ISD::LXOR;
break;
case ISD::ATOMIC_LOAD_AND:
NewOpc = X86ISD::LAND;
break;
default:
llvm_unreachable("Unknown ATOMIC_LOAD_ opcode");
}
MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand();
return DAG.getMemIntrinsicNode(
NewOpc, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other),
{N->getOperand(0), N->getOperand(1), N->getOperand(2)},
/*MemVT=*/N->getSimpleValueType(0), MMO);
}
/// Lower atomic_load_ops into LOCK-prefixed operations.
static SDValue lowerAtomicArith(SDValue N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
AtomicSDNode *AN = cast<AtomicSDNode>(N.getNode());
SDValue Chain = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
unsigned Opc = N->getOpcode();
MVT VT = N->getSimpleValueType(0);
SDLoc DL(N);
// We can lower atomic_load_add into LXADD. However, any other atomicrmw op
// can only be lowered when the result is unused. They should have already
// been transformed into a cmpxchg loop in AtomicExpand.
if (N->hasAnyUseOfValue(0)) {
// Handle (atomic_load_sub p, v) as (atomic_load_add p, -v), to be able to
// select LXADD if LOCK_SUB can't be selected.
if (Opc == ISD::ATOMIC_LOAD_SUB) {
RHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS);
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, VT, Chain, LHS,
RHS, AN->getMemOperand());
}
assert(Opc == ISD::ATOMIC_LOAD_ADD &&
"Used AtomicRMW ops other than Add should have been expanded!");
return N;
}
// Specialized lowering for the canonical form of an idemptotent atomicrmw.
// The core idea here is that since the memory location isn't actually
// changing, all we need is a lowering for the *ordering* impacts of the
// atomicrmw. As such, we can chose a different operation and memory
// location to minimize impact on other code.
if (Opc == ISD::ATOMIC_LOAD_OR && isNullConstant(RHS)) {
// On X86, the only ordering which actually requires an instruction is
// seq_cst which isn't SingleThread, everything just needs to be preserved
// during codegen and then dropped. Note that we expect (but don't assume),
// that orderings other than seq_cst and acq_rel have been canonicalized to
// a store or load.
if (AN->getOrdering() == AtomicOrdering::SequentiallyConsistent &&
AN->getSyncScopeID() == SyncScope::System) {
// Prefer a locked operation against a stack location to minimize cache
// traffic. This assumes that stack locations are very likely to be
// accessed only by the owning thread.
SDValue NewChain = emitLockedStackOp(DAG, Subtarget, Chain, DL);
assert(!N->hasAnyUseOfValue(0));
// NOTE: The getUNDEF is needed to give something for the unused result 0.
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(),
DAG.getUNDEF(VT), NewChain);
}
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
SDValue NewChain = DAG.getNode(X86ISD::MEMBARRIER, DL, MVT::Other, Chain);
assert(!N->hasAnyUseOfValue(0));
// NOTE: The getUNDEF is needed to give something for the unused result 0.
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(),
DAG.getUNDEF(VT), NewChain);
}
SDValue LockOp = lowerAtomicArithWithLOCK(N, DAG, Subtarget);
// RAUW the chain, but don't worry about the result, as it's unused.
assert(!N->hasAnyUseOfValue(0));
// NOTE: The getUNDEF is needed to give something for the unused result 0.
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(),
DAG.getUNDEF(VT), LockOp.getValue(1));
}
static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
auto *Node = cast<AtomicSDNode>(Op.getNode());
SDLoc dl(Node);
EVT VT = Node->getMemoryVT();
bool IsSeqCst = Node->getOrdering() == AtomicOrdering::SequentiallyConsistent;
bool IsTypeLegal = DAG.getTargetLoweringInfo().isTypeLegal(VT);
// If this store is not sequentially consistent and the type is legal
// we can just keep it.
if (!IsSeqCst && IsTypeLegal)
return Op;
if (VT == MVT::i64 && !IsTypeLegal) {
// For illegal i64 atomic_stores, we can try to use MOVQ if SSE2 is enabled.
// FIXME: Use movlps with SSE1.
// FIXME: Use fist with X87.
bool NoImplicitFloatOps =
DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat);
if (!Subtarget.useSoftFloat() && !NoImplicitFloatOps &&
Subtarget.hasSSE2()) {
SDValue SclToVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
Node->getOperand(2));
SDVTList Tys = DAG.getVTList(MVT::Other);
SDValue Ops[] = { Node->getChain(), SclToVec, Node->getBasePtr() };
SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::VEXTRACT_STORE, dl, Tys,
Ops, MVT::i64,
Node->getMemOperand());
// If this is a sequentially consistent store, also emit an appropriate
// barrier.
if (IsSeqCst)
Chain = emitLockedStackOp(DAG, Subtarget, Chain, dl);
return Chain;
}
}
// Convert seq_cst store -> xchg
// Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
// FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
Node->getMemoryVT(),
Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2),
Node->getMemOperand());
return Swap.getValue(1);
}
static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
SDNode *N = Op.getNode();
MVT VT = N->getSimpleValueType(0);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
SDLoc DL(N);
// Set the carry flag.
SDValue Carry = Op.getOperand(2);
EVT CarryVT = Carry.getValueType();
APInt NegOne = APInt::getAllOnesValue(CarryVT.getScalarSizeInBits());
Carry = DAG.getNode(X86ISD::ADD, DL, DAG.getVTList(CarryVT, MVT::i32),
Carry, DAG.getConstant(NegOne, DL, CarryVT));
unsigned Opc = Op.getOpcode() == ISD::ADDCARRY ? X86ISD::ADC : X86ISD::SBB;
SDValue Sum = DAG.getNode(Opc, DL, VTs, Op.getOperand(0),
Op.getOperand(1), Carry.getValue(1));
SDValue SetCC = getSETCC(X86::COND_B, Sum.getValue(1), DL, DAG);
if (N->getValueType(1) == MVT::i1)
SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.isTargetDarwin() && Subtarget.is64Bit());
// For MacOSX, we want to call an alternative entry point: __sincos_stret,
// which returns the values as { float, float } (in XMM0) or
// { double, double } (which is returned in XMM0, XMM1).
SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
Entry.IsSExt = false;
Entry.IsZExt = false;
Args.push_back(Entry);
bool isF64 = ArgVT == MVT::f64;
// Only optimize x86_64 for now. i386 is a bit messy. For f32,
// the small struct {f32, f32} is returned in (eax, edx). For f64,
// the results are returned via SRet in memory.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
RTLIB::Libcall LC = isF64 ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
const char *LibcallName = TLI.getLibcallName(LC);
SDValue Callee =
DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout()));
Type *RetTy = isF64 ? (Type *)StructType::get(ArgTy, ArgTy)
: (Type *)VectorType::get(ArgTy, 4);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(DAG.getEntryNode())
.setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args));
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
if (isF64)
// Returned in xmm0 and xmm1.
return CallResult.first;
// Returned in bits 0:31 and 32:64 xmm0.
SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
CallResult.first, DAG.getIntPtrConstant(0, dl));
SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
CallResult.first, DAG.getIntPtrConstant(1, dl));
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
}
/// Widen a vector input to a vector of NVT. The
/// input vector must have the same element type as NVT.
static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG,
bool FillWithZeroes = false) {
// Check if InOp already has the right width.
MVT InVT = InOp.getSimpleValueType();
if (InVT == NVT)
return InOp;
if (InOp.isUndef())
return DAG.getUNDEF(NVT);
assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
"input and widen element type must match");
unsigned InNumElts = InVT.getVectorNumElements();
unsigned WidenNumElts = NVT.getVectorNumElements();
assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 &&
"Unexpected request for vector widening");
SDLoc dl(InOp);
if (InOp.getOpcode() == ISD::CONCAT_VECTORS &&
InOp.getNumOperands() == 2) {
SDValue N1 = InOp.getOperand(1);
if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) ||
N1.isUndef()) {
InOp = InOp.getOperand(0);
InVT = InOp.getSimpleValueType();
InNumElts = InVT.getVectorNumElements();
}
}
if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) ||
ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) {
SmallVector<SDValue, 16> Ops;
for (unsigned i = 0; i < InNumElts; ++i)
Ops.push_back(InOp.getOperand(i));
EVT EltVT = InOp.getOperand(0).getValueType();
SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
DAG.getUNDEF(EltVT);
for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i)
Ops.push_back(FillVal);
return DAG.getBuildVector(NVT, dl, Ops);
}
SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) :
DAG.getUNDEF(NVT);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal,
InOp, DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX512() &&
"MGATHER/MSCATTER are supported on AVX-512 arch only");
MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
SDValue Src = N->getValue();
MVT VT = Src.getSimpleValueType();
assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
SDLoc dl(Op);
SDValue Scale = N->getScale();
SDValue Index = N->getIndex();
SDValue Mask = N->getMask();
SDValue Chain = N->getChain();
SDValue BasePtr = N->getBasePtr();
if (VT == MVT::v2f32 || VT == MVT::v2i32) {
assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
// If the index is v2i64 and we have VLX we can use xmm for data and index.
if (Index.getValueType() == MVT::v2i64 && Subtarget.hasVLX()) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT WideVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Src, DAG.getUNDEF(VT));
SDVTList VTs = DAG.getVTList(MVT::v2i1, MVT::Other);
SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale};
SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand());
return SDValue(NewScatter.getNode(), 1);
}
return SDValue();
}
MVT IndexVT = Index.getSimpleValueType();
MVT MaskVT = Mask.getSimpleValueType();
// If the index is v2i32, we're being called by type legalization and we
// should just let the default handling take care of it.
if (IndexVT == MVT::v2i32)
return SDValue();
// If we don't have VLX and neither the passthru or index is 512-bits, we
// need to widen until one is.
if (!Subtarget.hasVLX() && !VT.is512BitVector() &&
!Index.getSimpleValueType().is512BitVector()) {
// Determine how much we need to widen by to get a 512-bit type.
unsigned Factor = std::min(512/VT.getSizeInBits(),
512/IndexVT.getSizeInBits());
unsigned NumElts = VT.getVectorNumElements() * Factor;
VT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), NumElts);
MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
Src = ExtendToType(Src, VT, DAG);
Index = ExtendToType(Index, IndexVT, DAG);
Mask = ExtendToType(Mask, MaskVT, DAG, true);
}
SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index, Scale};
SDValue NewScatter = DAG.getTargetMemSDNode<X86MaskedScatterSDNode>(
VTs, Ops, dl, N->getMemoryVT(), N->getMemOperand());
return SDValue(NewScatter.getNode(), 1);
}
static SDValue LowerMLOAD(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
MVT VT = Op.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
SDValue Mask = N->getMask();
MVT MaskVT = Mask.getSimpleValueType();
SDValue PassThru = N->getPassThru();
SDLoc dl(Op);
// Handle AVX masked loads which don't support passthru other than 0.
if (MaskVT.getVectorElementType() != MVT::i1) {
// We also allow undef in the isel pattern.
if (PassThru.isUndef() || ISD::isBuildVectorAllZeros(PassThru.getNode()))
return Op;
SDValue NewLoad = DAG.getMaskedLoad(
VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask,
getZeroVector(VT, Subtarget, DAG, dl), N->getMemoryVT(),
N->getMemOperand(), N->getAddressingMode(), N->getExtensionType(),
N->isExpandingLoad());
// Emit a blend.
SDValue Select = DAG.getNode(ISD::VSELECT, dl, MaskVT, Mask, NewLoad,
PassThru);
return DAG.getMergeValues({ Select, NewLoad.getValue(1) }, dl);
}
assert((!N->isExpandingLoad() || Subtarget.hasAVX512()) &&
"Expanding masked load is supported on AVX-512 target only!");
assert((!N->isExpandingLoad() || ScalarVT.getSizeInBits() >= 32) &&
"Expanding masked load is supported for 32 and 64-bit types only!");
assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
"Cannot lower masked load op.");
assert((ScalarVT.getSizeInBits() >= 32 ||
(Subtarget.hasBWI() &&
(ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
"Unsupported masked load op.");
// This operation is legal for targets with VLX, but without
// VLX the vector should be widened to 512 bit
unsigned NumEltsInWideVec = 512 / VT.getScalarSizeInBits();
MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
PassThru = ExtendToType(PassThru, WideDataVT, DAG);
// Mask element has to be i1.
assert(Mask.getSimpleValueType().getScalarType() == MVT::i1 &&
"Unexpected mask type");
MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
SDValue NewLoad = DAG.getMaskedLoad(
WideDataVT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask,
PassThru, N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
N->getExtensionType(), N->isExpandingLoad());
SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
NewLoad.getValue(0),
DAG.getIntPtrConstant(0, dl));
SDValue RetOps[] = {Exract, NewLoad.getValue(1)};
return DAG.getMergeValues(RetOps, dl);
}
static SDValue LowerMSTORE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode());
SDValue DataToStore = N->getValue();
MVT VT = DataToStore.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
SDValue Mask = N->getMask();
SDLoc dl(Op);
assert((!N->isCompressingStore() || Subtarget.hasAVX512()) &&
"Expanding masked load is supported on AVX-512 target only!");
assert((!N->isCompressingStore() || ScalarVT.getSizeInBits() >= 32) &&
"Expanding masked load is supported for 32 and 64-bit types only!");
assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
"Cannot lower masked store op.");
assert((ScalarVT.getSizeInBits() >= 32 ||
(Subtarget.hasBWI() &&
(ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
"Unsupported masked store op.");
// This operation is legal for targets with VLX, but without
// VLX the vector should be widened to 512 bit
unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
// Mask element has to be i1.
assert(Mask.getSimpleValueType().getScalarType() == MVT::i1 &&
"Unexpected mask type");
MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
DataToStore = ExtendToType(DataToStore, WideDataVT, DAG);
Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(),
N->getOffset(), Mask, N->getMemoryVT(),
N->getMemOperand(), N->getAddressingMode(),
N->isTruncatingStore(), N->isCompressingStore());
}
static SDValue LowerMGATHER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX2() &&
"MGATHER/MSCATTER are supported on AVX-512/AVX-2 arch only");
MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
SDValue Index = N->getIndex();
SDValue Mask = N->getMask();
SDValue PassThru = N->getPassThru();
MVT IndexVT = Index.getSimpleValueType();
MVT MaskVT = Mask.getSimpleValueType();
assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
// If the index is v2i32, we're being called by type legalization.
if (IndexVT == MVT::v2i32)
return SDValue();
// If we don't have VLX and neither the passthru or index is 512-bits, we
// need to widen until one is.
MVT OrigVT = VT;
if (Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
!IndexVT.is512BitVector()) {
// Determine how much we need to widen by to get a 512-bit type.
unsigned Factor = std::min(512/VT.getSizeInBits(),
512/IndexVT.getSizeInBits());
unsigned NumElts = VT.getVectorNumElements() * Factor;
VT = MVT::getVectorVT(VT.getVectorElementType(), NumElts);
IndexVT = MVT::getVectorVT(IndexVT.getVectorElementType(), NumElts);
MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
PassThru = ExtendToType(PassThru, VT, DAG);
Index = ExtendToType(Index, IndexVT, DAG);
Mask = ExtendToType(Mask, MaskVT, DAG, true);
}
SDValue Ops[] = { N->getChain(), PassThru, Mask, N->getBasePtr(), Index,
N->getScale() };
SDValue NewGather = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
DAG.getVTList(VT, MaskVT, MVT::Other), Ops, dl, N->getMemoryVT(),
N->getMemOperand());
SDValue Extract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, OrigVT,
NewGather, DAG.getIntPtrConstant(0, dl));
return DAG.getMergeValues({Extract, NewGather.getValue(2)}, dl);
}
static SDValue LowerADDRSPACECAST(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
SDValue Src = Op.getOperand(0);
MVT DstVT = Op.getSimpleValueType();
AddrSpaceCastSDNode *N = cast<AddrSpaceCastSDNode>(Op.getNode());
unsigned SrcAS = N->getSrcAddressSpace();
assert(SrcAS != N->getDestAddressSpace() &&
"addrspacecast must be between different address spaces");
if (SrcAS == X86AS::PTR32_UPTR && DstVT == MVT::i64) {
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Src);
} else if (DstVT == MVT::i64) {
Op = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Src);
} else if (DstVT == MVT::i32) {
Op = DAG.getNode(ISD::TRUNCATE, dl, DstVT, Src);
} else {
report_fatal_error("Bad address space in addrspacecast");
}
return Op;
}
SDValue X86TargetLowering::LowerGC_TRANSITION(SDValue Op,
SelectionDAG &DAG) const {
// TODO: Eventually, the lowering of these nodes should be informed by or
// deferred to the GC strategy for the function in which they appear. For
// now, however, they must be lowered to something. Since they are logically
// no-ops in the case of a null GC strategy (or a GC strategy which does not
// require special handling for these nodes), lower them as literal NOOPs for
// the time being.
SmallVector<SDValue, 2> Ops;
Ops.push_back(Op.getOperand(0));
if (Op->getGluedNode())
Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
SDLoc OpDL(Op);
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
return NOOP;
}
SDValue X86TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG,
RTLIB::Libcall Call) const {
bool IsStrict = Op->isStrictFPOpcode();
unsigned Offset = IsStrict ? 1 : 0;
SmallVector<SDValue, 2> Ops(Op->op_begin() + Offset, Op->op_end());
SDLoc dl(Op);
SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
MakeLibCallOptions CallOptions;
std::pair<SDValue, SDValue> Tmp = makeLibCall(DAG, Call, MVT::f128, Ops,
CallOptions, dl, Chain);
if (IsStrict)
return DAG.getMergeValues({ Tmp.first, Tmp.second }, dl);
return Tmp.first;
}
/// Provide custom lowering hooks for some operations.
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
return LowerCMP_SWAP(Op, Subtarget, DAG);
case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG);
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_AND: return lowerAtomicArith(Op, DAG, Subtarget);
case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG, Subtarget);
case ISD::BITREVERSE: return LowerBITREVERSE(Op, Subtarget, DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
case ISD::VECTOR_SHUFFLE: return lowerVECTOR_SHUFFLE(Op, Subtarget, DAG);
case ISD::VSELECT: return LowerVSELECT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, Subtarget,DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
case ISD::FSHL:
case ISD::FSHR: return LowerFunnelShift(Op, Subtarget, DAG);
case ISD::STRICT_SINT_TO_FP:
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::STRICT_UINT_TO_FP:
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
case ISD::ZERO_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
return LowerEXTEND_VECTOR_INREG(Op, Subtarget, DAG);
case ISD::FP_TO_SINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
case ISD::FP_EXTEND:
case ISD::STRICT_FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::FP_ROUND:
case ISD::STRICT_FP_ROUND: return LowerFP_ROUND(Op, DAG);
case ISD::LOAD: return LowerLoad(Op, Subtarget, DAG);
case ISD::STORE: return LowerStore(Op, Subtarget, DAG);
case ISD::FADD:
case ISD::FSUB: return lowerFaddFsub(Op, DAG);
case ISD::FABS:
case ISD::FNEG: return LowerFABSorFNEG(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
case ISD::SETCC:
case ISD::STRICT_FSETCC:
case ISD::STRICT_FSETCCS: return LowerSETCC(Op, DAG);
case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::ADDROFRETURNADDR: return LowerADDROFRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::FRAME_TO_ARGS_OFFSET:
return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::EH_SJLJ_SETUP_DISPATCH:
return lowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ(Op, Subtarget, DAG);
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, Subtarget, DAG);
case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
case ISD::MULHS:
case ISD::MULHU: return LowerMULH(Op, Subtarget, DAG);
case ISD::ROTL:
case ISD::ROTR: return LowerRotate(Op, Subtarget, DAG);
case ISD::SRA:
case ISD::SRL:
case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO: return LowerXALUO(Op, DAG);
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
case ISD::ADDCARRY:
case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
case ISD::ADD:
case ISD::SUB: return lowerAddSub(Op, DAG, Subtarget);
case ISD::UADDSAT:
case ISD::SADDSAT:
case ISD::USUBSAT:
case ISD::SSUBSAT: return LowerADDSAT_SUBSAT(Op, DAG, Subtarget);
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMAX:
case ISD::UMIN: return LowerMINMAX(Op, DAG);
case ISD::ABS: return LowerABS(Op, Subtarget, DAG);
case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG);
case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG);
case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG);
case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG);
case ISD::GC_TRANSITION_START:
case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION(Op, DAG);
case ISD::ADDRSPACECAST:
return LowerADDRSPACECAST(Op, DAG);
}
}
/// Places new result values for the node in Results (their number
/// and types must exactly match those of the original return values of
/// the node), or leaves Results empty, which indicates that the node is not
/// to be custom lowered after all.
void X86TargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
if (!Res.getNode())
return;
// If the original node has one result, take the return value from
// LowerOperation as is. It might not be result number 0.
if (N->getNumValues() == 1) {
Results.push_back(Res);
return;
}
// If the original node has multiple results, then the return node should
// have the same number of results.
assert((N->getNumValues() == Res->getNumValues()) &&
"Lowering returned the wrong number of results!");
// Places new result values base on N result number.
for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
Results.push_back(Res.getValue(I));
}
/// Replace a node with an illegal result type with a new node built out of
/// custom code.
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
SDLoc dl(N);
switch (N->getOpcode()) {
default:
#ifndef NDEBUG
dbgs() << "ReplaceNodeResults: ";
N->dump(&DAG);
#endif
llvm_unreachable("Do not know how to custom type legalize this operation!");
case ISD::CTPOP: {
assert(N->getValueType(0) == MVT::i64 && "Unexpected VT!");
// Use a v2i64 if possible.
bool NoImplicitFloatOps =
DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat);
if (isTypeLegal(MVT::v2i64) && !NoImplicitFloatOps) {
SDValue Wide =
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, N->getOperand(0));
Wide = DAG.getNode(ISD::CTPOP, dl, MVT::v2i64, Wide);
// Bit count should fit in 32-bits, extract it as that and then zero
// extend to i64. Otherwise we end up extracting bits 63:32 separately.
Wide = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Wide);
Wide = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Wide,
DAG.getIntPtrConstant(0, dl));
Wide = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Wide);
Results.push_back(Wide);
}
return;
}
case ISD::MUL: {
EVT VT = N->getValueType(0);
assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
VT.getVectorElementType() == MVT::i8 && "Unexpected VT!");
// Pre-promote these to vXi16 to avoid op legalization thinking all 16
// elements are needed.
MVT MulVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
SDValue Op0 = DAG.getNode(ISD::ANY_EXTEND, dl, MulVT, N->getOperand(0));
SDValue Op1 = DAG.getNode(ISD::ANY_EXTEND, dl, MulVT, N->getOperand(1));
SDValue Res = DAG.getNode(ISD::MUL, dl, MulVT, Op0, Op1);
Res = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
unsigned NumConcats = 16 / VT.getVectorNumElements();
SmallVector<SDValue, 8> ConcatOps(NumConcats, DAG.getUNDEF(VT));
ConcatOps[0] = Res;
Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i8, ConcatOps);
Results.push_back(Res);
return;
}
case X86ISD::VPMADDWD:
case X86ISD::AVG: {
// Legalize types for X86ISD::AVG/VPMADDWD by widening.
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
EVT VT = N->getValueType(0);
EVT InVT = N->getOperand(0).getValueType();
assert(VT.getSizeInBits() < 128 && 128 % VT.getSizeInBits() == 0 &&
"Expected a VT that divides into 128 bits.");
assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
"Unexpected type action!");
unsigned NumConcat = 128 / InVT.getSizeInBits();
EVT InWideVT = EVT::getVectorVT(*DAG.getContext(),
InVT.getVectorElementType(),
NumConcat * InVT.getVectorNumElements());
EVT WideVT = EVT::getVectorVT(*DAG.getContext(),
VT.getVectorElementType(),
NumConcat * VT.getVectorNumElements());
SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
Ops[0] = N->getOperand(0);
SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWideVT, Ops);
Ops[0] = N->getOperand(1);
SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, InWideVT, Ops);
SDValue Res = DAG.getNode(N->getOpcode(), dl, WideVT, InVec0, InVec1);
Results.push_back(Res);
return;
}
case ISD::ABS: {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
assert(N->getValueType(0) == MVT::i64 &&
"Unexpected type (!= i64) on ABS.");
MVT HalfT = MVT::i32;
SDValue Lo, Hi, Tmp;
SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
DAG.getConstant(0, dl, HalfT));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
DAG.getConstant(1, dl, HalfT));
Tmp = DAG.getNode(
ISD::SRA, dl, HalfT, Hi,
DAG.getConstant(HalfT.getSizeInBits() - 1, dl,
TLI.getShiftAmountTy(HalfT, DAG.getDataLayout())));
Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
SDValue(Lo.getNode(), 1));
Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
Results.push_back(Lo);
Results.push_back(Hi);
return;
}
// We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
case X86ISD::FMINC:
case X86ISD::FMIN:
case X86ISD::FMAXC:
case X86ISD::FMAX: {
EVT VT = N->getValueType(0);
assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX.");
SDValue UNDEF = DAG.getUNDEF(VT);
SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
N->getOperand(0), UNDEF);
SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
N->getOperand(1), UNDEF);
Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
return;
}
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM: {
EVT VT = N->getValueType(0);
if (VT.isVector()) {
assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
"Unexpected type action!");
// If this RHS is a constant splat vector we can widen this and let
// division/remainder by constant optimize it.
// TODO: Can we do something for non-splat?
APInt SplatVal;
if (ISD::isConstantSplatVector(N->getOperand(1).getNode(), SplatVal)) {
unsigned NumConcats = 128 / VT.getSizeInBits();
SmallVector<SDValue, 8> Ops0(NumConcats, DAG.getUNDEF(VT));
Ops0[0] = N->getOperand(0);
EVT ResVT = getTypeToTransformTo(*DAG.getContext(), VT);
SDValue N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Ops0);
SDValue N1 = DAG.getConstant(SplatVal, dl, ResVT);
SDValue Res = DAG.getNode(N->getOpcode(), dl, ResVT, N0, N1);
Results.push_back(Res);
}
return;
}
LLVM_FALLTHROUGH;
}
case ISD::SDIVREM:
case ISD::UDIVREM: {
SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
Results.push_back(V);
return;
}
case ISD::TRUNCATE: {
MVT VT = N->getSimpleValueType(0);
if (getTypeAction(*DAG.getContext(), VT) != TypeWidenVector)
return;
// The generic legalizer will try to widen the input type to the same
// number of elements as the widened result type. But this isn't always
// the best thing so do some custom legalization to avoid some cases.
MVT WidenVT = getTypeToTransformTo(*DAG.getContext(), VT).getSimpleVT();
SDValue In = N->getOperand(0);
EVT InVT = In.getValueType();
unsigned InBits = InVT.getSizeInBits();
if (128 % InBits == 0) {
// 128 bit and smaller inputs should avoid truncate all together and
// just use a build_vector that will become a shuffle.
// TODO: Widen and use a shuffle directly?
MVT InEltVT = InVT.getSimpleVT().getVectorElementType();
EVT EltVT = VT.getVectorElementType();
unsigned WidenNumElts = WidenVT.getVectorNumElements();
SmallVector<SDValue, 16> Ops(WidenNumElts, DAG.getUNDEF(EltVT));
// Use the original element count so we don't do more scalar opts than
// necessary.
unsigned MinElts = VT.getVectorNumElements();
for (unsigned i=0; i < MinElts; ++i) {
SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, InEltVT, In,
DAG.getIntPtrConstant(i, dl));
Ops[i] = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Val);
}
Results.push_back(DAG.getBuildVector(WidenVT, dl, Ops));
return;
}
// With AVX512 there are some cases that can use a target specific
// truncate node to go from 256/512 to less than 128 with zeros in the
// upper elements of the 128 bit result.
if (Subtarget.hasAVX512() && isTypeLegal(InVT)) {
// We can use VTRUNC directly if for 256 bits with VLX or for any 512.
if ((InBits == 256 && Subtarget.hasVLX()) || InBits == 512) {
Results.push_back(DAG.getNode(X86ISD::VTRUNC, dl, WidenVT, In));
return;
}
// There's one case we can widen to 512 bits and use VTRUNC.
if (InVT == MVT::v4i64 && VT == MVT::v4i8 && isTypeLegal(MVT::v8i64)) {
In = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i64, In,
DAG.getUNDEF(MVT::v4i64));
Results.push_back(DAG.getNode(X86ISD::VTRUNC, dl, WidenVT, In));
return;
}
}
if (Subtarget.hasVLX() && InVT == MVT::v8i64 && VT == MVT::v8i8 &&
getTypeAction(*DAG.getContext(), InVT) == TypeSplitVector &&
isTypeLegal(MVT::v4i64)) {
// Input needs to be split and output needs to widened. Let's use two
// VTRUNCs, and shuffle their results together into the wider type.
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(In, dl);
Lo = DAG.getNode(X86ISD::VTRUNC, dl, MVT::v16i8, Lo);
Hi = DAG.getNode(X86ISD::VTRUNC, dl, MVT::v16i8, Hi);
SDValue Res = DAG.getVectorShuffle(MVT::v16i8, dl, Lo, Hi,
{ 0, 1, 2, 3, 16, 17, 18, 19,
-1, -1, -1, -1, -1, -1, -1, -1 });
Results.push_back(Res);
return;
}
return;
}
case ISD::ANY_EXTEND:
// Right now, only MVT::v8i8 has Custom action for an illegal type.
// It's intended to custom handle the input type.
assert(N->getValueType(0) == MVT::v8i8 &&
"Do not know how to legalize this Node");
return;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND: {
EVT VT = N->getValueType(0);
SDValue In = N->getOperand(0);
EVT InVT = In.getValueType();
if (!Subtarget.hasSSE41() && VT == MVT::v4i64 &&
(InVT == MVT::v4i16 || InVT == MVT::v4i8)){
assert(getTypeAction(*DAG.getContext(), InVT) == TypeWidenVector &&
"Unexpected type action!");
assert(N->getOpcode() == ISD::SIGN_EXTEND && "Unexpected opcode");
// Custom split this so we can extend i8/i16->i32 invec. This is better
// since sign_extend_inreg i8/i16->i64 requires an extend to i32 using
// sra. Then extending from i32 to i64 using pcmpgt. By custom splitting
// we allow the sra from the extend to i32 to be shared by the split.
In = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, In);
// Fill a vector with sign bits for each element.
SDValue Zero = DAG.getConstant(0, dl, MVT::v4i32);
SDValue SignBits = DAG.getSetCC(dl, MVT::v4i32, Zero, In, ISD::SETGT);
// Create an unpackl and unpackh to interleave the sign bits then bitcast
// to v2i64.
SDValue Lo = DAG.getVectorShuffle(MVT::v4i32, dl, In, SignBits,
{0, 4, 1, 5});
Lo = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Lo);
SDValue Hi = DAG.getVectorShuffle(MVT::v4i32, dl, In, SignBits,
{2, 6, 3, 7});
Hi = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Hi);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
Results.push_back(Res);
return;
}
if (VT == MVT::v16i32 || VT == MVT::v8i64) {
if (!InVT.is128BitVector()) {
// Not a 128 bit vector, but maybe type legalization will promote
// it to 128 bits.
if (getTypeAction(*DAG.getContext(), InVT) != TypePromoteInteger)
return;
InVT = getTypeToTransformTo(*DAG.getContext(), InVT);
if (!InVT.is128BitVector())
return;
// Promote the input to 128 bits. Type legalization will turn this into
// zext_inreg/sext_inreg.
In = DAG.getNode(N->getOpcode(), dl, InVT, In);
}
// Perform custom splitting instead of the two stage extend we would get
// by default.
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0));
assert(isTypeLegal(LoVT) && "Split VT not legal?");
SDValue Lo = getExtendInVec(N->getOpcode(), dl, LoVT, In, DAG);
// We need to shift the input over by half the number of elements.
unsigned NumElts = InVT.getVectorNumElements();
unsigned HalfNumElts = NumElts / 2;
SmallVector<int, 16> ShufMask(NumElts, SM_SentinelUndef);
for (unsigned i = 0; i != HalfNumElts; ++i)
ShufMask[i] = i + HalfNumElts;
SDValue Hi = DAG.getVectorShuffle(InVT, dl, In, In, ShufMask);
Hi = getExtendInVec(N->getOpcode(), dl, HiVT, Hi, DAG);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
Results.push_back(Res);
}
return;
}
case ISD::FP_TO_SINT:
case ISD::STRICT_FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::STRICT_FP_TO_UINT: {
bool IsStrict = N->isStrictFPOpcode();
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT ||
N->getOpcode() == ISD::STRICT_FP_TO_SINT;
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(IsStrict ? 1 : 0);
EVT SrcVT = Src.getValueType();
if (VT.isVector() && VT.getScalarSizeInBits() < 32) {
assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
"Unexpected type action!");
// Try to create a 128 bit vector, but don't exceed a 32 bit element.
unsigned NewEltWidth = std::min(128 / VT.getVectorNumElements(), 32U);
MVT PromoteVT = MVT::getVectorVT(MVT::getIntegerVT(NewEltWidth),
VT.getVectorNumElements());
SDValue Res;
SDValue Chain;
if (IsStrict) {
Res = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, {PromoteVT, MVT::Other},
{N->getOperand(0), Src});
Chain = Res.getValue(1);
} else
Res = DAG.getNode(ISD::FP_TO_SINT, dl, PromoteVT, Src);
// Preserve what we know about the size of the original result. Except
// when the result is v2i32 since we can't widen the assert.
if (PromoteVT != MVT::v2i32)
Res = DAG.getNode(!IsSigned ? ISD::AssertZext : ISD::AssertSext,
dl, PromoteVT, Res,
DAG.getValueType(VT.getVectorElementType()));
// Truncate back to the original width.
Res = DAG.getNode(ISD::TRUNCATE, dl, VT, Res);
// Now widen to 128 bits.
unsigned NumConcats = 128 / VT.getSizeInBits();
MVT ConcatVT = MVT::getVectorVT(VT.getSimpleVT().getVectorElementType(),
VT.getVectorNumElements() * NumConcats);
SmallVector<SDValue, 8> ConcatOps(NumConcats, DAG.getUNDEF(VT));
ConcatOps[0] = Res;
Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatVT, ConcatOps);
Results.push_back(Res);
if (IsStrict)
Results.push_back(Chain);
return;
}
if (VT == MVT::v2i32) {
assert((IsSigned || Subtarget.hasAVX512()) &&
"Can only handle signed conversion without AVX512");
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
"Unexpected type action!");
if (Src.getValueType() == MVT::v2f64) {
unsigned Opc;
if (IsStrict)
Opc = IsSigned ? X86ISD::STRICT_CVTTP2SI : X86ISD::STRICT_CVTTP2UI;
else
Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
// If we have VLX we can emit a target specific FP_TO_UINT node,.
if (!IsSigned && !Subtarget.hasVLX()) {
// Otherwise we can defer to the generic legalizer which will widen
// the input as well. This will be further widened during op
// legalization to v8i32<-v8f64.
// For strict nodes we'll need to widen ourselves.
// FIXME: Fix the type legalizer to safely widen strict nodes?
if (!IsStrict)
return;
Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f64, Src,
DAG.getConstantFP(0.0, dl, MVT::v2f64));
Opc = N->getOpcode();
}
SDValue Res;
SDValue Chain;
if (IsStrict) {
Res = DAG.getNode(Opc, dl, {MVT::v4i32, MVT::Other},
{N->getOperand(0), Src});
Chain = Res.getValue(1);
} else {
Res = DAG.getNode(Opc, dl, MVT::v4i32, Src);
}
Results.push_back(Res);
if (IsStrict)
Results.push_back(Chain);
return;
}
// Custom widen strict v2f32->v2i32 by padding with zeros.
// FIXME: Should generic type legalizer do this?
if (Src.getValueType() == MVT::v2f32 && IsStrict) {
Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32, Src,
DAG.getConstantFP(0.0, dl, MVT::v2f32));
SDValue Res = DAG.getNode(N->getOpcode(), dl, {MVT::v4i32, MVT::Other},
{N->getOperand(0), Src});
Results.push_back(Res);
Results.push_back(Res.getValue(1));
return;
}
// The FP_TO_INTHelper below only handles f32/f64/f80 scalar inputs,
// so early out here.
return;
}
assert(!VT.isVector() && "Vectors should have been handled above!");
if (Subtarget.hasDQI() && VT == MVT::i64 &&
(SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
assert(!Subtarget.is64Bit() && "i64 should be legal");
unsigned NumElts = Subtarget.hasVLX() ? 2 : 8;
// If we use a 128-bit result we might need to use a target specific node.
unsigned SrcElts =
std::max(NumElts, 128U / (unsigned)SrcVT.getSizeInBits());
MVT VecVT = MVT::getVectorVT(MVT::i64, NumElts);
MVT VecInVT = MVT::getVectorVT(SrcVT.getSimpleVT(), SrcElts);
unsigned Opc = N->getOpcode();
if (NumElts != SrcElts) {
if (IsStrict)
Opc = IsSigned ? X86ISD::STRICT_CVTTP2SI : X86ISD::STRICT_CVTTP2UI;
else
Opc = IsSigned ? X86ISD::CVTTP2SI : X86ISD::CVTTP2UI;
}
SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecInVT,
DAG.getConstantFP(0.0, dl, VecInVT), Src,
ZeroIdx);
SDValue Chain;
if (IsStrict) {
SDVTList Tys = DAG.getVTList(VecVT, MVT::Other);
Res = DAG.getNode(Opc, SDLoc(N), Tys, N->getOperand(0), Res);
Chain = Res.getValue(1);
} else
Res = DAG.getNode(Opc, SDLoc(N), VecVT, Res);
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Res, ZeroIdx);
Results.push_back(Res);
if (IsStrict)
Results.push_back(Chain);
return;
}
SDValue Chain;
if (SDValue V = FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, Chain)) {
Results.push_back(V);
if (IsStrict)
Results.push_back(Chain);
}
return;
}
case ISD::SINT_TO_FP:
case ISD::STRICT_SINT_TO_FP:
case ISD::UINT_TO_FP:
case ISD::STRICT_UINT_TO_FP: {
bool IsStrict = N->isStrictFPOpcode();
bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP ||
N->getOpcode() == ISD::STRICT_SINT_TO_FP;
EVT VT = N->getValueType(0);
if (VT != MVT::v2f32)
return;
SDValue Src = N->getOperand(IsStrict ? 1 : 0);
EVT SrcVT = Src.getValueType();
if (Subtarget.hasDQI() && Subtarget.hasVLX() && SrcVT == MVT::v2i64) {
if (IsStrict) {
unsigned Opc = IsSigned ? X86ISD::STRICT_CVTSI2P
: X86ISD::STRICT_CVTUI2P;
SDValue Res = DAG.getNode(Opc, dl, {MVT::v4f32, MVT::Other},
{N->getOperand(0), Src});
Results.push_back(Res);
Results.push_back(Res.getValue(1));
} else {
unsigned Opc = IsSigned ? X86ISD::CVTSI2P : X86ISD::CVTUI2P;
Results.push_back(DAG.getNode(Opc, dl, MVT::v4f32, Src));
}
return;
}
if (SrcVT == MVT::v2i64 && !IsSigned && Subtarget.is64Bit() &&
Subtarget.hasSSE41() && !Subtarget.hasAVX512()) {
SDValue Zero = DAG.getConstant(0, dl, SrcVT);
SDValue One = DAG.getConstant(1, dl, SrcVT);
SDValue Sign = DAG.getNode(ISD::OR, dl, SrcVT,
DAG.getNode(ISD::SRL, dl, SrcVT, Src, One),
DAG.getNode(ISD::AND, dl, SrcVT, Src, One));
SDValue IsNeg = DAG.getSetCC(dl, MVT::v2i64, Src, Zero, ISD::SETLT);
SDValue SignSrc = DAG.getSelect(dl, SrcVT, IsNeg, Sign, Src);
SmallVector<SDValue, 4> SignCvts(4, DAG.getConstantFP(0.0, dl, MVT::f32));
for (int i = 0; i != 2; ++i) {
SDValue Src = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
SignSrc, DAG.getIntPtrConstant(i, dl));
if (IsStrict)
SignCvts[i] =
DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {MVT::f32, MVT::Other},
{N->getOperand(0), Src});
else
SignCvts[i] = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Src);
};
SDValue SignCvt = DAG.getBuildVector(MVT::v4f32, dl, SignCvts);
SDValue Slow, Chain;
if (IsStrict) {
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
SignCvts[0].getValue(1), SignCvts[1].getValue(1));
Slow = DAG.getNode(ISD::STRICT_FADD, dl, {MVT::v4f32, MVT::Other},
{Chain, SignCvt, SignCvt});
Chain = Slow.getValue(1);
} else {
Slow = DAG.getNode(ISD::FADD, dl, MVT::v4f32, SignCvt, SignCvt);
}
IsNeg = DAG.getBitcast(MVT::v4i32, IsNeg);
IsNeg =
DAG.getVectorShuffle(MVT::v4i32, dl, IsNeg, IsNeg, {1, 3, -1, -1});
SDValue Cvt = DAG.getSelect(dl, MVT::v4f32, IsNeg, Slow, SignCvt);
Results.push_back(Cvt);
if (IsStrict)
Results.push_back(Chain);
return;
}
if (SrcVT != MVT::v2i32)
return;
if (IsSigned || Subtarget.hasAVX512()) {
if (!IsStrict)
return;
// Custom widen strict v2i32->v2f32 to avoid scalarization.
// FIXME: Should generic type legalizer do this?
Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
DAG.getConstant(0, dl, MVT::v2i32));
SDValue Res = DAG.getNode(N->getOpcode(), dl, {MVT::v4f32, MVT::Other},
{N->getOperand(0), Src});
Results.push_back(Res);
Results.push_back(Res.getValue(1));
return;
}
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64, Src);
SDValue VBias =
DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::v2f64);
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
DAG.getBitcast(MVT::v2i64, VBias));
Or = DAG.getBitcast(MVT::v2f64, Or);
if (IsStrict) {
SDValue Sub = DAG.getNode(ISD::STRICT_FSUB, dl, {MVT::v2f64, MVT::Other},
{N->getOperand(0), Or, VBias});
SDValue Res = DAG.getNode(X86ISD::STRICT_VFPROUND, dl,
{MVT::v4f32, MVT::Other},
{Sub.getValue(1), Sub});
Results.push_back(Res);
Results.push_back(Res.getValue(1));
} else {
// TODO: Are there any fast-math-flags to propagate here?
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
}
return;
}
case ISD::STRICT_FP_ROUND:
case ISD::FP_ROUND: {
bool IsStrict = N->isStrictFPOpcode();
SDValue Src = N->getOperand(IsStrict ? 1 : 0);
if (!isTypeLegal(Src.getValueType()))
return;
SDValue V;
if (IsStrict)
V = DAG.getNode(X86ISD::STRICT_VFPROUND, dl, {MVT::v4f32, MVT::Other},
{N->getOperand(0), N->getOperand(1)});
else
V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
Results.push_back(V);
if (IsStrict)
Results.push_back(V.getValue(1));
return;
}
case ISD::FP_EXTEND: {
// Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
// No other ValueType for FP_EXTEND should reach this point.
assert(N->getValueType(0) == MVT::v2f32 &&
"Do not know how to legalize this Node");
return;
}
case ISD::INTRINSIC_W_CHAIN: {
unsigned IntNo = N->getConstantOperandVal(1);
switch (IntNo) {
default : llvm_unreachable("Do not know how to custom type "
"legalize this intrinsic operation!");
case Intrinsic::x86_rdtsc:
return getReadTimeStampCounter(N, dl, X86::RDTSC, DAG, Subtarget,
Results);
case Intrinsic::x86_rdtscp:
return getReadTimeStampCounter(N, dl, X86::RDTSCP, DAG, Subtarget,
Results);
case Intrinsic::x86_rdpmc:
expandIntrinsicWChainHelper(N, dl, DAG, X86::RDPMC, X86::ECX, Subtarget,
Results);
return;
case Intrinsic::x86_xgetbv:
expandIntrinsicWChainHelper(N, dl, DAG, X86::XGETBV, X86::ECX, Subtarget,
Results);
return;
}
}
case ISD::READCYCLECOUNTER: {
return getReadTimeStampCounter(N, dl, X86::RDTSC, DAG, Subtarget, Results);
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
EVT T = N->getValueType(0);
assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
bool Regs64bit = T == MVT::i128;
assert((!Regs64bit || Subtarget.hasCmpxchg16b()) &&
"64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS requires CMPXCHG16B");
MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
SDValue cpInL, cpInH;
cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
DAG.getConstant(0, dl, HalfT));
cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
DAG.getConstant(1, dl, HalfT));
cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
Regs64bit ? X86::RAX : X86::EAX,
cpInL, SDValue());
cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
Regs64bit ? X86::RDX : X86::EDX,
cpInH, cpInL.getValue(1));
SDValue swapInL, swapInH;
swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
DAG.getConstant(0, dl, HalfT));
swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
DAG.getConstant(1, dl, HalfT));
swapInH =
DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX,
swapInH, cpInH.getValue(1));
// If the current function needs the base pointer, RBX,
// we shouldn't use cmpxchg directly.
// Indeed the lowering of that instruction will clobber
// that register and since RBX will be a reserved register
// the register allocator will not make sure its value will
// be properly saved and restored around this live-range.
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
SDValue Result;
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
Register BasePtr = TRI->getBaseRegister();
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
(BasePtr == X86::RBX || BasePtr == X86::EBX)) {
// ISel prefers the LCMPXCHG64 variant.
// If that assert breaks, that means it is not the case anymore,
// and we need to teach LCMPXCHG8_SAVE_EBX_DAG how to save RBX,
// not just EBX. This is a matter of accepting i64 input for that
// pseudo, and restoring into the register of the right wide
// in expand pseudo. Everything else should just work.
assert(((Regs64bit == (BasePtr == X86::RBX)) || BasePtr == X86::EBX) &&
"Saving only half of the RBX");
unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_SAVE_RBX_DAG
: X86ISD::LCMPXCHG8_SAVE_EBX_DAG;
SDValue RBXSave = DAG.getCopyFromReg(swapInH.getValue(0), dl,
Regs64bit ? X86::RBX : X86::EBX,
HalfT, swapInH.getValue(1));
SDValue Ops[] = {/*Chain*/ RBXSave.getValue(1), N->getOperand(1), swapInL,
RBXSave,
/*Glue*/ RBXSave.getValue(2)};
Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
} else {
unsigned Opcode =
Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG;
swapInL = DAG.getCopyToReg(swapInH.getValue(0), dl,
Regs64bit ? X86::RBX : X86::EBX, swapInL,
swapInH.getValue(1));
SDValue Ops[] = {swapInL.getValue(0), N->getOperand(1),
swapInL.getValue(1)};
Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
}
SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
Regs64bit ? X86::RAX : X86::EAX,
HalfT, Result.getValue(1));
SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
Regs64bit ? X86::RDX : X86::EDX,
HalfT, cpOutL.getValue(2));
SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
MVT::i32, cpOutH.getValue(2));
SDValue Success = getSETCC(X86::COND_E, EFLAGS, dl, DAG);
Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
Results.push_back(Success);
Results.push_back(EFLAGS.getValue(1));
return;
}
case ISD::ATOMIC_LOAD: {
assert(N->getValueType(0) == MVT::i64 && "Unexpected VT!");
bool NoImplicitFloatOps =
DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat);
if (!Subtarget.useSoftFloat() && !NoImplicitFloatOps) {
auto *Node = cast<AtomicSDNode>(N);
if (Subtarget.hasSSE2()) {
// Use a VZEXT_LOAD which will be selected as MOVQ. Then extract the
// lower 64-bits.
SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
SDValue Ops[] = { Node->getChain(), Node->getBasePtr() };
SDValue Ld = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
MVT::i64, Node->getMemOperand());
SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Ld,
DAG.getIntPtrConstant(0, dl));
Results.push_back(Res);
Results.push_back(Ld.getValue(1));
return;
}
if (Subtarget.hasX87()) {
// First load this into an 80-bit X87 register. This will put the whole
// integer into the significand.
// FIXME: Do we need to glue? See FIXME comment in BuildFILD.
SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other, MVT::Glue);
SDValue Ops[] = { Node->getChain(), Node->getBasePtr() };
SDValue Result = DAG.getMemIntrinsicNode(X86ISD::FILD_FLAG,
dl, Tys, Ops, MVT::i64,
Node->getMemOperand());
SDValue Chain = Result.getValue(1);
SDValue InFlag = Result.getValue(2);
// Now store the X87 register to a stack temporary and convert to i64.
// This store is not atomic and doesn't need to be.
// FIXME: We don't need a stack temporary if the result of the load
// is already being stored. We could just directly store there.
SDValue StackPtr = DAG.CreateStackTemporary(MVT::i64);
int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
MachinePointerInfo MPI =
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
SDValue StoreOps[] = { Chain, Result, StackPtr, InFlag };
Chain = DAG.getMemIntrinsicNode(X86ISD::FIST, dl,
DAG.getVTList(MVT::Other), StoreOps,
MVT::i64, MPI, 0 /*Align*/,
MachineMemOperand::MOStore);
// Finally load the value back from the stack temporary and return it.
// This load is not atomic and doesn't need to be.
// This load will be further type legalized.
Result = DAG.getLoad(MVT::i64, dl, Chain, StackPtr, MPI);
Results.push_back(Result);
Results.push_back(Result.getValue(1));
return;
}
}
// TODO: Use MOVLPS when SSE1 is available?
// Delegate to generic TypeLegalization. Situations we can really handle
// should have already been dealt with by AtomicExpandPass.cpp.
break;
}
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
// Delegate to generic TypeLegalization. Situations we can really handle
// should have already been dealt with by AtomicExpandPass.cpp.
break;
case ISD::BITCAST: {
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
EVT DstVT = N->getValueType(0);
EVT SrcVT = N->getOperand(0).getValueType();
// If this is a bitcast from a v64i1 k-register to a i64 on a 32-bit target
// we can split using the k-register rather than memory.
if (SrcVT == MVT::v64i1 && DstVT == MVT::i64 && Subtarget.hasBWI()) {
assert(!Subtarget.is64Bit() && "Expected 32-bit mode");
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
Lo = DAG.getBitcast(MVT::i32, Lo);
Hi = DAG.getBitcast(MVT::i32, Hi);
SDValue Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
Results.push_back(Res);
return;
}
// Custom splitting for BWI types when AVX512F is available but BWI isn't.
if ((DstVT == MVT::v32i16 || DstVT == MVT::v64i8) &&
SrcVT.isVector() && isTypeLegal(SrcVT)) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
MVT CastVT = (DstVT == MVT::v32i16) ? MVT::v16i16 : MVT::v32i8;
Lo = DAG.getBitcast(CastVT, Lo);
Hi = DAG.getBitcast(CastVT, Hi);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, dl, DstVT, Lo, Hi);
Results.push_back(Res);
return;
}
if (DstVT.isVector() && SrcVT == MVT::x86mmx) {
assert(getTypeAction(*DAG.getContext(), DstVT) == TypeWidenVector &&
"Unexpected type action!");
EVT WideVT = getTypeToTransformTo(*DAG.getContext(), DstVT);
SDValue Res = DAG.getNode(X86ISD::MOVQ2DQ, dl, WideVT, N->getOperand(0));
Results.push_back(Res);
return;
}
return;
}
case ISD::MGATHER: {
EVT VT = N->getValueType(0);
if ((VT == MVT::v2f32 || VT == MVT::v2i32) &&
(Subtarget.hasVLX() || !Subtarget.hasAVX512())) {
auto *Gather = cast<MaskedGatherSDNode>(N);
SDValue Index = Gather->getIndex();
if (Index.getValueType() != MVT::v2i64)
return;
assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
"Unexpected type action!");
EVT WideVT = getTypeToTransformTo(*DAG.getContext(), VT);
SDValue Mask = Gather->getMask();
assert(Mask.getValueType() == MVT::v2i1 && "Unexpected mask type");
SDValue PassThru = DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT,
Gather->getPassThru(),
DAG.getUNDEF(VT));
if (!Subtarget.hasVLX()) {
// We need to widen the mask, but the instruction will only use 2
// of its elements. So we can use undef.
Mask = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i1, Mask,
DAG.getUNDEF(MVT::v2i1));
Mask = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Mask);
}
SDValue Ops[] = { Gather->getChain(), PassThru, Mask,
Gather->getBasePtr(), Index, Gather->getScale() };
SDValue Res = DAG.getTargetMemSDNode<X86MaskedGatherSDNode>(
DAG.getVTList(WideVT, Mask.getValueType(), MVT::Other), Ops, dl,
Gather->getMemoryVT(), Gather->getMemOperand());
Results.push_back(Res);
Results.push_back(Res.getValue(2));
return;
}
return;
}
case ISD::LOAD: {
// Use an f64/i64 load and a scalar_to_vector for v2f32/v2i32 loads. This
// avoids scalarizing in 32-bit mode. In 64-bit mode this avoids a int->fp
// cast since type legalization will try to use an i64 load.
MVT VT = N->getSimpleValueType(0);
assert(VT.isVector() && VT.getSizeInBits() == 64 && "Unexpected VT");
assert(getTypeAction(*DAG.getContext(), VT) == TypeWidenVector &&
"Unexpected type action!");
if (!ISD::isNON_EXTLoad(N))
return;
auto *Ld = cast<LoadSDNode>(N);
if (Subtarget.hasSSE2()) {
MVT LdVT = Subtarget.is64Bit() && VT.isInteger() ? MVT::i64 : MVT::f64;
SDValue Res = DAG.getLoad(LdVT, dl, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
SDValue Chain = Res.getValue(1);
MVT VecVT = MVT::getVectorVT(LdVT, 2);
Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Res);
EVT WideVT = getTypeToTransformTo(*DAG.getContext(), VT);
Res = DAG.getBitcast(WideVT, Res);
Results.push_back(Res);
Results.push_back(Chain);
return;
}
assert(Subtarget.hasSSE1() && "Expected SSE");
SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
SDValue Ops[] = {Ld->getChain(), Ld->getBasePtr()};
SDValue Res = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
MVT::i64, Ld->getMemOperand());
Results.push_back(Res);
Results.push_back(Res.getValue(1));
return;
}
case ISD::ADDRSPACECAST: {
SDValue Src = N->getOperand(0);
EVT DstVT = N->getValueType(0);
AddrSpaceCastSDNode *CastN = cast<AddrSpaceCastSDNode>(N);
unsigned SrcAS = CastN->getSrcAddressSpace();
assert(SrcAS != CastN->getDestAddressSpace() &&
"addrspacecast must be between different address spaces");
SDValue Res;
if (SrcAS == X86AS::PTR32_UPTR && DstVT == MVT::i64)
Res = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Src);
else if (DstVT == MVT::i64)
Res = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Src);
else if (DstVT == MVT::i32)
Res = DAG.getNode(ISD::TRUNCATE, dl, DstVT, Src);
else
report_fatal_error("Unrecognized addrspacecast type legalization");
Results.push_back(Res);
return;
}
}
}
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((X86ISD::NodeType)Opcode) {
case X86ISD::FIRST_NUMBER: break;
case X86ISD::BSF: return "X86ISD::BSF";
case X86ISD::BSR: return "X86ISD::BSR";
case X86ISD::SHLD: return "X86ISD::SHLD";
case X86ISD::SHRD: return "X86ISD::SHRD";
case X86ISD::FAND: return "X86ISD::FAND";
case X86ISD::FANDN: return "X86ISD::FANDN";
case X86ISD::FOR: return "X86ISD::FOR";
case X86ISD::FXOR: return "X86ISD::FXOR";
case X86ISD::FILD: return "X86ISD::FILD";
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
case X86ISD::FIST: return "X86ISD::FIST";
case X86ISD::FP_TO_INT_IN_MEM: return "X86ISD::FP_TO_INT_IN_MEM";
case X86ISD::FLD: return "X86ISD::FLD";
case X86ISD::FST: return "X86ISD::FST";
case X86ISD::CALL: return "X86ISD::CALL";
case X86ISD::BT: return "X86ISD::BT";
case X86ISD::CMP: return "X86ISD::CMP";
case X86ISD::STRICT_FCMP: return "X86ISD::STRICT_FCMP";
case X86ISD::STRICT_FCMPS: return "X86ISD::STRICT_FCMPS";
case X86ISD::COMI: return "X86ISD::COMI";
case X86ISD::UCOMI: return "X86ISD::UCOMI";
case X86ISD::CMPM: return "X86ISD::CMPM";
case X86ISD::STRICT_CMPM: return "X86ISD::STRICT_CMPM";
case X86ISD::CMPM_SAE: return "X86ISD::CMPM_SAE";
case X86ISD::SETCC: return "X86ISD::SETCC";
case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
case X86ISD::FSETCC: return "X86ISD::FSETCC";
case X86ISD::FSETCCM: return "X86ISD::FSETCCM";
case X86ISD::FSETCCM_SAE: return "X86ISD::FSETCCM_SAE";
case X86ISD::CMOV: return "X86ISD::CMOV";
case X86ISD::BRCOND: return "X86ISD::BRCOND";
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
case X86ISD::IRET: return "X86ISD::IRET";
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
case X86ISD::Wrapper: return "X86ISD::Wrapper";
case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
case X86ISD::MOVQ2DQ: return "X86ISD::MOVQ2DQ";
case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q";
case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W";
case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D";
case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
case X86ISD::PINSRB: return "X86ISD::PINSRB";
case X86ISD::PINSRW: return "X86ISD::PINSRW";
case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
case X86ISD::ANDNP: return "X86ISD::ANDNP";
case X86ISD::BLENDI: return "X86ISD::BLENDI";
case X86ISD::BLENDV: return "X86ISD::BLENDV";
case X86ISD::HADD: return "X86ISD::HADD";
case X86ISD::HSUB: return "X86ISD::HSUB";
case X86ISD::FHADD: return "X86ISD::FHADD";
case X86ISD::FHSUB: return "X86ISD::FHSUB";
case X86ISD::CONFLICT: return "X86ISD::CONFLICT";
case X86ISD::FMAX: return "X86ISD::FMAX";
case X86ISD::FMAXS: return "X86ISD::FMAXS";
case X86ISD::FMAX_SAE: return "X86ISD::FMAX_SAE";
case X86ISD::FMAXS_SAE: return "X86ISD::FMAXS_SAE";
case X86ISD::FMIN: return "X86ISD::FMIN";
case X86ISD::FMINS: return "X86ISD::FMINS";
case X86ISD::FMIN_SAE: return "X86ISD::FMIN_SAE";
case X86ISD::FMINS_SAE: return "X86ISD::FMINS_SAE";
case X86ISD::FMAXC: return "X86ISD::FMAXC";
case X86ISD::FMINC: return "X86ISD::FMINC";
case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
case X86ISD::FRCP: return "X86ISD::FRCP";
case X86ISD::EXTRQI: return "X86ISD::EXTRQI";
case X86ISD::INSERTQI: return "X86ISD::INSERTQI";
case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR";
case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP";
case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP";
case X86ISD::EH_SJLJ_SETUP_DISPATCH:
return "X86ISD::EH_SJLJ_SETUP_DISPATCH";
case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r";
case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG";
case X86ISD::LCMPXCHG8_SAVE_EBX_DAG:
return "X86ISD::LCMPXCHG8_SAVE_EBX_DAG";
case X86ISD::LCMPXCHG16_SAVE_RBX_DAG:
return "X86ISD::LCMPXCHG16_SAVE_RBX_DAG";
case X86ISD::LADD: return "X86ISD::LADD";
case X86ISD::LSUB: return "X86ISD::LSUB";
case X86ISD::LOR: return "X86ISD::LOR";
case X86ISD::LXOR: return "X86ISD::LXOR";
case X86ISD::LAND: return "X86ISD::LAND";
case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
case X86ISD::VEXTRACT_STORE: return "X86ISD::VEXTRACT_STORE";
case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS";
case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS";
case X86ISD::VMTRUNC: return "X86ISD::VMTRUNC";
case X86ISD::VMTRUNCS: return "X86ISD::VMTRUNCS";
case X86ISD::VMTRUNCUS: return "X86ISD::VMTRUNCUS";
case X86ISD::VTRUNCSTORES: return "X86ISD::VTRUNCSTORES";
case X86ISD::VTRUNCSTOREUS: return "X86ISD::VTRUNCSTOREUS";
case X86ISD::VMTRUNCSTORES: return "X86ISD::VMTRUNCSTORES";
case X86ISD::VMTRUNCSTOREUS: return "X86ISD::VMTRUNCSTOREUS";
case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
case X86ISD::STRICT_VFPEXT: return "X86ISD::STRICT_VFPEXT";
case X86ISD::VFPEXT_SAE: return "X86ISD::VFPEXT_SAE";
case X86ISD::VFPEXTS: return "X86ISD::VFPEXTS";
case X86ISD::VFPEXTS_SAE: return "X86ISD::VFPEXTS_SAE";
case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
case X86ISD::STRICT_VFPROUND: return "X86ISD::STRICT_VFPROUND";
case X86ISD::VMFPROUND: return "X86ISD::VMFPROUND";
case X86ISD::VFPROUND_RND: return "X86ISD::VFPROUND_RND";
case X86ISD::VFPROUNDS: return "X86ISD::VFPROUNDS";
case X86ISD::VFPROUNDS_RND: return "X86ISD::VFPROUNDS_RND";
case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
case X86ISD::VSHL: return "X86ISD::VSHL";
case X86ISD::VSRL: return "X86ISD::VSRL";
case X86ISD::VSRA: return "X86ISD::VSRA";
case X86ISD::VSHLI: return "X86ISD::VSHLI";
case X86ISD::VSRLI: return "X86ISD::VSRLI";
case X86ISD::VSRAI: return "X86ISD::VSRAI";
case X86ISD::VSHLV: return "X86ISD::VSHLV";
case X86ISD::VSRLV: return "X86ISD::VSRLV";
case X86ISD::VSRAV: return "X86ISD::VSRAV";
case X86ISD::VROTLI: return "X86ISD::VROTLI";
case X86ISD::VROTRI: return "X86ISD::VROTRI";
case X86ISD::VPPERM: return "X86ISD::VPPERM";
case X86ISD::CMPP: return "X86ISD::CMPP";
case X86ISD::STRICT_CMPP: return "X86ISD::STRICT_CMPP";
case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
case X86ISD::PHMINPOS: return "X86ISD::PHMINPOS";
case X86ISD::ADD: return "X86ISD::ADD";
case X86ISD::SUB: return "X86ISD::SUB";
case X86ISD::ADC: return "X86ISD::ADC";
case X86ISD::SBB: return "X86ISD::SBB";
case X86ISD::SMUL: return "X86ISD::SMUL";
case X86ISD::UMUL: return "X86ISD::UMUL";
case X86ISD::OR: return "X86ISD::OR";
case X86ISD::XOR: return "X86ISD::XOR";
case X86ISD::AND: return "X86ISD::AND";
case X86ISD::BEXTR: return "X86ISD::BEXTR";
case X86ISD::BZHI: return "X86ISD::BZHI";
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
case X86ISD::MOVMSK: return "X86ISD::MOVMSK";
case X86ISD::PTEST: return "X86ISD::PTEST";
case X86ISD::TESTP: return "X86ISD::TESTP";
case X86ISD::KORTEST: return "X86ISD::KORTEST";
case X86ISD::KTEST: return "X86ISD::KTEST";
case X86ISD::KADD: return "X86ISD::KADD";
case X86ISD::KSHIFTL: return "X86ISD::KSHIFTL";
case X86ISD::KSHIFTR: return "X86ISD::KSHIFTR";
case X86ISD::PACKSS: return "X86ISD::PACKSS";
case X86ISD::PACKUS: return "X86ISD::PACKUS";
case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
case X86ISD::VALIGN: return "X86ISD::VALIGN";
case X86ISD::VSHLD: return "X86ISD::VSHLD";
case X86ISD::VSHRD: return "X86ISD::VSHRD";
case X86ISD::VSHLDV: return "X86ISD::VSHLDV";
case X86ISD::VSHRDV: return "X86ISD::VSHRDV";
case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
case X86ISD::SHUFP: return "X86ISD::SHUFP";
case X86ISD::SHUF128: return "X86ISD::SHUF128";
case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
case X86ISD::MOVSD: return "X86ISD::MOVSD";
case X86ISD::MOVSS: return "X86ISD::MOVSS";
case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
case X86ISD::VBROADCAST_LOAD: return "X86ISD::VBROADCAST_LOAD";
case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST";
case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV";
case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI";
case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
case X86ISD::VPERMV: return "X86ISD::VPERMV";
case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
case X86ISD::VPERMI: return "X86ISD::VPERMI";
case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG";
case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM";
case X86ISD::VFIXUPIMM_SAE: return "X86ISD::VFIXUPIMM_SAE";
case X86ISD::VFIXUPIMMS: return "X86ISD::VFIXUPIMMS";
case X86ISD::VFIXUPIMMS_SAE: return "X86ISD::VFIXUPIMMS_SAE";
case X86ISD::VRANGE: return "X86ISD::VRANGE";
case X86ISD::VRANGE_SAE: return "X86ISD::VRANGE_SAE";
case X86ISD::VRANGES: return "X86ISD::VRANGES";
case X86ISD::VRANGES_SAE: return "X86ISD::VRANGES_SAE";
case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
case X86ISD::PSADBW: return "X86ISD::PSADBW";
case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW";
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
case X86ISD::MFENCE: return "X86ISD::MFENCE";
case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
case X86ISD::SAHF: return "X86ISD::SAHF";
case X86ISD::RDRAND: return "X86ISD::RDRAND";
case X86ISD::RDSEED: return "X86ISD::RDSEED";
case X86ISD::RDPKRU: return "X86ISD::RDPKRU";
case X86ISD::WRPKRU: return "X86ISD::WRPKRU";
case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW";
case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD";
case X86ISD::VPSHA: return "X86ISD::VPSHA";
case X86ISD::VPSHL: return "X86ISD::VPSHL";
case X86ISD::VPCOM: return "X86ISD::VPCOM";
case X86ISD::VPCOMU: return "X86ISD::VPCOMU";
case X86ISD::VPERMIL2: return "X86ISD::VPERMIL2";
case X86ISD::FMSUB: return "X86ISD::FMSUB";
case X86ISD::FNMADD: return "X86ISD::FNMADD";
case X86ISD::FNMSUB: return "X86ISD::FNMSUB";
case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB";
case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD";
case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND";
case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND";
case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND";
case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND";
case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND";
case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND";
case X86ISD::VPMADD52H: return "X86ISD::VPMADD52H";
case X86ISD::VPMADD52L: return "X86ISD::VPMADD52L";
case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE";
case X86ISD::STRICT_VRNDSCALE: return "X86ISD::STRICT_VRNDSCALE";
case X86ISD::VRNDSCALE_SAE: return "X86ISD::VRNDSCALE_SAE";
case X86ISD::VRNDSCALES: return "X86ISD::VRNDSCALES";
case X86ISD::VRNDSCALES_SAE: return "X86ISD::VRNDSCALES_SAE";
case X86ISD::VREDUCE: return "X86ISD::VREDUCE";
case X86ISD::VREDUCE_SAE: return "X86ISD::VREDUCE_SAE";
case X86ISD::VREDUCES: return "X86ISD::VREDUCES";
case X86ISD::VREDUCES_SAE: return "X86ISD::VREDUCES_SAE";
case X86ISD::VGETMANT: return "X86ISD::VGETMANT";
case X86ISD::VGETMANT_SAE: return "X86ISD::VGETMANT_SAE";
case X86ISD::VGETMANTS: return "X86ISD::VGETMANTS";
case X86ISD::VGETMANTS_SAE: return "X86ISD::VGETMANTS_SAE";
case X86ISD::PCMPESTR: return "X86ISD::PCMPESTR";
case X86ISD::PCMPISTR: return "X86ISD::PCMPISTR";
case X86ISD::XTEST: return "X86ISD::XTEST";
case X86ISD::COMPRESS: return "X86ISD::COMPRESS";
case X86ISD::EXPAND: return "X86ISD::EXPAND";
case X86ISD::SELECTS: return "X86ISD::SELECTS";
case X86ISD::ADDSUB: return "X86ISD::ADDSUB";
case X86ISD::RCP14: return "X86ISD::RCP14";
case X86ISD::RCP14S: return "X86ISD::RCP14S";
case X86ISD::RCP28: return "X86ISD::RCP28";
case X86ISD::RCP28_SAE: return "X86ISD::RCP28_SAE";
case X86ISD::RCP28S: return "X86ISD::RCP28S";
case X86ISD::RCP28S_SAE: return "X86ISD::RCP28S_SAE";
case X86ISD::EXP2: return "X86ISD::EXP2";
case X86ISD::EXP2_SAE: return "X86ISD::EXP2_SAE";
case X86ISD::RSQRT14: return "X86ISD::RSQRT14";
case X86ISD::RSQRT14S: return "X86ISD::RSQRT14S";
case X86ISD::RSQRT28: return "X86ISD::RSQRT28";
case X86ISD::RSQRT28_SAE: return "X86ISD::RSQRT28_SAE";
case X86ISD::RSQRT28S: return "X86ISD::RSQRT28S";
case X86ISD::RSQRT28S_SAE: return "X86ISD::RSQRT28S_SAE";
case X86ISD::FADD_RND: return "X86ISD::FADD_RND";
case X86ISD::FADDS: return "X86ISD::FADDS";
case X86ISD::FADDS_RND: return "X86ISD::FADDS_RND";
case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND";
case X86ISD::FSUBS: return "X86ISD::FSUBS";
case X86ISD::FSUBS_RND: return "X86ISD::FSUBS_RND";
case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND";
case X86ISD::FMULS: return "X86ISD::FMULS";
case X86ISD::FMULS_RND: return "X86ISD::FMULS_RND";
case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND";
case X86ISD::FDIVS: return "X86ISD::FDIVS";
case X86ISD::FDIVS_RND: return "X86ISD::FDIVS_RND";
case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND";
case X86ISD::FSQRTS: return "X86ISD::FSQRTS";
case X86ISD::FSQRTS_RND: return "X86ISD::FSQRTS_RND";
case X86ISD::FGETEXP: return "X86ISD::FGETEXP";
case X86ISD::FGETEXP_SAE: return "X86ISD::FGETEXP_SAE";
case X86ISD::FGETEXPS: return "X86ISD::FGETEXPS";
case X86ISD::FGETEXPS_SAE: return "X86ISD::FGETEXPS_SAE";
case X86ISD::SCALEF: return "X86ISD::SCALEF";
case X86ISD::SCALEF_RND: return "X86ISD::SCALEF_RND";
case X86ISD::SCALEFS: return "X86ISD::SCALEFS";
case X86ISD::SCALEFS_RND: return "X86ISD::SCALEFS_RND";
case X86ISD::AVG: return "X86ISD::AVG";
case X86ISD::MULHRS: return "X86ISD::MULHRS";
case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND";
case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND";
case X86ISD::CVTTP2SI: return "X86ISD::CVTTP2SI";
case X86ISD::CVTTP2UI: return "X86ISD::CVTTP2UI";
case X86ISD::STRICT_CVTTP2SI: return "X86ISD::STRICT_CVTTP2SI";
case X86ISD::STRICT_CVTTP2UI: return "X86ISD::STRICT_CVTTP2UI";
case X86ISD::MCVTTP2SI: return "X86ISD::MCVTTP2SI";
case X86ISD::MCVTTP2UI: return "X86ISD::MCVTTP2UI";
case X86ISD::CVTTP2SI_SAE: return "X86ISD::CVTTP2SI_SAE";
case X86ISD::CVTTP2UI_SAE: return "X86ISD::CVTTP2UI_SAE";
case X86ISD::CVTTS2SI: return "X86ISD::CVTTS2SI";
case X86ISD::CVTTS2UI: return "X86ISD::CVTTS2UI";
case X86ISD::CVTTS2SI_SAE: return "X86ISD::CVTTS2SI_SAE";
case X86ISD::CVTTS2UI_SAE: return "X86ISD::CVTTS2UI_SAE";
case X86ISD::CVTSI2P: return "X86ISD::CVTSI2P";
case X86ISD::CVTUI2P: return "X86ISD::CVTUI2P";
case X86ISD::STRICT_CVTSI2P: return "X86ISD::STRICT_CVTSI2P";
case X86ISD::STRICT_CVTUI2P: return "X86ISD::STRICT_CVTUI2P";
case X86ISD::MCVTSI2P: return "X86ISD::MCVTSI2P";
case X86ISD::MCVTUI2P: return "X86ISD::MCVTUI2P";
case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS";
case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS";
case X86ISD::MULTISHIFT: return "X86ISD::MULTISHIFT";
case X86ISD::SCALAR_SINT_TO_FP: return "X86ISD::SCALAR_SINT_TO_FP";
case X86ISD::SCALAR_SINT_TO_FP_RND: return "X86ISD::SCALAR_SINT_TO_FP_RND";
case X86ISD::SCALAR_UINT_TO_FP: return "X86ISD::SCALAR_UINT_TO_FP";
case X86ISD::SCALAR_UINT_TO_FP_RND: return "X86ISD::SCALAR_UINT_TO_FP_RND";
case X86ISD::CVTPS2PH: return "X86ISD::CVTPS2PH";
case X86ISD::MCVTPS2PH: return "X86ISD::MCVTPS2PH";
case X86ISD::CVTPH2PS: return "X86ISD::CVTPH2PS";
case X86ISD::CVTPH2PS_SAE: return "X86ISD::CVTPH2PS_SAE";
case X86ISD::CVTP2SI: return "X86ISD::CVTP2SI";
case X86ISD::CVTP2UI: return "X86ISD::CVTP2UI";
case X86ISD::MCVTP2SI: return "X86ISD::MCVTP2SI";
case X86ISD::MCVTP2UI: return "X86ISD::MCVTP2UI";
case X86ISD::CVTP2SI_RND: return "X86ISD::CVTP2SI_RND";
case X86ISD::CVTP2UI_RND: return "X86ISD::CVTP2UI_RND";
case X86ISD::CVTS2SI: return "X86ISD::CVTS2SI";
case X86ISD::CVTS2UI: return "X86ISD::CVTS2UI";
case X86ISD::CVTS2SI_RND: return "X86ISD::CVTS2SI_RND";
case X86ISD::CVTS2UI_RND: return "X86ISD::CVTS2UI_RND";
case X86ISD::CVTNE2PS2BF16: return "X86ISD::CVTNE2PS2BF16";
case X86ISD::CVTNEPS2BF16: return "X86ISD::CVTNEPS2BF16";
case X86ISD::MCVTNEPS2BF16: return "X86ISD::MCVTNEPS2BF16";
case X86ISD::DPBF16PS: return "X86ISD::DPBF16PS";
case X86ISD::LWPINS: return "X86ISD::LWPINS";
case X86ISD::MGATHER: return "X86ISD::MGATHER";
case X86ISD::MSCATTER: return "X86ISD::MSCATTER";
case X86ISD::VPDPBUSD: return "X86ISD::VPDPBUSD";
case X86ISD::VPDPBUSDS: return "X86ISD::VPDPBUSDS";
case X86ISD::VPDPWSSD: return "X86ISD::VPDPWSSD";
case X86ISD::VPDPWSSDS: return "X86ISD::VPDPWSSDS";
case X86ISD::VPSHUFBITQMB: return "X86ISD::VPSHUFBITQMB";
case X86ISD::GF2P8MULB: return "X86ISD::GF2P8MULB";
case X86ISD::GF2P8AFFINEQB: return "X86ISD::GF2P8AFFINEQB";
case X86ISD::GF2P8AFFINEINVQB: return "X86ISD::GF2P8AFFINEINVQB";
case X86ISD::NT_CALL: return "X86ISD::NT_CALL";
case X86ISD::NT_BRIND: return "X86ISD::NT_BRIND";
case X86ISD::UMWAIT: return "X86ISD::UMWAIT";
case X86ISD::TPAUSE: return "X86ISD::TPAUSE";
case X86ISD::ENQCMD: return "X86ISD:ENQCMD";
case X86ISD::ENQCMDS: return "X86ISD:ENQCMDS";
case X86ISD::VP2INTERSECT: return "X86ISD::VP2INTERSECT";
}
return nullptr;
}
/// Return true if the addressing mode represented by AM is legal for this
/// target, for a load/store of the specified type.
bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I) const {
// X86 supports extremely general addressing modes.
CodeModel::Model M = getTargetMachine().getCodeModel();
// X86 allows a sign-extended 32-bit immediate field as a displacement.
if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
return false;
if (AM.BaseGV) {
unsigned GVFlags = Subtarget.classifyGlobalReference(AM.BaseGV);
// If a reference to this global requires an extra load, we can't fold it.
if (isGlobalStubReference(GVFlags))
return false;
// If BaseGV requires a register for the PIC base, we cannot also have a
// BaseReg specified.
if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
return false;
// If lower 4G is not available, then we must use rip-relative addressing.
if ((M != CodeModel::Small || isPositionIndependent()) &&
Subtarget.is64Bit() && (AM.BaseOffs || AM.Scale > 1))
return false;
}
switch (AM.Scale) {
case 0:
case 1:
case 2:
case 4:
case 8:
// These scales always work.
break;
case 3:
case 5:
case 9:
// These scales are formed with basereg+scalereg. Only accept if there is
// no basereg yet.
if (AM.HasBaseReg)
return false;
break;
default: // Other stuff never works.
return false;
}
return true;
}
bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
unsigned Bits = Ty->getScalarSizeInBits();
// 8-bit shifts are always expensive, but versions with a scalar amount aren't
// particularly cheaper than those without.
if (Bits == 8)
return false;
// XOP has v16i8/v8i16/v4i32/v2i64 variable vector shifts.
if (Subtarget.hasXOP() && Ty->getPrimitiveSizeInBits() == 128 &&
(Bits == 8 || Bits == 16 || Bits == 32 || Bits == 64))
return false;
// AVX2 has vpsllv[dq] instructions (and other shifts) that make variable
// shifts just as cheap as scalar ones.
if (Subtarget.hasAVX2() && (Bits == 32 || Bits == 64))
return false;
// AVX512BW has shifts such as vpsllvw.
if (Subtarget.hasBWI() && Bits == 16)
return false;
// Otherwise, it's significantly cheaper to shift by a scalar amount than by a
// fully general vector.
return true;
}
bool X86TargetLowering::isBinOp(unsigned Opcode) const {
switch (Opcode) {
// These are non-commutative binops.
// TODO: Add more X86ISD opcodes once we have test coverage.
case X86ISD::ANDNP:
case X86ISD::PCMPGT:
case X86ISD::FMAX:
case X86ISD::FMIN:
case X86ISD::FANDN:
return true;
}
return TargetLoweringBase::isBinOp(Opcode);
}
bool X86TargetLowering::isCommutativeBinOp(unsigned Opcode) const {
switch (Opcode) {
// TODO: Add more X86ISD opcodes once we have test coverage.
case X86ISD::PCMPEQ:
case X86ISD::PMULDQ:
case X86ISD::PMULUDQ:
case X86ISD::FMAXC:
case X86ISD::FMINC:
case X86ISD::FAND:
case X86ISD::FOR:
case X86ISD::FXOR:
return true;
}
return TargetLoweringBase::isCommutativeBinOp(Opcode);
}
bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
return NumBits1 > NumBits2;
}
bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
if (!isTypeLegal(EVT::getEVT(Ty1)))
return false;
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
// Assuming the caller doesn't have a zeroext or signext return parameter,
// truncation all the way down to i1 is valid.
return true;
}
bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<32>(Imm);
}
bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
// Can also use sub to handle negated immediates.
return isInt<32>(Imm);
}
bool X86TargetLowering::isLegalStoreImmediate(int64_t Imm) const {
return isInt<32>(Imm);
}
bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
return NumBits1 > NumBits2;
}
bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget.is64Bit();
}
bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget.is64Bit();
}
bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
EVT VT1 = Val.getValueType();
if (isZExtFree(VT1, VT2))
return true;
if (Val.getOpcode() != ISD::LOAD)
return false;
if (!VT1.isSimple() || !VT1.isInteger() ||
!VT2.isSimple() || !VT2.isInteger())
return false;
switch (VT1.getSimpleVT().SimpleTy) {
default: break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
// X86 has 8, 16, and 32-bit zero-extending loads.
return true;
}
return false;
}
bool X86TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
if (isa<MaskedLoadSDNode>(ExtVal.getOperand(0)))
return false;
EVT SrcVT = ExtVal.getOperand(0).getValueType();
// There is no extending load for vXi1.
if (SrcVT.getScalarType() == MVT::i1)
return false;
return true;
}
bool X86TargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const {
if (!Subtarget.hasAnyFMA())
return false;
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
default:
break;
}
return false;
}
bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
// i16 instructions are longer (0x66 prefix) and potentially slower.
return !(VT1 == MVT::i32 && VT2 == MVT::i16);
}
/// Targets can use this to indicate that they only support *some*
/// VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool X86TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
if (!VT.isSimple())
return false;
// Not for i1 vectors
if (VT.getSimpleVT().getScalarType() == MVT::i1)
return false;
// Very little shuffling can be done for 64-bit vectors right now.
if (VT.getSimpleVT().getSizeInBits() == 64)
return false;
// We only care that the types being shuffled are legal. The lowering can
// handle any possible shuffle mask that results.
return isTypeLegal(VT.getSimpleVT());
}
bool X86TargetLowering::isVectorClearMaskLegal(ArrayRef<int> Mask,
EVT VT) const {
// Don't convert an 'and' into a shuffle that we don't directly support.
// vpblendw and vpshufb for 256-bit vectors are not available on AVX1.
if (!Subtarget.hasAVX2())
if (VT == MVT::v32i8 || VT == MVT::v16i16)
return false;
// Just delegate to the generic legality, clear masks aren't special.
return isShuffleMaskLegal(Mask, VT);
}
bool X86TargetLowering::areJTsAllowed(const Function *Fn) const {
// If the subtarget is using retpolines, we need to not generate jump tables.
if (Subtarget.useRetpolineIndirectBranches())
return false;
// Otherwise, fallback on the generic logic.
return TargetLowering::areJTsAllowed(Fn);
}
//===----------------------------------------------------------------------===//
// X86 Scheduler Hooks
//===----------------------------------------------------------------------===//
/// Utility function to emit xbegin specifying the start of an RTM region.
static MachineBasicBlock *emitXBegin(MachineInstr &MI, MachineBasicBlock *MBB,
const TargetInstrInfo *TII) {
DebugLoc DL = MI.getDebugLoc();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = ++MBB->getIterator();
// For the v = xbegin(), we generate
//
// thisMBB:
// xbegin sinkMBB
//
// mainMBB:
// s0 = -1
//
// fallBB:
// eax = # XABORT_DEF
// s1 = eax
//
// sinkMBB:
// v = phi(s0/mainBB, s1/fallBB)
MachineBasicBlock *thisMBB = MBB;
MachineFunction *MF = MBB->getParent();
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, fallMBB);
MF->insert(I, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
MachineRegisterInfo &MRI = MF->getRegInfo();
Register DstReg = MI.getOperand(0).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
Register mainDstReg = MRI.createVirtualRegister(RC);
Register fallDstReg = MRI.createVirtualRegister(RC);
// thisMBB:
// xbegin fallMBB
// # fallthrough to mainMBB
// # abortion to fallMBB
BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(fallMBB);
thisMBB->addSuccessor(mainMBB);
thisMBB->addSuccessor(fallMBB);
// mainMBB:
// mainDstReg := -1
BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), mainDstReg).addImm(-1);
BuildMI(mainMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
mainMBB->addSuccessor(sinkMBB);
// fallMBB:
// ; pseudo instruction to model hardware's definition from XABORT
// EAX := XABORT_DEF
// fallDstReg := EAX
BuildMI(fallMBB, DL, TII->get(X86::XABORT_DEF));
BuildMI(fallMBB, DL, TII->get(TargetOpcode::COPY), fallDstReg)
.addReg(X86::EAX);
fallMBB->addSuccessor(sinkMBB);
// sinkMBB:
// DstReg := phi(mainDstReg/mainBB, fallDstReg/fallBB)
BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(X86::PHI), DstReg)
.addReg(mainDstReg).addMBB(mainMBB)
.addReg(fallDstReg).addMBB(fallMBB);
MI.eraseFromParent();
return sinkMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const {
// Emit va_arg instruction on X86-64.
// Operands to this pseudo-instruction:
// 0 ) Output : destination address (reg)
// 1-5) Input : va_list address (addr, i64mem)
// 6 ) ArgSize : Size (in bytes) of vararg type
// 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
// 8 ) Align : Alignment of type
// 9 ) EFLAGS (implicit-def)
assert(MI.getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
static_assert(X86::AddrNumOperands == 5,
"VAARG_64 assumes 5 address operands");
Register DestReg = MI.getOperand(0).getReg();
MachineOperand &Base = MI.getOperand(1);
MachineOperand &Scale = MI.getOperand(2);
MachineOperand &Index = MI.getOperand(3);
MachineOperand &Disp = MI.getOperand(4);
MachineOperand &Segment = MI.getOperand(5);
unsigned ArgSize = MI.getOperand(6).getImm();
unsigned ArgMode = MI.getOperand(7).getImm();
unsigned Align = MI.getOperand(8).getImm();
MachineFunction *MF = MBB->getParent();
// Memory Reference
assert(MI.hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
MachineMemOperand *OldMMO = MI.memoperands().front();
// Clone the MMO into two separate MMOs for loading and storing
MachineMemOperand *LoadOnlyMMO = MF->getMachineMemOperand(
OldMMO, OldMMO->getFlags() & ~MachineMemOperand::MOStore);
MachineMemOperand *StoreOnlyMMO = MF->getMachineMemOperand(
OldMMO, OldMMO->getFlags() & ~MachineMemOperand::MOLoad);
// Machine Information
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
DebugLoc DL = MI.getDebugLoc();
// struct va_list {
// i32 gp_offset
// i32 fp_offset
// i64 overflow_area (address)
// i64 reg_save_area (address)
// }
// sizeof(va_list) = 24
// alignment(va_list) = 8
unsigned TotalNumIntRegs = 6;
unsigned TotalNumXMMRegs = 8;
bool UseGPOffset = (ArgMode == 1);
bool UseFPOffset = (ArgMode == 2);
unsigned MaxOffset = TotalNumIntRegs * 8 +
(UseFPOffset ? TotalNumXMMRegs * 16 : 0);
/* Align ArgSize to a multiple of 8 */
unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
bool NeedsAlign = (Align > 8);
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *overflowMBB;
MachineBasicBlock *offsetMBB;
MachineBasicBlock *endMBB;
unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
unsigned OffsetReg = 0;
if (!UseGPOffset && !UseFPOffset) {
// If we only pull from the overflow region, we don't create a branch.
// We don't need to alter control flow.
OffsetDestReg = 0; // unused
OverflowDestReg = DestReg;
offsetMBB = nullptr;
overflowMBB = thisMBB;
endMBB = thisMBB;
} else {
// First emit code to check if gp_offset (or fp_offset) is below the bound.
// If so, pull the argument from reg_save_area. (branch to offsetMBB)
// If not, pull from overflow_area. (branch to overflowMBB)
//
// thisMBB
// | .
// | .
// offsetMBB overflowMBB
// | .
// | .
// endMBB
// Registers for the PHI in endMBB
OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator MBBIter = ++MBB->getIterator();
// Insert the new basic blocks
MF->insert(MBBIter, offsetMBB);
MF->insert(MBBIter, overflowMBB);
MF->insert(MBBIter, endMBB);
// Transfer the remainder of MBB and its successor edges to endMBB.
endMBB->splice(endMBB->begin(), thisMBB,
std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
// Make offsetMBB and overflowMBB successors of thisMBB
thisMBB->addSuccessor(offsetMBB);
thisMBB->addSuccessor(overflowMBB);
// endMBB is a successor of both offsetMBB and overflowMBB
offsetMBB->addSuccessor(endMBB);
overflowMBB->addSuccessor(endMBB);
// Load the offset value into a register
OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, UseFPOffset ? 4 : 0)
.add(Segment)
.setMemRefs(LoadOnlyMMO);
// Check if there is enough room left to pull this argument.
BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
.addReg(OffsetReg)
.addImm(MaxOffset + 8 - ArgSizeA8);
// Branch to "overflowMBB" if offset >= max
// Fall through to "offsetMBB" otherwise
BuildMI(thisMBB, DL, TII->get(X86::JCC_1))
.addMBB(overflowMBB).addImm(X86::COND_AE);
}
// In offsetMBB, emit code to use the reg_save_area.
if (offsetMBB) {
assert(OffsetReg != 0);
// Read the reg_save_area address.
Register RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, 16)
.add(Segment)
.setMemRefs(LoadOnlyMMO);
// Zero-extend the offset
Register OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
.addImm(0)
.addReg(OffsetReg)
.addImm(X86::sub_32bit);
// Add the offset to the reg_save_area to get the final address.
BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
.addReg(OffsetReg64)
.addReg(RegSaveReg);
// Compute the offset for the next argument
Register NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
.addReg(OffsetReg)
.addImm(UseFPOffset ? 16 : 8);
// Store it back into the va_list.
BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, UseFPOffset ? 4 : 0)
.add(Segment)
.addReg(NextOffsetReg)
.setMemRefs(StoreOnlyMMO);
// Jump to endMBB
BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
.addMBB(endMBB);
}
//
// Emit code to use overflow area
//
// Load the overflow_area address into a register.
Register OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, 8)
.add(Segment)
.setMemRefs(LoadOnlyMMO);
// If we need to align it, do so. Otherwise, just copy the address
// to OverflowDestReg.
if (NeedsAlign) {
// Align the overflow address
assert(isPowerOf2_32(Align) && "Alignment must be a power of 2");
Register TmpReg = MRI.createVirtualRegister(AddrRegClass);
// aligned_addr = (addr + (align-1)) & ~(align-1)
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
.addReg(OverflowAddrReg)
.addImm(Align-1);
BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
.addReg(TmpReg)
.addImm(~(uint64_t)(Align-1));
} else {
BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
.addReg(OverflowAddrReg);
}
// Compute the next overflow address after this argument.
// (the overflow address should be kept 8-byte aligned)
Register NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
.addReg(OverflowDestReg)
.addImm(ArgSizeA8);
// Store the new overflow address.
BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
.add(Base)
.add(Scale)
.add(Index)
.addDisp(Disp, 8)
.add(Segment)
.addReg(NextAddrReg)
.setMemRefs(StoreOnlyMMO);
// If we branched, emit the PHI to the front of endMBB.
if (offsetMBB) {
BuildMI(*endMBB, endMBB->begin(), DL,
TII->get(X86::PHI), DestReg)
.addReg(OffsetDestReg).addMBB(offsetMBB)
.addReg(OverflowDestReg).addMBB(overflowMBB);
}
// Erase the pseudo instruction
MI.eraseFromParent();
return endMBB;
}
MachineBasicBlock *X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
MachineInstr &MI, MachineBasicBlock *MBB) const {
// Emit code to save XMM registers to the stack. The ABI says that the
// number of registers to save is given in %al, so it's theoretically
// possible to do an indirect jump trick to avoid saving all of them,
// however this code takes a simpler approach and just executes all
// of the stores if %al is non-zero. It's less code, and it's probably
// easier on the hardware branch predictor, and stores aren't all that
// expensive anyway.
// Create the new basic blocks. One block contains all the XMM stores,
// and one block is the final destination regardless of whether any
// stores were performed.
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *F = MBB->getParent();
MachineFunction::iterator MBBIter = ++MBB->getIterator();
MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, XMMSaveMBB);
F->insert(MBBIter, EndMBB);
// Transfer the remainder of MBB and its successor edges to EndMBB.
EndMBB->splice(EndMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
// The original block will now fall through to the XMM save block.
MBB->addSuccessor(XMMSaveMBB);
// The XMMSaveMBB will fall through to the end block.
XMMSaveMBB->addSuccessor(EndMBB);
// Now add the instructions.
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
Register CountReg = MI.getOperand(0).getReg();
int64_t RegSaveFrameIndex = MI.getOperand(1).getImm();
int64_t VarArgsFPOffset = MI.getOperand(2).getImm();
if (!Subtarget.isCallingConvWin64(F->getFunction().getCallingConv())) {
// If %al is 0, branch around the XMM save block.
BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
BuildMI(MBB, DL, TII->get(X86::JCC_1)).addMBB(EndMBB).addImm(X86::COND_E);
MBB->addSuccessor(EndMBB);
}
// Make sure the last operand is EFLAGS, which gets clobbered by the branch
// that was just emitted, but clearly shouldn't be "saved".
assert((MI.getNumOperands() <= 3 ||
!MI.getOperand(MI.getNumOperands() - 1).isReg() ||
MI.getOperand(MI.getNumOperands() - 1).getReg() == X86::EFLAGS) &&
"Expected last argument to be EFLAGS");
unsigned MOVOpc = Subtarget.hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
// In the XMM save block, save all the XMM argument registers.
for (int i = 3, e = MI.getNumOperands() - 1; i != e; ++i) {
int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
MachineMemOperand *MMO = F->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
MachineMemOperand::MOStore,
/*Size=*/16, /*Align=*/16);
BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
.addFrameIndex(RegSaveFrameIndex)
.addImm(/*Scale=*/1)
.addReg(/*IndexReg=*/0)
.addImm(/*Disp=*/Offset)
.addReg(/*Segment=*/0)
.addReg(MI.getOperand(i).getReg())
.addMemOperand(MMO);
}
MI.eraseFromParent(); // The pseudo instruction is gone now.
return EndMBB;
}
// The EFLAGS operand of SelectItr might be missing a kill marker
// because there were multiple uses of EFLAGS, and ISel didn't know
// which to mark. Figure out whether SelectItr should have had a
// kill marker, and set it if it should. Returns the correct kill
// marker value.
static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
MachineBasicBlock* BB,
const TargetRegisterInfo* TRI) {
// Scan forward through BB for a use/def of EFLAGS.
MachineBasicBlock::iterator miI(std::next(SelectItr));
for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
const MachineInstr& mi = *miI;
if (mi.readsRegister(X86::EFLAGS))
return false;
if (mi.definesRegister(X86::EFLAGS))
break; // Should have kill-flag - update below.
}
// If we hit the end of the block, check whether EFLAGS is live into a
// successor.
if (miI == BB->end()) {
for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
sEnd = BB->succ_end();
sItr != sEnd; ++sItr) {
MachineBasicBlock* succ = *sItr;
if (succ->isLiveIn(X86::EFLAGS))
return false;
}
}
// We found a def, or hit the end of the basic block and EFLAGS wasn't live
// out. SelectMI should have a kill flag on EFLAGS.
SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
return true;
}
// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
// together with other CMOV pseudo-opcodes into a single basic-block with
// conditional jump around it.
static bool isCMOVPseudo(MachineInstr &MI) {
switch (MI.getOpcode()) {
case X86::CMOV_FR32:
case X86::CMOV_FR32X:
case X86::CMOV_FR64:
case X86::CMOV_FR64X:
case X86::CMOV_GR8:
case X86::CMOV_GR16:
case X86::CMOV_GR32:
case X86::CMOV_RFP32:
case X86::CMOV_RFP64:
case X86::CMOV_RFP80:
case X86::CMOV_VR128:
case X86::CMOV_VR128X:
case X86::CMOV_VR256:
case X86::CMOV_VR256X:
case X86::CMOV_VR512:
case X86::CMOV_VK2:
case X86::CMOV_VK4:
case X86::CMOV_VK8:
case X86::CMOV_VK16:
case X86::CMOV_VK32:
case X86::CMOV_VK64:
return true;
default:
return false;
}
}
// Helper function, which inserts PHI functions into SinkMBB:
// %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
// where %FalseValue(i) and %TrueValue(i) are taken from the consequent CMOVs
// in [MIItBegin, MIItEnd) range. It returns the last MachineInstrBuilder for
// the last PHI function inserted.
static MachineInstrBuilder createPHIsForCMOVsInSinkBB(
MachineBasicBlock::iterator MIItBegin, MachineBasicBlock::iterator MIItEnd,
MachineBasicBlock *TrueMBB, MachineBasicBlock *FalseMBB,
MachineBasicBlock *SinkMBB) {
MachineFunction *MF = TrueMBB->getParent();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
DebugLoc DL = MIItBegin->getDebugLoc();
X86::CondCode CC = X86::CondCode(MIItBegin->getOperand(3).getImm());
X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
// As we are creating the PHIs, we have to be careful if there is more than
// one. Later CMOVs may reference the results of earlier CMOVs, but later
// PHIs have to reference the individual true/false inputs from earlier PHIs.
// That also means that PHI construction must work forward from earlier to
// later, and that the code must maintain a mapping from earlier PHI's
// destination registers, and the registers that went into the PHI.
DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
MachineInstrBuilder MIB;
for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
Register DestReg = MIIt->getOperand(0).getReg();
Register Op1Reg = MIIt->getOperand(1).getReg();
Register Op2Reg = MIIt->getOperand(2).getReg();
// If this CMOV we are generating is the opposite condition from
// the jump we generated, then we have to swap the operands for the
// PHI that is going to be generated.
if (MIIt->getOperand(3).getImm() == OppCC)
std::swap(Op1Reg, Op2Reg);
if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
Op1Reg = RegRewriteTable[Op1Reg].first;
if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
Op2Reg = RegRewriteTable[Op2Reg].second;
MIB = BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(X86::PHI), DestReg)
.addReg(Op1Reg)
.addMBB(FalseMBB)
.addReg(Op2Reg)
.addMBB(TrueMBB);
// Add this PHI to the rewrite table.
RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
}
return MIB;
}
// Lower cascaded selects in form of (SecondCmov (FirstCMOV F, T, cc1), T, cc2).
MachineBasicBlock *
X86TargetLowering::EmitLoweredCascadedSelect(MachineInstr &FirstCMOV,
MachineInstr &SecondCascadedCMOV,
MachineBasicBlock *ThisMBB) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = FirstCMOV.getDebugLoc();
// We lower cascaded CMOVs such as
//
// (SecondCascadedCMOV (FirstCMOV F, T, cc1), T, cc2)
//
// to two successive branches.
//
// Without this, we would add a PHI between the two jumps, which ends up
// creating a few copies all around. For instance, for
//
// (sitofp (zext (fcmp une)))
//
// we would generate:
//
// ucomiss %xmm1, %xmm0
// movss <1.0f>, %xmm0
// movaps %xmm0, %xmm1
// jne .LBB5_2
// xorps %xmm1, %xmm1
// .LBB5_2:
// jp .LBB5_4
// movaps %xmm1, %xmm0
// .LBB5_4:
// retq
//
// because this custom-inserter would have generated:
//
// A
// | \
// | B
// | /
// C
// | \
// | D
// | /
// E
//
// A: X = ...; Y = ...
// B: empty
// C: Z = PHI [X, A], [Y, B]
// D: empty
// E: PHI [X, C], [Z, D]
//
// If we lower both CMOVs in a single step, we can instead generate:
//
// A
// | \
// | C
// | /|
// |/ |
// | |
// | D
// | /
// E
//
// A: X = ...; Y = ...
// D: empty
// E: PHI [X, A], [X, C], [Y, D]
//
// Which, in our sitofp/fcmp example, gives us something like:
//
// ucomiss %xmm1, %xmm0
// movss <1.0f>, %xmm0
// jne .LBB5_4
// jp .LBB5_4
// xorps %xmm0, %xmm0
// .LBB5_4:
// retq
//
// We lower cascaded CMOV into two successive branches to the same block.
// EFLAGS is used by both, so mark it as live in the second.
const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
MachineFunction *F = ThisMBB->getParent();
MachineBasicBlock *FirstInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SecondInsertedMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = ++ThisMBB->getIterator();
F->insert(It, FirstInsertedMBB);
F->insert(It, SecondInsertedMBB);
F->insert(It, SinkMBB);
// For a cascaded CMOV, we lower it to two successive branches to
// the same block (SinkMBB). EFLAGS is used by both, so mark it as live in
// the FirstInsertedMBB.
FirstInsertedMBB->addLiveIn(X86::EFLAGS);
// If the EFLAGS register isn't dead in the terminator, then claim that it's
// live into the sink and copy blocks.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
if (!SecondCascadedCMOV.killsRegister(X86::EFLAGS) &&
!checkAndUpdateEFLAGSKill(SecondCascadedCMOV, ThisMBB, TRI)) {
SecondInsertedMBB->addLiveIn(X86::EFLAGS);
SinkMBB->addLiveIn(X86::EFLAGS);
}
// Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
SinkMBB->splice(SinkMBB->begin(), ThisMBB,
std::next(MachineBasicBlock::iterator(FirstCMOV)),
ThisMBB->end());
SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
// Fallthrough block for ThisMBB.
ThisMBB->addSuccessor(FirstInsertedMBB);
// The true block target of the first branch is always SinkMBB.
ThisMBB->addSuccessor(SinkMBB);
// Fallthrough block for FirstInsertedMBB.
FirstInsertedMBB->addSuccessor(SecondInsertedMBB);
// The true block for the branch of FirstInsertedMBB.
FirstInsertedMBB->addSuccessor(SinkMBB);
// This is fallthrough.
SecondInsertedMBB->addSuccessor(SinkMBB);
// Create the conditional branch instructions.
X86::CondCode FirstCC = X86::CondCode(FirstCMOV.getOperand(3).getImm());
BuildMI(ThisMBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(FirstCC);
X86::CondCode SecondCC =
X86::CondCode(SecondCascadedCMOV.getOperand(3).getImm());
BuildMI(FirstInsertedMBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(SecondCC);
// SinkMBB:
// %Result = phi [ %FalseValue, SecondInsertedMBB ], [ %TrueValue, ThisMBB ]
Register DestReg = FirstCMOV.getOperand(0).getReg();
Register Op1Reg = FirstCMOV.getOperand(1).getReg();
Register Op2Reg = FirstCMOV.getOperand(2).getReg();
MachineInstrBuilder MIB =
BuildMI(*SinkMBB, SinkMBB->begin(), DL, TII->get(X86::PHI), DestReg)
.addReg(Op1Reg)
.addMBB(SecondInsertedMBB)
.addReg(Op2Reg)
.addMBB(ThisMBB);
// The second SecondInsertedMBB provides the same incoming value as the
// FirstInsertedMBB (the True operand of the SELECT_CC/CMOV nodes).
MIB.addReg(FirstCMOV.getOperand(2).getReg()).addMBB(FirstInsertedMBB);
// Copy the PHI result to the register defined by the second CMOV.
BuildMI(*SinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())), DL,
TII->get(TargetOpcode::COPY),
SecondCascadedCMOV.getOperand(0).getReg())
.addReg(FirstCMOV.getOperand(0).getReg());
// Now remove the CMOVs.
FirstCMOV.eraseFromParent();
SecondCascadedCMOV.eraseFromParent();
return SinkMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredSelect(MachineInstr &MI,
MachineBasicBlock *ThisMBB) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between and a branch opcode to use.
// ThisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> FalseMBB
// This code lowers all pseudo-CMOV instructions. Generally it lowers these
// as described above, by inserting a BB, and then making a PHI at the join
// point to select the true and false operands of the CMOV in the PHI.
//
// The code also handles two different cases of multiple CMOV opcodes
// in a row.
//
// Case 1:
// In this case, there are multiple CMOVs in a row, all which are based on
// the same condition setting (or the exact opposite condition setting).
// In this case we can lower all the CMOVs using a single inserted BB, and
// then make a number of PHIs at the join point to model the CMOVs. The only
// trickiness here, is that in a case like:
//
// t2 = CMOV cond1 t1, f1
// t3 = CMOV cond1 t2, f2
//
// when rewriting this into PHIs, we have to perform some renaming on the
// temps since you cannot have a PHI operand refer to a PHI result earlier
// in the same block. The "simple" but wrong lowering would be:
//
// t2 = PHI t1(BB1), f1(BB2)
// t3 = PHI t2(BB1), f2(BB2)
//
// but clearly t2 is not defined in BB1, so that is incorrect. The proper
// renaming is to note that on the path through BB1, t2 is really just a
// copy of t1, and do that renaming, properly generating:
//
// t2 = PHI t1(BB1), f1(BB2)
// t3 = PHI t1(BB1), f2(BB2)
//
// Case 2:
// CMOV ((CMOV F, T, cc1), T, cc2) is checked here and handled by a separate
// function - EmitLoweredCascadedSelect.
X86::CondCode CC = X86::CondCode(MI.getOperand(3).getImm());
X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
MachineInstr *LastCMOV = &MI;
MachineBasicBlock::iterator NextMIIt = MachineBasicBlock::iterator(MI);
// Check for case 1, where there are multiple CMOVs with the same condition
// first. Of the two cases of multiple CMOV lowerings, case 1 reduces the
// number of jumps the most.
if (isCMOVPseudo(MI)) {
// See if we have a string of CMOVS with the same condition. Skip over
// intervening debug insts.
while (NextMIIt != ThisMBB->end() && isCMOVPseudo(*NextMIIt) &&
(NextMIIt->getOperand(3).getImm() == CC ||
NextMIIt->getOperand(3).getImm() == OppCC)) {
LastCMOV = &*NextMIIt;
++NextMIIt;
NextMIIt = skipDebugInstructionsForward(NextMIIt, ThisMBB->end());
}
}
// This checks for case 2, but only do this if we didn't already find
// case 1, as indicated by LastCMOV == MI.
if (LastCMOV == &MI && NextMIIt != ThisMBB->end() &&
NextMIIt->getOpcode() == MI.getOpcode() &&
NextMIIt->getOperand(2).getReg() == MI.getOperand(2).getReg() &&
NextMIIt->getOperand(1).getReg() == MI.getOperand(0).getReg() &&
NextMIIt->getOperand(1).isKill()) {
return EmitLoweredCascadedSelect(MI, *NextMIIt, ThisMBB);
}
const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock();
MachineFunction *F = ThisMBB->getParent();
MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *SinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = ++ThisMBB->getIterator();
F->insert(It, FalseMBB);
F->insert(It, SinkMBB);
// If the EFLAGS register isn't dead in the terminator, then claim that it's
// live into the sink and copy blocks.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
if (!LastCMOV->killsRegister(X86::EFLAGS) &&
!checkAndUpdateEFLAGSKill(LastCMOV, ThisMBB, TRI)) {
FalseMBB->addLiveIn(X86::EFLAGS);
SinkMBB->addLiveIn(X86::EFLAGS);
}
// Transfer any debug instructions inside the CMOV sequence to the sunk block.
auto DbgEnd = MachineBasicBlock::iterator(LastCMOV);
auto DbgIt = MachineBasicBlock::iterator(MI);
while (DbgIt != DbgEnd) {
auto Next = std::next(DbgIt);
if (DbgIt->isDebugInstr())
SinkMBB->push_back(DbgIt->removeFromParent());
DbgIt = Next;
}
// Transfer the remainder of ThisMBB and its successor edges to SinkMBB.
SinkMBB->splice(SinkMBB->end(), ThisMBB,
std::next(MachineBasicBlock::iterator(LastCMOV)),
ThisMBB->end());
SinkMBB->transferSuccessorsAndUpdatePHIs(ThisMBB);
// Fallthrough block for ThisMBB.
ThisMBB->addSuccessor(FalseMBB);
// The true block target of the first (or only) branch is always a SinkMBB.
ThisMBB->addSuccessor(SinkMBB);
// Fallthrough block for FalseMBB.
FalseMBB->addSuccessor(SinkMBB);
// Create the conditional branch instruction.
BuildMI(ThisMBB, DL, TII->get(X86::JCC_1)).addMBB(SinkMBB).addImm(CC);
// SinkMBB:
// %Result = phi [ %FalseValue, FalseMBB ], [ %TrueValue, ThisMBB ]
// ...
MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
MachineBasicBlock::iterator MIItEnd =
std::next(MachineBasicBlock::iterator(LastCMOV));
createPHIsForCMOVsInSinkBB(MIItBegin, MIItEnd, ThisMBB, FalseMBB, SinkMBB);
// Now remove the CMOV(s).
ThisMBB->erase(MIItBegin, MIItEnd);
return SinkMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredSegAlloca(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
assert(MF->shouldSplitStack());
const bool Is64Bit = Subtarget.is64Bit();
const bool IsLP64 = Subtarget.isTarget64BitLP64();
const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
// BB:
// ... [Till the alloca]
// If stacklet is not large enough, jump to mallocMBB
//
// bumpMBB:
// Allocate by subtracting from RSP
// Jump to continueMBB
//
// mallocMBB:
// Allocate by call to runtime
//
// continueMBB:
// ...
// [rest of original BB]
//
MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *AddrRegClass =
getRegClassFor(getPointerTy(MF->getDataLayout()));
unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
sizeVReg = MI.getOperand(1).getReg(),
physSPReg =
IsLP64 || Subtarget.isTargetNaCl64() ? X86::RSP : X86::ESP;
MachineFunction::iterator MBBIter = ++BB->getIterator();
MF->insert(MBBIter, bumpMBB);
MF->insert(MBBIter, mallocMBB);
MF->insert(MBBIter, continueMBB);
continueMBB->splice(continueMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
continueMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add code to the main basic block to check if the stack limit has been hit,
// and if so, jump to mallocMBB otherwise to bumpMBB.
BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
.addReg(tmpSPVReg).addReg(sizeVReg);
BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
.addReg(SPLimitVReg);
BuildMI(BB, DL, TII->get(X86::JCC_1)).addMBB(mallocMBB).addImm(X86::COND_G);
// bumpMBB simply decreases the stack pointer, since we know the current
// stacklet has enough space.
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
// Calls into a routine in libgcc to allocate more space from the heap.
const uint32_t *RegMask =
Subtarget.getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
if (IsLP64) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::RDI, RegState::Implicit)
.addReg(X86::RAX, RegState::ImplicitDefine);
} else if (Is64Bit) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::EDI, RegState::Implicit)
.addReg(X86::EAX, RegState::ImplicitDefine);
} else {
BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
.addImm(12);
BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::EAX, RegState::ImplicitDefine);
}
if (!Is64Bit)
BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
.addImm(16);
BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
.addReg(IsLP64 ? X86::RAX : X86::EAX);
BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
// Set up the CFG correctly.
BB->addSuccessor(bumpMBB);
BB->addSuccessor(mallocMBB);
mallocMBB->addSuccessor(continueMBB);
bumpMBB->addSuccessor(continueMBB);
// Take care of the PHI nodes.
BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
MI.getOperand(0).getReg())
.addReg(mallocPtrVReg)
.addMBB(mallocMBB)
.addReg(bumpSPPtrVReg)
.addMBB(bumpMBB);
// Delete the original pseudo instruction.
MI.eraseFromParent();
// And we're done.
return continueMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredCatchRet(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
MachineBasicBlock *TargetMBB = MI.getOperand(0).getMBB();
DebugLoc DL = MI.getDebugLoc();
assert(!isAsynchronousEHPersonality(
classifyEHPersonality(MF->getFunction().getPersonalityFn())) &&
"SEH does not use catchret!");
// Only 32-bit EH needs to worry about manually restoring stack pointers.
if (!Subtarget.is32Bit())
return BB;
// C++ EH creates a new target block to hold the restore code, and wires up
// the new block to the return destination with a normal JMP_4.
MachineBasicBlock *RestoreMBB =
MF->CreateMachineBasicBlock(BB->getBasicBlock());
assert(BB->succ_size() == 1);
MF->insert(std::next(BB->getIterator()), RestoreMBB);
RestoreMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(RestoreMBB);
MI.getOperand(0).setMBB(RestoreMBB);
auto RestoreMBBI = RestoreMBB->begin();
BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE));
BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB);
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredCatchPad(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const Constant *PerFn = MF->getFunction().getPersonalityFn();
bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn));
// Only 32-bit SEH requires special handling for catchpad.
if (IsSEH && Subtarget.is32Bit()) {
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE));
}
MI.eraseFromParent();
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredTLSAddr(MachineInstr &MI,
MachineBasicBlock *BB) const {
// So, here we replace TLSADDR with the sequence:
// adjust_stackdown -> TLSADDR -> adjust_stackup.
// We need this because TLSADDR is lowered into calls
// inside MC, therefore without the two markers shrink-wrapping
// may push the prologue/epilogue pass them.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
MachineFunction &MF = *BB->getParent();
// Emit CALLSEQ_START right before the instruction.
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
MachineInstrBuilder CallseqStart =
BuildMI(MF, DL, TII.get(AdjStackDown)).addImm(0).addImm(0).addImm(0);
BB->insert(MachineBasicBlock::iterator(MI), CallseqStart);
// Emit CALLSEQ_END right after the instruction.
// We don't call erase from parent because we want to keep the
// original instruction around.
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
MachineInstrBuilder CallseqEnd =
BuildMI(MF, DL, TII.get(AdjStackUp)).addImm(0).addImm(0);
BB->insertAfter(MachineBasicBlock::iterator(MI), CallseqEnd);
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredTLSCall(MachineInstr &MI,
MachineBasicBlock *BB) const {
// This is pretty easy. We're taking the value that we received from
// our load from the relocation, sticking it in either RDI (x86-64)
// or EAX and doing an indirect call. The return value will then
// be in the normal return register.
MachineFunction *F = BB->getParent();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
assert(Subtarget.isTargetDarwin() && "Darwin only instr emitted?");
assert(MI.getOperand(3).isGlobal() && "This should be a global");
// Get a register mask for the lowered call.
// FIXME: The 32-bit calls have non-standard calling conventions. Use a
// proper register mask.
const uint32_t *RegMask =
Subtarget.is64Bit() ?
Subtarget.getRegisterInfo()->getDarwinTLSCallPreservedMask() :
Subtarget.getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
if (Subtarget.is64Bit()) {
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(X86::MOV64rm), X86::RDI)
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
addDirectMem(MIB, X86::RDI);
MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
} else if (!isPositionIndependent()) {
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
.addReg(0)
.addImm(0)
.addReg(0)
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
addDirectMem(MIB, X86::EAX);
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
} else {
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(X86::MOV32rm), X86::EAX)
.addReg(TII->getGlobalBaseReg(F))
.addImm(0)
.addReg(0)
.addGlobalAddress(MI.getOperand(3).getGlobal(), 0,
MI.getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
addDirectMem(MIB, X86::EAX);
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
}
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
static unsigned getOpcodeForRetpoline(unsigned RPOpc) {
switch (RPOpc) {
case X86::RETPOLINE_CALL32:
return X86::CALLpcrel32;
case X86::RETPOLINE_CALL64:
return X86::CALL64pcrel32;
case X86::RETPOLINE_TCRETURN32:
return X86::TCRETURNdi;
case X86::RETPOLINE_TCRETURN64:
return X86::TCRETURNdi64;
}
llvm_unreachable("not retpoline opcode");
}
static const char *getRetpolineSymbol(const X86Subtarget &Subtarget,
unsigned Reg) {
if (Subtarget.useRetpolineExternalThunk()) {
// When using an external thunk for retpolines, we pick names that match the
// names GCC happens to use as well. This helps simplify the implementation
// of the thunks for kernels where they have no easy ability to create
// aliases and are doing non-trivial configuration of the thunk's body. For
// example, the Linux kernel will do boot-time hot patching of the thunk
// bodies and cannot easily export aliases of these to loaded modules.
//
// Note that at any point in the future, we may need to change the semantics
// of how we implement retpolines and at that time will likely change the
// name of the called thunk. Essentially, there is no hard guarantee that
// LLVM will generate calls to specific thunks, we merely make a best-effort
// attempt to help out kernels and other systems where duplicating the
// thunks is costly.
switch (Reg) {
case X86::EAX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__x86_indirect_thunk_eax";
case X86::ECX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__x86_indirect_thunk_ecx";
case X86::EDX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__x86_indirect_thunk_edx";
case X86::EDI:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__x86_indirect_thunk_edi";
case X86::R11:
assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!");
return "__x86_indirect_thunk_r11";
}
llvm_unreachable("unexpected reg for retpoline");
}
// When targeting an internal COMDAT thunk use an LLVM-specific name.
switch (Reg) {
case X86::EAX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__llvm_retpoline_eax";
case X86::ECX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__llvm_retpoline_ecx";
case X86::EDX:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__llvm_retpoline_edx";
case X86::EDI:
assert(!Subtarget.is64Bit() && "Should not be using a 32-bit thunk!");
return "__llvm_retpoline_edi";
case X86::R11:
assert(Subtarget.is64Bit() && "Should not be using a 64-bit thunk!");
return "__llvm_retpoline_r11";
}
llvm_unreachable("unexpected reg for retpoline");
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredRetpoline(MachineInstr &MI,
MachineBasicBlock *BB) const {
// Copy the virtual register into the R11 physical register and
// call the retpoline thunk.
DebugLoc DL = MI.getDebugLoc();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
Register CalleeVReg = MI.getOperand(0).getReg();
unsigned Opc = getOpcodeForRetpoline(MI.getOpcode());
// Find an available scratch register to hold the callee. On 64-bit, we can
// just use R11, but we scan for uses anyway to ensure we don't generate
// incorrect code. On 32-bit, we use one of EAX, ECX, or EDX that isn't
// already a register use operand to the call to hold the callee. If none
// are available, use EDI instead. EDI is chosen because EBX is the PIC base
// register and ESI is the base pointer to realigned stack frames with VLAs.
SmallVector<unsigned, 3> AvailableRegs;
if (Subtarget.is64Bit())
AvailableRegs.push_back(X86::R11);
else
AvailableRegs.append({X86::EAX, X86::ECX, X86::EDX, X86::EDI});
// Zero out any registers that are already used.
for (const auto &MO : MI.operands()) {
if (MO.isReg() && MO.isUse())
for (unsigned &Reg : AvailableRegs)
if (Reg == MO.getReg())
Reg = 0;
}
// Choose the first remaining non-zero available register.
unsigned AvailableReg = 0;
for (unsigned MaybeReg : AvailableRegs) {
if (MaybeReg) {
AvailableReg = MaybeReg;
break;
}
}
if (!AvailableReg)
report_fatal_error("calling convention incompatible with retpoline, no "
"available registers");
const char *Symbol = getRetpolineSymbol(Subtarget, AvailableReg);
BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY), AvailableReg)
.addReg(CalleeVReg);
MI.getOperand(0).ChangeToES(Symbol);
MI.setDesc(TII->get(Opc));
MachineInstrBuilder(*BB->getParent(), &MI)
.addReg(AvailableReg, RegState::Implicit | RegState::Kill);
return BB;
}
/// SetJmp implies future control flow change upon calling the corresponding
/// LongJmp.
/// Instead of using the 'return' instruction, the long jump fixes the stack and
/// performs an indirect branch. To do so it uses the registers that were stored
/// in the jump buffer (when calling SetJmp).
/// In case the shadow stack is enabled we need to fix it as well, because some
/// return addresses will be skipped.
/// The function will save the SSP for future fixing in the function
/// emitLongJmpShadowStackFix.
/// \sa emitLongJmpShadowStackFix
/// \param [in] MI The temporary Machine Instruction for the builtin.
/// \param [in] MBB The Machine Basic Block that will be modified.
void X86TargetLowering::emitSetJmpShadowStackFix(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineInstrBuilder MIB;
// Memory Reference.
SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
MI.memoperands_end());
// Initialize a register with zero.
MVT PVT = getPointerTy(MF->getDataLayout());
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
Register ZReg = MRI.createVirtualRegister(PtrRC);
unsigned XorRROpc = (PVT == MVT::i64) ? X86::XOR64rr : X86::XOR32rr;
BuildMI(*MBB, MI, DL, TII->get(XorRROpc))
.addDef(ZReg)
.addReg(ZReg, RegState::Undef)
.addReg(ZReg, RegState::Undef);
// Read the current SSP Register value to the zeroed register.
Register SSPCopyReg = MRI.createVirtualRegister(PtrRC);
unsigned RdsspOpc = (PVT == MVT::i64) ? X86::RDSSPQ : X86::RDSSPD;
BuildMI(*MBB, MI, DL, TII->get(RdsspOpc), SSPCopyReg).addReg(ZReg);
// Write the SSP register value to offset 3 in input memory buffer.
unsigned PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
MIB = BuildMI(*MBB, MI, DL, TII->get(PtrStoreOpc));
const int64_t SSPOffset = 3 * PVT.getStoreSize();
const unsigned MemOpndSlot = 1;
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI.getOperand(MemOpndSlot + i), SSPOffset);
else
MIB.add(MI.getOperand(MemOpndSlot + i));
}
MIB.addReg(SSPCopyReg);
MIB.setMemRefs(MMOs);
}
MachineBasicBlock *
X86TargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = ++MBB->getIterator();
// Memory Reference
SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
MI.memoperands_end());
unsigned DstReg;
unsigned MemOpndSlot = 0;
unsigned CurOp = 0;
DstReg = MI.getOperand(CurOp++).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
(void)TRI;
Register mainDstReg = MRI.createVirtualRegister(RC);
Register restoreDstReg = MRI.createVirtualRegister(RC);
MemOpndSlot = CurOp;
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
// For v = setjmp(buf), we generate
//
// thisMBB:
// buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB
// SjLjSetup restoreMBB
//
// mainMBB:
// v_main = 0
//
// sinkMBB:
// v = phi(main, restore)
//
// restoreMBB:
// if base pointer being used, load it from frame
// v_restore = 1
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, sinkMBB);
MF->push_back(restoreMBB);
restoreMBB->setHasAddressTaken();
MachineInstrBuilder MIB;
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
// thisMBB:
unsigned PtrStoreOpc = 0;
unsigned LabelReg = 0;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
!isPositionIndependent();
// Prepare IP either in reg or imm.
if (!UseImmLabel) {
PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
LabelReg = MRI.createVirtualRegister(PtrRC);
if (Subtarget.is64Bit()) {
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addMBB(restoreMBB)
.addReg(0);
} else {
const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
.addReg(XII->getGlobalBaseReg(MF))
.addImm(0)
.addReg(0)
.addMBB(restoreMBB, Subtarget.classifyBlockAddressReference())
.addReg(0);
}
} else
PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
// Store IP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI.getOperand(MemOpndSlot + i), LabelOffset);
else
MIB.add(MI.getOperand(MemOpndSlot + i));
}
if (!UseImmLabel)
MIB.addReg(LabelReg);
else
MIB.addMBB(restoreMBB);
MIB.setMemRefs(MMOs);
if (MF->getMMI().getModule()->getModuleFlag("cf-protection-return")) {
emitSetJmpShadowStackFix(MI, thisMBB);
}
// Setup
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
.addMBB(restoreMBB);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
MIB.addRegMask(RegInfo->getNoPreservedMask());
thisMBB->addSuccessor(mainMBB);
thisMBB->addSuccessor(restoreMBB);
// mainMBB:
// EAX = 0
BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
mainMBB->addSuccessor(sinkMBB);
// sinkMBB:
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
TII->get(X86::PHI), DstReg)
.addReg(mainDstReg).addMBB(mainMBB)
.addReg(restoreDstReg).addMBB(restoreMBB);
// restoreMBB:
if (RegInfo->hasBasePointer(*MF)) {
const bool Uses64BitFramePtr =
Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
X86FI->setRestoreBasePointer(MF);
Register FramePtr = RegInfo->getFrameRegister(*MF);
Register BasePtr = RegInfo->getBaseRegister();
unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
FramePtr, true, X86FI->getRestoreBasePointerOffset())
.setMIFlag(MachineInstr::FrameSetup);
}
BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
restoreMBB->addSuccessor(sinkMBB);
MI.eraseFromParent();
return sinkMBB;
}
/// Fix the shadow stack using the previously saved SSP pointer.
/// \sa emitSetJmpShadowStackFix
/// \param [in] MI The temporary Machine Instruction for the builtin.
/// \param [in] MBB The Machine Basic Block that will be modified.
/// \return The sink MBB that will perform the future indirect branch.
MachineBasicBlock *
X86TargetLowering::emitLongJmpShadowStackFix(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference
SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
MI.memoperands_end());
MVT PVT = getPointerTy(MF->getDataLayout());
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
// checkSspMBB:
// xor vreg1, vreg1
// rdssp vreg1
// test vreg1, vreg1
// je sinkMBB # Jump if Shadow Stack is not supported
// fallMBB:
// mov buf+24/12(%rip), vreg2
// sub vreg1, vreg2
// jbe sinkMBB # No need to fix the Shadow Stack
// fixShadowMBB:
// shr 3/2, vreg2
// incssp vreg2 # fix the SSP according to the lower 8 bits
// shr 8, vreg2
// je sinkMBB
// fixShadowLoopPrepareMBB:
// shl vreg2
// mov 128, vreg3
// fixShadowLoopMBB:
// incssp vreg3
// dec vreg2
// jne fixShadowLoopMBB # Iterate until you finish fixing
// # the Shadow Stack
// sinkMBB:
MachineFunction::iterator I = ++MBB->getIterator();
const BasicBlock *BB = MBB->getBasicBlock();
MachineBasicBlock *checkSspMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fallMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fixShadowMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fixShadowLoopPrepareMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *fixShadowLoopMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, checkSspMBB);
MF->insert(I, fallMBB);
MF->insert(I, fixShadowMBB);
MF->insert(I, fixShadowLoopPrepareMBB);
MF->insert(I, fixShadowLoopMBB);
MF->insert(I, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB, MachineBasicBlock::iterator(MI),
MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
MBB->addSuccessor(checkSspMBB);
// Initialize a register with zero.
Register ZReg = MRI.createVirtualRegister(PtrRC);
unsigned XorRROpc = (PVT == MVT::i64) ? X86::XOR64rr : X86::XOR32rr;
BuildMI(checkSspMBB, DL, TII->get(XorRROpc))
.addDef(ZReg)
.addReg(ZReg, RegState::Undef)
.addReg(ZReg, RegState::Undef);
// Read the current SSP Register value to the zeroed register.
Register SSPCopyReg = MRI.createVirtualRegister(PtrRC);
unsigned RdsspOpc = (PVT == MVT::i64) ? X86::RDSSPQ : X86::RDSSPD;
BuildMI(checkSspMBB, DL, TII->get(RdsspOpc), SSPCopyReg).addReg(ZReg);
// Check whether the result of the SSP register is zero and jump directly
// to the sink.
unsigned TestRROpc = (PVT == MVT::i64) ? X86::TEST64rr : X86::TEST32rr;
BuildMI(checkSspMBB, DL, TII->get(TestRROpc))
.addReg(SSPCopyReg)
.addReg(SSPCopyReg);
BuildMI(checkSspMBB, DL, TII->get(X86::JCC_1)).addMBB(sinkMBB).addImm(X86::COND_E);
checkSspMBB->addSuccessor(sinkMBB);
checkSspMBB->addSuccessor(fallMBB);
// Reload the previously saved SSP register value.
Register PrevSSPReg = MRI.createVirtualRegister(PtrRC);
unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
const int64_t SPPOffset = 3 * PVT.getStoreSize();
MachineInstrBuilder MIB =
BuildMI(fallMBB, DL, TII->get(PtrLoadOpc), PrevSSPReg);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (i == X86::AddrDisp)
MIB.addDisp(MO, SPPOffset);
else if (MO.isReg()) // Don't add the whole operand, we don't want to
// preserve kill flags.
MIB.addReg(MO.getReg());
else
MIB.add(MO);
}
MIB.setMemRefs(MMOs);
// Subtract the current SSP from the previous SSP.
Register SspSubReg = MRI.createVirtualRegister(PtrRC);
unsigned SubRROpc = (PVT == MVT::i64) ? X86::SUB64rr : X86::SUB32rr;
BuildMI(fallMBB, DL, TII->get(SubRROpc), SspSubReg)
.addReg(PrevSSPReg)
.addReg(SSPCopyReg);
// Jump to sink in case PrevSSPReg <= SSPCopyReg.
BuildMI(fallMBB, DL, TII->get(X86::JCC_1)).addMBB(sinkMBB).addImm(X86::COND_BE);
fallMBB->addSuccessor(sinkMBB);
fallMBB->addSuccessor(fixShadowMBB);
// Shift right by 2/3 for 32/64 because incssp multiplies the argument by 4/8.
unsigned ShrRIOpc = (PVT == MVT::i64) ? X86::SHR64ri : X86::SHR32ri;
unsigned Offset = (PVT == MVT::i64) ? 3 : 2;
Register SspFirstShrReg = MRI.createVirtualRegister(PtrRC);
BuildMI(fixShadowMBB, DL, TII->get(ShrRIOpc), SspFirstShrReg)
.addReg(SspSubReg)
.addImm(Offset);
// Increase SSP when looking only on the lower 8 bits of the delta.
unsigned IncsspOpc = (PVT == MVT::i64) ? X86::INCSSPQ : X86::INCSSPD;
BuildMI(fixShadowMBB, DL, TII->get(IncsspOpc)).addReg(SspFirstShrReg);
// Reset the lower 8 bits.
Register SspSecondShrReg = MRI.createVirtualRegister(PtrRC);
BuildMI(fixShadowMBB, DL, TII->get(ShrRIOpc), SspSecondShrReg)
.addReg(SspFirstShrReg)
.addImm(8);
// Jump if the result of the shift is zero.
BuildMI(fixShadowMBB, DL, TII->get(X86::JCC_1)).addMBB(sinkMBB).addImm(X86::COND_E);
fixShadowMBB->addSuccessor(sinkMBB);
fixShadowMBB->addSuccessor(fixShadowLoopPrepareMBB);
// Do a single shift left.
unsigned ShlR1Opc = (PVT == MVT::i64) ? X86::SHL64r1 : X86::SHL32r1;
Register SspAfterShlReg = MRI.createVirtualRegister(PtrRC);
BuildMI(fixShadowLoopPrepareMBB, DL, TII->get(ShlR1Opc), SspAfterShlReg)
.addReg(SspSecondShrReg);
// Save the value 128 to a register (will be used next with incssp).
Register Value128InReg = MRI.createVirtualRegister(PtrRC);
unsigned MovRIOpc = (PVT == MVT::i64) ? X86::MOV64ri32 : X86::MOV32ri;
BuildMI(fixShadowLoopPrepareMBB, DL, TII->get(MovRIOpc), Value128InReg)
.addImm(128);
fixShadowLoopPrepareMBB->addSuccessor(fixShadowLoopMBB);
// Since incssp only looks at the lower 8 bits, we might need to do several
// iterations of incssp until we finish fixing the shadow stack.
Register DecReg = MRI.createVirtualRegister(PtrRC);
Register CounterReg = MRI.createVirtualRegister(PtrRC);
BuildMI(fixShadowLoopMBB, DL, TII->get(X86::PHI), CounterReg)
.addReg(SspAfterShlReg)
.addMBB(fixShadowLoopPrepareMBB)
.addReg(DecReg)
.addMBB(fixShadowLoopMBB);
// Every iteration we increase the SSP by 128.
BuildMI(fixShadowLoopMBB, DL, TII->get(IncsspOpc)).addReg(Value128InReg);
// Every iteration we decrement the counter by 1.
unsigned DecROpc = (PVT == MVT::i64) ? X86::DEC64r : X86::DEC32r;
BuildMI(fixShadowLoopMBB, DL, TII->get(DecROpc), DecReg).addReg(CounterReg);
// Jump if the counter is not zero yet.
BuildMI(fixShadowLoopMBB, DL, TII->get(X86::JCC_1)).addMBB(fixShadowLoopMBB).addImm(X86::COND_NE);
fixShadowLoopMBB->addSuccessor(sinkMBB);
fixShadowLoopMBB->addSuccessor(fixShadowLoopMBB);
return sinkMBB;
}
MachineBasicBlock *
X86TargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference
SmallVector<MachineMemOperand *, 2> MMOs(MI.memoperands_begin(),
MI.memoperands_end());
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
const TargetRegisterClass *RC =
(PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
Register Tmp = MRI.createVirtualRegister(RC);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
Register SP = RegInfo->getStackRegister();
MachineInstrBuilder MIB;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t SPOffset = 2 * PVT.getStoreSize();
unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
MachineBasicBlock *thisMBB = MBB;
// When CET and shadow stack is enabled, we need to fix the Shadow Stack.
if (MF->getMMI().getModule()->getModuleFlag("cf-protection-return")) {
thisMBB = emitLongJmpShadowStackFix(MI, thisMBB);
}
// Reload FP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), FP);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isReg()) // Don't add the whole operand, we don't want to
// preserve kill flags.
MIB.addReg(MO.getReg());
else
MIB.add(MO);
}
MIB.setMemRefs(MMOs);
// Reload IP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (i == X86::AddrDisp)
MIB.addDisp(MO, LabelOffset);
else if (MO.isReg()) // Don't add the whole operand, we don't want to
// preserve kill flags.
MIB.addReg(MO.getReg());
else
MIB.add(MO);
}
MIB.setMemRefs(MMOs);
// Reload SP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrLoadOpc), SP);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI.getOperand(i), SPOffset);
else
MIB.add(MI.getOperand(i)); // We can preserve the kill flags here, it's
// the last instruction of the expansion.
}
MIB.setMemRefs(MMOs);
// Jump
BuildMI(*thisMBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
MI.eraseFromParent();
return thisMBB;
}
void X86TargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
MachineBasicBlock *MBB,
MachineBasicBlock *DispatchBB,
int FI) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!");
unsigned Op = 0;
unsigned VR = 0;
bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
!isPositionIndependent();
if (UseImmLabel) {
Op = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
} else {
const TargetRegisterClass *TRC =
(PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
VR = MRI->createVirtualRegister(TRC);
Op = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
if (Subtarget.is64Bit())
BuildMI(*MBB, MI, DL, TII->get(X86::LEA64r), VR)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addMBB(DispatchBB)
.addReg(0);
else
BuildMI(*MBB, MI, DL, TII->get(X86::LEA32r), VR)
.addReg(0) /* TII->getGlobalBaseReg(MF) */
.addImm(1)
.addReg(0)
.addMBB(DispatchBB, Subtarget.classifyBlockAddressReference())
.addReg(0);
}
MachineInstrBuilder MIB = BuildMI(*MBB, MI, DL, TII->get(Op));
addFrameReference(MIB, FI, Subtarget.is64Bit() ? 56 : 36);
if (UseImmLabel)
MIB.addMBB(DispatchBB);
else
MIB.addReg(VR);
}
MachineBasicBlock *
X86TargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
MachineBasicBlock *BB) const {
DebugLoc DL = MI.getDebugLoc();
MachineFunction *MF = BB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
int FI = MF->getFrameInfo().getFunctionContextIndex();
// Get a mapping of the call site numbers to all of the landing pads they're
// associated with.
DenseMap<unsigned, SmallVector<MachineBasicBlock *, 2>> CallSiteNumToLPad;
unsigned MaxCSNum = 0;
for (auto &MBB : *MF) {
if (!MBB.isEHPad())
continue;
MCSymbol *Sym = nullptr;
for (const auto &MI : MBB) {
if (MI.isDebugInstr())
continue;
assert(MI.isEHLabel() && "expected EH_LABEL");
Sym = MI.getOperand(0).getMCSymbol();
break;
}
if (!MF->hasCallSiteLandingPad(Sym))
continue;
for (unsigned CSI : MF->getCallSiteLandingPad(Sym)) {
CallSiteNumToLPad[CSI].push_back(&MBB);
MaxCSNum = std::max(MaxCSNum, CSI);
}
}
// Get an ordered list of the machine basic blocks for the jump table.
std::vector<MachineBasicBlock *> LPadList;
SmallPtrSet<MachineBasicBlock *, 32> InvokeBBs;
LPadList.reserve(CallSiteNumToLPad.size());
for (unsigned CSI = 1; CSI <= MaxCSNum; ++CSI) {
for (auto &LP : CallSiteNumToLPad[CSI]) {
LPadList.push_back(LP);
InvokeBBs.insert(LP->pred_begin(), LP->pred_end());
}
}
assert(!LPadList.empty() &&
"No landing pad destinations for the dispatch jump table!");
// Create the MBBs for the dispatch code.
// Shove the dispatch's address into the return slot in the function context.
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
DispatchBB->setIsEHPad(true);
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
BuildMI(TrapBB, DL, TII->get(X86::TRAP));
DispatchBB->addSuccessor(TrapBB);
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
DispatchBB->addSuccessor(DispContBB);
// Insert MBBs.
MF->push_back(DispatchBB);
MF->push_back(DispContBB);
MF->push_back(TrapBB);
// Insert code into the entry block that creates and registers the function
// context.
SetupEntryBlockForSjLj(MI, BB, DispatchBB, FI);
// Create the jump table and associated information
unsigned JTE = getJumpTableEncoding();
MachineJumpTableInfo *JTI = MF->getOrCreateJumpTableInfo(JTE);
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
const X86RegisterInfo &RI = TII->getRegisterInfo();
// Add a register mask with no preserved registers. This results in all
// registers being marked as clobbered.
if (RI.hasBasePointer(*MF)) {
const bool FPIs64Bit =
Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
X86MachineFunctionInfo *MFI = MF->getInfo<X86MachineFunctionInfo>();
MFI->setRestoreBasePointer(MF);
Register FP = RI.getFrameRegister(*MF);
Register BP = RI.getBaseRegister();
unsigned Op = FPIs64Bit ? X86::MOV64rm : X86::MOV32rm;
addRegOffset(BuildMI(DispatchBB, DL, TII->get(Op), BP), FP, true,
MFI->getRestoreBasePointerOffset())
.addRegMask(RI.getNoPreservedMask());
} else {
BuildMI(DispatchBB, DL, TII->get(X86::NOOP))
.addRegMask(RI.getNoPreservedMask());
}
// IReg is used as an index in a memory operand and therefore can't be SP
Register IReg = MRI->createVirtualRegister(&X86::GR32_NOSPRegClass);
addFrameReference(BuildMI(DispatchBB, DL, TII->get(X86::MOV32rm), IReg), FI,
Subtarget.is64Bit() ? 8 : 4);
BuildMI(DispatchBB, DL, TII->get(X86::CMP32ri))
.addReg(IReg)
.addImm(LPadList.size());
BuildMI(DispatchBB, DL, TII->get(X86::JCC_1)).addMBB(TrapBB).addImm(X86::COND_AE);
if (Subtarget.is64Bit()) {
Register BReg = MRI->createVirtualRegister(&X86::GR64RegClass);
Register IReg64 = MRI->createVirtualRegister(&X86::GR64_NOSPRegClass);
// leaq .LJTI0_0(%rip), BReg
BuildMI(DispContBB, DL, TII->get(X86::LEA64r), BReg)
.addReg(X86::RIP)
.addImm(1)
.addReg(0)
.addJumpTableIndex(MJTI)
.addReg(0);
// movzx IReg64, IReg
BuildMI(DispContBB, DL, TII->get(TargetOpcode::SUBREG_TO_REG), IReg64)
.addImm(0)
.addReg(IReg)
.addImm(X86::sub_32bit);
switch (JTE) {
case MachineJumpTableInfo::EK_BlockAddress:
// jmpq *(BReg,IReg64,8)
BuildMI(DispContBB, DL, TII->get(X86::JMP64m))
.addReg(BReg)
.addImm(8)
.addReg(IReg64)
.addImm(0)
.addReg(0);
break;
case MachineJumpTableInfo::EK_LabelDifference32: {
Register OReg = MRI->createVirtualRegister(&X86::GR32RegClass);
Register OReg64 = MRI->createVirtualRegister(&X86::GR64RegClass);
Register TReg = MRI->createVirtualRegister(&X86::GR64RegClass);
// movl (BReg,IReg64,4), OReg
BuildMI(DispContBB, DL, TII->get(X86::MOV32rm), OReg)
.addReg(BReg)
.addImm(4)
.addReg(IReg64)
.addImm(0)
.addReg(0);
// movsx OReg64, OReg
BuildMI(DispContBB, DL, TII->get(X86::MOVSX64rr32), OReg64).addReg(OReg);
// addq BReg, OReg64, TReg
BuildMI(DispContBB, DL, TII->get(X86::ADD64rr), TReg)
.addReg(OReg64)
.addReg(BReg);
// jmpq *TReg
BuildMI(DispContBB, DL, TII->get(X86::JMP64r)).addReg(TReg);
break;
}
default:
llvm_unreachable("Unexpected jump table encoding");
}
} else {
// jmpl *.LJTI0_0(,IReg,4)
BuildMI(DispContBB, DL, TII->get(X86::JMP32m))
.addReg(0)
.addImm(4)
.addReg(IReg)
.addJumpTableIndex(MJTI)
.addReg(0);
}
// Add the jump table entries as successors to the MBB.
SmallPtrSet<MachineBasicBlock *, 8> SeenMBBs;
for (auto &LP : LPadList)
if (SeenMBBs.insert(LP).second)
DispContBB->addSuccessor(LP);
// N.B. the order the invoke BBs are processed in doesn't matter here.
SmallVector<MachineBasicBlock *, 64> MBBLPads;
const MCPhysReg *SavedRegs = MF->getRegInfo().getCalleeSavedRegs();
for (MachineBasicBlock *MBB : InvokeBBs) {
// Remove the landing pad successor from the invoke block and replace it
// with the new dispatch block.
// Keep a copy of Successors since it's modified inside the loop.
SmallVector<MachineBasicBlock *, 8> Successors(MBB->succ_rbegin(),
MBB->succ_rend());
// FIXME: Avoid quadratic complexity.
for (auto MBBS : Successors) {
if (MBBS->isEHPad()) {
MBB->removeSuccessor(MBBS);
MBBLPads.push_back(MBBS);
}
}
MBB->addSuccessor(DispatchBB);
// Find the invoke call and mark all of the callee-saved registers as
// 'implicit defined' so that they're spilled. This prevents code from
// moving instructions to before the EH block, where they will never be
// executed.
for (auto &II : reverse(*MBB)) {
if (!II.isCall())
continue;
DenseMap<unsigned, bool> DefRegs;
for (auto &MOp : II.operands())
if (MOp.isReg())
DefRegs[MOp.getReg()] = true;
MachineInstrBuilder MIB(*MF, &II);
for (unsigned RegIdx = 0; SavedRegs[RegIdx]; ++RegIdx) {
unsigned Reg = SavedRegs[RegIdx];
if (!DefRegs[Reg])
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
}
break;
}
}
// Mark all former landing pads as non-landing pads. The dispatch is the only
// landing pad now.
for (auto &LP : MBBLPads)
LP->setIsEHPad(false);
// The instruction is gone now.
MI.eraseFromParent();
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
switch (MI.getOpcode()) {
default: llvm_unreachable("Unexpected instr type to insert");
case X86::TLS_addr32:
case X86::TLS_addr64:
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
return EmitLoweredTLSAddr(MI, BB);
case X86::RETPOLINE_CALL32:
case X86::RETPOLINE_CALL64:
case X86::RETPOLINE_TCRETURN32:
case X86::RETPOLINE_TCRETURN64:
return EmitLoweredRetpoline(MI, BB);
case X86::CATCHRET:
return EmitLoweredCatchRet(MI, BB);
case X86::CATCHPAD:
return EmitLoweredCatchPad(MI, BB);
case X86::SEG_ALLOCA_32:
case X86::SEG_ALLOCA_64:
return EmitLoweredSegAlloca(MI, BB);
case X86::TLSCall_32:
case X86::TLSCall_64:
return EmitLoweredTLSCall(MI, BB);
case X86::CMOV_FR32:
case X86::CMOV_FR32X:
case X86::CMOV_FR64:
case X86::CMOV_FR64X:
case X86::CMOV_GR8:
case X86::CMOV_GR16:
case X86::CMOV_GR32:
case X86::CMOV_RFP32:
case X86::CMOV_RFP64:
case X86::CMOV_RFP80:
case X86::CMOV_VR128:
case X86::CMOV_VR128X:
case X86::CMOV_VR256:
case X86::CMOV_VR256X:
case X86::CMOV_VR512:
case X86::CMOV_VK2:
case X86::CMOV_VK4:
case X86::CMOV_VK8:
case X86::CMOV_VK16:
case X86::CMOV_VK32:
case X86::CMOV_VK64:
return EmitLoweredSelect(MI, BB);
case X86::RDFLAGS32:
case X86::RDFLAGS64: {
unsigned PushF =
MI.getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64;
unsigned Pop = MI.getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r;
MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF));
// Permit reads of the EFLAGS and DF registers without them being defined.
// This intrinsic exists to read external processor state in flags, such as
// the trap flag, interrupt flag, and direction flag, none of which are
// modeled by the backend.
assert(Push->getOperand(2).getReg() == X86::EFLAGS &&
"Unexpected register in operand!");
Push->getOperand(2).setIsUndef();
assert(Push->getOperand(3).getReg() == X86::DF &&
"Unexpected register in operand!");
Push->getOperand(3).setIsUndef();
BuildMI(*BB, MI, DL, TII->get(Pop), MI.getOperand(0).getReg());
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
case X86::WRFLAGS32:
case X86::WRFLAGS64: {
unsigned Push =
MI.getOpcode() == X86::WRFLAGS32 ? X86::PUSH32r : X86::PUSH64r;
unsigned PopF =
MI.getOpcode() == X86::WRFLAGS32 ? X86::POPF32 : X86::POPF64;
BuildMI(*BB, MI, DL, TII->get(Push)).addReg(MI.getOperand(0).getReg());
BuildMI(*BB, MI, DL, TII->get(PopF));
MI.eraseFromParent(); // The pseudo is gone now.
return BB;
}
case X86::FP32_TO_INT16_IN_MEM:
case X86::FP32_TO_INT32_IN_MEM:
case X86::FP32_TO_INT64_IN_MEM:
case X86::FP64_TO_INT16_IN_MEM:
case X86::FP64_TO_INT32_IN_MEM:
case X86::FP64_TO_INT64_IN_MEM:
case X86::FP80_TO_INT16_IN_MEM:
case X86::FP80_TO_INT32_IN_MEM:
case X86::FP80_TO_INT64_IN_MEM: {
// Change the floating point control register to use "round towards zero"
// mode when truncating to an integer value.
int OrigCWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false);
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FNSTCW16m)), OrigCWFrameIdx);
// Load the old value of the control word...
Register OldCW = MF->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOVZX32rm16), OldCW),
OrigCWFrameIdx);
// OR 0b11 into bit 10 and 11. 0b11 is the encoding for round toward zero.
Register NewCW = MF->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
BuildMI(*BB, MI, DL, TII->get(X86::OR32ri), NewCW)
.addReg(OldCW, RegState::Kill).addImm(0xC00);
// Extract to 16 bits.
Register NewCW16 =
MF->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY), NewCW16)
.addReg(NewCW, RegState::Kill, X86::sub_16bit);
// Prepare memory for FLDCW.
int NewCWFrameIdx = MF->getFrameInfo().CreateStackObject(2, 2, false);
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)),
NewCWFrameIdx)
.addReg(NewCW16, RegState::Kill);
// Reload the modified control word now...
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FLDCW16m)), NewCWFrameIdx);
// Get the X86 opcode to use.
unsigned Opc;
switch (MI.getOpcode()) {
default: llvm_unreachable("illegal opcode!");
case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
}
X86AddressMode AM = getAddressFromInstr(&MI, 0);
addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
.addReg(MI.getOperand(X86::AddrNumOperands).getReg());
// Reload the original control word now.
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FLDCW16m)), OrigCWFrameIdx);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// xbegin
case X86::XBEGIN:
return emitXBegin(MI, BB, Subtarget.getInstrInfo());
case X86::VASTART_SAVE_XMM_REGS:
return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
case X86::VAARG_64:
return EmitVAARG64WithCustomInserter(MI, BB);
case X86::EH_SjLj_SetJmp32:
case X86::EH_SjLj_SetJmp64:
return emitEHSjLjSetJmp(MI, BB);
case X86::EH_SjLj_LongJmp32:
case X86::EH_SjLj_LongJmp64:
return emitEHSjLjLongJmp(MI, BB);
case X86::Int_eh_sjlj_setup_dispatch:
return EmitSjLjDispatchBlock(MI, BB);
case TargetOpcode::STATEPOINT:
// As an implementation detail, STATEPOINT shares the STACKMAP format at
// this point in the process. We diverge later.
return emitPatchPoint(MI, BB);
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
return emitPatchPoint(MI, BB);
case TargetOpcode::PATCHABLE_EVENT_CALL:
return emitXRayCustomEvent(MI, BB);
case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
return emitXRayTypedEvent(MI, BB);
case X86::LCMPXCHG8B: {
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
// In addition to 4 E[ABCD] registers implied by encoding, CMPXCHG8B
// requires a memory operand. If it happens that current architecture is
// i686 and for current function we need a base pointer
// - which is ESI for i686 - register allocator would not be able to
// allocate registers for an address in form of X(%reg, %reg, Y)
// - there never would be enough unreserved registers during regalloc
// (without the need for base ptr the only option would be X(%edi, %esi, Y).
// We are giving a hand to register allocator by precomputing the address in
// a new vreg using LEA.
// If it is not i686 or there is no base pointer - nothing to do here.
if (!Subtarget.is32Bit() || !TRI->hasBasePointer(*MF))
return BB;
// Even though this code does not necessarily needs the base pointer to
// be ESI, we check for that. The reason: if this assert fails, there are
// some changes happened in the compiler base pointer handling, which most
// probably have to be addressed somehow here.
assert(TRI->getBaseRegister() == X86::ESI &&
"LCMPXCHG8B custom insertion for i686 is written with X86::ESI as a "
"base pointer in mind");
MachineRegisterInfo &MRI = MF->getRegInfo();
MVT SPTy = getPointerTy(MF->getDataLayout());
const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
Register computedAddrVReg = MRI.createVirtualRegister(AddrRegClass);
X86AddressMode AM = getAddressFromInstr(&MI, 0);
// Regalloc does not need any help when the memory operand of CMPXCHG8B
// does not use index register.
if (AM.IndexReg == X86::NoRegister)
return BB;
// After X86TargetLowering::ReplaceNodeResults CMPXCHG8B is glued to its
// four operand definitions that are E[ABCD] registers. We skip them and
// then insert the LEA.
MachineBasicBlock::reverse_iterator RMBBI(MI.getReverseIterator());
while (RMBBI != BB->rend() && (RMBBI->definesRegister(X86::EAX) ||
RMBBI->definesRegister(X86::EBX) ||
RMBBI->definesRegister(X86::ECX) ||
RMBBI->definesRegister(X86::EDX))) {
++RMBBI;
}
MachineBasicBlock::iterator MBBI(RMBBI);
addFullAddress(
BuildMI(*BB, *MBBI, DL, TII->get(X86::LEA32r), computedAddrVReg), AM);
setDirectAddressInInstr(&MI, 0, computedAddrVReg);
return BB;
}
case X86::LCMPXCHG16B:
return BB;
case X86::LCMPXCHG8B_SAVE_EBX:
case X86::LCMPXCHG16B_SAVE_RBX: {
unsigned BasePtr =
MI.getOpcode() == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
if (!BB->isLiveIn(BasePtr))
BB->addLiveIn(BasePtr);
return BB;
}
}
}
//===----------------------------------------------------------------------===//
// X86 Optimization Hooks
//===----------------------------------------------------------------------===//
bool
X86TargetLowering::targetShrinkDemandedConstant(SDValue Op,
const APInt &Demanded,
TargetLoweringOpt &TLO) const {
// Only optimize Ands to prevent shrinking a constant that could be
// matched by movzx.
if (Op.getOpcode() != ISD::AND)
return false;
EVT VT = Op.getValueType();
// Ignore vectors.
if (VT.isVector())
return false;
unsigned Size = VT.getSizeInBits();
// Make sure the RHS really is a constant.
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C)
return false;
const APInt &Mask = C->getAPIntValue();
// Clear all non-demanded bits initially.
APInt ShrunkMask = Mask & Demanded;
// Find the width of the shrunk mask.
unsigned Width = ShrunkMask.getActiveBits();
// If the mask is all 0s there's nothing to do here.
if (Width == 0)
return false;
// Find the next power of 2 width, rounding up to a byte.
Width = PowerOf2Ceil(std::max(Width, 8U));
// Truncate the width to size to handle illegal types.
Width = std::min(Width, Size);
// Calculate a possible zero extend mask for this constant.
APInt ZeroExtendMask = APInt::getLowBitsSet(Size, Width);
// If we aren't changing the mask, just return true to keep it and prevent
// the caller from optimizing.
if (ZeroExtendMask == Mask)
return true;
// Make sure the new mask can be represented by a combination of mask bits
// and non-demanded bits.
if (!ZeroExtendMask.isSubsetOf(Mask | ~Demanded))
return false;
// Replace the constant with the zero extend mask.
SDLoc DL(Op);
SDValue NewC = TLO.DAG.getConstant(ZeroExtendMask, DL, VT);
SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
return TLO.CombineTo(Op, NewOp);
}
void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const {
unsigned BitWidth = Known.getBitWidth();
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
assert((Opc >= ISD::BUILTIN_OP_END ||
Opc == ISD::INTRINSIC_WO_CHAIN ||
Opc == ISD::INTRINSIC_W_CHAIN ||
Opc == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
Known.resetAll();
switch (Opc) {
default: break;
case X86ISD::SETCC:
Known.Zero.setBitsFrom(1);
break;
case X86ISD::MOVMSK: {
unsigned NumLoBits = Op.getOperand(0).getValueType().getVectorNumElements();
Known.Zero.setBitsFrom(NumLoBits);
break;
}
case X86ISD::PEXTRB:
case X86ISD::PEXTRW: {
SDValue Src = Op.getOperand(0);
EVT SrcVT = Src.getValueType();
APInt DemandedElt = APInt::getOneBitSet(SrcVT.getVectorNumElements(),
Op.getConstantOperandVal(1));
Known = DAG.computeKnownBits(Src, DemandedElt, Depth + 1);
Known = Known.zextOrTrunc(BitWidth, false);
Known.Zero.setBitsFrom(SrcVT.getScalarSizeInBits());
break;
}
case X86ISD::VSRAI:
case X86ISD::VSHLI:
case X86ISD::VSRLI: {
unsigned ShAmt = Op.getConstantOperandVal(1);
if (ShAmt >= VT.getScalarSizeInBits()) {
Known.setAllZero();
break;
}
Known = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (Opc == X86ISD::VSHLI) {
Known.Zero <<= ShAmt;
Known.One <<= ShAmt;
// Low bits are known zero.
Known.Zero.setLowBits(ShAmt);
} else if (Opc == X86ISD::VSRLI) {
Known.Zero.lshrInPlace(ShAmt);
Known.One.lshrInPlace(ShAmt);
// High bits are known zero.
Known.Zero.setHighBits(ShAmt);
} else {
Known.Zero.ashrInPlace(ShAmt);
Known.One.ashrInPlace(ShAmt);
}
break;
}
case X86ISD::PACKUS: {
// PACKUS is just a truncation if the upper half is zero.
APInt DemandedLHS, DemandedRHS;
getPackDemandedElts(VT, DemandedElts, DemandedLHS, DemandedRHS);
Known.One = APInt::getAllOnesValue(BitWidth * 2);
Known.Zero = APInt::getAllOnesValue(BitWidth * 2);
KnownBits Known2;
if (!!DemandedLHS) {
Known2 = DAG.computeKnownBits(Op.getOperand(0), DemandedLHS, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
if (!!DemandedRHS) {
Known2 = DAG.computeKnownBits(Op.getOperand(1), DemandedRHS, Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
if (Known.countMinLeadingZeros() < BitWidth)
Known.resetAll();
Known = Known.trunc(BitWidth);
break;
}
case X86ISD::ANDNP: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// ANDNP = (~X & Y);
Known.One &= Known2.Zero;
Known.Zero |= Known2.One;
break;
}
case X86ISD::FOR: {
KnownBits Known2;
Known = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
Known2 = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
// Output known-0 bits are only known if clear in both the LHS & RHS.
Known.Zero &= Known2.Zero;
// Output known-1 are known to be set if set in either the LHS | RHS.
Known.One |= Known2.One;
break;
}
case X86ISD::PSADBW: {
assert(VT.getScalarType() == MVT::i64 &&
Op.getOperand(0).getValueType().getScalarType() == MVT::i8 &&
"Unexpected PSADBW types");
// PSADBW - fills low 16 bits and zeros upper 48 bits of each i64 result.
Known.Zero.setBitsFrom(16);
break;
}
case X86ISD::CMOV: {
Known = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
// Only known if known in both the LHS and RHS.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
break;
}
}
// Handle target shuffles.
// TODO - use resolveTargetShuffleInputs once we can limit recursive depth.
if (isTargetShuffle(Opc)) {
bool IsUnary;
SmallVector<int, 64> Mask;
SmallVector<SDValue, 2> Ops;
if (getTargetShuffleMask(Op.getNode(), VT.getSimpleVT(), true, Ops, Mask,
IsUnary)) {
unsigned NumOps = Ops.size();
unsigned NumElts = VT.getVectorNumElements();
if (Mask.size() == NumElts) {
SmallVector<APInt, 2> DemandedOps(NumOps, APInt(NumElts, 0));
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
int M = Mask[i];
if (M == SM_SentinelUndef) {
// For UNDEF elements, we don't know anything about the common state
// of the shuffle result.
Known.resetAll();
break;
} else if (M == SM_SentinelZero) {
Known.One.clearAllBits();
continue;
}
assert(0 <= M && (unsigned)M < (NumOps * NumElts) &&
"Shuffle index out of range");
unsigned OpIdx = (unsigned)M / NumElts;
unsigned EltIdx = (unsigned)M % NumElts;
if (Ops[OpIdx].getValueType() != VT) {
// TODO - handle target shuffle ops with different value types.
Known.resetAll();
break;
}
DemandedOps[OpIdx].setBit(EltIdx);
}
// Known bits are the values that are shared by every demanded element.
for (unsigned i = 0; i != NumOps && !Known.isUnknown(); ++i) {
if (!DemandedOps[i])
continue;
KnownBits Known2 =
DAG.computeKnownBits(Ops[i], DemandedOps[i], Depth + 1);
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
}
}
}
}
}
unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
unsigned Depth) const {
EVT VT = Op.getValueType();
unsigned VTBits = VT.getScalarSizeInBits();
unsigned Opcode = Op.getOpcode();
switch (Opcode) {
case X86ISD::SETCC_CARRY:
// SETCC_CARRY sets the dest to ~0 for true or 0 for false.
return VTBits;
case X86ISD::VTRUNC: {
// TODO: Add DemandedElts support.
SDValue Src = Op.getOperand(0);
unsigned NumSrcBits = Src.getScalarValueSizeInBits();
assert(VTBits < NumSrcBits && "Illegal truncation input type");
unsigned Tmp = DAG.ComputeNumSignBits(Src, Depth + 1);
if (Tmp > (NumSrcBits - VTBits))
return Tmp - (NumSrcBits - VTBits);
return 1;
}
case X86ISD::PACKSS: {
// PACKSS is just a truncation if the sign bits extend to the packed size.
APInt DemandedLHS, DemandedRHS;
getPackDemandedElts(Op.getValueType(), DemandedElts, DemandedLHS,
DemandedRHS);
unsigned SrcBits = Op.getOperand(0).getScalarValueSizeInBits();
unsigned Tmp0 = SrcBits, Tmp1 = SrcBits;
if (!!DemandedLHS)
Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), DemandedLHS, Depth + 1);
if (!!DemandedRHS)
Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), DemandedRHS, Depth + 1);
unsigned Tmp = std::min(Tmp0, Tmp1);
if (Tmp > (SrcBits - VTBits))
return Tmp - (SrcBits - VTBits);
return 1;
}
case X86ISD::VSHLI: {
SDValue Src = Op.getOperand(0);
const APInt &ShiftVal = Op.getConstantOperandAPInt(1);
if (ShiftVal.uge(VTBits))
return VTBits; // Shifted all bits out --> zero.
unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1);
if (ShiftVal.uge(Tmp))
return 1; // Shifted all sign bits out --> unknown.
return Tmp - ShiftVal.getZExtValue();
}
case X86ISD::VSRAI: {
SDValue Src = Op.getOperand(0);
APInt ShiftVal = Op.getConstantOperandAPInt(1);
if (ShiftVal.uge(VTBits - 1))
return VTBits; // Sign splat.
unsigned Tmp = DAG.ComputeNumSignBits(Src, DemandedElts, Depth + 1);
ShiftVal += Tmp;
return ShiftVal.uge(VTBits) ? VTBits : ShiftVal.getZExtValue();
}
case X86ISD::PCMPGT:
case X86ISD::PCMPEQ:
case X86ISD::CMPP:
case X86ISD::VPCOM:
case X86ISD::VPCOMU:
// Vector compares return zero/all-bits result values.
return VTBits;
case X86ISD::ANDNP: {
unsigned Tmp0 =
DAG.ComputeNumSignBits(Op.getOperand(0), DemandedElts, Depth + 1);
if (Tmp0 == 1) return 1; // Early out.
unsigned Tmp1 =
DAG.ComputeNumSignBits(Op.getOperand(1), DemandedElts, Depth + 1);
return std::min(Tmp0, Tmp1);
}
case X86ISD::CMOV: {
unsigned Tmp0 = DAG.ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp0 == 1) return 1; // Early out.
unsigned Tmp1 = DAG.ComputeNumSignBits(Op.getOperand(1), Depth+1);
return std::min(Tmp0, Tmp1);
}
}
// Handle target shuffles.
// TODO - use resolveTargetShuffleInputs once we can limit recursive depth.
if (isTargetShuffle(Opcode)) {
bool IsUnary;
SmallVector<int, 64> Mask;
SmallVector<SDValue, 2> Ops;
if (getTargetShuffleMask(Op.getNode(), VT.getSimpleVT(), true, Ops, Mask,
IsUnary)) {
unsigned NumOps = Ops.size();
unsigned NumElts = VT.getVectorNumElements();
if (Mask.size() == NumElts) {
SmallVector<APInt, 2> DemandedOps(NumOps, APInt(NumElts, 0));
for (unsigned i = 0; i != NumElts; ++i) {
if (!DemandedElts[i])
continue;
int M = Mask[i];
if (M == SM_SentinelUndef) {
// For UNDEF elements, we don't know anything about the common state
// of the shuffle result.
return 1;
} else if (M == SM_SentinelZero) {
// Zero = all sign bits.
continue;
}
assert(0 <= M && (unsigned)M < (NumOps * NumElts) &&
"Shuffle index out of range");
unsigned OpIdx = (unsigned)M / NumElts;
unsigned EltIdx = (unsigned)M % NumElts;
if (Ops[OpIdx].getValueType() != VT) {
// TODO - handle target shuffle ops with different value types.
return 1;
}
DemandedOps[OpIdx].setBit(EltIdx);
}
unsigned Tmp0 = VTBits;
for (unsigned i = 0; i != NumOps && Tmp0 > 1; ++i) {
if (!DemandedOps[i])
continue;
unsigned Tmp1 =
DAG.ComputeNumSignBits(Ops[i], DemandedOps[i], Depth + 1);
Tmp0 = std::min(Tmp0, Tmp1);
}
return Tmp0;
}
}
}
// Fallback case.
return 1;
}
SDValue X86TargetLowering::unwrapAddress(SDValue N) const {
if (N->getOpcode() == X86ISD::Wrapper || N->getOpcode() == X86ISD::WrapperRIP)
return N->getOperand(0);
return N;
}
// Attempt to match a combined shuffle mask against supported unary shuffle
// instructions.
// TODO: Investigate sharing more of this with shuffle lowering.
static bool matchUnaryShuffle(MVT MaskVT, ArrayRef<int> Mask,
bool AllowFloatDomain, bool AllowIntDomain,
SDValue &V1, const SDLoc &DL, SelectionDAG &DAG,
const X86Subtarget &Subtarget, unsigned &Shuffle,
MVT &SrcVT, MVT &DstVT) {
unsigned NumMaskElts = Mask.size();
unsigned MaskEltSize = MaskVT.getScalarSizeInBits();
// Match against a VZEXT_MOVL vXi32 zero-extending instruction.
if (MaskEltSize == 32 && isUndefOrEqual(Mask[0], 0) &&
isUndefOrZero(Mask[1]) && isUndefInRange(Mask, 2, NumMaskElts - 2)) {
Shuffle = X86ISD::VZEXT_MOVL;
SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT;
return true;
}
// Match against a ANY/ZERO_EXTEND_VECTOR_INREG instruction.
// TODO: Add 512-bit vector support (split AVX512F and AVX512BW).
if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE41()) ||
(MaskVT.is256BitVector() && Subtarget.hasInt256()))) {
unsigned MaxScale = 64 / MaskEltSize;
for (unsigned Scale = 2; Scale <= MaxScale; Scale *= 2) {
bool MatchAny = true;
bool MatchZero = true;
unsigned NumDstElts = NumMaskElts / Scale;
for (unsigned i = 0; i != NumDstElts && (MatchAny || MatchZero); ++i) {
if (!isUndefOrEqual(Mask[i * Scale], (int)i)) {
MatchAny = MatchZero = false;
break;
}
MatchAny &= isUndefInRange(Mask, (i * Scale) + 1, Scale - 1);
MatchZero &= isUndefOrZeroInRange(Mask, (i * Scale) + 1, Scale - 1);
}
if (MatchAny || MatchZero) {
assert(MatchZero && "Failed to match zext but matched aext?");
unsigned SrcSize = std::max(128u, NumDstElts * MaskEltSize);
MVT ScalarTy = MaskVT.isInteger() ? MaskVT.getScalarType() :
MVT::getIntegerVT(MaskEltSize);
SrcVT = MVT::getVectorVT(ScalarTy, SrcSize / MaskEltSize);
if (SrcVT.getSizeInBits() != MaskVT.getSizeInBits())
V1 = extractSubVector(V1, 0, DAG, DL, SrcSize);
Shuffle = unsigned(MatchAny ? ISD::ANY_EXTEND : ISD::ZERO_EXTEND);
if (SrcVT.getVectorNumElements() != NumDstElts)
Shuffle = getOpcode_EXTEND_VECTOR_INREG(Shuffle);
DstVT = MVT::getIntegerVT(Scale * MaskEltSize);
DstVT = MVT::getVectorVT(DstVT, NumDstElts);
return true;
}
}
}
// Match against a VZEXT_MOVL instruction, SSE1 only supports 32-bits (MOVSS).
if (((MaskEltSize == 32) || (MaskEltSize == 64 && Subtarget.hasSSE2())) &&
isUndefOrEqual(Mask[0], 0) &&
isUndefOrZeroInRange(Mask, 1, NumMaskElts - 1)) {
Shuffle = X86ISD::VZEXT_MOVL;
SrcVT = DstVT = !Subtarget.hasSSE2() ? MVT::v4f32 : MaskVT;
return true;
}
// Check if we have SSE3 which will let us use MOVDDUP etc. The
// instructions are no slower than UNPCKLPD but has the option to
// fold the input operand into even an unaligned memory load.
if (MaskVT.is128BitVector() && Subtarget.hasSSE3() && AllowFloatDomain) {
if (isTargetShuffleEquivalent(Mask, {0, 0})) {
Shuffle = X86ISD::MOVDDUP;
SrcVT = DstVT = MVT::v2f64;
return true;
}
if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
Shuffle = X86ISD::MOVSLDUP;
SrcVT = DstVT = MVT::v4f32;
return true;
}
if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3})) {
Shuffle = X86ISD::MOVSHDUP;
SrcVT = DstVT = MVT::v4f32;
return true;
}
}
if (MaskVT.is256BitVector() && AllowFloatDomain) {
assert(Subtarget.hasAVX() && "AVX required for 256-bit vector shuffles");
if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2})) {
Shuffle = X86ISD::MOVDDUP;
SrcVT = DstVT = MVT::v4f64;
return true;
}
if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
Shuffle = X86ISD::MOVSLDUP;
SrcVT = DstVT = MVT::v8f32;
return true;
}
if (isTargetShuffleEquivalent(Mask, {1, 1, 3, 3, 5, 5, 7, 7})) {
Shuffle = X86ISD::MOVSHDUP;
SrcVT = DstVT = MVT::v8f32;
return true;
}
}
if (MaskVT.is512BitVector() && AllowFloatDomain) {
assert(Subtarget.hasAVX512() &&
"AVX512 required for 512-bit vector shuffles");
if (isTargetShuffleEquivalent(Mask, {0, 0, 2, 2, 4, 4, 6, 6})) {
Shuffle = X86ISD::MOVDDUP;
SrcVT = DstVT = MVT::v8f64;
return true;
}
if (isTargetShuffleEquivalent(
Mask, {0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14})) {
Shuffle = X86ISD::MOVSLDUP;
SrcVT = DstVT = MVT::v16f32;
return true;
}
if (isTargetShuffleEquivalent(
Mask, {1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15})) {
Shuffle = X86ISD::MOVSHDUP;
SrcVT = DstVT = MVT::v16f32;
return true;
}
}
return false;
}
// Attempt to match a combined shuffle mask against supported unary immediate
// permute instructions.
// TODO: Investigate sharing more of this with shuffle lowering.
static bool matchUnaryPermuteShuffle(MVT MaskVT, ArrayRef<int> Mask,
const APInt &Zeroable,
bool AllowFloatDomain, bool AllowIntDomain,
const X86Subtarget &Subtarget,
unsigned &Shuffle, MVT &ShuffleVT,
unsigned &PermuteImm) {
unsigned NumMaskElts = Mask.size();
unsigned InputSizeInBits = MaskVT.getSizeInBits();
unsigned MaskScalarSizeInBits = InputSizeInBits / NumMaskElts;
MVT MaskEltVT = MVT::getIntegerVT(MaskScalarSizeInBits);
bool ContainsZeros =
llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; });
// Handle VPERMI/VPERMILPD vXi64/vXi64 patterns.
if (!ContainsZeros && MaskScalarSizeInBits == 64) {
// Check for lane crossing permutes.
if (is128BitLaneCrossingShuffleMask(MaskEltVT, Mask)) {
// PERMPD/PERMQ permutes within a 256-bit vector (AVX2+).
if (Subtarget.hasAVX2() && MaskVT.is256BitVector()) {
Shuffle = X86ISD::VPERMI;
ShuffleVT = (AllowFloatDomain ? MVT::v4f64 : MVT::v4i64);
PermuteImm = getV4X86ShuffleImm(Mask);
return true;
}
if (Subtarget.hasAVX512() && MaskVT.is512BitVector()) {
SmallVector<int, 4> RepeatedMask;
if (is256BitLaneRepeatedShuffleMask(MVT::v8f64, Mask, RepeatedMask)) {
Shuffle = X86ISD::VPERMI;
ShuffleVT = (AllowFloatDomain ? MVT::v8f64 : MVT::v8i64);
PermuteImm = getV4X86ShuffleImm(RepeatedMask);
return true;
}
}
} else if (AllowFloatDomain && Subtarget.hasAVX()) {
// VPERMILPD can permute with a non-repeating shuffle.
Shuffle = X86ISD::VPERMILPI;
ShuffleVT = MVT::getVectorVT(MVT::f64, Mask.size());
PermuteImm = 0;
for (int i = 0, e = Mask.size(); i != e; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef)
continue;
assert(((M / 2) == (i / 2)) && "Out of range shuffle mask index");
PermuteImm |= (M & 1) << i;
}
return true;
}
}
// Handle PSHUFD/VPERMILPI vXi32/vXf32 repeated patterns.
// AVX introduced the VPERMILPD/VPERMILPS float permutes, before then we
// had to use 2-input SHUFPD/SHUFPS shuffles (not handled here).
if ((MaskScalarSizeInBits == 64 || MaskScalarSizeInBits == 32) &&
!ContainsZeros && (AllowIntDomain || Subtarget.hasAVX())) {
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
// Narrow the repeated mask to create 32-bit element permutes.
SmallVector<int, 4> WordMask = RepeatedMask;
if (MaskScalarSizeInBits == 64)
scaleShuffleMask<int>(2, RepeatedMask, WordMask);
Shuffle = (AllowIntDomain ? X86ISD::PSHUFD : X86ISD::VPERMILPI);
ShuffleVT = (AllowIntDomain ? MVT::i32 : MVT::f32);
ShuffleVT = MVT::getVectorVT(ShuffleVT, InputSizeInBits / 32);
PermuteImm = getV4X86ShuffleImm(WordMask);
return true;
}
}
// Handle PSHUFLW/PSHUFHW vXi16 repeated patterns.
if (!ContainsZeros && AllowIntDomain && MaskScalarSizeInBits == 16) {
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MaskEltVT, Mask, RepeatedMask)) {
ArrayRef<int> LoMask(RepeatedMask.data() + 0, 4);
ArrayRef<int> HiMask(RepeatedMask.data() + 4, 4);
// PSHUFLW: permute lower 4 elements only.
if (isUndefOrInRange(LoMask, 0, 4) &&
isSequentialOrUndefInRange(HiMask, 0, 4, 4)) {
Shuffle = X86ISD::PSHUFLW;
ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
PermuteImm = getV4X86ShuffleImm(LoMask);
return true;
}
// PSHUFHW: permute upper 4 elements only.
if (isUndefOrInRange(HiMask, 4, 8) &&
isSequentialOrUndefInRange(LoMask, 0, 4, 0)) {
// Offset the HiMask so that we can create the shuffle immediate.
int OffsetHiMask[4];
for (int i = 0; i != 4; ++i)
OffsetHiMask[i] = (HiMask[i] < 0 ? HiMask[i] : HiMask[i] - 4);
Shuffle = X86ISD::PSHUFHW;
ShuffleVT = MVT::getVectorVT(MVT::i16, InputSizeInBits / 16);
PermuteImm = getV4X86ShuffleImm(OffsetHiMask);
return true;
}
}
}
// Attempt to match against byte/bit shifts.
// FIXME: Add 512-bit support.
if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
int ShiftAmt = matchShuffleAsShift(ShuffleVT, Shuffle, MaskScalarSizeInBits,
Mask, 0, Zeroable, Subtarget);
if (0 < ShiftAmt) {
PermuteImm = (unsigned)ShiftAmt;
return true;
}
}
return false;
}
// Attempt to match a combined unary shuffle mask against supported binary
// shuffle instructions.
// TODO: Investigate sharing more of this with shuffle lowering.
static bool matchBinaryShuffle(MVT MaskVT, ArrayRef<int> Mask,
bool AllowFloatDomain, bool AllowIntDomain,
SDValue &V1, SDValue &V2, const SDLoc &DL,
SelectionDAG &DAG, const X86Subtarget &Subtarget,
unsigned &Shuffle, MVT &SrcVT, MVT &DstVT,
bool IsUnary) {
unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
if (MaskVT.is128BitVector()) {
if (isTargetShuffleEquivalent(Mask, {0, 0}) && AllowFloatDomain) {
V2 = V1;
V1 = (SM_SentinelUndef == Mask[0] ? DAG.getUNDEF(MVT::v4f32) : V1);
Shuffle = Subtarget.hasSSE2() ? X86ISD::UNPCKL : X86ISD::MOVLHPS;
SrcVT = DstVT = Subtarget.hasSSE2() ? MVT::v2f64 : MVT::v4f32;
return true;
}
if (isTargetShuffleEquivalent(Mask, {1, 1}) && AllowFloatDomain) {
V2 = V1;
Shuffle = Subtarget.hasSSE2() ? X86ISD::UNPCKH : X86ISD::MOVHLPS;
SrcVT = DstVT = Subtarget.hasSSE2() ? MVT::v2f64 : MVT::v4f32;
return true;
}
if (isTargetShuffleEquivalent(Mask, {0, 3}) && Subtarget.hasSSE2() &&
(AllowFloatDomain || !Subtarget.hasSSE41())) {
std::swap(V1, V2);
Shuffle = X86ISD::MOVSD;
SrcVT = DstVT = MVT::v2f64;
return true;
}
if (isTargetShuffleEquivalent(Mask, {4, 1, 2, 3}) &&
(AllowFloatDomain || !Subtarget.hasSSE41())) {
Shuffle = X86ISD::MOVSS;
SrcVT = DstVT = MVT::v4f32;
return true;
}
}
// Attempt to match against either an unary or binary PACKSS/PACKUS shuffle.
if (((MaskVT == MVT::v8i16 || MaskVT == MVT::v16i8) && Subtarget.hasSSE2()) ||
((MaskVT == MVT::v16i16 || MaskVT == MVT::v32i8) && Subtarget.hasInt256()) ||
((MaskVT == MVT::v32i16 || MaskVT == MVT::v64i8) && Subtarget.hasBWI())) {
if (matchShuffleWithPACK(MaskVT, SrcVT, V1, V2, Shuffle, Mask, DAG,
Subtarget)) {
DstVT = MaskVT;
return true;
}
}
// Attempt to match against either a unary or binary UNPCKL/UNPCKH shuffle.
if ((MaskVT == MVT::v4f32 && Subtarget.hasSSE1()) ||
(MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
(MaskVT.is256BitVector() && 32 <= EltSizeInBits && Subtarget.hasAVX()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX2()) ||
(MaskVT.is512BitVector() && Subtarget.hasAVX512())) {
if (matchShuffleWithUNPCK(MaskVT, V1, V2, Shuffle, IsUnary, Mask, DL, DAG,
Subtarget)) {
SrcVT = DstVT = MaskVT;
if (MaskVT.is256BitVector() && !Subtarget.hasAVX2())
SrcVT = DstVT = (32 == EltSizeInBits ? MVT::v8f32 : MVT::v4f64);
return true;
}
}
return false;
}
static bool matchBinaryPermuteShuffle(
MVT MaskVT, ArrayRef<int> Mask, const APInt &Zeroable,
bool AllowFloatDomain, bool AllowIntDomain, SDValue &V1, SDValue &V2,
const SDLoc &DL, SelectionDAG &DAG, const X86Subtarget &Subtarget,
unsigned &Shuffle, MVT &ShuffleVT, unsigned &PermuteImm) {
unsigned NumMaskElts = Mask.size();
unsigned EltSizeInBits = MaskVT.getScalarSizeInBits();
// Attempt to match against PALIGNR byte rotate.
if (AllowIntDomain && ((MaskVT.is128BitVector() && Subtarget.hasSSSE3()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX2()))) {
int ByteRotation = matchShuffleAsByteRotate(MaskVT, V1, V2, Mask);
if (0 < ByteRotation) {
Shuffle = X86ISD::PALIGNR;
ShuffleVT = MVT::getVectorVT(MVT::i8, MaskVT.getSizeInBits() / 8);
PermuteImm = ByteRotation;
return true;
}
}
// Attempt to combine to X86ISD::BLENDI.
if ((NumMaskElts <= 8 && ((Subtarget.hasSSE41() && MaskVT.is128BitVector()) ||
(Subtarget.hasAVX() && MaskVT.is256BitVector()))) ||
(MaskVT == MVT::v16i16 && Subtarget.hasAVX2())) {
uint64_t BlendMask = 0;
bool ForceV1Zero = false, ForceV2Zero = false;
SmallVector<int, 8> TargetMask(Mask.begin(), Mask.end());
if (matchShuffleAsBlend(V1, V2, TargetMask, Zeroable, ForceV1Zero,
ForceV2Zero, BlendMask)) {
if (MaskVT == MVT::v16i16) {
// We can only use v16i16 PBLENDW if the lanes are repeated.
SmallVector<int, 8> RepeatedMask;
if (isRepeatedTargetShuffleMask(128, MaskVT, TargetMask,
RepeatedMask)) {
assert(RepeatedMask.size() == 8 &&
"Repeated mask size doesn't match!");
PermuteImm = 0;
for (int i = 0; i < 8; ++i)
if (RepeatedMask[i] >= 8)
PermuteImm |= 1 << i;
V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
Shuffle = X86ISD::BLENDI;
ShuffleVT = MaskVT;
return true;
}
} else {
V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
PermuteImm = (unsigned)BlendMask;
Shuffle = X86ISD::BLENDI;
ShuffleVT = MaskVT;
return true;
}
}
}
// Attempt to combine to INSERTPS, but only if it has elements that need to
// be set to zero.
if (AllowFloatDomain && EltSizeInBits == 32 && Subtarget.hasSSE41() &&
MaskVT.is128BitVector() &&
llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; }) &&
matchShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) {
Shuffle = X86ISD::INSERTPS;
ShuffleVT = MVT::v4f32;
return true;
}
// Attempt to combine to SHUFPD.
if (AllowFloatDomain && EltSizeInBits == 64 &&
((MaskVT.is128BitVector() && Subtarget.hasSSE2()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX()) ||
(MaskVT.is512BitVector() && Subtarget.hasAVX512()))) {
bool ForceV1Zero = false, ForceV2Zero = false;
if (matchShuffleWithSHUFPD(MaskVT, V1, V2, ForceV1Zero, ForceV2Zero,
PermuteImm, Mask, Zeroable)) {
V1 = ForceV1Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V1;
V2 = ForceV2Zero ? getZeroVector(MaskVT, Subtarget, DAG, DL) : V2;
Shuffle = X86ISD::SHUFP;
ShuffleVT = MVT::getVectorVT(MVT::f64, MaskVT.getSizeInBits() / 64);
return true;
}
}
// Attempt to combine to SHUFPS.
if (AllowFloatDomain && EltSizeInBits == 32 &&
((MaskVT.is128BitVector() && Subtarget.hasSSE1()) ||
(MaskVT.is256BitVector() && Subtarget.hasAVX()) ||
(MaskVT.is512BitVector() && Subtarget.hasAVX512()))) {
SmallVector<int, 4> RepeatedMask;
if (isRepeatedTargetShuffleMask(128, MaskVT, Mask, RepeatedMask)) {
// Match each half of the repeated mask, to determine if its just
// referencing one of the vectors, is zeroable or entirely undef.
auto MatchHalf = [&](unsigned Offset, int &S0, int &S1) {
int M0 = RepeatedMask[Offset];
int M1 = RepeatedMask[Offset + 1];
if (isUndefInRange(RepeatedMask, Offset, 2)) {
return DAG.getUNDEF(MaskVT);
} else if (isUndefOrZeroInRange(RepeatedMask, Offset, 2)) {
S0 = (SM_SentinelUndef == M0 ? -1 : 0);
S1 = (SM_SentinelUndef == M1 ? -1 : 1);
return getZeroVector(MaskVT, Subtarget, DAG, DL);
} else if (isUndefOrInRange(M0, 0, 4) && isUndefOrInRange(M1, 0, 4)) {
S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
return V1;
} else if (isUndefOrInRange(M0, 4, 8) && isUndefOrInRange(M1, 4, 8)) {
S0 = (SM_SentinelUndef == M0 ? -1 : M0 & 3);
S1 = (SM_SentinelUndef == M1 ? -1 : M1 & 3);
return V2;
}
return SDValue();
};
int ShufMask[4] = {-1, -1, -1, -1};
SDValue Lo = MatchHalf(0, ShufMask[0], ShufMask[1]);
SDValue Hi = MatchHalf(2, ShufMask[2], ShufMask[3]);
if (Lo && Hi) {
V1 = Lo;
V2 = Hi;
Shuffle = X86ISD::SHUFP;
ShuffleVT = MVT::getVectorVT(MVT::f32, MaskVT.getSizeInBits() / 32);
PermuteImm = getV4X86ShuffleImm(ShufMask);
return true;
}
}
}
// Attempt to combine to INSERTPS more generally if X86ISD::SHUFP failed.
if (AllowFloatDomain && EltSizeInBits == 32 && Subtarget.hasSSE41() &&
MaskVT.is128BitVector() &&
matchShuffleAsInsertPS(V1, V2, PermuteImm, Zeroable, Mask, DAG)) {
Shuffle = X86ISD::INSERTPS;
ShuffleVT = MVT::v4f32;
return true;
}
return false;
}
static SDValue combineX86ShuffleChainWithExtract(
ArrayRef<SDValue> Inputs, SDValue Root, ArrayRef<int> BaseMask, int Depth,
bool HasVariableMask, bool AllowVariableMask, SelectionDAG &DAG,
const X86Subtarget &Subtarget);
/// Combine an arbitrary chain of shuffles into a single instruction if
/// possible.
///
/// This is the leaf of the recursive combine below. When we have found some
/// chain of single-use x86 shuffle instructions and accumulated the combined
/// shuffle mask represented by them, this will try to pattern match that mask
/// into either a single instruction if there is a special purpose instruction
/// for this operation, or into a PSHUFB instruction which is a fully general
/// instruction but should only be used to replace chains over a certain depth.
static SDValue combineX86ShuffleChain(ArrayRef<SDValue> Inputs, SDValue Root,
ArrayRef<int> BaseMask, int Depth,
bool HasVariableMask,
bool AllowVariableMask, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(!BaseMask.empty() && "Cannot combine an empty shuffle mask!");
assert((Inputs.size() == 1 || Inputs.size() == 2) &&
"Unexpected number of shuffle inputs!");
// Find the inputs that enter the chain. Note that multiple uses are OK
// here, we're not going to remove the operands we find.
bool UnaryShuffle = (Inputs.size() == 1);
SDValue V1 = peekThroughBitcasts(Inputs[0]);
SDValue V2 = (UnaryShuffle ? DAG.getUNDEF(V1.getValueType())
: peekThroughBitcasts(Inputs[1]));
MVT VT1 = V1.getSimpleValueType();
MVT VT2 = V2.getSimpleValueType();
MVT RootVT = Root.getSimpleValueType();
assert(VT1.getSizeInBits() == RootVT.getSizeInBits() &&
VT2.getSizeInBits() == RootVT.getSizeInBits() &&
"Vector size mismatch");
SDLoc DL(Root);
SDValue Res;
unsigned NumBaseMaskElts = BaseMask.size();
if (NumBaseMaskElts == 1) {
assert(BaseMask[0] == 0 && "Invalid shuffle index found!");
return DAG.getBitcast(RootVT, V1);
}
unsigned RootSizeInBits = RootVT.getSizeInBits();
unsigned NumRootElts = RootVT.getVectorNumElements();
unsigned BaseMaskEltSizeInBits = RootSizeInBits / NumBaseMaskElts;
bool FloatDomain = VT1.isFloatingPoint() || VT2.isFloatingPoint() ||
(RootVT.isFloatingPoint() && Depth >= 1) ||
(RootVT.is256BitVector() && !Subtarget.hasAVX2());
// Don't combine if we are a AVX512/EVEX target and the mask element size
// is different from the root element size - this would prevent writemasks
// from being reused.
// TODO - this currently prevents all lane shuffles from occurring.
// TODO - check for writemasks usage instead of always preventing combining.
// TODO - attempt to narrow Mask back to writemask size.
bool IsEVEXShuffle =
RootSizeInBits == 512 || (Subtarget.hasVLX() && RootSizeInBits >= 128);
// Attempt to match a subvector broadcast.
// shuffle(insert_subvector(undef, sub, 0), undef, 0, 0, 0, 0)
if (UnaryShuffle &&
(BaseMaskEltSizeInBits == 128 || BaseMaskEltSizeInBits == 256)) {
SmallVector<int, 64> BroadcastMask(NumBaseMaskElts, 0);
if (isTargetShuffleEquivalent(BaseMask, BroadcastMask)) {
SDValue Src = Inputs[0];
if (Src.getOpcode() == ISD::INSERT_SUBVECTOR &&
Src.getOperand(0).isUndef() &&
Src.getOperand(1).getValueSizeInBits() == BaseMaskEltSizeInBits &&
MayFoldLoad(Src.getOperand(1)) && isNullConstant(Src.getOperand(2))) {
return DAG.getBitcast(RootVT, DAG.getNode(X86ISD::SUBV_BROADCAST, DL,
Src.getValueType(),
Src.getOperand(1)));
}
}
}
// TODO - handle 128/256-bit lane shuffles of 512-bit vectors.
// Handle 128-bit lane shuffles of 256-bit vectors.
// If we have AVX2, prefer to use VPERMQ/VPERMPD for unary shuffles unless
// we need to use the zeroing feature.
// TODO - this should support binary shuffles.
if (UnaryShuffle && RootVT.is256BitVector() && NumBaseMaskElts == 2 &&
!(Subtarget.hasAVX2() && BaseMask[0] >= -1 && BaseMask[1] >= -1) &&
!isSequentialOrUndefOrZeroInRange(BaseMask, 0, 2, 0)) {
if (Depth == 0 && Root.getOpcode() == X86ISD::VPERM2X128)
return SDValue(); // Nothing to do!
MVT ShuffleVT = (FloatDomain ? MVT::v4f64 : MVT::v4i64);
unsigned PermMask = 0;
PermMask |= ((BaseMask[0] < 0 ? 0x8 : (BaseMask[0] & 1)) << 0);
PermMask |= ((BaseMask[1] < 0 ? 0x8 : (BaseMask[1] & 1)) << 4);
Res = DAG.getBitcast(ShuffleVT, V1);
Res = DAG.getNode(X86ISD::VPERM2X128, DL, ShuffleVT, Res,
DAG.getUNDEF(ShuffleVT),
DAG.getTargetConstant(PermMask, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
// For masks that have been widened to 128-bit elements or more,
// narrow back down to 64-bit elements.
SmallVector<int, 64> Mask;
if (BaseMaskEltSizeInBits > 64) {
assert((BaseMaskEltSizeInBits % 64) == 0 && "Illegal mask size");
int MaskScale = BaseMaskEltSizeInBits / 64;
scaleShuffleMask<int>(MaskScale, BaseMask, Mask);
} else {
Mask = SmallVector<int, 64>(BaseMask.begin(), BaseMask.end());
}
unsigned NumMaskElts = Mask.size();
unsigned MaskEltSizeInBits = RootSizeInBits / NumMaskElts;
// Determine the effective mask value type.
FloatDomain &= (32 <= MaskEltSizeInBits);
MVT MaskVT = FloatDomain ? MVT::getFloatingPointVT(MaskEltSizeInBits)
: MVT::getIntegerVT(MaskEltSizeInBits);
MaskVT = MVT::getVectorVT(MaskVT, NumMaskElts);
// Only allow legal mask types.
if (!DAG.getTargetLoweringInfo().isTypeLegal(MaskVT))
return SDValue();
// Attempt to match the mask against known shuffle patterns.
MVT ShuffleSrcVT, ShuffleVT;
unsigned Shuffle, PermuteImm;
// Which shuffle domains are permitted?
// Permit domain crossing at higher combine depths.
// TODO: Should we indicate which domain is preferred if both are allowed?
bool AllowFloatDomain = FloatDomain || (Depth >= 3);
bool AllowIntDomain = (!FloatDomain || (Depth >= 3)) && Subtarget.hasSSE2() &&
(!MaskVT.is256BitVector() || Subtarget.hasAVX2());
// Determine zeroable mask elements.
APInt KnownUndef, KnownZero;
resolveZeroablesFromTargetShuffle(Mask, KnownUndef, KnownZero);
APInt Zeroable = KnownUndef | KnownZero;
if (UnaryShuffle) {
// If we are shuffling a X86ISD::VZEXT_LOAD then we can use the load
// directly if we don't shuffle the lower element and we shuffle the upper
// (zero) elements within themselves.
if (V1.getOpcode() == X86ISD::VZEXT_LOAD &&
(cast<MemIntrinsicSDNode>(V1)->getMemoryVT().getScalarSizeInBits() %
MaskEltSizeInBits) == 0) {
unsigned Scale =
cast<MemIntrinsicSDNode>(V1)->getMemoryVT().getScalarSizeInBits() /
MaskEltSizeInBits;
ArrayRef<int> HiMask(Mask.data() + Scale, NumMaskElts - Scale);
if (isSequentialOrUndefInRange(Mask, 0, Scale, 0) &&
isUndefOrZeroOrInRange(HiMask, Scale, NumMaskElts)) {
return DAG.getBitcast(RootVT, V1);
}
}
// Attempt to match against broadcast-from-vector.
// Limit AVX1 to cases where we're loading+broadcasting a scalar element.
if ((Subtarget.hasAVX2() || (Subtarget.hasAVX() && 32 <= MaskEltSizeInBits))
&& (!IsEVEXShuffle || NumRootElts == NumMaskElts)) {
SmallVector<int, 64> BroadcastMask(NumMaskElts, 0);
if (isTargetShuffleEquivalent(Mask, BroadcastMask)) {
if (V1.getValueType() == MaskVT &&
V1.getOpcode() == ISD::SCALAR_TO_VECTOR &&
MayFoldLoad(V1.getOperand(0))) {
if (Depth == 0 && Root.getOpcode() == X86ISD::VBROADCAST)
return SDValue(); // Nothing to do!
Res = V1.getOperand(0);
Res = DAG.getNode(X86ISD::VBROADCAST, DL, MaskVT, Res);
return DAG.getBitcast(RootVT, Res);
}
if (Subtarget.hasAVX2()) {
if (Depth == 0 && Root.getOpcode() == X86ISD::VBROADCAST)
return SDValue(); // Nothing to do!
Res = DAG.getBitcast(MaskVT, V1);
Res = DAG.getNode(X86ISD::VBROADCAST, DL, MaskVT, Res);
return DAG.getBitcast(RootVT, Res);
}
}
}
SDValue NewV1 = V1; // Save operand in case early exit happens.
if (matchUnaryShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain, NewV1,
DL, DAG, Subtarget, Shuffle, ShuffleSrcVT,
ShuffleVT) &&
(!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
if (Depth == 0 && Root.getOpcode() == Shuffle)
return SDValue(); // Nothing to do!
Res = DAG.getBitcast(ShuffleSrcVT, NewV1);
Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res);
return DAG.getBitcast(RootVT, Res);
}
if (matchUnaryPermuteShuffle(MaskVT, Mask, Zeroable, AllowFloatDomain,
AllowIntDomain, Subtarget, Shuffle, ShuffleVT,
PermuteImm) &&
(!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
if (Depth == 0 && Root.getOpcode() == Shuffle)
return SDValue(); // Nothing to do!
Res = DAG.getBitcast(ShuffleVT, V1);
Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res,
DAG.getTargetConstant(PermuteImm, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
}
SDValue NewV1 = V1; // Save operands in case early exit happens.
SDValue NewV2 = V2;
if (matchBinaryShuffle(MaskVT, Mask, AllowFloatDomain, AllowIntDomain, NewV1,
NewV2, DL, DAG, Subtarget, Shuffle, ShuffleSrcVT,
ShuffleVT, UnaryShuffle) &&
(!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
if (Depth == 0 && Root.getOpcode() == Shuffle)
return SDValue(); // Nothing to do!
NewV1 = DAG.getBitcast(ShuffleSrcVT, NewV1);
NewV2 = DAG.getBitcast(ShuffleSrcVT, NewV2);
Res = DAG.getNode(Shuffle, DL, ShuffleVT, NewV1, NewV2);
return DAG.getBitcast(RootVT, Res);
}
NewV1 = V1; // Save operands in case early exit happens.
NewV2 = V2;
if (matchBinaryPermuteShuffle(
MaskVT, Mask, Zeroable, AllowFloatDomain, AllowIntDomain, NewV1,
NewV2, DL, DAG, Subtarget, Shuffle, ShuffleVT, PermuteImm) &&
(!IsEVEXShuffle || (NumRootElts == ShuffleVT.getVectorNumElements()))) {
if (Depth == 0 && Root.getOpcode() == Shuffle)
return SDValue(); // Nothing to do!
NewV1 = DAG.getBitcast(ShuffleVT, NewV1);
NewV2 = DAG.getBitcast(ShuffleVT, NewV2);
Res = DAG.getNode(Shuffle, DL, ShuffleVT, NewV1, NewV2,
DAG.getTargetConstant(PermuteImm, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
// Typically from here on, we need an integer version of MaskVT.
MVT IntMaskVT = MVT::getIntegerVT(MaskEltSizeInBits);
IntMaskVT = MVT::getVectorVT(IntMaskVT, NumMaskElts);
// Annoyingly, SSE4A instructions don't map into the above match helpers.
if (Subtarget.hasSSE4A() && AllowIntDomain && RootSizeInBits == 128) {
uint64_t BitLen, BitIdx;
if (matchShuffleAsEXTRQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx,
Zeroable)) {
if (Depth == 0 && Root.getOpcode() == X86ISD::EXTRQI)
return SDValue(); // Nothing to do!
V1 = DAG.getBitcast(IntMaskVT, V1);
Res = DAG.getNode(X86ISD::EXTRQI, DL, IntMaskVT, V1,
DAG.getTargetConstant(BitLen, DL, MVT::i8),
DAG.getTargetConstant(BitIdx, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
if (matchShuffleAsINSERTQ(IntMaskVT, V1, V2, Mask, BitLen, BitIdx)) {
if (Depth == 0 && Root.getOpcode() == X86ISD::INSERTQI)
return SDValue(); // Nothing to do!
V1 = DAG.getBitcast(IntMaskVT, V1);
V2 = DAG.getBitcast(IntMaskVT, V2);
Res = DAG.getNode(X86ISD::INSERTQI, DL, IntMaskVT, V1, V2,
DAG.getTargetConstant(BitLen, DL, MVT::i8),
DAG.getTargetConstant(BitIdx, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
}
// Don't try to re-form single instruction chains under any circumstances now
// that we've done encoding canonicalization for them.
if (Depth < 1)
return SDValue();
// Depth threshold above which we can efficiently use variable mask shuffles.
int VariableShuffleDepth = Subtarget.hasFastVariableShuffle() ? 1 : 2;
AllowVariableMask &= (Depth >= VariableShuffleDepth) || HasVariableMask;
bool MaskContainsZeros =
any_of(Mask, [](int M) { return M == SM_SentinelZero; });
if (is128BitLaneCrossingShuffleMask(MaskVT, Mask)) {
// If we have a single input lane-crossing shuffle then lower to VPERMV.
if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
((Subtarget.hasAVX2() &&
(MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
(Subtarget.hasAVX512() &&
(MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
(Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
(Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
(Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
Res = DAG.getBitcast(MaskVT, V1);
Res = DAG.getNode(X86ISD::VPERMV, DL, MaskVT, VPermMask, Res);
return DAG.getBitcast(RootVT, Res);
}
// Lower a unary+zero lane-crossing shuffle as VPERMV3 with a zero
// vector as the second source.
if (UnaryShuffle && AllowVariableMask &&
((Subtarget.hasAVX512() &&
(MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
(Subtarget.hasVLX() &&
(MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
(Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
(Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
(Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
// Adjust shuffle mask - replace SM_SentinelZero with second source index.
for (unsigned i = 0; i != NumMaskElts; ++i)
if (Mask[i] == SM_SentinelZero)
Mask[i] = NumMaskElts + i;
SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
Res = DAG.getBitcast(MaskVT, V1);
SDValue Zero = getZeroVector(MaskVT, Subtarget, DAG, DL);
Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, Res, VPermMask, Zero);
return DAG.getBitcast(RootVT, Res);
}
// If that failed and either input is extracted then try to combine as a
// shuffle with the larger type.
if (SDValue WideShuffle = combineX86ShuffleChainWithExtract(
Inputs, Root, BaseMask, Depth, HasVariableMask, AllowVariableMask,
DAG, Subtarget))
return WideShuffle;
// If we have a dual input lane-crossing shuffle then lower to VPERMV3.
if (AllowVariableMask && !MaskContainsZeros &&
((Subtarget.hasAVX512() &&
(MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
(Subtarget.hasVLX() &&
(MaskVT == MVT::v4f64 || MaskVT == MVT::v4i64 ||
MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
(Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() && MaskVT == MVT::v16i16) ||
(Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
(Subtarget.hasVBMI() && Subtarget.hasVLX() && MaskVT == MVT::v32i8))) {
SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
V1 = DAG.getBitcast(MaskVT, V1);
V2 = DAG.getBitcast(MaskVT, V2);
Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2);
return DAG.getBitcast(RootVT, Res);
}
return SDValue();
}
// See if we can combine a single input shuffle with zeros to a bit-mask,
// which is much simpler than any shuffle.
if (UnaryShuffle && MaskContainsZeros && AllowVariableMask &&
isSequentialOrUndefOrZeroInRange(Mask, 0, NumMaskElts, 0) &&
DAG.getTargetLoweringInfo().isTypeLegal(MaskVT)) {
APInt Zero = APInt::getNullValue(MaskEltSizeInBits);
APInt AllOnes = APInt::getAllOnesValue(MaskEltSizeInBits);
APInt UndefElts(NumMaskElts, 0);
SmallVector<APInt, 64> EltBits(NumMaskElts, Zero);
for (unsigned i = 0; i != NumMaskElts; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef) {
UndefElts.setBit(i);
continue;
}
if (M == SM_SentinelZero)
continue;
EltBits[i] = AllOnes;
}
SDValue BitMask = getConstVector(EltBits, UndefElts, MaskVT, DAG, DL);
Res = DAG.getBitcast(MaskVT, V1);
unsigned AndOpcode =
FloatDomain ? unsigned(X86ISD::FAND) : unsigned(ISD::AND);
Res = DAG.getNode(AndOpcode, DL, MaskVT, Res, BitMask);
return DAG.getBitcast(RootVT, Res);
}
// If we have a single input shuffle with different shuffle patterns in the
// the 128-bit lanes use the variable mask to VPERMILPS.
// TODO Combine other mask types at higher depths.
if (UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
((MaskVT == MVT::v8f32 && Subtarget.hasAVX()) ||
(MaskVT == MVT::v16f32 && Subtarget.hasAVX512()))) {
SmallVector<SDValue, 16> VPermIdx;
for (int M : Mask) {
SDValue Idx =
M < 0 ? DAG.getUNDEF(MVT::i32) : DAG.getConstant(M % 4, DL, MVT::i32);
VPermIdx.push_back(Idx);
}
SDValue VPermMask = DAG.getBuildVector(IntMaskVT, DL, VPermIdx);
Res = DAG.getBitcast(MaskVT, V1);
Res = DAG.getNode(X86ISD::VPERMILPV, DL, MaskVT, Res, VPermMask);
return DAG.getBitcast(RootVT, Res);
}
// With XOP, binary shuffles of 128/256-bit floating point vectors can combine
// to VPERMIL2PD/VPERMIL2PS.
if (AllowVariableMask && Subtarget.hasXOP() &&
(MaskVT == MVT::v2f64 || MaskVT == MVT::v4f64 || MaskVT == MVT::v4f32 ||
MaskVT == MVT::v8f32)) {
// VPERMIL2 Operation.
// Bits[3] - Match Bit.
// Bits[2:1] - (Per Lane) PD Shuffle Mask.
// Bits[2:0] - (Per Lane) PS Shuffle Mask.
unsigned NumLanes = MaskVT.getSizeInBits() / 128;
unsigned NumEltsPerLane = NumMaskElts / NumLanes;
SmallVector<int, 8> VPerm2Idx;
unsigned M2ZImm = 0;
for (int M : Mask) {
if (M == SM_SentinelUndef) {
VPerm2Idx.push_back(-1);
continue;
}
if (M == SM_SentinelZero) {
M2ZImm = 2;
VPerm2Idx.push_back(8);
continue;
}
int Index = (M % NumEltsPerLane) + ((M / NumMaskElts) * NumEltsPerLane);
Index = (MaskVT.getScalarSizeInBits() == 64 ? Index << 1 : Index);
VPerm2Idx.push_back(Index);
}
V1 = DAG.getBitcast(MaskVT, V1);
V2 = DAG.getBitcast(MaskVT, V2);
SDValue VPerm2MaskOp = getConstVector(VPerm2Idx, IntMaskVT, DAG, DL, true);
Res = DAG.getNode(X86ISD::VPERMIL2, DL, MaskVT, V1, V2, VPerm2MaskOp,
DAG.getTargetConstant(M2ZImm, DL, MVT::i8));
return DAG.getBitcast(RootVT, Res);
}
// If we have 3 or more shuffle instructions or a chain involving a variable
// mask, we can replace them with a single PSHUFB instruction profitably.
// Intel's manuals suggest only using PSHUFB if doing so replacing 5
// instructions, but in practice PSHUFB tends to be *very* fast so we're
// more aggressive.
if (UnaryShuffle && AllowVariableMask &&
((RootVT.is128BitVector() && Subtarget.hasSSSE3()) ||
(RootVT.is256BitVector() && Subtarget.hasAVX2()) ||
(RootVT.is512BitVector() && Subtarget.hasBWI()))) {
SmallVector<SDValue, 16> PSHUFBMask;
int NumBytes = RootVT.getSizeInBits() / 8;
int Ratio = NumBytes / NumMaskElts;
for (int i = 0; i < NumBytes; ++i) {
int M = Mask[i / Ratio];
if (M == SM_SentinelUndef) {
PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
continue;
}
if (M == SM_SentinelZero) {
PSHUFBMask.push_back(DAG.getConstant(255, DL, MVT::i8));
continue;
}
M = Ratio * M + i % Ratio;
assert((M / 16) == (i / 16) && "Lane crossing detected");
PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
}
MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
Res = DAG.getBitcast(ByteVT, V1);
SDValue PSHUFBMaskOp = DAG.getBuildVector(ByteVT, DL, PSHUFBMask);
Res = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Res, PSHUFBMaskOp);
return DAG.getBitcast(RootVT, Res);
}
// With XOP, if we have a 128-bit binary input shuffle we can always combine
// to VPPERM. We match the depth requirement of PSHUFB - VPPERM is never
// slower than PSHUFB on targets that support both.
if (AllowVariableMask && RootVT.is128BitVector() && Subtarget.hasXOP()) {
// VPPERM Mask Operation
// Bits[4:0] - Byte Index (0 - 31)
// Bits[7:5] - Permute Operation (0 - Source byte, 4 - ZERO)
SmallVector<SDValue, 16> VPPERMMask;
int NumBytes = 16;
int Ratio = NumBytes / NumMaskElts;
for (int i = 0; i < NumBytes; ++i) {
int M = Mask[i / Ratio];
if (M == SM_SentinelUndef) {
VPPERMMask.push_back(DAG.getUNDEF(MVT::i8));
continue;
}
if (M == SM_SentinelZero) {
VPPERMMask.push_back(DAG.getConstant(128, DL, MVT::i8));
continue;
}
M = Ratio * M + i % Ratio;
VPPERMMask.push_back(DAG.getConstant(M, DL, MVT::i8));
}
MVT ByteVT = MVT::v16i8;
V1 = DAG.getBitcast(ByteVT, V1);
V2 = DAG.getBitcast(ByteVT, V2);
SDValue VPPERMMaskOp = DAG.getBuildVector(ByteVT, DL, VPPERMMask);
Res = DAG.getNode(X86ISD::VPPERM, DL, ByteVT, V1, V2, VPPERMMaskOp);
return DAG.getBitcast(RootVT, Res);
}
// If that failed and either input is extracted then try to combine as a
// shuffle with the larger type.
if (SDValue WideShuffle = combineX86ShuffleChainWithExtract(
Inputs, Root, BaseMask, Depth, HasVariableMask, AllowVariableMask,
DAG, Subtarget))
return WideShuffle;
// If we have a dual input shuffle then lower to VPERMV3.
if (!UnaryShuffle && AllowVariableMask && !MaskContainsZeros &&
((Subtarget.hasAVX512() &&
(MaskVT == MVT::v8f64 || MaskVT == MVT::v8i64 ||
MaskVT == MVT::v16f32 || MaskVT == MVT::v16i32)) ||
(Subtarget.hasVLX() &&
(MaskVT == MVT::v2f64 || MaskVT == MVT::v2i64 || MaskVT == MVT::v4f64 ||
MaskVT == MVT::v4i64 || MaskVT == MVT::v4f32 || MaskVT == MVT::v4i32 ||
MaskVT == MVT::v8f32 || MaskVT == MVT::v8i32)) ||
(Subtarget.hasBWI() && MaskVT == MVT::v32i16) ||
(Subtarget.hasBWI() && Subtarget.hasVLX() &&
(MaskVT == MVT::v8i16 || MaskVT == MVT::v16i16)) ||
(Subtarget.hasVBMI() && MaskVT == MVT::v64i8) ||
(Subtarget.hasVBMI() && Subtarget.hasVLX() &&
(MaskVT == MVT::v16i8 || MaskVT == MVT::v32i8)))) {
SDValue VPermMask = getConstVector(Mask, IntMaskVT, DAG, DL, true);
V1 = DAG.getBitcast(MaskVT, V1);
V2 = DAG.getBitcast(MaskVT, V2);
Res = DAG.getNode(X86ISD::VPERMV3, DL, MaskVT, V1, VPermMask, V2);
return DAG.getBitcast(RootVT, Res);
}
// Failed to find any combines.
return SDValue();
}
// Combine an arbitrary chain of shuffles + extract_subvectors into a single
// instruction if possible.
//
// Wrapper for combineX86ShuffleChain that extends the shuffle mask to a larger
// type size to attempt to combine:
// shuffle(extract_subvector(x,c1),extract_subvector(y,c2),m1)
// -->
// extract_subvector(shuffle(x,y,m2),0)
static SDValue combineX86ShuffleChainWithExtract(
ArrayRef<SDValue> Inputs, SDValue Root, ArrayRef<int> BaseMask, int Depth,
bool HasVariableMask, bool AllowVariableMask, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned NumMaskElts = BaseMask.size();
unsigned NumInputs = Inputs.size();
if (NumInputs == 0)
return SDValue();
SmallVector<SDValue, 4> WideInputs(Inputs.begin(), Inputs.end());
SmallVector<unsigned, 4> Offsets(NumInputs, 0);
// Peek through subvectors.
// TODO: Support inter-mixed EXTRACT_SUBVECTORs + BITCASTs?
unsigned WideSizeInBits = WideInputs[0].getValueSizeInBits();
for (unsigned i = 0; i != NumInputs; ++i) {
SDValue &Src = WideInputs[i];
unsigned &Offset = Offsets[i];
Src = peekThroughBitcasts(Src);
EVT BaseVT = Src.getValueType();
while (Src.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
isa<ConstantSDNode>(Src.getOperand(1))) {
Offset += Src.getConstantOperandVal(1);
Src = Src.getOperand(0);
}
WideSizeInBits = std::max(WideSizeInBits,
(unsigned)Src.getValueSizeInBits());
assert((Offset % BaseVT.getVectorNumElements()) == 0 &&
"Unexpected subvector extraction");
Offset /= BaseVT.getVectorNumElements();
Offset *= NumMaskElts;
}
// Bail if we're always extracting from the lowest subvectors,
// combineX86ShuffleChain should match this for the current width.
if (llvm::all_of(Offsets, [](unsigned Offset) { return Offset == 0; }))
return SDValue();
EVT RootVT = Root.getValueType();
unsigned RootSizeInBits = RootVT.getSizeInBits();
unsigned Scale = WideSizeInBits / RootSizeInBits;
assert((WideSizeInBits % RootSizeInBits) == 0 &&
"Unexpected subvector extraction");
// If the src vector types aren't the same, see if we can extend
// them to match each other.
// TODO: Support different scalar types?
EVT WideSVT = WideInputs[0].getValueType().getScalarType();
if (llvm::any_of(WideInputs, [&WideSVT, &DAG](SDValue Op) {
return !DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()) ||
Op.getValueType().getScalarType() != WideSVT;
}))
return SDValue();
for (SDValue &NewInput : WideInputs) {
assert((WideSizeInBits % NewInput.getValueSizeInBits()) == 0 &&
"Shuffle vector size mismatch");
if (WideSizeInBits > NewInput.getValueSizeInBits())
NewInput = widenSubVector(NewInput, false, Subtarget, DAG,
SDLoc(NewInput), WideSizeInBits);
assert(WideSizeInBits == NewInput.getValueSizeInBits() &&
"Unexpected subvector extraction");
}
// Create new mask for larger type.
for (unsigned i = 1; i != NumInputs; ++i)
Offsets[i] += i * Scale * NumMaskElts;
SmallVector<int, 64> WideMask(BaseMask.begin(), BaseMask.end());
for (int &M : WideMask) {
if (M < 0)
continue;
M = (M % NumMaskElts) + Offsets[M / NumMaskElts];
}
WideMask.append((Scale - 1) * NumMaskElts, SM_SentinelUndef);
// Remove unused/repeated shuffle source ops.
resolveTargetShuffleInputsAndMask(WideInputs, WideMask);
assert(!WideInputs.empty() && "Shuffle with no inputs detected");
if (WideInputs.size() > 2)
return SDValue();
// Increase depth for every upper subvector we've peeked through.
Depth += count_if(Offsets, [](unsigned Offset) { return Offset > 0; });
// Attempt to combine wider chain.
// TODO: Can we use a better Root?
SDValue WideRoot = WideInputs[0];
if (SDValue WideShuffle = combineX86ShuffleChain(
WideInputs, WideRoot, WideMask, Depth, HasVariableMask,
AllowVariableMask, DAG, Subtarget)) {
WideShuffle =
extractSubVector(WideShuffle, 0, DAG, SDLoc(Root), RootSizeInBits);
return DAG.getBitcast(RootVT, WideShuffle);
}
return SDValue();
}
// Attempt to constant fold all of the constant source ops.
// Returns true if the entire shuffle is folded to a constant.
// TODO: Extend this to merge multiple constant Ops and update the mask.
static SDValue combineX86ShufflesConstants(ArrayRef<SDValue> Ops,
ArrayRef<int> Mask, SDValue Root,
bool HasVariableMask,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Root.getSimpleValueType();
unsigned SizeInBits = VT.getSizeInBits();
unsigned NumMaskElts = Mask.size();
unsigned MaskSizeInBits = SizeInBits / NumMaskElts;
unsigned NumOps = Ops.size();
// Extract constant bits from each source op.
bool OneUseConstantOp = false;
SmallVector<APInt, 16> UndefEltsOps(NumOps);
SmallVector<SmallVector<APInt, 16>, 16> RawBitsOps(NumOps);
for (unsigned i = 0; i != NumOps; ++i) {
SDValue SrcOp = Ops[i];
OneUseConstantOp |= SrcOp.hasOneUse();
if (!getTargetConstantBitsFromNode(SrcOp, MaskSizeInBits, UndefEltsOps[i],
RawBitsOps[i]))
return SDValue();
}
// Only fold if at least one of the constants is only used once or
// the combined shuffle has included a variable mask shuffle, this
// is to avoid constant pool bloat.
if (!OneUseConstantOp && !HasVariableMask)
return SDValue();
// Shuffle the constant bits according to the mask.
APInt UndefElts(NumMaskElts, 0);
APInt ZeroElts(NumMaskElts, 0);
APInt ConstantElts(NumMaskElts, 0);
SmallVector<APInt, 8> ConstantBitData(NumMaskElts,
APInt::getNullValue(MaskSizeInBits));
for (unsigned i = 0; i != NumMaskElts; ++i) {
int M = Mask[i];
if (M == SM_SentinelUndef) {
UndefElts.setBit(i);
continue;
} else if (M == SM_SentinelZero) {
ZeroElts.setBit(i);
continue;
}
assert(0 <= M && M < (int)(NumMaskElts * NumOps));
unsigned SrcOpIdx = (unsigned)M / NumMaskElts;
unsigned SrcMaskIdx = (unsigned)M % NumMaskElts;
auto &SrcUndefElts = UndefEltsOps[SrcOpIdx];
if (SrcUndefElts[SrcMaskIdx]) {
UndefElts.setBit(i);
continue;
}
auto &SrcEltBits = RawBitsOps[SrcOpIdx];
APInt &Bits = SrcEltBits[SrcMaskIdx];
if (!Bits) {
ZeroElts.setBit(i);
continue;
}
ConstantElts.setBit(i);
ConstantBitData[i] = Bits;
}
assert((UndefElts | ZeroElts | ConstantElts).isAllOnesValue());
// Create the constant data.
MVT MaskSVT;
if (VT.isFloatingPoint() && (MaskSizeInBits == 32 || MaskSizeInBits == 64))
MaskSVT = MVT::getFloatingPointVT(MaskSizeInBits);
else
MaskSVT = MVT::getIntegerVT(MaskSizeInBits);
MVT MaskVT = MVT::getVectorVT(MaskSVT, NumMaskElts);
SDLoc DL(Root);
SDValue CstOp = getConstVector(ConstantBitData, UndefElts, MaskVT, DAG, DL);
return DAG.getBitcast(VT, CstOp);
}
/// Fully generic combining of x86 shuffle instructions.
///
/// This should be the last combine run over the x86 shuffle instructions. Once
/// they have been fully optimized, this will recursively consider all chains
/// of single-use shuffle instructions, build a generic model of the cumulative
/// shuffle operation, and check for simpler instructions which implement this
/// operation. We use this primarily for two purposes:
///
/// 1) Collapse generic shuffles to specialized single instructions when
/// equivalent. In most cases, this is just an encoding size win, but
/// sometimes we will collapse multiple generic shuffles into a single
/// special-purpose shuffle.
/// 2) Look for sequences of shuffle instructions with 3 or more total
/// instructions, and replace them with the slightly more expensive SSSE3
/// PSHUFB instruction if available. We do this as the last combining step
/// to ensure we avoid using PSHUFB if we can implement the shuffle with
/// a suitable short sequence of other instructions. The PSHUFB will either
/// use a register or have to read from memory and so is slightly (but only
/// slightly) more expensive than the other shuffle instructions.
///
/// Because this is inherently a quadratic operation (for each shuffle in
/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
/// This should never be an issue in practice as the shuffle lowering doesn't
/// produce sequences of more than 8 instructions.
///
/// FIXME: We will currently miss some cases where the redundant shuffling
/// would simplify under the threshold for PSHUFB formation because of
/// combine-ordering. To fix this, we should do the redundant instruction
/// combining in this recursive walk.
static SDValue combineX86ShufflesRecursively(
ArrayRef<SDValue> SrcOps, int SrcOpIndex, SDValue Root,
ArrayRef<int> RootMask, ArrayRef<const SDNode *> SrcNodes, unsigned Depth,
bool HasVariableMask, bool AllowVariableMask, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(RootMask.size() > 0 &&
(RootMask.size() > 1 || (RootMask[0] == 0 && SrcOpIndex == 0)) &&
"Illegal shuffle root mask");
// Bound the depth of our recursive combine because this is ultimately
// quadratic in nature.
const unsigned MaxRecursionDepth = 8;
if (Depth >= MaxRecursionDepth)
return SDValue();
// Directly rip through bitcasts to find the underlying operand.
SDValue Op = SrcOps[SrcOpIndex];
Op = peekThroughOneUseBitcasts(Op);
MVT VT = Op.getSimpleValueType();
if (!VT.isVector())
return SDValue(); // Bail if we hit a non-vector.
assert(Root.getSimpleValueType().isVector() &&
"Shuffles operate on vector types!");
assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
"Can only combine shuffles of the same vector register size.");
// Extract target shuffle mask and resolve sentinels and inputs.
// TODO - determine Op's demanded elts from RootMask.
SmallVector<int, 64> OpMask;
SmallVector<SDValue, 2> OpInputs;
APInt OpUndef, OpZero;
APInt OpDemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
bool IsOpVariableMask = isTargetShuffleVariableMask(Op.getOpcode());
if (!getTargetShuffleInputs(Op, OpDemandedElts, OpInputs, OpMask, OpUndef,
OpZero, DAG, Depth, false))
return SDValue();
SmallVector<int, 64> Mask;
SmallVector<SDValue, 16> Ops;
// We don't need to merge masks if the root is empty.
bool EmptyRoot = (Depth == 0) && (RootMask.size() == 1);
if (EmptyRoot) {
// Only resolve zeros if it will remove an input, otherwise we might end
// up in an infinite loop.
bool ResolveKnownZeros = true;
if (!OpZero.isNullValue()) {
APInt UsedInputs = APInt::getNullValue(OpInputs.size());
for (int i = 0, e = OpMask.size(); i != e; ++i) {
int M = OpMask[i];
if (OpUndef[i] || OpZero[i] || isUndefOrZero(M))
continue;
UsedInputs.setBit(M / OpMask.size());
if (UsedInputs.isAllOnesValue()) {
ResolveKnownZeros = false;
break;
}
}
}
resolveTargetShuffleFromZeroables(OpMask, OpUndef, OpZero,
ResolveKnownZeros);
Mask = OpMask;
Ops.append(OpInputs.begin(), OpInputs.end());
} else {
resolveTargetShuffleFromZeroables(OpMask, OpUndef, OpZero);
// Add the inputs to the Ops list, avoiding duplicates.
Ops.append(SrcOps.begin(), SrcOps.end());
auto AddOp = [&Ops](SDValue Input, int InsertionPoint) -> int {
// Attempt to find an existing match.
SDValue InputBC = peekThroughBitcasts(Input);
for (int i = 0, e = Ops.size(); i < e; ++i)
if (InputBC == peekThroughBitcasts(Ops[i]))
return i;
// Match failed - should we replace an existing Op?
if (InsertionPoint >= 0) {
Ops[InsertionPoint] = Input;
return InsertionPoint;
}
// Add to the end of the Ops list.
Ops.push_back(Input);
return Ops.size() - 1;
};
SmallVector<int, 2> OpInputIdx;
for (SDValue OpInput : OpInputs)
OpInputIdx.push_back(
AddOp(OpInput, OpInputIdx.empty() ? SrcOpIndex : -1));
assert(((RootMask.size() > OpMask.size() &&
RootMask.size() % OpMask.size() == 0) ||
(OpMask.size() > RootMask.size() &&
OpMask.size() % RootMask.size() == 0) ||
OpMask.size() == RootMask.size()) &&
"The smaller number of elements must divide the larger.");
// This function can be performance-critical, so we rely on the power-of-2
// knowledge that we have about the mask sizes to replace div/rem ops with
// bit-masks and shifts.
assert(isPowerOf2_32(RootMask.size()) &&
"Non-power-of-2 shuffle mask sizes");
assert(isPowerOf2_32(OpMask.size()) && "Non-power-of-2 shuffle mask sizes");
unsigned RootMaskSizeLog2 = countTrailingZeros(RootMask.size());
unsigned OpMaskSizeLog2 = countTrailingZeros(OpMask.size());
unsigned MaskWidth = std::max<unsigned>(OpMask.size(), RootMask.size());
unsigned RootRatio =
std::max<unsigned>(1, OpMask.size() >> RootMaskSizeLog2);
unsigned OpRatio = std::max<unsigned>(1, RootMask.size() >> OpMaskSizeLog2);
assert((RootRatio == 1 || OpRatio == 1) &&
"Must not have a ratio for both incoming and op masks!");
assert(isPowerOf2_32(MaskWidth) && "Non-power-of-2 shuffle mask sizes");
assert(isPowerOf2_32(RootRatio) && "Non-power-of-2 shuffle mask sizes");
assert(isPowerOf2_32(OpRatio) && "Non-power-of-2 shuffle mask sizes");
unsigned RootRatioLog2 = countTrailingZeros(RootRatio);
unsigned OpRatioLog2 = countTrailingZeros(OpRatio);
Mask.resize(MaskWidth, SM_SentinelUndef);
// Merge this shuffle operation's mask into our accumulated mask. Note that
// this shuffle's mask will be the first applied to the input, followed by
// the root mask to get us all the way to the root value arrangement. The
// reason for this order is that we are recursing up the operation chain.
for (unsigned i = 0; i < MaskWidth; ++i) {
unsigned RootIdx = i >> RootRatioLog2;
if (RootMask[RootIdx] < 0) {
// This is a zero or undef lane, we're done.
Mask[i] = RootMask[RootIdx];
continue;
}
unsigned RootMaskedIdx =
RootRatio == 1
? RootMask[RootIdx]
: (RootMask[RootIdx] << RootRatioLog2) + (i & (RootRatio - 1));
// Just insert the scaled root mask value if it references an input other
// than the SrcOp we're currently inserting.
if ((RootMaskedIdx < (SrcOpIndex * MaskWidth)) ||
(((SrcOpIndex + 1) * MaskWidth) <= RootMaskedIdx)) {
Mask[i] = RootMaskedIdx;
continue;
}
RootMaskedIdx = RootMaskedIdx & (MaskWidth - 1);
unsigned OpIdx = RootMaskedIdx >> OpRatioLog2;
if (OpMask[OpIdx] < 0) {
// The incoming lanes are zero or undef, it doesn't matter which ones we
// are using.
Mask[i] = OpMask[OpIdx];
continue;
}
// Ok, we have non-zero lanes, map them through to one of the Op's inputs.
unsigned OpMaskedIdx = OpRatio == 1 ? OpMask[OpIdx]
: (OpMask[OpIdx] << OpRatioLog2) +
(RootMaskedIdx & (OpRatio - 1));
OpMaskedIdx = OpMaskedIdx & (MaskWidth - 1);
int InputIdx = OpMask[OpIdx] / (int)OpMask.size();
assert(0 <= OpInputIdx[InputIdx] && "Unknown target shuffle input");
OpMaskedIdx += OpInputIdx[InputIdx] * MaskWidth;
Mask[i] = OpMaskedIdx;
}
}
// Remove unused/repeated shuffle source ops.
resolveTargetShuffleInputsAndMask(Ops, Mask);
// Handle the all undef/zero cases early.
if (all_of(Mask, [](int Idx) { return Idx == SM_SentinelUndef; }))
return DAG.getUNDEF(Root.getValueType());
// TODO - should we handle the mixed zero/undef case as well? Just returning
// a zero mask will lose information on undef elements possibly reducing
// future combine possibilities.
if (all_of(Mask, [](int Idx) { return Idx < 0; }))
return getZeroVector(Root.getSimpleValueType(), Subtarget, DAG,
SDLoc(Root));
assert(!Ops.empty() && "Shuffle with no inputs detected");
HasVariableMask |= IsOpVariableMask;
// Update the list of shuffle nodes that have been combined so far.
SmallVector<const SDNode *, 16> CombinedNodes(SrcNodes.begin(),
SrcNodes.end());
CombinedNodes.push_back(Op.getNode());
// See if we can recurse into each shuffle source op (if it's a target
// shuffle). The source op should only be generally combined if it either has
// a single use (i.e. current Op) or all its users have already been combined,
// if not then we can still combine but should prevent generation of variable
// shuffles to avoid constant pool bloat.
// Don't recurse if we already have more source ops than we can combine in
// the remaining recursion depth.
if (Ops.size() < (MaxRecursionDepth - Depth)) {
for (int i = 0, e = Ops.size(); i < e; ++i) {
// For empty roots, we need to resolve zeroable elements before combining
// them with other shuffles.
SmallVector<int, 64> ResolvedMask = Mask;
if (EmptyRoot)
resolveTargetShuffleFromZeroables(ResolvedMask, OpUndef, OpZero);
bool AllowVar = false;
if (Ops[i].getNode()->hasOneUse() ||
SDNode::areOnlyUsersOf(CombinedNodes, Ops[i].getNode()))
AllowVar = AllowVariableMask;
if (SDValue Res = combineX86ShufflesRecursively(
Ops, i, Root, ResolvedMask, CombinedNodes, Depth + 1,
HasVariableMask, AllowVar, DAG, Subtarget))
return Res;
}
}
// Attempt to constant fold all of the constant source ops.
if (SDValue Cst = combineX86ShufflesConstants(
Ops, Mask, Root, HasVariableMask, DAG, Subtarget))
return Cst;
// We can only combine unary and binary shuffle mask cases.
if (Ops.size() <= 2) {
// Minor canonicalization of the accumulated shuffle mask to make it easier
// to match below. All this does is detect masks with sequential pairs of
// elements, and shrink them to the half-width mask. It does this in a loop
// so it will reduce the size of the mask to the minimal width mask which
// performs an equivalent shuffle.
SmallVector<int, 64> WidenedMask;
while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
Mask = std::move(WidenedMask);
}
// Canonicalization of binary shuffle masks to improve pattern matching by
// commuting the inputs.
if (Ops.size() == 2 && canonicalizeShuffleMaskWithCommute(Mask)) {
ShuffleVectorSDNode::commuteMask(Mask);
std::swap(Ops[0], Ops[1]);
}
// Finally, try to combine into a single shuffle instruction.
return combineX86ShuffleChain(Ops, Root, Mask, Depth, HasVariableMask,
AllowVariableMask, DAG, Subtarget);
}
// If that failed and any input is extracted then try to combine as a
// shuffle with the larger type.
return combineX86ShuffleChainWithExtract(Ops, Root, Mask, Depth,
HasVariableMask, AllowVariableMask,
DAG, Subtarget);
}
/// Helper entry wrapper to combineX86ShufflesRecursively.
static SDValue combineX86ShufflesRecursively(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
return combineX86ShufflesRecursively({Op}, 0, Op, {0}, {}, /*Depth*/ 0,
/*HasVarMask*/ false,
/*AllowVarMask*/ true, DAG, Subtarget);
}
/// Get the PSHUF-style mask from PSHUF node.
///
/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
/// PSHUF-style masks that can be reused with such instructions.
static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
MVT VT = N.getSimpleValueType();
SmallVector<int, 4> Mask;
SmallVector<SDValue, 2> Ops;
bool IsUnary;
bool HaveMask =
getTargetShuffleMask(N.getNode(), VT, false, Ops, Mask, IsUnary);
(void)HaveMask;
assert(HaveMask);
// If we have more than 128-bits, only the low 128-bits of shuffle mask
// matter. Check that the upper masks are repeats and remove them.
if (VT.getSizeInBits() > 128) {
int LaneElts = 128 / VT.getScalarSizeInBits();
#ifndef NDEBUG
for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
for (int j = 0; j < LaneElts; ++j)
assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
"Mask doesn't repeat in high 128-bit lanes!");
#endif
Mask.resize(LaneElts);
}
switch (N.getOpcode()) {
case X86ISD::PSHUFD:
return Mask;
case X86ISD::PSHUFLW:
Mask.resize(4);
return Mask;
case X86ISD::PSHUFHW:
Mask.erase(Mask.begin(), Mask.begin() + 4);
for (int &M : Mask)
M -= 4;
return Mask;
default:
llvm_unreachable("No valid shuffle instruction found!");
}
}
/// Search for a combinable shuffle across a chain ending in pshufd.
///
/// We walk up the chain and look for a combinable shuffle, skipping over
/// shuffles that we could hoist this shuffle's transformation past without
/// altering anything.
static SDValue
combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(N.getOpcode() == X86ISD::PSHUFD &&
"Called with something other than an x86 128-bit half shuffle!");
SDLoc DL(N);
// Walk up a single-use chain looking for a combinable shuffle. Keep a stack
// of the shuffles in the chain so that we can form a fresh chain to replace
// this one.
SmallVector<SDValue, 8> Chain;
SDValue V = N.getOperand(0);
for (; V.hasOneUse(); V = V.getOperand(0)) {
switch (V.getOpcode()) {
default:
return SDValue(); // Nothing combined!
case ISD::BITCAST:
// Skip bitcasts as we always know the type for the target specific
// instructions.
continue;
case X86ISD::PSHUFD:
// Found another dword shuffle.
break;
case X86ISD::PSHUFLW:
// Check that the low words (being shuffled) are the identity in the
// dword shuffle, and the high words are self-contained.
if (Mask[0] != 0 || Mask[1] != 1 ||
!(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
return SDValue();
Chain.push_back(V);
continue;
case X86ISD::PSHUFHW:
// Check that the high words (being shuffled) are the identity in the
// dword shuffle, and the low words are self-contained.
if (Mask[2] != 2 || Mask[3] != 3 ||
!(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
return SDValue();
Chain.push_back(V);
continue;
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
// For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
// shuffle into a preceding word shuffle.
if (V.getSimpleValueType().getVectorElementType() != MVT::i8 &&
V.getSimpleValueType().getVectorElementType() != MVT::i16)
return SDValue();
// Search for a half-shuffle which we can combine with.
unsigned CombineOp =
V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
if (V.getOperand(0) != V.getOperand(1) ||
!V->isOnlyUserOf(V.getOperand(0).getNode()))
return SDValue();
Chain.push_back(V);
V = V.getOperand(0);
do {
switch (V.getOpcode()) {
default:
return SDValue(); // Nothing to combine.
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
if (V.getOpcode() == CombineOp)
break;
Chain.push_back(V);
LLVM_FALLTHROUGH;
case ISD::BITCAST:
V = V.getOperand(0);
continue;
}
break;
} while (V.hasOneUse());
break;
}
// Break out of the loop if we break out of the switch.
break;
}
if (!V.hasOneUse())
// We fell out of the loop without finding a viable combining instruction.
return SDValue();
// Merge this node's mask and our incoming mask.
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
for (int &M : Mask)
M = VMask[M];
V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Rebuild the chain around this new shuffle.
while (!Chain.empty()) {
SDValue W = Chain.pop_back_val();
if (V.getValueType() != W.getOperand(0).getValueType())
V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
switch (W.getOpcode()) {
default:
llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
break;
case X86ISD::PSHUFD:
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
break;
}
}
if (V.getValueType() != N.getValueType())
V = DAG.getBitcast(N.getValueType(), V);
// Return the new chain to replace N.
return V;
}
/// Try to combine x86 target specific shuffles.
static SDValue combineTargetShuffle(SDValue N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
MVT VT = N.getSimpleValueType();
SmallVector<int, 4> Mask;
unsigned Opcode = N.getOpcode();
// Combine binary shuffle of 2 similar 'Horizontal' instructions into a
// single instruction.
if (VT.getScalarSizeInBits() == 64 &&
(Opcode == X86ISD::MOVSD || Opcode == X86ISD::UNPCKH ||
Opcode == X86ISD::UNPCKL)) {
auto BC0 = peekThroughBitcasts(N.getOperand(0));
auto BC1 = peekThroughBitcasts(N.getOperand(1));
EVT VT0 = BC0.getValueType();
EVT VT1 = BC1.getValueType();
unsigned Opcode0 = BC0.getOpcode();
unsigned Opcode1 = BC1.getOpcode();
if (Opcode0 == Opcode1 && VT0 == VT1 &&
(Opcode0 == X86ISD::FHADD || Opcode0 == X86ISD::HADD ||
Opcode0 == X86ISD::FHSUB || Opcode0 == X86ISD::HSUB ||
Opcode0 == X86ISD::PACKSS || Opcode0 == X86ISD::PACKUS)) {
SDValue Lo, Hi;
if (Opcode == X86ISD::MOVSD) {
Lo = BC1.getOperand(0);
Hi = BC0.getOperand(1);
} else {
Lo = BC0.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0);
Hi = BC1.getOperand(Opcode == X86ISD::UNPCKH ? 1 : 0);
}
SDValue Horiz = DAG.getNode(Opcode0, DL, VT0, Lo, Hi);
return DAG.getBitcast(VT, Horiz);
}
}
switch (Opcode) {
case X86ISD::VBROADCAST: {
SDValue Src = N.getOperand(0);
SDValue BC = peekThroughBitcasts(Src);
EVT SrcVT = Src.getValueType();
EVT BCVT = BC.getValueType();
// If broadcasting from another shuffle, attempt to simplify it.
// TODO - we really need a general SimplifyDemandedVectorElts mechanism.
if (isTargetShuffle(BC.getOpcode()) &&
VT.getScalarSizeInBits() % BCVT.getScalarSizeInBits() == 0) {
unsigned Scale = VT.getScalarSizeInBits() / BCVT.getScalarSizeInBits();
SmallVector<int, 16> DemandedMask(BCVT.getVectorNumElements(),
SM_SentinelUndef);
for (unsigned i = 0; i != Scale; ++i)
DemandedMask[i] = i;
if (SDValue Res = combineX86ShufflesRecursively(
{BC}, 0, BC, DemandedMask, {}, /*Depth*/ 0,
/*HasVarMask*/ false, /*AllowVarMask*/ true, DAG, Subtarget))
return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
DAG.getBitcast(SrcVT, Res));
}
// broadcast(bitcast(src)) -> bitcast(broadcast(src))
// 32-bit targets have to bitcast i64 to f64, so better to bitcast upward.
if (Src.getOpcode() == ISD::BITCAST &&
SrcVT.getScalarSizeInBits() == BCVT.getScalarSizeInBits()) {
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), BCVT.getScalarType(),
VT.getVectorNumElements());
return DAG.getBitcast(VT, DAG.getNode(X86ISD::VBROADCAST, DL, NewVT, BC));
}
// Reduce broadcast source vector to lowest 128-bits.
if (SrcVT.getSizeInBits() > 128)
return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
extract128BitVector(Src, 0, DAG, DL));
// broadcast(scalar_to_vector(x)) -> broadcast(x).
if (Src.getOpcode() == ISD::SCALAR_TO_VECTOR)
return DAG.getNode(X86ISD::VBROADCAST, DL, VT, Src.getOperand(0));
// Share broadcast with the longest vector and extract low subvector (free).
for (SDNode *User : Src->uses())
if (User != N.getNode() && User->getOpcode() == X86ISD::VBROADCAST &&
User->getValueSizeInBits(0) > VT.getSizeInBits()) {
return extractSubVector(SDValue(User, 0), 0, DAG, DL,
VT.getSizeInBits());
}
// vbroadcast(scalarload X) -> vbroadcast_load X
// For float loads, extract other uses of the scalar from the broadcast.
if (!SrcVT.isVector() && (Src.hasOneUse() || VT.isFloatingPoint()) &&
ISD::isNormalLoad(Src.getNode())) {
LoadSDNode *LN = cast<LoadSDNode>(Src);
SDVTList Tys = DAG.getVTList(VT, MVT::Other);
SDValue Ops[] = { LN->getChain(), LN->getBasePtr() };
SDValue BcastLd =
DAG.getMemIntrinsicNode(X86ISD::VBROADCAST_LOAD, DL, Tys, Ops,
LN->getMemoryVT(), LN->getMemOperand());
// If the load value is used only by N, replace it via CombineTo N.
bool NoReplaceExtract = Src.hasOneUse();
DCI.CombineTo(N.getNode(), BcastLd);
if (NoReplaceExtract) {
DAG.ReplaceAllUsesOfValueWith(SDValue(LN, 1), BcastLd.getValue(1));
DCI.recursivelyDeleteUnusedNodes(LN);
} else {
SDValue Scl = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT, BcastLd,
DAG.getIntPtrConstant(0, DL));
DCI.CombineTo(LN, Scl, BcastLd.getValue(1));
}
return N; // Return N so it doesn't get rechecked!
}
return SDValue();
}
case X86ISD::BLENDI: {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
// blend(bitcast(x),bitcast(y)) -> bitcast(blend(x,y)) to narrower types.
// TODO: Handle MVT::v16i16 repeated blend mask.
if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST &&
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) {
MVT SrcVT = N0.getOperand(0).getSimpleValueType();
if ((VT.getScalarSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
SrcVT.getScalarSizeInBits() >= 32) {
unsigned BlendMask = N.getConstantOperandVal(2);
unsigned Size = VT.getVectorNumElements();
unsigned Scale = VT.getScalarSizeInBits() / SrcVT.getScalarSizeInBits();
BlendMask = scaleVectorShuffleBlendMask(BlendMask, Size, Scale);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::BLENDI, DL, SrcVT, N0.getOperand(0),
N1.getOperand(0),
DAG.getTargetConstant(BlendMask, DL, MVT::i8)));
}
}
return SDValue();
}
case X86ISD::VPERMI: {
// vpermi(bitcast(x)) -> bitcast(vpermi(x)) for same number of elements.
// TODO: Remove when we have preferred domains in combineX86ShuffleChain.
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
unsigned EltSizeInBits = VT.getScalarSizeInBits();
if (N0.getOpcode() == ISD::BITCAST &&
N0.getOperand(0).getScalarValueSizeInBits() == EltSizeInBits) {
SDValue Src = N0.getOperand(0);
EVT SrcVT = Src.getValueType();
SDValue Res = DAG.getNode(X86ISD::VPERMI, DL, SrcVT, Src, N1);
return DAG.getBitcast(VT, Res);
}
return SDValue();
}
case X86ISD::PSHUFD:
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
Mask = getPSHUFShuffleMask(N);
assert(Mask.size() == 4);
break;
case X86ISD::MOVSD:
case X86ISD::MOVSS: {
SDValue N0 = N.getOperand(0);
SDValue N1 = N.getOperand(1);
// Canonicalize scalar FPOps:
// MOVS*(N0, OP(N0, N1)) --> MOVS*(N0, SCALAR_TO_VECTOR(OP(N0[0], N1[0])))
// If commutable, allow OP(N1[0], N0[0]).
unsigned Opcode1 = N1.getOpcode();
if (Opcode1 == ISD::FADD || Opcode1 == ISD::FMUL || Opcode1 == ISD::FSUB ||
Opcode1 == ISD::FDIV) {
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
if (N10 == N0 ||
(N11 == N0 && (Opcode1 == ISD::FADD || Opcode1 == ISD::FMUL))) {
if (N10 != N0)
std::swap(N10, N11);
MVT SVT = VT.getVectorElementType();
SDValue ZeroIdx = DAG.getIntPtrConstant(0, DL);
N10 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SVT, N10, ZeroIdx);
N11 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SVT, N11, ZeroIdx);
SDValue Scl = DAG.getNode(Opcode1, DL, SVT, N10, N11);
SDValue SclVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl);
return DAG.getNode(Opcode, DL, VT, N0, SclVec);
}
}
return SDValue();
}
case X86ISD::INSERTPS: {
assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32");
SDValue Op0 = N.getOperand(0);
SDValue Op1 = N.getOperand(1);
SDValue Op2 = N.getOperand(2);
unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue();
unsigned SrcIdx = (InsertPSMask >> 6) & 0x3;
unsigned DstIdx = (InsertPSMask >> 4) & 0x3;
unsigned ZeroMask = InsertPSMask & 0xF;
// If we zero out all elements from Op0 then we don't need to reference it.
if (((ZeroMask | (1u << DstIdx)) == 0xF) && !Op0.isUndef())
return DAG.getNode(X86ISD::INSERTPS, DL, VT, DAG.getUNDEF(VT), Op1,
DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
// If we zero out the element from Op1 then we don't need to reference it.
if ((ZeroMask & (1u << DstIdx)) && !Op1.isUndef())
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
// Attempt to merge insertps Op1 with an inner target shuffle node.
SmallVector<int, 8> TargetMask1;
SmallVector<SDValue, 2> Ops1;
APInt KnownUndef1, KnownZero1;
if (getTargetShuffleAndZeroables(Op1, TargetMask1, Ops1, KnownUndef1,
KnownZero1)) {
if (KnownUndef1[SrcIdx] || KnownZero1[SrcIdx]) {
// Zero/UNDEF insertion - zero out element and remove dependency.
InsertPSMask |= (1u << DstIdx);
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
}
// Update insertps mask srcidx and reference the source input directly.
int M = TargetMask1[SrcIdx];
assert(0 <= M && M < 8 && "Shuffle index out of range");
InsertPSMask = (InsertPSMask & 0x3f) | ((M & 0x3) << 6);
Op1 = Ops1[M < 4 ? 0 : 1];
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
}
// Attempt to merge insertps Op0 with an inner target shuffle node.
SmallVector<int, 8> TargetMask0;
SmallVector<SDValue, 2> Ops0;
APInt KnownUndef0, KnownZero0;
if (getTargetShuffleAndZeroables(Op0, TargetMask0, Ops0, KnownUndef0,
KnownZero0)) {
bool Updated = false;
bool UseInput00 = false;
bool UseInput01 = false;
for (int i = 0; i != 4; ++i) {
if ((InsertPSMask & (1u << i)) || (i == (int)DstIdx)) {
// No change if element is already zero or the inserted element.
continue;
} else if (KnownUndef0[i] || KnownZero0[i]) {
// If the target mask is undef/zero then we must zero the element.
InsertPSMask |= (1u << i);
Updated = true;
continue;
}
// The input vector element must be inline.
int M = TargetMask0[i];
if (M != i && M != (i + 4))
return SDValue();
// Determine which inputs of the target shuffle we're using.
UseInput00 |= (0 <= M && M < 4);
UseInput01 |= (4 <= M);
}
// If we're not using both inputs of the target shuffle then use the
// referenced input directly.
if (UseInput00 && !UseInput01) {
Updated = true;
Op0 = Ops0[0];
} else if (!UseInput00 && UseInput01) {
Updated = true;
Op0 = Ops0[1];
}
if (Updated)
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
DAG.getTargetConstant(InsertPSMask, DL, MVT::i8));
}
// If we're inserting an element from a vbroadcast load, fold the
// load into the X86insertps instruction. We need to convert the scalar
// load to a vector and clear the source lane of the INSERTPS control.
if (Op1.getOpcode() == X86ISD::VBROADCAST_LOAD && Op1.hasOneUse()) {
auto *MemIntr = cast<MemIntrinsicSDNode>(Op1);
if (MemIntr->getMemoryVT().getScalarSizeInBits() == 32) {
SDValue Load = DAG.getLoad(MVT::f32, DL, MemIntr->getChain(),
MemIntr->getBasePtr(),
MemIntr->getMemOperand());
SDValue Insert = DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0,
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT,
Load),
DAG.getTargetConstant(InsertPSMask & 0x3f, DL, MVT::i8));
DAG.ReplaceAllUsesOfValueWith(SDValue(MemIntr, 1), Load.getValue(1));
return Insert;
}
}
return SDValue();
}
default:
return SDValue();
}
// Nuke no-op shuffles that show up after combining.
if (isNoopShuffleMask(Mask))
return N.getOperand(0);
// Look for simplifications involving one or two shuffle instructions.
SDValue V = N.getOperand(0);
switch (N.getOpcode()) {
default:
break;
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!");
// See if this reduces to a PSHUFD which is no more expensive and can
// combine with more operations. Note that it has to at least flip the
// dwords as otherwise it would have been removed as a no-op.
if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
int DMask[] = {0, 1, 2, 3};
int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
DMask[DOffset + 0] = DOffset + 1;
DMask[DOffset + 1] = DOffset + 0;
MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
V = DAG.getBitcast(DVT, V);
V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
return DAG.getBitcast(VT, V);
}
// Look for shuffle patterns which can be implemented as a single unpack.
// FIXME: This doesn't handle the location of the PSHUFD generically, and
// only works when we have a PSHUFD followed by two half-shuffles.
if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
(V.getOpcode() == X86ISD::PSHUFLW ||
V.getOpcode() == X86ISD::PSHUFHW) &&
V.getOpcode() != N.getOpcode() &&
V.hasOneUse()) {
SDValue D = peekThroughOneUseBitcasts(V.getOperand(0));
if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
int WordMask[8];
for (int i = 0; i < 4; ++i) {
WordMask[i + NOffset] = Mask[i] + NOffset;
WordMask[i + VOffset] = VMask[i] + VOffset;
}
// Map the word mask through the DWord mask.
int MappedMask[8];
for (int i = 0; i < 8; ++i)
MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
// We can replace all three shuffles with an unpack.
V = DAG.getBitcast(VT, D.getOperand(0));
return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
: X86ISD::UNPCKH,
DL, VT, V, V);
}
}
}
break;
case X86ISD::PSHUFD:
if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG))
return NewN;
break;
}
return SDValue();
}
/// Checks if the shuffle mask takes subsequent elements
/// alternately from two vectors.
/// For example <0, 5, 2, 7> or <8, 1, 10, 3, 12, 5, 14, 7> are both correct.
static bool isAddSubOrSubAddMask(ArrayRef<int> Mask, bool &Op0Even) {
int ParitySrc[2] = {-1, -1};
unsigned Size = Mask.size();
for (unsigned i = 0; i != Size; ++i) {
int M = Mask[i];
if (M < 0)
continue;
// Make sure we are using the matching element from the input.
if ((M % Size) != i)
return false;
// Make sure we use the same input for all elements of the same parity.
int Src = M / Size;
if (ParitySrc[i % 2] >= 0 && ParitySrc[i % 2] != Src)
return false;
ParitySrc[i % 2] = Src;
}
// Make sure each input is used.
if (ParitySrc[0] < 0 || ParitySrc[1] < 0 || ParitySrc[0] == ParitySrc[1])
return false;
Op0Even = ParitySrc[0] == 0;
return true;
}
/// Returns true iff the shuffle node \p N can be replaced with ADDSUB(SUBADD)
/// operation. If true is returned then the operands of ADDSUB(SUBADD) operation
/// are written to the parameters \p Opnd0 and \p Opnd1.
///
/// We combine shuffle to ADDSUB(SUBADD) directly on the abstract vector shuffle nodes
/// so it is easier to generically match. We also insert dummy vector shuffle
/// nodes for the operands which explicitly discard the lanes which are unused
/// by this operation to try to flow through the rest of the combiner
/// the fact that they're unused.
static bool isAddSubOrSubAdd(SDNode *N, const X86Subtarget &Subtarget,
SelectionDAG &DAG, SDValue &Opnd0, SDValue &Opnd1,
bool &IsSubAdd) {
EVT VT = N->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!Subtarget.hasSSE3() || !TLI.isTypeLegal(VT) ||
!VT.getSimpleVT().isFloatingPoint())
return false;
// We only handle target-independent shuffles.
// FIXME: It would be easy and harmless to use the target shuffle mask
// extraction tool to support more.
if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
return false;
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
// Make sure we have an FADD and an FSUB.
if ((V1.getOpcode() != ISD::FADD && V1.getOpcode() != ISD::FSUB) ||
(V2.getOpcode() != ISD::FADD && V2.getOpcode() != ISD::FSUB) ||
V1.getOpcode() == V2.getOpcode())
return false;
// If there are other uses of these operations we can't fold them.
if (!V1->hasOneUse() || !V2->hasOneUse())
return false;
// Ensure that both operations have the same operands. Note that we can
// commute the FADD operands.
SDValue LHS, RHS;
if (V1.getOpcode() == ISD::FSUB) {
LHS = V1->getOperand(0); RHS = V1->getOperand(1);
if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
(V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
return false;
} else {
assert(V2.getOpcode() == ISD::FSUB && "Unexpected opcode");
LHS = V2->getOperand(0); RHS = V2->getOperand(1);
if ((V1->getOperand(0) != LHS || V1->getOperand(1) != RHS) &&
(V1->getOperand(0) != RHS || V1->getOperand(1) != LHS))
return false;
}
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
bool Op0Even;
if (!isAddSubOrSubAddMask(Mask, Op0Even))
return false;
// It's a subadd if the vector in the even parity is an FADD.
IsSubAdd = Op0Even ? V1->getOpcode() == ISD::FADD
: V2->getOpcode() == ISD::FADD;
Opnd0 = LHS;
Opnd1 = RHS;
return true;
}
/// Combine shuffle of two fma nodes into FMAddSub or FMSubAdd.
static SDValue combineShuffleToFMAddSub(SDNode *N,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// We only handle target-independent shuffles.
// FIXME: It would be easy and harmless to use the target shuffle mask
// extraction tool to support more.
if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
return SDValue();
MVT VT = N->getSimpleValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!Subtarget.hasAnyFMA() || !TLI.isTypeLegal(VT))
return SDValue();
// We're trying to match (shuffle fma(a, b, c), X86Fmsub(a, b, c).
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDValue FMAdd = Op0, FMSub = Op1;
if (FMSub.getOpcode() != X86ISD::FMSUB)
std::swap(FMAdd, FMSub);
if (FMAdd.getOpcode() != ISD::FMA || FMSub.getOpcode() != X86ISD::FMSUB ||
FMAdd.getOperand(0) != FMSub.getOperand(0) || !FMAdd.hasOneUse() ||
FMAdd.getOperand(1) != FMSub.getOperand(1) || !FMSub.hasOneUse() ||
FMAdd.getOperand(2) != FMSub.getOperand(2))
return SDValue();
// Check for correct shuffle mask.
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
bool Op0Even;
if (!isAddSubOrSubAddMask(Mask, Op0Even))
return SDValue();
// FMAddSub takes zeroth operand from FMSub node.
SDLoc DL(N);
bool IsSubAdd = Op0Even ? Op0 == FMAdd : Op1 == FMAdd;
unsigned Opcode = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
return DAG.getNode(Opcode, DL, VT, FMAdd.getOperand(0), FMAdd.getOperand(1),
FMAdd.getOperand(2));
}
/// Try to combine a shuffle into a target-specific add-sub or
/// mul-add-sub node.
static SDValue combineShuffleToAddSubOrFMAddSub(SDNode *N,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (SDValue V = combineShuffleToFMAddSub(N, Subtarget, DAG))
return V;
SDValue Opnd0, Opnd1;
bool IsSubAdd;
if (!isAddSubOrSubAdd(N, Subtarget, DAG, Opnd0, Opnd1, IsSubAdd))
return SDValue();
MVT VT = N->getSimpleValueType(0);
SDLoc DL(N);
// Try to generate X86ISD::FMADDSUB node here.
SDValue Opnd2;
if (isFMAddSubOrFMSubAdd(Subtarget, DAG, Opnd0, Opnd1, Opnd2, 2)) {
unsigned Opc = IsSubAdd ? X86ISD::FMSUBADD : X86ISD::FMADDSUB;
return DAG.getNode(Opc, DL, VT, Opnd0, Opnd1, Opnd2);
}
if (IsSubAdd)
return SDValue();
// Do not generate X86ISD::ADDSUB node for 512-bit types even though
// the ADDSUB idiom has been successfully recognized. There are no known
// X86 targets with 512-bit ADDSUB instructions!
if (VT.is512BitVector())
return SDValue();
return DAG.getNode(X86ISD::ADDSUB, DL, VT, Opnd0, Opnd1);
}
// We are looking for a shuffle where both sources are concatenated with undef
// and have a width that is half of the output's width. AVX2 has VPERMD/Q, so
// if we can express this as a single-source shuffle, that's preferable.
static SDValue combineShuffleOfConcatUndef(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasAVX2() || !isa<ShuffleVectorSDNode>(N))
return SDValue();
EVT VT = N->getValueType(0);
// We only care about shuffles of 128/256-bit vectors of 32/64-bit values.
if (!VT.is128BitVector() && !VT.is256BitVector())
return SDValue();
if (VT.getVectorElementType() != MVT::i32 &&
VT.getVectorElementType() != MVT::i64 &&
VT.getVectorElementType() != MVT::f32 &&
VT.getVectorElementType() != MVT::f64)
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Check that both sources are concats with undef.
if (N0.getOpcode() != ISD::CONCAT_VECTORS ||
N1.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
N1.getNumOperands() != 2 || !N0.getOperand(1).isUndef() ||
!N1.getOperand(1).isUndef())
return SDValue();
// Construct the new shuffle mask. Elements from the first source retain their
// index, but elements from the second source no longer need to skip an undef.
SmallVector<int, 8> Mask;
int NumElts = VT.getVectorNumElements();
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
for (int Elt : SVOp->getMask())
Mask.push_back(Elt < NumElts ? Elt : (Elt - NumElts / 2));
SDLoc DL(N);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, N0.getOperand(0),
N1.getOperand(0));
return DAG.getVectorShuffle(VT, DL, Concat, DAG.getUNDEF(VT), Mask);
}
/// Eliminate a redundant shuffle of a horizontal math op.
static SDValue foldShuffleOfHorizOp(SDNode *N, SelectionDAG &DAG) {
unsigned Opcode = N->getOpcode();
if (Opcode != X86ISD::MOVDDUP && Opcode != X86ISD::VBROADCAST)
if (Opcode != ISD::VECTOR_SHUFFLE || !N->getOperand(1).isUndef())
return SDValue();
// For a broadcast, peek through an extract element of index 0 to find the
// horizontal op: broadcast (ext_vec_elt HOp, 0)
EVT VT = N->getValueType(0);
if (Opcode == X86ISD::VBROADCAST) {
SDValue SrcOp = N->getOperand(0);
if (SrcOp.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
SrcOp.getValueType() == MVT::f64 &&
SrcOp.getOperand(0).getValueType() == VT &&
isNullConstant(SrcOp.getOperand(1)))
N = SrcOp.getNode();
}
SDValue HOp = N->getOperand(0);
if (HOp.getOpcode() != X86ISD::HADD && HOp.getOpcode() != X86ISD::FHADD &&
HOp.getOpcode() != X86ISD::HSUB && HOp.getOpcode() != X86ISD::FHSUB)
return SDValue();
// 128-bit horizontal math instructions are defined to operate on adjacent
// lanes of each operand as:
// v4X32: A[0] + A[1] , A[2] + A[3] , B[0] + B[1] , B[2] + B[3]
// ...similarly for v2f64 and v8i16.
if (!HOp.getOperand(0).isUndef() && !HOp.getOperand(1).isUndef() &&
HOp.getOperand(0) != HOp.getOperand(1))
return SDValue();
// The shuffle that we are eliminating may have allowed the horizontal op to
// have an undemanded (undefined) operand. Duplicate the other (defined)
// operand to ensure that the results are defined across all lanes without the
// shuffle.
auto updateHOp = [](SDValue HorizOp, SelectionDAG &DAG) {
SDValue X;
if (HorizOp.getOperand(0).isUndef()) {
assert(!HorizOp.getOperand(1).isUndef() && "Not expecting foldable h-op");
X = HorizOp.getOperand(1);
} else if (HorizOp.getOperand(1).isUndef()) {
assert(!HorizOp.getOperand(0).isUndef() && "Not expecting foldable h-op");
X = HorizOp.getOperand(0);
} else {
return HorizOp;
}
return DAG.getNode(HorizOp.getOpcode(), SDLoc(HorizOp),
HorizOp.getValueType(), X, X);
};
// When the operands of a horizontal math op are identical, the low half of
// the result is the same as the high half. If a target shuffle is also
// replicating low and high halves (and without changing the type/length of
// the vector), we don't need the shuffle.
if (Opcode == X86ISD::MOVDDUP || Opcode == X86ISD::VBROADCAST) {
if (HOp.getScalarValueSizeInBits() == 64 && HOp.getValueType() == VT) {
// movddup (hadd X, X) --> hadd X, X
// broadcast (extract_vec_elt (hadd X, X), 0) --> hadd X, X
assert((HOp.getValueType() == MVT::v2f64 ||
HOp.getValueType() == MVT::v4f64) && "Unexpected type for h-op");
return updateHOp(HOp, DAG);
}
return SDValue();
}
// shuffle (hadd X, X), undef, [low half...high half] --> hadd X, X
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(N)->getMask();
// TODO: Other mask possibilities like {1,1} and {1,0} could be added here,
// but this should be tied to whatever horizontal op matching and shuffle
// canonicalization are producing.
if (HOp.getValueSizeInBits() == 128 &&
(isTargetShuffleEquivalent(Mask, {0, 0}) ||
isTargetShuffleEquivalent(Mask, {0, 1, 0, 1}) ||
isTargetShuffleEquivalent(Mask, {0, 1, 2, 3, 0, 1, 2, 3})))
return updateHOp(HOp, DAG);
if (HOp.getValueSizeInBits() == 256 &&
(isTargetShuffleEquivalent(Mask, {0, 0, 2, 2}) ||
isTargetShuffleEquivalent(Mask, {0, 1, 0, 1, 4, 5, 4, 5}) ||
isTargetShuffleEquivalent(
Mask, {0, 1, 2, 3, 0, 1, 2, 3, 8, 9, 10, 11, 8, 9, 10, 11})))
return updateHOp(HOp, DAG);
return SDValue();
}
/// If we have a shuffle of AVX/AVX512 (256/512 bit) vectors that only uses the
/// low half of each source vector and does not set any high half elements in
/// the destination vector, narrow the shuffle to half its original size.
static SDValue narrowShuffle(ShuffleVectorSDNode *Shuf, SelectionDAG &DAG) {
if (!Shuf->getValueType(0).isSimple())
return SDValue();
MVT VT = Shuf->getSimpleValueType(0);
if (!VT.is256BitVector() && !VT.is512BitVector())
return SDValue();
// See if we can ignore all of the high elements of the shuffle.
ArrayRef<int> Mask = Shuf->getMask();
if (!isUndefUpperHalf(Mask))
return SDValue();
// Check if the shuffle mask accesses only the low half of each input vector
// (half-index output is 0 or 2).
int HalfIdx1, HalfIdx2;
SmallVector<int, 8> HalfMask(Mask.size() / 2);
if (!getHalfShuffleMask(Mask, HalfMask, HalfIdx1, HalfIdx2) ||
(HalfIdx1 % 2 == 1) || (HalfIdx2 % 2 == 1))
return SDValue();
// Create a half-width shuffle to replace the unnecessarily wide shuffle.
// The trick is knowing that all of the insert/extract are actually free
// subregister (zmm<->ymm or ymm<->xmm) ops. That leaves us with a shuffle
// of narrow inputs into a narrow output, and that is always cheaper than
// the wide shuffle that we started with.
return getShuffleHalfVectors(SDLoc(Shuf), Shuf->getOperand(0),
Shuf->getOperand(1), HalfMask, HalfIdx1,
HalfIdx2, false, DAG, /*UseConcat*/true);
}
static SDValue combineShuffle(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N))
if (SDValue V = narrowShuffle(Shuf, DAG))
return V;
// If we have legalized the vector types, look for blends of FADD and FSUB
// nodes that we can fuse into an ADDSUB, FMADDSUB, or FMSUBADD node.
SDLoc dl(N);
EVT VT = N->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isTypeLegal(VT)) {
if (SDValue AddSub = combineShuffleToAddSubOrFMAddSub(N, Subtarget, DAG))
return AddSub;
if (SDValue HAddSub = foldShuffleOfHorizOp(N, DAG))
return HAddSub;
}
// Attempt to combine into a vector load/broadcast.
if (SDValue LD = combineToConsecutiveLoads(VT, N, dl, DAG, Subtarget, true))
return LD;
// For AVX2, we sometimes want to combine
// (vector_shuffle <mask> (concat_vectors t1, undef)
// (concat_vectors t2, undef))
// Into:
// (vector_shuffle <mask> (concat_vectors t1, t2), undef)
// Since the latter can be efficiently lowered with VPERMD/VPERMQ
if (SDValue ShufConcat = combineShuffleOfConcatUndef(N, DAG, Subtarget))
return ShufConcat;
if (isTargetShuffle(N->getOpcode())) {
SDValue Op(N, 0);
if (SDValue Shuffle = combineTargetShuffle(Op, DAG, DCI, Subtarget))
return Shuffle;
// Try recursively combining arbitrary sequences of x86 shuffle
// instructions into higher-order shuffles. We do this after combining
// specific PSHUF instruction sequences into their minimal form so that we
// can evaluate how many specialized shuffle instructions are involved in
// a particular chain.
if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
return Res;
// Simplify source operands based on shuffle mask.
// TODO - merge this into combineX86ShufflesRecursively.
APInt KnownUndef, KnownZero;
APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
if (TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, DCI))
return SDValue(N, 0);
}
// Look for a v2i64/v2f64 VZEXT_MOVL of a node that already produces zeros
// in the upper 64 bits.
// TODO: Can we generalize this using computeKnownBits.
if (N->getOpcode() == X86ISD::VZEXT_MOVL &&
(VT == MVT::v2f64 || VT == MVT::v2i64) &&
N->getOperand(0).getOpcode() == ISD::BITCAST &&
(N->getOperand(0).getOperand(0).getValueType() == MVT::v4f32 ||
N->getOperand(0).getOperand(0).getValueType() == MVT::v4i32)) {
SDValue In = N->getOperand(0).getOperand(0);
switch (In.getOpcode()) {
default:
break;
case X86ISD::CVTP2SI: case X86ISD::CVTP2UI:
case X86ISD::MCVTP2SI: case X86ISD::MCVTP2UI:
case X86ISD::CVTTP2SI: case X86ISD::CVTTP2UI:
case X86ISD::MCVTTP2SI: case X86ISD::MCVTTP2UI:
case X86ISD::CVTSI2P: case X86ISD::CVTUI2P:
case X86ISD::MCVTSI2P: case X86ISD::MCVTUI2P:
case X86ISD::VFPROUND: case X86ISD::VMFPROUND:
if (In.getOperand(0).getValueType() == MVT::v2f64 ||
In.getOperand(0).getValueType() == MVT::v2i64)
return N->getOperand(0); // return the bitcast
break;
case X86ISD::STRICT_CVTTP2SI:
case X86ISD::STRICT_CVTTP2UI:
case X86ISD::STRICT_CVTSI2P:
case X86ISD::STRICT_CVTUI2P:
case X86ISD::STRICT_VFPROUND:
if (In.getOperand(1).getValueType() == MVT::v2f64 ||
In.getOperand(1).getValueType() == MVT::v2i64)
return N->getOperand(0);
break;
}
}
// Pull subvector inserts into undef through VZEXT_MOVL by making it an
// insert into a zero vector. This helps get VZEXT_MOVL closer to
// scalar_to_vectors where 256/512 are canonicalized to an insert and a
// 128-bit scalar_to_vector. This reduces the number of isel patterns.
if (N->getOpcode() == X86ISD::VZEXT_MOVL && !DCI.isBeforeLegalizeOps() &&
N->getOperand(0).getOpcode() == ISD::INSERT_SUBVECTOR &&
N->getOperand(0).hasOneUse() &&
N->getOperand(0).getOperand(0).isUndef() &&
isNullConstant(N->getOperand(0).getOperand(2))) {
SDValue In = N->getOperand(0).getOperand(1);
SDValue Movl = DAG.getNode(X86ISD::VZEXT_MOVL, dl, In.getValueType(), In);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT,
getZeroVector(VT.getSimpleVT(), Subtarget, DAG, dl),
Movl, N->getOperand(0).getOperand(2));
}
// If this a vzmovl of a full vector load, replace it with a vzload, unless
// the load is volatile.
if (N->getOpcode() == X86ISD::VZEXT_MOVL && N->getOperand(0).hasOneUse() &&
ISD::isNormalLoad(N->getOperand(0).getNode())) {
LoadSDNode *LN = cast<LoadSDNode>(N->getOperand(0));
if (LN->isSimple()) {
SDVTList Tys = DAG.getVTList(VT, MVT::Other);
SDValue Ops[] = { LN->getChain(), LN->getBasePtr() };
SDValue VZLoad =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
VT.getVectorElementType(),
LN->getPointerInfo(),
LN->getAlignment(),
MachineMemOperand::MOLoad);
DAG.ReplaceAllUsesOfValueWith(SDValue(LN, 1), VZLoad.getValue(1));
return VZLoad;
}
}
return SDValue();
}
bool X86TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
TargetLoweringOpt &TLO, unsigned Depth) const {
int NumElts = DemandedElts.getBitWidth();
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
// Handle special case opcodes.
switch (Opc) {
case X86ISD::PMULDQ:
case X86ISD::PMULUDQ: {
APInt LHSUndef, LHSZero;
APInt RHSUndef, RHSZero;
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
if (SimplifyDemandedVectorElts(LHS, DemandedElts, LHSUndef, LHSZero, TLO,
Depth + 1))
return true;
if (SimplifyDemandedVectorElts(RHS, DemandedElts, RHSUndef, RHSZero, TLO,
Depth + 1))
return true;
// Multiply by zero.
KnownZero = LHSZero | RHSZero;
break;
}
case X86ISD::VSHL:
case X86ISD::VSRL:
case X86ISD::VSRA: {
// We only need the bottom 64-bits of the (128-bit) shift amount.
SDValue Amt = Op.getOperand(1);
MVT AmtVT = Amt.getSimpleValueType();
assert(AmtVT.is128BitVector() && "Unexpected value type");
// If we reuse the shift amount just for sse shift amounts then we know that
// only the bottom 64-bits are only ever used.
bool AssumeSingleUse = llvm::all_of(Amt->uses(), [&Amt](SDNode *Use) {
unsigned UseOpc = Use->getOpcode();
return (UseOpc == X86ISD::VSHL || UseOpc == X86ISD::VSRL ||
UseOpc == X86ISD::VSRA) &&
Use->getOperand(0) != Amt;
});
APInt AmtUndef, AmtZero;
unsigned NumAmtElts = AmtVT.getVectorNumElements();
APInt AmtElts = APInt::getLowBitsSet(NumAmtElts, NumAmtElts / 2);
if (SimplifyDemandedVectorElts(Amt, AmtElts, AmtUndef, AmtZero, TLO,
Depth + 1, AssumeSingleUse))
return true;
LLVM_FALLTHROUGH;
}
case X86ISD::VSHLI:
case X86ISD::VSRLI:
case X86ISD::VSRAI: {
SDValue Src = Op.getOperand(0);
APInt SrcUndef;
if (SimplifyDemandedVectorElts(Src, DemandedElts, SrcUndef, KnownZero, TLO,
Depth + 1))
return true;
// TODO convert SrcUndef to KnownUndef.
break;
}
case X86ISD::KSHIFTL: {
SDValue Src = Op.getOperand(0);
auto *Amt = cast<ConstantSDNode>(Op.getOperand(1));
assert(Amt->getAPIntValue().ult(NumElts) && "Out of range shift amount");
unsigned ShiftAmt = Amt->getZExtValue();
if (ShiftAmt == 0)
return TLO.CombineTo(Op, Src);
// If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
// single shift. We can do this if the bottom bits (which are shifted
// out) are never demanded.
if (Src.getOpcode() == X86ISD::KSHIFTR) {
if (!DemandedElts.intersects(APInt::getLowBitsSet(NumElts, ShiftAmt))) {
unsigned C1 = Src.getConstantOperandVal(1);
unsigned NewOpc = X86ISD::KSHIFTL;
int Diff = ShiftAmt - C1;
if (Diff < 0) {
Diff = -Diff;
NewOpc = X86ISD::KSHIFTR;
}
SDLoc dl(Op);
SDValue NewSA = TLO.DAG.getTargetConstant(Diff, dl, MVT::i8);
return TLO.CombineTo(
Op, TLO.DAG.getNode(NewOpc, dl, VT, Src.getOperand(0), NewSA));
}
}
APInt DemandedSrc = DemandedElts.lshr(ShiftAmt);
if (SimplifyDemandedVectorElts(Src, DemandedSrc, KnownUndef, KnownZero, TLO,
Depth + 1))
return true;
KnownUndef <<= ShiftAmt;
KnownZero <<= ShiftAmt;
KnownZero.setLowBits(ShiftAmt);
break;
}
case X86ISD::KSHIFTR: {
SDValue Src = Op.getOperand(0);
auto *Amt = cast<ConstantSDNode>(Op.getOperand(1));
assert(Amt->getAPIntValue().ult(NumElts) && "Out of range shift amount");
unsigned ShiftAmt = Amt->getZExtValue();
if (ShiftAmt == 0)
return TLO.CombineTo(Op, Src);
// If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
// single shift. We can do this if the top bits (which are shifted
// out) are never demanded.
if (Src.getOpcode() == X86ISD::KSHIFTL) {
if (!DemandedElts.intersects(APInt::getHighBitsSet(NumElts, ShiftAmt))) {
unsigned C1 = Src.getConstantOperandVal(1);
unsigned NewOpc = X86ISD::KSHIFTR;
int Diff = ShiftAmt - C1;
if (Diff < 0) {
Diff = -Diff;
NewOpc = X86ISD::KSHIFTL;
}
SDLoc dl(Op);
SDValue NewSA = TLO.DAG.getTargetConstant(Diff, dl, MVT::i8);
return TLO.CombineTo(
Op, TLO.DAG.getNode(NewOpc, dl, VT, Src.getOperand(0), NewSA));
}
}
APInt DemandedSrc = DemandedElts.shl(ShiftAmt);
if (SimplifyDemandedVectorElts(Src, DemandedSrc, KnownUndef, KnownZero, TLO,
Depth + 1))
return true;
KnownUndef.lshrInPlace(ShiftAmt);
KnownZero.lshrInPlace(ShiftAmt);
KnownZero.setHighBits(ShiftAmt);
break;
}
case X86ISD::CVTSI2P:
case X86ISD::CVTUI2P: {
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
APInt SrcUndef, SrcZero;
APInt SrcElts = DemandedElts.zextOrTrunc(SrcVT.getVectorNumElements());
if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
Depth + 1))
return true;
break;
}
case X86ISD::PACKSS:
case X86ISD::PACKUS: {
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
APInt DemandedLHS, DemandedRHS;
getPackDemandedElts(VT, DemandedElts, DemandedLHS, DemandedRHS);
APInt SrcUndef, SrcZero;
if (SimplifyDemandedVectorElts(N0, DemandedLHS, SrcUndef, SrcZero, TLO,
Depth + 1))
return true;
if (SimplifyDemandedVectorElts(N1, DemandedRHS, SrcUndef, SrcZero, TLO,
Depth + 1))
return true;
// Aggressively peek through ops to get at the demanded elts.
// TODO - we should do this for all target/faux shuffles ops.
if (!DemandedElts.isAllOnesValue()) {
APInt DemandedSrcBits =
APInt::getAllOnesValue(N0.getScalarValueSizeInBits());
SDValue NewN0 = SimplifyMultipleUseDemandedBits(
N0, DemandedSrcBits, DemandedLHS, TLO.DAG, Depth + 1);
SDValue NewN1 = SimplifyMultipleUseDemandedBits(
N1, DemandedSrcBits, DemandedRHS, TLO.DAG, Depth + 1);
if (NewN0 || NewN1) {
NewN0 = NewN0 ? NewN0 : N0;
NewN1 = NewN1 ? NewN1 : N1;
return TLO.CombineTo(Op,
TLO.DAG.getNode(Opc, SDLoc(Op), VT, NewN0, NewN1));
}
}
break;
}
case X86ISD::HADD:
case X86ISD::HSUB:
case X86ISD::FHADD:
case X86ISD::FHSUB: {
APInt DemandedLHS, DemandedRHS;
getHorizDemandedElts(VT, DemandedElts, DemandedLHS, DemandedRHS);
APInt LHSUndef, LHSZero;
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, LHSUndef,
LHSZero, TLO, Depth + 1))
return true;
APInt RHSUndef, RHSZero;
if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, RHSUndef,
RHSZero, TLO, Depth + 1))
return true;
break;
}
case X86ISD::VTRUNC:
case X86ISD::VTRUNCS:
case X86ISD::VTRUNCUS: {
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
APInt DemandedSrc = DemandedElts.zextOrTrunc(SrcVT.getVectorNumElements());
APInt SrcUndef, SrcZero;
if (SimplifyDemandedVectorElts(Src, DemandedSrc, SrcUndef, SrcZero, TLO,
Depth + 1))
return true;
KnownZero = SrcZero.zextOrTrunc(NumElts);
KnownUndef = SrcUndef.zextOrTrunc(NumElts);
break;
}
case X86ISD::BLENDV: {
APInt SelUndef, SelZero;
if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, SelUndef,
SelZero, TLO, Depth + 1))
return true;
// TODO: Use SelZero to adjust LHS/RHS DemandedElts.
APInt LHSUndef, LHSZero;
if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, LHSUndef,
LHSZero, TLO, Depth + 1))
return true;
APInt RHSUndef, RHSZero;
if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedElts, RHSUndef,
RHSZero, TLO, Depth + 1))
return true;
KnownZero = LHSZero & RHSZero;
KnownUndef = LHSUndef & RHSUndef;
break;
}
case X86ISD::VBROADCAST: {
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
if (!SrcVT.isVector())
return false;
// Don't bother broadcasting if we just need the 0'th element.
if (DemandedElts == 1) {
if (Src.getValueType() != VT)
Src = widenSubVector(VT.getSimpleVT(), Src, false, Subtarget, TLO.DAG,
SDLoc(Op));
return TLO.CombineTo(Op, Src);
}
APInt SrcUndef, SrcZero;
APInt SrcElts = APInt::getOneBitSet(SrcVT.getVectorNumElements(), 0);
if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
Depth + 1))
return true;
break;
}
case X86ISD::VPERMV: {
SDValue Mask = Op.getOperand(0);
APInt MaskUndef, MaskZero;
if (SimplifyDemandedVectorElts(Mask, DemandedElts, MaskUndef, MaskZero, TLO,
Depth + 1))
return true;
break;
}
case X86ISD::PSHUFB:
case X86ISD::VPERMV3:
case X86ISD::VPERMILPV: {
SDValue Mask = Op.getOperand(1);
APInt MaskUndef, MaskZero;
if (SimplifyDemandedVectorElts(Mask, DemandedElts, MaskUndef, MaskZero, TLO,
Depth + 1))
return true;
break;
}
case X86ISD::VPPERM:
case X86ISD::VPERMIL2: {
SDValue Mask = Op.getOperand(2);
APInt MaskUndef, MaskZero;
if (SimplifyDemandedVectorElts(Mask, DemandedElts, MaskUndef, MaskZero, TLO,
Depth + 1))
return true;
break;
}
}
// For 256/512-bit ops that are 128/256-bit ops glued together, if we do not
// demand any of the high elements, then narrow the op to 128/256-bits: e.g.
// (op ymm0, ymm1) --> insert undef, (op xmm0, xmm1), 0
if ((VT.is256BitVector() || VT.is512BitVector()) &&
DemandedElts.lshr(NumElts / 2) == 0) {
unsigned SizeInBits = VT.getSizeInBits();
unsigned ExtSizeInBits = SizeInBits / 2;
// See if 512-bit ops only use the bottom 128-bits.
if (VT.is512BitVector() && DemandedElts.lshr(NumElts / 4) == 0)
ExtSizeInBits = SizeInBits / 4;
switch (Opc) {
// Zero upper elements.
case X86ISD::VZEXT_MOVL: {
SDLoc DL(Op);
SDValue Ext0 =
extractSubVector(Op.getOperand(0), 0, TLO.DAG, DL, ExtSizeInBits);
SDValue ExtOp =
TLO.DAG.getNode(Opc, DL, Ext0.getValueType(), Ext0);
SDValue UndefVec = TLO.DAG.getUNDEF(VT);
SDValue Insert =
insertSubVector(UndefVec, ExtOp, 0, TLO.DAG, DL, ExtSizeInBits);
return TLO.CombineTo(Op, Insert);
}
// Subvector broadcast.
case X86ISD::SUBV_BROADCAST: {
SDLoc DL(Op);
SDValue Src = Op.getOperand(0);
if (Src.getValueSizeInBits() > ExtSizeInBits)
Src = extractSubVector(Src, 0, TLO.DAG, DL, ExtSizeInBits);
else if (Src.getValueSizeInBits() < ExtSizeInBits) {
MVT SrcSVT = Src.getSimpleValueType().getScalarType();
MVT SrcVT =
MVT::getVectorVT(SrcSVT, ExtSizeInBits / SrcSVT.getSizeInBits());
Src = TLO.DAG.getNode(X86ISD::SUBV_BROADCAST, DL, SrcVT, Src);
}
return TLO.CombineTo(Op, insertSubVector(TLO.DAG.getUNDEF(VT), Src, 0,
TLO.DAG, DL, ExtSizeInBits));
}
// Byte shifts by immediate.
case X86ISD::VSHLDQ:
case X86ISD::VSRLDQ:
// Shift by uniform.
case X86ISD::VSHL:
case X86ISD::VSRL:
case X86ISD::VSRA:
// Shift by immediate.
case X86ISD::VSHLI:
case X86ISD::VSRLI:
case X86ISD::VSRAI: {
SDLoc DL(Op);
SDValue Ext0 =
extractSubVector(Op.getOperand(0), 0, TLO.DAG, DL, ExtSizeInBits);
SDValue ExtOp =
TLO.DAG.getNode(Opc, DL, Ext0.getValueType(), Ext0, Op.getOperand(1));
SDValue UndefVec = TLO.DAG.getUNDEF(VT);
SDValue Insert =
insertSubVector(UndefVec, ExtOp, 0, TLO.DAG, DL, ExtSizeInBits);
return TLO.CombineTo(Op, Insert);
}
case X86ISD::VPERMI: {
// Simplify PERMPD/PERMQ to extract_subvector.
// TODO: This should be done in shuffle combining.
if (VT == MVT::v4f64 || VT == MVT::v4i64) {
SmallVector<int, 4> Mask;
DecodeVPERMMask(NumElts, Op.getConstantOperandVal(1), Mask);
if (isUndefOrEqual(Mask[0], 2) && isUndefOrEqual(Mask[1], 3)) {
SDLoc DL(Op);
SDValue Ext = extractSubVector(Op.getOperand(0), 2, TLO.DAG, DL, 128);
SDValue UndefVec = TLO.DAG.getUNDEF(VT);
SDValue Insert = insertSubVector(UndefVec, Ext, 0, TLO.DAG, DL, 128);
return TLO.CombineTo(Op, Insert);
}
}
break;
}
// Target Shuffles.
case X86ISD::PSHUFB:
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
// Saturated Packs.
case X86ISD::PACKSS:
case X86ISD::PACKUS:
// Horizontal Ops.
case X86ISD::HADD:
case X86ISD::HSUB:
case X86ISD::FHADD:
case X86ISD::FHSUB: {
SDLoc DL(Op);
MVT ExtVT = VT.getSimpleVT();
ExtVT = MVT::getVectorVT(ExtVT.getScalarType(),
ExtSizeInBits / ExtVT.getScalarSizeInBits());
SDValue Ext0 =
extractSubVector(Op.getOperand(0), 0, TLO.DAG, DL, ExtSizeInBits);
SDValue Ext1 =
extractSubVector(Op.getOperand(1), 0, TLO.DAG, DL, ExtSizeInBits);
SDValue ExtOp = TLO.DAG.getNode(Opc, DL, ExtVT, Ext0, Ext1);
SDValue UndefVec = TLO.DAG.getUNDEF(VT);
SDValue Insert =
insertSubVector(UndefVec, ExtOp, 0, TLO.DAG, DL, ExtSizeInBits);
return TLO.CombineTo(Op, Insert);
}
}
}
// Get target/faux shuffle mask.
APInt OpUndef, OpZero;
SmallVector<int, 64> OpMask;
SmallVector<SDValue, 2> OpInputs;
if (!getTargetShuffleInputs(Op, DemandedElts, OpInputs, OpMask, OpUndef,
OpZero, TLO.DAG, Depth, false))
return false;
// Shuffle inputs must be the same size as the result.
if (OpMask.size() != (unsigned)NumElts ||
llvm::any_of(OpInputs, [VT](SDValue V) {
return VT.getSizeInBits() != V.getValueSizeInBits() ||
!V.getValueType().isVector();
}))
return false;
KnownZero = OpZero;
KnownUndef = OpUndef;
// Check if shuffle mask can be simplified to undef/zero/identity.
int NumSrcs = OpInputs.size();
for (int i = 0; i != NumElts; ++i)
if (!DemandedElts[i])
OpMask[i] = SM_SentinelUndef;
if (isUndefInRange(OpMask, 0, NumElts)) {
KnownUndef.setAllBits();
return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
}
if (isUndefOrZeroInRange(OpMask, 0, NumElts)) {
KnownZero.setAllBits();
return TLO.CombineTo(
Op, getZeroVector(VT.getSimpleVT(), Subtarget, TLO.DAG, SDLoc(Op)));
}
for (int Src = 0; Src != NumSrcs; ++Src)
if (isSequentialOrUndefInRange(OpMask, 0, NumElts, Src * NumElts))
return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, OpInputs[Src]));
// Attempt to simplify inputs.
for (int Src = 0; Src != NumSrcs; ++Src) {
// TODO: Support inputs of different types.
if (OpInputs[Src].getValueType() != VT)
continue;
int Lo = Src * NumElts;
APInt SrcElts = APInt::getNullValue(NumElts);
for (int i = 0; i != NumElts; ++i)
if (DemandedElts[i]) {
int M = OpMask[i] - Lo;
if (0 <= M && M < NumElts)
SrcElts.setBit(M);
}
// TODO - Propagate input undef/zero elts.
APInt SrcUndef, SrcZero;
if (SimplifyDemandedVectorElts(OpInputs[Src], SrcElts, SrcUndef, SrcZero,
TLO, Depth + 1))
return true;
}
// If we don't demand all elements, then attempt to combine to a simpler
// shuffle.
// TODO: Handle other depths, but first we need to handle the fact that
// it might combine to the same shuffle.
if (!DemandedElts.isAllOnesValue() && Depth == 0) {
SmallVector<int, 64> DemandedMask(NumElts, SM_SentinelUndef);
for (int i = 0; i != NumElts; ++i)
if (DemandedElts[i])
DemandedMask[i] = i;
SDValue NewShuffle = combineX86ShufflesRecursively(
{Op}, 0, Op, DemandedMask, {}, Depth, /*HasVarMask*/ false,
/*AllowVarMask*/ true, TLO.DAG, Subtarget);
if (NewShuffle)
return TLO.CombineTo(Op, NewShuffle);
}
return false;
}
bool X86TargetLowering::SimplifyDemandedBitsForTargetNode(
SDValue Op, const APInt &OriginalDemandedBits,
const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
unsigned Depth) const {
EVT VT = Op.getValueType();
unsigned BitWidth = OriginalDemandedBits.getBitWidth();
unsigned Opc = Op.getOpcode();
switch(Opc) {
case X86ISD::PMULDQ:
case X86ISD::PMULUDQ: {
// PMULDQ/PMULUDQ only uses lower 32 bits from each vector element.
KnownBits KnownOp;
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
// FIXME: Can we bound this better?
APInt DemandedMask = APInt::getLowBitsSet(64, 32);
if (SimplifyDemandedBits(LHS, DemandedMask, OriginalDemandedElts, KnownOp,
TLO, Depth + 1))
return true;
if (SimplifyDemandedBits(RHS, DemandedMask, OriginalDemandedElts, KnownOp,
TLO, Depth + 1))
return true;
// Aggressively peek through ops to get at the demanded low bits.
SDValue DemandedLHS = SimplifyMultipleUseDemandedBits(
LHS, DemandedMask, OriginalDemandedElts, TLO.DAG, Depth + 1);
SDValue DemandedRHS = SimplifyMultipleUseDemandedBits(
RHS, DemandedMask, OriginalDemandedElts, TLO.DAG, Depth + 1);
if (DemandedLHS || DemandedRHS) {
DemandedLHS = DemandedLHS ? DemandedLHS : LHS;
DemandedRHS = DemandedRHS ? DemandedRHS : RHS;
return TLO.CombineTo(
Op, TLO.DAG.getNode(Opc, SDLoc(Op), VT, DemandedLHS, DemandedRHS));
}
break;
}
case X86ISD::VSHLI: {
SDValue Op0 = Op.getOperand(0);
unsigned ShAmt = Op.getConstantOperandVal(1);
if (ShAmt >= BitWidth)
break;
APInt DemandedMask = OriginalDemandedBits.lshr(ShAmt);
// If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
// single shift. We can do this if the bottom bits (which are shifted
// out) are never demanded.
if (Op0.getOpcode() == X86ISD::VSRLI &&
OriginalDemandedBits.countTrailingZeros() >= ShAmt) {
unsigned Shift2Amt = Op0.getConstantOperandVal(1);
if (Shift2Amt < BitWidth) {
int Diff = ShAmt - Shift2Amt;
if (Diff == 0)
return TLO.CombineTo(Op, Op0.getOperand(0));
unsigned NewOpc = Diff < 0 ? X86ISD::VSRLI : X86ISD::VSHLI;
SDValue NewShift = TLO.DAG.getNode(
NewOpc, SDLoc(Op), VT, Op0.getOperand(0),
TLO.DAG.getTargetConstant(std::abs(Diff), SDLoc(Op), MVT::i8));
return TLO.CombineTo(Op, NewShift);
}
}
if (SimplifyDemandedBits(Op0, DemandedMask, OriginalDemandedElts, Known,
TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known.Zero <<= ShAmt;
Known.One <<= ShAmt;
// Low bits known zero.
Known.Zero.setLowBits(ShAmt);
break;
}
case X86ISD::VSRLI: {
unsigned ShAmt = Op.getConstantOperandVal(1);
if (ShAmt >= BitWidth)
break;
APInt DemandedMask = OriginalDemandedBits << ShAmt;
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
OriginalDemandedElts, Known, TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known.Zero.lshrInPlace(ShAmt);
Known.One.lshrInPlace(ShAmt);
// High bits known zero.
Known.Zero.setHighBits(ShAmt);
break;
}
case X86ISD::VSRAI: {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
unsigned ShAmt = cast<ConstantSDNode>(Op1)->getZExtValue();
if (ShAmt >= BitWidth)
break;
APInt DemandedMask = OriginalDemandedBits << ShAmt;
// If we just want the sign bit then we don't need to shift it.
if (OriginalDemandedBits.isSignMask())
return TLO.CombineTo(Op, Op0);
// fold (VSRAI (VSHLI X, C1), C1) --> X iff NumSignBits(X) > C1
if (Op0.getOpcode() == X86ISD::VSHLI &&
Op.getOperand(1) == Op0.getOperand(1)) {
SDValue Op00 = Op0.getOperand(0);
unsigned NumSignBits =
TLO.DAG.ComputeNumSignBits(Op00, OriginalDemandedElts);
if (ShAmt < NumSignBits)
return TLO.CombineTo(Op, Op00);
}
// If any of the demanded bits are produced by the sign extension, we also
// demand the input sign bit.
if (OriginalDemandedBits.countLeadingZeros() < ShAmt)
DemandedMask.setSignBit();
if (SimplifyDemandedBits(Op0, DemandedMask, OriginalDemandedElts, Known,
TLO, Depth + 1))
return true;
assert(!Known.hasConflict() && "Bits known to be one AND zero?");
Known.Zero.lshrInPlace(ShAmt);
Known.One.lshrInPlace(ShAmt);
// If the input sign bit is known to be zero, or if none of the top bits
// are demanded, turn this into an unsigned shift right.
if (Known.Zero[BitWidth - ShAmt - 1] ||
OriginalDemandedBits.countLeadingZeros() >= ShAmt)
return TLO.CombineTo(
Op, TLO.DAG.getNode(X86ISD::VSRLI, SDLoc(Op), VT, Op0, Op1));
// High bits are known one.
if (Known.One[BitWidth - ShAmt - 1])
Known.One.setHighBits(ShAmt);
break;
}
case X86ISD::PEXTRB:
case X86ISD::PEXTRW: {
SDValue Vec = Op.getOperand(0);
auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
MVT VecVT = Vec.getSimpleValueType();
unsigned NumVecElts = VecVT.getVectorNumElements();
if (CIdx && CIdx->getAPIntValue().ult(NumVecElts)) {
unsigned Idx = CIdx->getZExtValue();
unsigned VecBitWidth = VecVT.getScalarSizeInBits();
// If we demand no bits from the vector then we must have demanded
// bits from the implict zext - simplify to zero.
APInt DemandedVecBits = OriginalDemandedBits.trunc(VecBitWidth);
if (DemandedVecBits == 0)
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
APInt KnownUndef, KnownZero;
APInt DemandedVecElts = APInt::getOneBitSet(NumVecElts, Idx);
if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
KnownZero, TLO, Depth + 1))
return true;
KnownBits KnownVec;
if (SimplifyDemandedBits(Vec, DemandedVecBits, DemandedVecElts,
KnownVec, TLO, Depth + 1))
return true;
if (SDValue V = SimplifyMultipleUseDemandedBits(
Vec, DemandedVecBits, DemandedVecElts, TLO.DAG, Depth + 1))
return TLO.CombineTo(
Op, TLO.DAG.getNode(Opc, SDLoc(Op), VT, V, Op.getOperand(1)));
Known = KnownVec.zext(BitWidth, true);
return false;
}
break;
}
case X86ISD::PINSRB:
case X86ISD::PINSRW: {
SDValue Vec = Op.getOperand(0);
SDValue Scl = Op.getOperand(1);
auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
MVT VecVT = Vec.getSimpleValueType();
if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
unsigned Idx = CIdx->getZExtValue();
if (!OriginalDemandedElts[Idx])
return TLO.CombineTo(Op, Vec);
KnownBits KnownVec;
APInt DemandedVecElts(OriginalDemandedElts);
DemandedVecElts.clearBit(Idx);
if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts,
KnownVec, TLO, Depth + 1))
return true;
KnownBits KnownScl;
unsigned NumSclBits = Scl.getScalarValueSizeInBits();
APInt DemandedSclBits = OriginalDemandedBits.zext(NumSclBits);
if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
return true;
KnownScl = KnownScl.trunc(VecVT.getScalarSizeInBits());
Known.One = KnownVec.One & KnownScl.One;
Known.Zero = KnownVec.Zero & KnownScl.Zero;
return false;
}
break;
}
case X86ISD::PACKSS:
// PACKSS saturates to MIN/MAX integer values. So if we just want the
// sign bit then we can just ask for the source operands sign bit.
// TODO - add known bits handling.
if (OriginalDemandedBits.isSignMask()) {
APInt DemandedLHS, DemandedRHS;
getPackDemandedElts(VT, OriginalDemandedElts, DemandedLHS, DemandedRHS);
KnownBits KnownLHS, KnownRHS;
APInt SignMask = APInt::getSignMask(BitWidth * 2);
if (SimplifyDemandedBits(Op.getOperand(0), SignMask, DemandedLHS,
KnownLHS, TLO, Depth + 1))
return true;
if (SimplifyDemandedBits(Op.getOperand(1), SignMask, DemandedRHS,
KnownRHS, TLO, Depth + 1))
return true;
}
// TODO - add general PACKSS/PACKUS SimplifyDemandedBits support.
break;
case X86ISD::PCMPGT:
// icmp sgt(0, R) == ashr(R, BitWidth-1).
// iff we only need the sign bit then we can use R directly.
if (OriginalDemandedBits.isSignMask() &&
ISD::isBuildVectorAllZeros(Op.getOperand(0).getNode()))
return TLO.CombineTo(Op, Op.getOperand(1));
break;
case X86ISD::MOVMSK: {
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
unsigned SrcBits = SrcVT.getScalarSizeInBits();
unsigned NumElts = SrcVT.getVectorNumElements();
// If we don't need the sign bits at all just return zero.
if (OriginalDemandedBits.countTrailingZeros() >= NumElts)
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
// Only demand the vector elements of the sign bits we need.
APInt KnownUndef, KnownZero;
APInt DemandedElts = OriginalDemandedBits.zextOrTrunc(NumElts);
if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
TLO, Depth + 1))
return true;
Known.Zero = KnownZero.zextOrSelf(BitWidth);
Known.Zero.setHighBits(BitWidth - NumElts);
// MOVMSK only uses the MSB from each vector element.
KnownBits KnownSrc;
if (SimplifyDemandedBits(Src, APInt::getSignMask(SrcBits), DemandedElts,
KnownSrc, TLO, Depth + 1))
return true;
if (KnownSrc.One[SrcBits - 1])
Known.One.setLowBits(NumElts);
else if (KnownSrc.Zero[SrcBits - 1])
Known.Zero.setLowBits(NumElts);
return false;
}
}
return TargetLowering::SimplifyDemandedBitsForTargetNode(
Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
}
SDValue X86TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
SelectionDAG &DAG, unsigned Depth) const {
int NumElts = DemandedElts.getBitWidth();
unsigned Opc = Op.getOpcode();
EVT VT = Op.getValueType();
switch (Opc) {
case X86ISD::PINSRB:
case X86ISD::PINSRW: {
// If we don't demand the inserted element, return the base vector.
SDValue Vec = Op.getOperand(0);
auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
MVT VecVT = Vec.getSimpleValueType();
if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
!DemandedElts[CIdx->getZExtValue()])
return Vec;
break;
}
case X86ISD::PCMPGT:
// icmp sgt(0, R) == ashr(R, BitWidth-1).
// iff we only need the sign bit then we can use R directly.
if (DemandedBits.isSignMask() &&
ISD::isBuildVectorAllZeros(Op.getOperand(0).getNode()))
return Op.getOperand(1);
break;
}
APInt ShuffleUndef, ShuffleZero;
SmallVector<int, 16> ShuffleMask;
SmallVector<SDValue, 2> ShuffleOps;
if (getTargetShuffleInputs(Op, DemandedElts, ShuffleOps, ShuffleMask,
ShuffleUndef, ShuffleZero, DAG, Depth, false)) {
// If all the demanded elts are from one operand and are inline,
// then we can use the operand directly.
int NumOps = ShuffleOps.size();
if (ShuffleMask.size() == (unsigned)NumElts &&
llvm::all_of(ShuffleOps, [VT](SDValue V) {
return VT.getSizeInBits() == V.getValueSizeInBits();
})) {
if (DemandedElts.isSubsetOf(ShuffleUndef))
return DAG.getUNDEF(VT);
if (DemandedElts.isSubsetOf(ShuffleUndef | ShuffleZero))
return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, SDLoc(Op));
// Bitmask that indicates which ops have only been accessed 'inline'.
APInt IdentityOp = APInt::getAllOnesValue(NumOps);
for (int i = 0; i != NumElts; ++i) {
int M = ShuffleMask[i];
if (!DemandedElts[i] || ShuffleUndef[i])
continue;
int Op = M / NumElts;
int Index = M % NumElts;
if (M < 0 || Index != i) {
IdentityOp.clearAllBits();
break;
}
IdentityOp &= APInt::getOneBitSet(NumOps, Op);
if (IdentityOp == 0)
break;
}
assert((IdentityOp == 0 || IdentityOp.countPopulation() == 1) &&
"Multiple identity shuffles detected");
if (IdentityOp != 0)
return DAG.getBitcast(VT, ShuffleOps[IdentityOp.countTrailingZeros()]);
}
}
return TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
Op, DemandedBits, DemandedElts, DAG, Depth);
}
// Helper to peek through bitops/setcc to determine size of source vector.
// Allows combineBitcastvxi1 to determine what size vector generated a <X x i1>.
static bool checkBitcastSrcVectorSize(SDValue Src, unsigned Size) {
switch (Src.getOpcode()) {
case ISD::SETCC:
return Src.getOperand(0).getValueSizeInBits() == Size;
case ISD::AND:
case ISD::XOR:
case ISD::OR:
return checkBitcastSrcVectorSize(Src.getOperand(0), Size) &&
checkBitcastSrcVectorSize(Src.getOperand(1), Size);
}
return false;
}
// Helper to push sign extension of vXi1 SETCC result through bitops.
static SDValue signExtendBitcastSrcVector(SelectionDAG &DAG, EVT SExtVT,
SDValue Src, const SDLoc &DL) {
switch (Src.getOpcode()) {
case ISD::SETCC:
return DAG.getNode(ISD::SIGN_EXTEND, DL, SExtVT, Src);
case ISD::AND:
case ISD::XOR:
case ISD::OR:
return DAG.getNode(
Src.getOpcode(), DL, SExtVT,
signExtendBitcastSrcVector(DAG, SExtVT, Src.getOperand(0), DL),
signExtendBitcastSrcVector(DAG, SExtVT, Src.getOperand(1), DL));
}
llvm_unreachable("Unexpected node type for vXi1 sign extension");
}
// Try to match patterns such as
// (i16 bitcast (v16i1 x))
// ->
// (i16 movmsk (16i8 sext (v16i1 x)))
// before the illegal vector is scalarized on subtargets that don't have legal
// vxi1 types.
static SDValue combineBitcastvxi1(SelectionDAG &DAG, EVT VT, SDValue Src,
const SDLoc &DL,
const X86Subtarget &Subtarget) {
EVT SrcVT = Src.getValueType();
if (!SrcVT.isSimple() || SrcVT.getScalarType() != MVT::i1)
return SDValue();
// If the input is a truncate from v16i8 or v32i8 go ahead and use a
// movmskb even with avx512. This will be better than truncating to vXi1 and
// using a kmov. This can especially help KNL if the input is a v16i8/v32i8
// vpcmpeqb/vpcmpgtb.
bool IsTruncated = Src.getOpcode() == ISD::TRUNCATE && Src.hasOneUse() &&
(Src.getOperand(0).getValueType() == MVT::v16i8 ||
Src.getOperand(0).getValueType() == MVT::v32i8 ||
Src.getOperand(0).getValueType() == MVT::v64i8);
// With AVX512 vxi1 types are legal and we prefer using k-regs.
// MOVMSK is supported in SSE2 or later.
if (!Subtarget.hasSSE2() || (Subtarget.hasAVX512() && !IsTruncated))
return SDValue();
// There are MOVMSK flavors for types v16i8, v32i8, v4f32, v8f32, v4f64 and
// v8f64. So all legal 128-bit and 256-bit vectors are covered except for
// v8i16 and v16i16.
// For these two cases, we can shuffle the upper element bytes to a
// consecutive sequence at the start of the vector and treat the results as
// v16i8 or v32i8, and for v16i8 this is the preferable solution. However,
// for v16i16 this is not the case, because the shuffle is expensive, so we
// avoid sign-extending to this type entirely.
// For example, t0 := (v8i16 sext(v8i1 x)) needs to be shuffled as:
// (v16i8 shuffle <0,2,4,6,8,10,12,14,u,u,...,u> (v16i8 bitcast t0), undef)
MVT SExtVT;
bool PropagateSExt = false;
switch (SrcVT.getSimpleVT().SimpleTy) {
default:
return SDValue();
case MVT::v2i1:
SExtVT = MVT::v2i64;
break;
case MVT::v4i1:
SExtVT = MVT::v4i32;
// For cases such as (i4 bitcast (v4i1 setcc v4i64 v1, v2))
// sign-extend to a 256-bit operation to avoid truncation.
if (Subtarget.hasAVX() && checkBitcastSrcVectorSize(Src, 256)) {
SExtVT = MVT::v4i64;
PropagateSExt = true;
}
break;
case MVT::v8i1:
SExtVT = MVT::v8i16;
// For cases such as (i8 bitcast (v8i1 setcc v8i32 v1, v2)),
// sign-extend to a 256-bit operation to match the compare.
// If the setcc operand is 128-bit, prefer sign-extending to 128-bit over
// 256-bit because the shuffle is cheaper than sign extending the result of
// the compare.
if (Subtarget.hasAVX() && (checkBitcastSrcVectorSize(Src, 256) ||
checkBitcastSrcVectorSize(Src, 512))) {
SExtVT = MVT::v8i32;
PropagateSExt = true;
}
break;
case MVT::v16i1:
SExtVT = MVT::v16i8;
// For the case (i16 bitcast (v16i1 setcc v16i16 v1, v2)),
// it is not profitable to sign-extend to 256-bit because this will
// require an extra cross-lane shuffle which is more expensive than
// truncating the result of the compare to 128-bits.
break;
case MVT::v32i1:
SExtVT = MVT::v32i8;
break;
case MVT::v64i1:
// If we have AVX512F, but not AVX512BW and the input is truncated from
// v64i8 checked earlier. Then split the input and make two pmovmskbs.
if (Subtarget.hasAVX512() && !Subtarget.hasBWI()) {
SExtVT = MVT::v64i8;
break;
}
return SDValue();
};
SDValue V = PropagateSExt ? signExtendBitcastSrcVector(DAG, SExtVT, Src, DL)
: DAG.getNode(ISD::SIGN_EXTEND, DL, SExtVT, Src);
if (SExtVT == MVT::v16i8 || SExtVT == MVT::v32i8 || SExtVT == MVT::v64i8) {
V = getPMOVMSKB(DL, V, DAG, Subtarget);
} else {
if (SExtVT == MVT::v8i16)
V = DAG.getNode(X86ISD::PACKSS, DL, MVT::v16i8, V,
DAG.getUNDEF(MVT::v8i16));
V = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, V);
}
EVT IntVT =
EVT::getIntegerVT(*DAG.getContext(), SrcVT.getVectorNumElements());
V = DAG.getZExtOrTrunc(V, DL, IntVT);
return DAG.getBitcast(VT, V);
}
// Convert a vXi1 constant build vector to the same width scalar integer.
static SDValue combinevXi1ConstantToInteger(SDValue Op, SelectionDAG &DAG) {
EVT SrcVT = Op.getValueType();
assert(SrcVT.getVectorElementType() == MVT::i1 &&
"Expected a vXi1 vector");
assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
"Expected a constant build vector");
APInt Imm(SrcVT.getVectorNumElements(), 0);
for (unsigned Idx = 0, e = Op.getNumOperands(); Idx < e; ++Idx) {
SDValue In = Op.getOperand(Idx);
if (!In.isUndef() && (cast<ConstantSDNode>(In)->getZExtValue() & 0x1))
Imm.setBit(Idx);
}
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), Imm.getBitWidth());
return DAG.getConstant(Imm, SDLoc(Op), IntVT);
}
static SDValue combineCastedMaskArithmetic(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::BITCAST && "Expected a bitcast");
if (!DCI.isBeforeLegalizeOps())
return SDValue();
// Only do this if we have k-registers.
if (!Subtarget.hasAVX512())
return SDValue();
EVT DstVT = N->getValueType(0);
SDValue Op = N->getOperand(0);
EVT SrcVT = Op.getValueType();
if (!Op.hasOneUse())
return SDValue();
// Look for logic ops.
if (Op.getOpcode() != ISD::AND &&
Op.getOpcode() != ISD::OR &&
Op.getOpcode() != ISD::XOR)
return SDValue();
// Make sure we have a bitcast between mask registers and a scalar type.
if (!(SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 &&
DstVT.isScalarInteger()) &&
!(DstVT.isVector() && DstVT.getVectorElementType() == MVT::i1 &&
SrcVT.isScalarInteger()))
return SDValue();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
if (LHS.hasOneUse() && LHS.getOpcode() == ISD::BITCAST &&
LHS.getOperand(0).getValueType() == DstVT)
return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT, LHS.getOperand(0),
DAG.getBitcast(DstVT, RHS));
if (RHS.hasOneUse() && RHS.getOpcode() == ISD::BITCAST &&
RHS.getOperand(0).getValueType() == DstVT)
return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT,
DAG.getBitcast(DstVT, LHS), RHS.getOperand(0));
// If the RHS is a vXi1 build vector, this is a good reason to flip too.
// Most of these have to move a constant from the scalar domain anyway.
if (ISD::isBuildVectorOfConstantSDNodes(RHS.getNode())) {
RHS = combinevXi1ConstantToInteger(RHS, DAG);
return DAG.getNode(Op.getOpcode(), SDLoc(N), DstVT,
DAG.getBitcast(DstVT, LHS), RHS);
}
return SDValue();
}
static SDValue createMMXBuildVector(BuildVectorSDNode *BV, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(BV);
unsigned NumElts = BV->getNumOperands();
SDValue Splat = BV->getSplatValue();
// Build MMX element from integer GPR or SSE float values.
auto CreateMMXElement = [&](SDValue V) {
if (V.isUndef())
return DAG.getUNDEF(MVT::x86mmx);
if (V.getValueType().isFloatingPoint()) {
if (Subtarget.hasSSE1() && !isa<ConstantFPSDNode>(V)) {
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v4f32, V);
V = DAG.getBitcast(MVT::v2i64, V);
return DAG.getNode(X86ISD::MOVDQ2Q, DL, MVT::x86mmx, V);
}
V = DAG.getBitcast(MVT::i32, V);
} else {
V = DAG.getAnyExtOrTrunc(V, DL, MVT::i32);
}
return DAG.getNode(X86ISD::MMX_MOVW2D, DL, MVT::x86mmx, V);
};
// Convert build vector ops to MMX data in the bottom elements.
SmallVector<SDValue, 8> Ops;
// Broadcast - use (PUNPCKL+)PSHUFW to broadcast single element.
if (Splat) {
if (Splat.isUndef())
return DAG.getUNDEF(MVT::x86mmx);
Splat = CreateMMXElement(Splat);
if (Subtarget.hasSSE1()) {
// Unpack v8i8 to splat i8 elements to lowest 16-bits.
if (NumElts == 8)
Splat = DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx,
DAG.getConstant(Intrinsic::x86_mmx_punpcklbw, DL, MVT::i32), Splat,
Splat);
// Use PSHUFW to repeat 16-bit elements.
unsigned ShufMask = (NumElts > 2 ? 0 : 0x44);
return DAG.getNode(
ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx,
DAG.getTargetConstant(Intrinsic::x86_sse_pshuf_w, DL, MVT::i32),
Splat, DAG.getTargetConstant(ShufMask, DL, MVT::i8));
}
Ops.append(NumElts, Splat);
} else {
for (unsigned i = 0; i != NumElts; ++i)
Ops.push_back(CreateMMXElement(BV->getOperand(i)));
}
// Use tree of PUNPCKLs to build up general MMX vector.
while (Ops.size() > 1) {
unsigned NumOps = Ops.size();
unsigned IntrinOp =
(NumOps == 2 ? Intrinsic::x86_mmx_punpckldq
: (NumOps == 4 ? Intrinsic::x86_mmx_punpcklwd
: Intrinsic::x86_mmx_punpcklbw));
SDValue Intrin = DAG.getConstant(IntrinOp, DL, MVT::i32);
for (unsigned i = 0; i != NumOps; i += 2)
Ops[i / 2] = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::x86mmx, Intrin,
Ops[i], Ops[i + 1]);
Ops.resize(NumOps / 2);
}
return Ops[0];
}
static SDValue combineBitcast(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT SrcVT = N0.getValueType();
// Try to match patterns such as
// (i16 bitcast (v16i1 x))
// ->
// (i16 movmsk (16i8 sext (v16i1 x)))
// before the setcc result is scalarized on subtargets that don't have legal
// vxi1 types.
if (DCI.isBeforeLegalize()) {
SDLoc dl(N);
if (SDValue V = combineBitcastvxi1(DAG, VT, N0, dl, Subtarget))
return V;
// Recognize the IR pattern for the movmsk intrinsic under SSE1 befoer type
// legalization destroys the v4i32 type.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && SrcVT == MVT::v4i1 &&
VT.isScalarInteger() && N0.getOpcode() == ISD::SETCC &&
N0.getOperand(0).getValueType() == MVT::v4i32 &&
ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()) &&
cast<CondCodeSDNode>(N0.getOperand(2))->get() == ISD::SETLT) {
SDValue N00 = N0.getOperand(0);
// Only do this if we can avoid scalarizing the input.
if (ISD::isNormalLoad(N00.getNode()) ||
(N00.getOpcode() == ISD::BITCAST &&
N00.getOperand(0).getValueType() == MVT::v4f32)) {
SDValue V = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32,
DAG.getBitcast(MVT::v4f32, N00));
return DAG.getZExtOrTrunc(V, dl, VT);
}
}
// If this is a bitcast between a MVT::v4i1/v2i1 and an illegal integer
// type, widen both sides to avoid a trip through memory.
if ((VT == MVT::v4i1 || VT == MVT::v2i1) && SrcVT.isScalarInteger() &&
Subtarget.hasAVX512()) {
N0 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i8, N0);
N0 = DAG.getBitcast(MVT::v8i1, N0);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, N0,
DAG.getIntPtrConstant(0, dl));
}
// If this is a bitcast between a MVT::v4i1/v2i1 and an illegal integer
// type, widen both sides to avoid a trip through memory.
if ((SrcVT == MVT::v4i1 || SrcVT == MVT::v2i1) && VT.isScalarInteger() &&
Subtarget.hasAVX512()) {
// Use zeros for the widening if we already have some zeroes. This can
// allow SimplifyDemandedBits to remove scalar ANDs that may be down
// stream of this.
// FIXME: It might make sense to detect a concat_vectors with a mix of
// zeroes and undef and turn it into insert_subvector for i1 vectors as
// a separate combine. What we can't do is canonicalize the operands of
// such a concat or we'll get into a loop with SimplifyDemandedBits.
if (N0.getOpcode() == ISD::CONCAT_VECTORS) {
SDValue LastOp = N0.getOperand(N0.getNumOperands() - 1);
if (ISD::isBuildVectorAllZeros(LastOp.getNode())) {
SrcVT = LastOp.getValueType();
unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
SmallVector<SDValue, 4> Ops(N0->op_begin(), N0->op_end());
Ops.resize(NumConcats, DAG.getConstant(0, dl, SrcVT));
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops);
N0 = DAG.getBitcast(MVT::i8, N0);
return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
}
}
unsigned NumConcats = 8 / SrcVT.getVectorNumElements();
SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(SrcVT));
Ops[0] = N0;
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops);
N0 = DAG.getBitcast(MVT::i8, N0);
return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
}
}
// Look for (i8 (bitcast (v8i1 (extract_subvector (v16i1 X), 0)))) and
// replace with (i8 (trunc (i16 (bitcast (v16i1 X))))). This can occur
// due to insert_subvector legalization on KNL. By promoting the copy to i16
// we can help with known bits propagation from the vXi1 domain to the
// scalar domain.
if (VT == MVT::i8 && SrcVT == MVT::v8i1 && Subtarget.hasAVX512() &&
!Subtarget.hasDQI() && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
N0.getOperand(0).getValueType() == MVT::v16i1 &&
isNullConstant(N0.getOperand(1)))
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT,
DAG.getBitcast(MVT::i16, N0.getOperand(0)));
// Combine (bitcast (vbroadcast_load)) -> (vbroadcast_load). The memory VT
// determines // the number of bits loaded. Remaining bits are zero.
if (N0.getOpcode() == X86ISD::VBROADCAST_LOAD && N0.hasOneUse() &&
VT.getScalarSizeInBits() == SrcVT.getScalarSizeInBits()) {
auto *BCast = cast<MemIntrinsicSDNode>(N0);
SDVTList Tys = DAG.getVTList(VT, MVT::Other);
SDValue Ops[] = { BCast->getChain(), BCast->getBasePtr() };
SDValue ResNode =
DAG.getMemIntrinsicNode(X86ISD::VBROADCAST_LOAD, SDLoc(N), Tys, Ops,
VT.getVectorElementType(),
BCast->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(SDValue(BCast, 1), ResNode.getValue(1));
return ResNode;
}
// Since MMX types are special and don't usually play with other vector types,
// it's better to handle them early to be sure we emit efficient code by
// avoiding store-load conversions.
if (VT == MVT::x86mmx) {
// Detect MMX constant vectors.
APInt UndefElts;
SmallVector<APInt, 1> EltBits;
if (getTargetConstantBitsFromNode(N0, 64, UndefElts, EltBits)) {
SDLoc DL(N0);
// Handle zero-extension of i32 with MOVD.
if (EltBits[0].countLeadingZeros() >= 32)
return DAG.getNode(X86ISD::MMX_MOVW2D, DL, VT,
DAG.getConstant(EltBits[0].trunc(32), DL, MVT::i32));
// Else, bitcast to a double.
// TODO - investigate supporting sext 32-bit immediates on x86_64.
APFloat F64(APFloat::IEEEdouble(), EltBits[0]);
return DAG.getBitcast(VT, DAG.getConstantFP(F64, DL, MVT::f64));
}
// Detect bitcasts to x86mmx low word.
if (N0.getOpcode() == ISD::BUILD_VECTOR &&
(SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8) &&
N0.getOperand(0).getValueType() == SrcVT.getScalarType()) {
bool LowUndef = true, AllUndefOrZero = true;
for (unsigned i = 1, e = SrcVT.getVectorNumElements(); i != e; ++i) {
SDValue Op = N0.getOperand(i);
LowUndef &= Op.isUndef() || (i >= e/2);
AllUndefOrZero &= (Op.isUndef() || isNullConstant(Op));
}
if (AllUndefOrZero) {
SDValue N00 = N0.getOperand(0);
SDLoc dl(N00);
N00 = LowUndef ? DAG.getAnyExtOrTrunc(N00, dl, MVT::i32)
: DAG.getZExtOrTrunc(N00, dl, MVT::i32);
return DAG.getNode(X86ISD::MMX_MOVW2D, dl, VT, N00);
}
}
// Detect bitcasts of 64-bit build vectors and convert to a
// MMX UNPCK/PSHUFW which takes MMX type inputs with the value in the
// lowest element.
if (N0.getOpcode() == ISD::BUILD_VECTOR &&
(SrcVT == MVT::v2f32 || SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 ||
SrcVT == MVT::v8i8))
return createMMXBuildVector(cast<BuildVectorSDNode>(N0), DAG, Subtarget);
// Detect bitcasts between element or subvector extraction to x86mmx.
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) &&
isNullConstant(N0.getOperand(1))) {
SDValue N00 = N0.getOperand(0);
if (N00.getValueType().is128BitVector())
return DAG.getNode(X86ISD::MOVDQ2Q, SDLoc(N00), VT,
DAG.getBitcast(MVT::v2i64, N00));
}
// Detect bitcasts from FP_TO_SINT to x86mmx.
if (SrcVT == MVT::v2i32 && N0.getOpcode() == ISD::FP_TO_SINT) {
SDLoc DL(N0);
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4i32, N0,
DAG.getUNDEF(MVT::v2i32));
return DAG.getNode(X86ISD::MOVDQ2Q, DL, VT,
DAG.getBitcast(MVT::v2i64, Res));
}
}
// Try to remove a bitcast of constant vXi1 vector. We have to legalize
// most of these to scalar anyway.
if (Subtarget.hasAVX512() && VT.isScalarInteger() &&
SrcVT.isVector() && SrcVT.getVectorElementType() == MVT::i1 &&
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
return combinevXi1ConstantToInteger(N0, DAG);
}
if (Subtarget.hasAVX512() && SrcVT.isScalarInteger() &&
VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
isa<ConstantSDNode>(N0)) {
auto *C = cast<ConstantSDNode>(N0);
if (C->isAllOnesValue())
return DAG.getConstant(1, SDLoc(N0), VT);
if (C->isNullValue())
return DAG.getConstant(0, SDLoc(N0), VT);
}
// Try to remove bitcasts from input and output of mask arithmetic to
// remove GPR<->K-register crossings.
if (SDValue V = combineCastedMaskArithmetic(N, DAG, DCI, Subtarget))
return V;
// Convert a bitcasted integer logic operation that has one bitcasted
// floating-point operand into a floating-point logic operation. This may
// create a load of a constant, but that is cheaper than materializing the
// constant in an integer register and transferring it to an SSE register or
// transferring the SSE operand to integer register and back.
unsigned FPOpcode;
switch (N0.getOpcode()) {
case ISD::AND: FPOpcode = X86ISD::FAND; break;
case ISD::OR: FPOpcode = X86ISD::FOR; break;
case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
default: return SDValue();
}
if (!((Subtarget.hasSSE1() && VT == MVT::f32) ||
(Subtarget.hasSSE2() && VT == MVT::f64)))
return SDValue();
SDValue LogicOp0 = N0.getOperand(0);
SDValue LogicOp1 = N0.getOperand(1);
SDLoc DL0(N0);
// bitcast(logic(bitcast(X), Y)) --> logic'(X, bitcast(Y))
if (N0.hasOneUse() && LogicOp0.getOpcode() == ISD::BITCAST &&
LogicOp0.hasOneUse() && LogicOp0.getOperand(0).getValueType() == VT &&
!isa<ConstantSDNode>(LogicOp0.getOperand(0))) {
SDValue CastedOp1 = DAG.getBitcast(VT, LogicOp1);
return DAG.getNode(FPOpcode, DL0, VT, LogicOp0.getOperand(0), CastedOp1);
}
// bitcast(logic(X, bitcast(Y))) --> logic'(bitcast(X), Y)
if (N0.hasOneUse() && LogicOp1.getOpcode() == ISD::BITCAST &&
LogicOp1.hasOneUse() && LogicOp1.getOperand(0).getValueType() == VT &&
!isa<ConstantSDNode>(LogicOp1.getOperand(0))) {
SDValue CastedOp0 = DAG.getBitcast(VT, LogicOp0);
return DAG.getNode(FPOpcode, DL0, VT, LogicOp1.getOperand(0), CastedOp0);
}
return SDValue();
}
// Given a ABS node, detect the following pattern:
// (ABS (SUB (ZERO_EXTEND a), (ZERO_EXTEND b))).
// This is useful as it is the input into a SAD pattern.
static bool detectZextAbsDiff(const SDValue &Abs, SDValue &Op0, SDValue &Op1) {
SDValue AbsOp1 = Abs->getOperand(0);
if (AbsOp1.getOpcode() != ISD::SUB)
return false;
Op0 = AbsOp1.getOperand(0);
Op1 = AbsOp1.getOperand(1);
// Check if the operands of the sub are zero-extended from vectors of i8.
if (Op0.getOpcode() != ISD::ZERO_EXTEND ||
Op0.getOperand(0).getValueType().getVectorElementType() != MVT::i8 ||
Op1.getOpcode() != ISD::ZERO_EXTEND ||
Op1.getOperand(0).getValueType().getVectorElementType() != MVT::i8)
return false;
return true;
}
// Given two zexts of <k x i8> to <k x i32>, create a PSADBW of the inputs
// to these zexts.
static SDValue createPSADBW(SelectionDAG &DAG, const SDValue &Zext0,
const SDValue &Zext1, const SDLoc &DL,
const X86Subtarget &Subtarget) {
// Find the appropriate width for the PSADBW.
EVT InVT = Zext0.getOperand(0).getValueType();
unsigned RegSize = std::max(128u, (unsigned)InVT.getSizeInBits());
// "Zero-extend" the i8 vectors. This is not a per-element zext, rather we
// fill in the missing vector elements with 0.
unsigned NumConcat = RegSize / InVT.getSizeInBits();
SmallVector<SDValue, 16> Ops(NumConcat, DAG.getConstant(0, DL, InVT));
Ops[0] = Zext0.getOperand(0);
MVT ExtendedVT = MVT::getVectorVT(MVT::i8, RegSize / 8);
SDValue SadOp0 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
Ops[0] = Zext1.getOperand(0);
SDValue SadOp1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, ExtendedVT, Ops);
// Actually build the SAD, split as 128/256/512 bits for SSE/AVX2/AVX512BW.
auto PSADBWBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
MVT VT = MVT::getVectorVT(MVT::i64, Ops[0].getValueSizeInBits() / 64);
return DAG.getNode(X86ISD::PSADBW, DL, VT, Ops);
};
MVT SadVT = MVT::getVectorVT(MVT::i64, RegSize / 64);
return SplitOpsAndApply(DAG, Subtarget, DL, SadVT, { SadOp0, SadOp1 },
PSADBWBuilder);
}
// Attempt to replace an min/max v8i16/v16i8 horizontal reduction with
// PHMINPOSUW.
static SDValue combineHorizontalMinMaxResult(SDNode *Extract, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Bail without SSE41.
if (!Subtarget.hasSSE41())
return SDValue();
EVT ExtractVT = Extract->getValueType(0);
if (ExtractVT != MVT::i16 && ExtractVT != MVT::i8)
return SDValue();
// Check for SMAX/SMIN/UMAX/UMIN horizontal reduction patterns.
ISD::NodeType BinOp;
SDValue Src = DAG.matchBinOpReduction(
Extract, BinOp, {ISD::SMAX, ISD::SMIN, ISD::UMAX, ISD::UMIN}, true);
if (!Src)
return SDValue();
EVT SrcVT = Src.getValueType();
EVT SrcSVT = SrcVT.getScalarType();
if (SrcSVT != ExtractVT || (SrcVT.getSizeInBits() % 128) != 0)
return SDValue();
SDLoc DL(Extract);
SDValue MinPos = Src;
// First, reduce the source down to 128-bit, applying BinOp to lo/hi.
while (SrcVT.getSizeInBits() > 128) {
unsigned NumElts = SrcVT.getVectorNumElements();
unsigned NumSubElts = NumElts / 2;
SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcSVT, NumSubElts);
unsigned SubSizeInBits = SrcVT.getSizeInBits();
SDValue Lo = extractSubVector(MinPos, 0, DAG, DL, SubSizeInBits);
SDValue Hi = extractSubVector(MinPos, NumSubElts, DAG, DL, SubSizeInBits);
MinPos = DAG.getNode(BinOp, DL, SrcVT, Lo, Hi);
}
assert(((SrcVT == MVT::v8i16 && ExtractVT == MVT::i16) ||
(SrcVT == MVT::v16i8 && ExtractVT == MVT::i8)) &&
"Unexpected value type");
// PHMINPOSUW applies to UMIN(v8i16), for SMIN/SMAX/UMAX we must apply a mask
// to flip the value accordingly.
SDValue Mask;
unsigned MaskEltsBits = ExtractVT.getSizeInBits();
if (BinOp == ISD::SMAX)
Mask = DAG.getConstant(APInt::getSignedMaxValue(MaskEltsBits), DL, SrcVT);
else if (BinOp == ISD::SMIN)
Mask = DAG.getConstant(APInt::getSignedMinValue(MaskEltsBits), DL, SrcVT);
else if (BinOp == ISD::UMAX)
Mask = DAG.getConstant(APInt::getAllOnesValue(MaskEltsBits), DL, SrcVT);
if (Mask)
MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos);
// For v16i8 cases we need to perform UMIN on pairs of byte elements,
// shuffling each upper element down and insert zeros. This means that the
// v16i8 UMIN will leave the upper element as zero, performing zero-extension
// ready for the PHMINPOS.
if (ExtractVT == MVT::i8) {
SDValue Upper = DAG.getVectorShuffle(
SrcVT, DL, MinPos, DAG.getConstant(0, DL, MVT::v16i8),
{1, 16, 3, 16, 5, 16, 7, 16, 9, 16, 11, 16, 13, 16, 15, 16});
MinPos = DAG.getNode(ISD::UMIN, DL, SrcVT, MinPos, Upper);
}
// Perform the PHMINPOS on a v8i16 vector,
MinPos = DAG.getBitcast(MVT::v8i16, MinPos);
MinPos = DAG.getNode(X86ISD::PHMINPOS, DL, MVT::v8i16, MinPos);
MinPos = DAG.getBitcast(SrcVT, MinPos);
if (Mask)
MinPos = DAG.getNode(ISD::XOR, DL, SrcVT, Mask, MinPos);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractVT, MinPos,
DAG.getIntPtrConstant(0, DL));
}
// Attempt to replace an all_of/any_of/parity style horizontal reduction with a MOVMSK.
static SDValue combineHorizontalPredicateResult(SDNode *Extract,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Bail without SSE2.
if (!Subtarget.hasSSE2())
return SDValue();
EVT ExtractVT = Extract->getValueType(0);
unsigned BitWidth = ExtractVT.getSizeInBits();
if (ExtractVT != MVT::i64 && ExtractVT != MVT::i32 && ExtractVT != MVT::i16 &&
ExtractVT != MVT::i8 && ExtractVT != MVT::i1)
return SDValue();
// Check for OR(any_of)/AND(all_of)/XOR(parity) horizontal reduction patterns.
ISD::NodeType BinOp;
SDValue Match = DAG.matchBinOpReduction(Extract, BinOp, {ISD::OR, ISD::AND});
if (!Match && ExtractVT == MVT::i1)
Match = DAG.matchBinOpReduction(Extract, BinOp, {ISD::XOR});
if (!Match)
return SDValue();
// EXTRACT_VECTOR_ELT can require implicit extension of the vector element
// which we can't support here for now.
if (Match.getScalarValueSizeInBits() != BitWidth)
return SDValue();
SDValue Movmsk;
SDLoc DL(Extract);
EVT MatchVT = Match.getValueType();
unsigned NumElts = MatchVT.getVectorNumElements();
unsigned MaxElts = Subtarget.hasInt256() ? 32 : 16;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (ExtractVT == MVT::i1) {
// Special case for (pre-legalization) vXi1 reductions.
if (NumElts > 64 || !isPowerOf2_32(NumElts))
return SDValue();
if (TLI.isTypeLegal(MatchVT)) {
// If this is a legal AVX512 predicate type then we can just bitcast.
EVT MovmskVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
Movmsk = DAG.getBitcast(MovmskVT, Match);
} else {
// Use combineBitcastvxi1 to create the MOVMSK.
while (NumElts > MaxElts) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(Match, DL);
Match = DAG.getNode(BinOp, DL, Lo.getValueType(), Lo, Hi);
NumElts /= 2;
}
EVT MovmskVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
Movmsk = combineBitcastvxi1(DAG, MovmskVT, Match, DL, Subtarget);
}
if (!Movmsk)
return SDValue();
Movmsk = DAG.getZExtOrTrunc(Movmsk, DL, NumElts > 32 ? MVT::i64 : MVT::i32);
} else {
// Bail with AVX512VL (which uses predicate registers).
if (Subtarget.hasVLX())
return SDValue();
unsigned MatchSizeInBits = Match.getValueSizeInBits();
if (!(MatchSizeInBits == 128 ||
(MatchSizeInBits == 256 && Subtarget.hasAVX())))
return SDValue();
// Make sure this isn't a vector of 1 element. The perf win from using
// MOVMSK diminishes with less elements in the reduction, but it is
// generally better to get the comparison over to the GPRs as soon as
// possible to reduce the number of vector ops.
if (Match.getValueType().getVectorNumElements() < 2)
return SDValue();
// Check that we are extracting a reduction of all sign bits.
if (DAG.ComputeNumSignBits(Match) != BitWidth)
return SDValue();
if (MatchSizeInBits == 256 && BitWidth < 32 && !Subtarget.hasInt256()) {
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(Match, DL);
Match = DAG.getNode(BinOp, DL, Lo.getValueType(), Lo, Hi);
MatchSizeInBits = Match.getValueSizeInBits();
}
// For 32/64 bit comparisons use MOVMSKPS/MOVMSKPD, else PMOVMSKB.
MVT MaskSrcVT;
if (64 == BitWidth || 32 == BitWidth)
MaskSrcVT = MVT::getVectorVT(MVT::getFloatingPointVT(BitWidth),
MatchSizeInBits / BitWidth);
else
MaskSrcVT = MVT::getVectorVT(MVT::i8, MatchSizeInBits / 8);
SDValue BitcastLogicOp = DAG.getBitcast(MaskSrcVT, Match);
Movmsk = getPMOVMSKB(DL, BitcastLogicOp, DAG, Subtarget);
NumElts = MaskSrcVT.getVectorNumElements();
}
assert((NumElts <= 32 || NumElts == 64) &&
"Not expecting more than 64 elements");
MVT CmpVT = NumElts == 64 ? MVT::i64 : MVT::i32;
if (BinOp == ISD::XOR) {
// parity -> (AND (CTPOP(MOVMSK X)), 1)
SDValue Mask = DAG.getConstant(1, DL, CmpVT);
SDValue Result = DAG.getNode(ISD::CTPOP, DL, CmpVT, Movmsk);
Result = DAG.getNode(ISD::AND, DL, CmpVT, Result, Mask);
return DAG.getZExtOrTrunc(Result, DL, ExtractVT);
}
SDValue CmpC;
ISD::CondCode CondCode;
if (BinOp == ISD::OR) {
// any_of -> MOVMSK != 0
CmpC = DAG.getConstant(0, DL, CmpVT);
CondCode = ISD::CondCode::SETNE;
} else {
// all_of -> MOVMSK == ((1 << NumElts) - 1)
CmpC = DAG.getConstant(APInt::getLowBitsSet(CmpVT.getSizeInBits(), NumElts),
DL, CmpVT);
CondCode = ISD::CondCode::SETEQ;
}
// The setcc produces an i8 of 0/1, so extend that to the result width and
// negate to get the final 0/-1 mask value.
EVT SetccVT =
TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
SDValue Setcc = DAG.getSetCC(DL, SetccVT, Movmsk, CmpC, CondCode);
SDValue Zext = DAG.getZExtOrTrunc(Setcc, DL, ExtractVT);
SDValue Zero = DAG.getConstant(0, DL, ExtractVT);
return DAG.getNode(ISD::SUB, DL, ExtractVT, Zero, Zext);
}
static SDValue combineBasicSADPattern(SDNode *Extract, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// PSADBW is only supported on SSE2 and up.
if (!Subtarget.hasSSE2())
return SDValue();
// Verify the type we're extracting from is any integer type above i16.
EVT VT = Extract->getOperand(0).getValueType();
if (!VT.isSimple() || !(VT.getVectorElementType().getSizeInBits() > 16))
return SDValue();
unsigned RegSize = 128;
if (Subtarget.useBWIRegs())
RegSize = 512;
else if (Subtarget.hasAVX())
RegSize = 256;
// We handle upto v16i* for SSE2 / v32i* for AVX / v64i* for AVX512.
// TODO: We should be able to handle larger vectors by splitting them before
// feeding them into several SADs, and then reducing over those.
if (RegSize / VT.getVectorNumElements() < 8)
return SDValue();
// Match shuffle + add pyramid.
ISD::NodeType BinOp;
SDValue Root = DAG.matchBinOpReduction(Extract, BinOp, {ISD::ADD});
// The operand is expected to be zero extended from i8
// (verified in detectZextAbsDiff).
// In order to convert to i64 and above, additional any/zero/sign
// extend is expected.
// The zero extend from 32 bit has no mathematical effect on the result.
// Also the sign extend is basically zero extend
// (extends the sign bit which is zero).
// So it is correct to skip the sign/zero extend instruction.
if (Root && (Root.getOpcode() == ISD::SIGN_EXTEND ||
Root.getOpcode() == ISD::ZERO_EXTEND ||
Root.getOpcode() == ISD::ANY_EXTEND))
Root = Root.getOperand(0);
// If there was a match, we want Root to be a select that is the root of an
// abs-diff pattern.
if (!Root || Root.getOpcode() != ISD::ABS)
return SDValue();
// Check whether we have an abs-diff pattern feeding into the select.
SDValue Zext0, Zext1;
if (!detectZextAbsDiff(Root, Zext0, Zext1))
return SDValue();
// Create the SAD instruction.
SDLoc DL(Extract);
SDValue SAD = createPSADBW(DAG, Zext0, Zext1, DL, Subtarget);
// If the original vector was wider than 8 elements, sum over the results
// in the SAD vector.
unsigned Stages = Log2_32(VT.getVectorNumElements());
MVT SadVT = SAD.getSimpleValueType();
if (Stages > 3) {
unsigned SadElems = SadVT.getVectorNumElements();
for(unsigned i = Stages - 3; i > 0; --i) {
SmallVector<int, 16> Mask(SadElems, -1);
for(unsigned j = 0, MaskEnd = 1 << (i - 1); j < MaskEnd; ++j)
Mask[j] = MaskEnd + j;
SDValue Shuffle =
DAG.getVectorShuffle(SadVT, DL, SAD, DAG.getUNDEF(SadVT), Mask);
SAD = DAG.getNode(ISD::ADD, DL, SadVT, SAD, Shuffle);
}
}
MVT Type = Extract->getSimpleValueType(0);
unsigned TypeSizeInBits = Type.getSizeInBits();
// Return the lowest TypeSizeInBits bits.
MVT ResVT = MVT::getVectorVT(Type, SadVT.getSizeInBits() / TypeSizeInBits);
SAD = DAG.getBitcast(ResVT, SAD);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Type, SAD,
Extract->getOperand(1));
}
// Attempt to peek through a target shuffle and extract the scalar from the
// source.
static SDValue combineExtractWithShuffle(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDLoc dl(N);
SDValue Src = N->getOperand(0);
SDValue Idx = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT SrcVT = Src.getValueType();
EVT SrcSVT = SrcVT.getVectorElementType();
unsigned NumSrcElts = SrcVT.getVectorNumElements();
// Don't attempt this for boolean mask vectors or unknown extraction indices.
if (SrcSVT == MVT::i1 || !isa<ConstantSDNode>(Idx))
return SDValue();
SDValue SrcBC = peekThroughBitcasts(Src);
// Handle extract(broadcast(scalar_value)), it doesn't matter what index is.
if (X86ISD::VBROADCAST == SrcBC.getOpcode()) {
SDValue SrcOp = SrcBC.getOperand(0);
if (SrcOp.getValueSizeInBits() == VT.getSizeInBits())
return DAG.getBitcast(VT, SrcOp);
}
// If we're extracting a single element from a broadcast load and there are
// no other users, just create a single load.
if (SrcBC.getOpcode() == X86ISD::VBROADCAST_LOAD && SrcBC.hasOneUse()) {
auto *MemIntr = cast<MemIntrinsicSDNode>(SrcBC);
unsigned SrcBCWidth = SrcBC.getScalarValueSizeInBits();
if (MemIntr->getMemoryVT().getSizeInBits() == SrcBCWidth &&
VT.getSizeInBits() == SrcBCWidth) {
SDValue Load = DAG.getLoad(VT, dl, MemIntr->getChain(),
MemIntr->getBasePtr(),
MemIntr->getPointerInfo(),
MemIntr->getAlignment(),
MemIntr->getMemOperand()->getFlags());
DAG.ReplaceAllUsesOfValueWith(SDValue(MemIntr, 1), Load.getValue(1));
return Load;
}
}
// Handle extract(truncate(x)) for 0'th index.
// TODO: Treat this as a faux shuffle?
// TODO: When can we use this for general indices?
if (ISD::TRUNCATE == Src.getOpcode() && SrcVT.is128BitVector() &&
isNullConstant(Idx)) {
Src = extract128BitVector(Src.getOperand(0), 0, DAG, dl);
Src = DAG.getBitcast(SrcVT, Src);
return DAG.getNode(N->getOpcode(), dl, VT, Src, Idx);
}
// Resolve the target shuffle inputs and mask.
SmallVector<int, 16> Mask;
SmallVector<SDValue, 2> Ops;
if (!getTargetShuffleInputs(SrcBC, Ops, Mask, DAG))
return SDValue();
// Attempt to narrow/widen the shuffle mask to the correct size.
if (Mask.size() != NumSrcElts) {
if ((NumSrcElts % Mask.size()) == 0) {
SmallVector<int, 16> ScaledMask;
int Scale = NumSrcElts / Mask.size();
scaleShuffleMask<int>(Scale, Mask, ScaledMask);
Mask = std::move(ScaledMask);
} else if ((Mask.size() % NumSrcElts) == 0) {
// Simplify Mask based on demanded element.
int ExtractIdx = (int)N->getConstantOperandVal(1);
int Scale = Mask.size() / NumSrcElts;
int Lo = Scale * ExtractIdx;
int Hi = Scale * (ExtractIdx + 1);
for (int i = 0, e = (int)Mask.size(); i != e; ++i)
if (i < Lo || Hi <= i)
Mask[i] = SM_SentinelUndef;
SmallVector<int, 16> WidenedMask;
while (Mask.size() > NumSrcElts &&
canWidenShuffleElements(Mask, WidenedMask))
Mask = std::move(WidenedMask);
// TODO - investigate support for wider shuffle masks with known upper
// undef/zero elements for implicit zero-extension.
}
}
// Check if narrowing/widening failed.
if (Mask.size() != NumSrcElts)
return SDValue();
int SrcIdx = Mask[N->getConstantOperandVal(1)];
// If the shuffle source element is undef/zero then we can just accept it.
if (SrcIdx == SM_SentinelUndef)
return DAG.getUNDEF(VT);
if (SrcIdx == SM_SentinelZero)
return VT.isFloatingPoint() ? DAG.getConstantFP(0.0, dl, VT)
: DAG.getConstant(0, dl, VT);
SDValue SrcOp = Ops[SrcIdx / Mask.size()];
SrcIdx = SrcIdx % Mask.size();
// We can only extract other elements from 128-bit vectors and in certain
// circumstances, depending on SSE-level.
// TODO: Investigate using extract_subvector for larger vectors.
// TODO: Investigate float/double extraction if it will be just stored.
if ((SrcVT == MVT::v4i32 || SrcVT == MVT::v2i64) &&
((SrcIdx == 0 && Subtarget.hasSSE2()) || Subtarget.hasSSE41())) {
assert(SrcSVT == VT && "Unexpected extraction type");
SrcOp = DAG.getBitcast(SrcVT, SrcOp);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcSVT, SrcOp,
DAG.getIntPtrConstant(SrcIdx, dl));
}
if ((SrcVT == MVT::v8i16 && Subtarget.hasSSE2()) ||
(SrcVT == MVT::v16i8 && Subtarget.hasSSE41())) {
assert(VT.getSizeInBits() >= SrcSVT.getSizeInBits() &&
"Unexpected extraction type");
unsigned OpCode = (SrcVT == MVT::v8i16 ? X86ISD::PEXTRW : X86ISD::PEXTRB);
SrcOp = DAG.getBitcast(SrcVT, SrcOp);
SDValue ExtOp = DAG.getNode(OpCode, dl, MVT::i32, SrcOp,
DAG.getIntPtrConstant(SrcIdx, dl));
return DAG.getZExtOrTrunc(ExtOp, dl, VT);
}
return SDValue();
}
/// Extracting a scalar FP value from vector element 0 is free, so extract each
/// operand first, then perform the math as a scalar op.
static SDValue scalarizeExtEltFP(SDNode *ExtElt, SelectionDAG &DAG) {
assert(ExtElt->getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Expected extract");
SDValue Vec = ExtElt->getOperand(0);
SDValue Index = ExtElt->getOperand(1);
EVT VT = ExtElt->getValueType(0);
EVT VecVT = Vec.getValueType();
// TODO: If this is a unary/expensive/expand op, allow extraction from a
// non-zero element because the shuffle+scalar op will be cheaper?
if (!Vec.hasOneUse() || !isNullConstant(Index) || VecVT.getScalarType() != VT)
return SDValue();
// Vector FP compares don't fit the pattern of FP math ops (propagate, not
// extract, the condition code), so deal with those as a special-case.
if (Vec.getOpcode() == ISD::SETCC && VT == MVT::i1) {
EVT OpVT = Vec.getOperand(0).getValueType().getScalarType();
if (OpVT != MVT::f32 && OpVT != MVT::f64)
return SDValue();
// extract (setcc X, Y, CC), 0 --> setcc (extract X, 0), (extract Y, 0), CC
SDLoc DL(ExtElt);
SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT,
Vec.getOperand(0), Index);
SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, OpVT,
Vec.getOperand(1), Index);
return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1, Vec.getOperand(2));
}
if (VT != MVT::f32 && VT != MVT::f64)
return SDValue();
// Vector FP selects don't fit the pattern of FP math ops (because the
// condition has a different type and we have to change the opcode), so deal
// with those here.
// FIXME: This is restricted to pre type legalization by ensuring the setcc
// has i1 elements. If we loosen this we need to convert vector bool to a
// scalar bool.
if (Vec.getOpcode() == ISD::VSELECT &&
Vec.getOperand(0).getOpcode() == ISD::SETCC &&
Vec.getOperand(0).getValueType().getScalarType() == MVT::i1 &&
Vec.getOperand(0).getOperand(0).getValueType() == VecVT) {
// ext (sel Cond, X, Y), 0 --> sel (ext Cond, 0), (ext X, 0), (ext Y, 0)
SDLoc DL(ExtElt);
SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
Vec.getOperand(0).getValueType().getScalarType(),
Vec.getOperand(0), Index);
SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
Vec.getOperand(1), Index);
SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
Vec.getOperand(2), Index);
return DAG.getNode(ISD::SELECT, DL, VT, Ext0, Ext1, Ext2);
}
// TODO: This switch could include FNEG and the x86-specific FP logic ops
// (FAND, FANDN, FOR, FXOR). But that may require enhancements to avoid
// missed load folding and fma+fneg combining.
switch (Vec.getOpcode()) {
case ISD::FMA: // Begin 3 operands
case ISD::FMAD:
case ISD::FADD: // Begin 2 operands
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
case ISD::FCOPYSIGN:
case ISD::FMINNUM:
case ISD::FMAXNUM:
case ISD::FMINNUM_IEEE:
case ISD::FMAXNUM_IEEE:
case ISD::FMAXIMUM:
case ISD::FMINIMUM:
case X86ISD::FMAX:
case X86ISD::FMIN:
case ISD::FABS: // Begin 1 operand
case ISD::FSQRT:
case ISD::FRINT:
case ISD::FCEIL:
case ISD::FTRUNC:
case ISD::FNEARBYINT:
case ISD::FROUND:
case ISD::FFLOOR:
case X86ISD::FRCP:
case X86ISD::FRSQRT: {
// extract (fp X, Y, ...), 0 --> fp (extract X, 0), (extract Y, 0), ...
SDLoc DL(ExtElt);
SmallVector<SDValue, 4> ExtOps;
for (SDValue Op : Vec->ops())
ExtOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op, Index));
return DAG.getNode(Vec.getOpcode(), DL, VT, ExtOps);
}
default:
return SDValue();
}
llvm_unreachable("All opcodes should return within switch");
}
/// Try to convert a vector reduction sequence composed of binops and shuffles
/// into horizontal ops.
static SDValue combineReductionToHorizontal(SDNode *ExtElt, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(ExtElt->getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unexpected caller");
// We need at least SSE2 to anything here.
if (!Subtarget.hasSSE2())
return SDValue();
ISD::NodeType Opc;
SDValue Rdx =
DAG.matchBinOpReduction(ExtElt, Opc, {ISD::ADD, ISD::FADD}, true);
if (!Rdx)
return SDValue();
SDValue Index = ExtElt->getOperand(1);
assert(isNullConstant(Index) &&
"Reduction doesn't end in an extract from index 0");
EVT VT = ExtElt->getValueType(0);
EVT VecVT = Rdx.getValueType();
if (VecVT.getScalarType() != VT)
return SDValue();
SDLoc DL(ExtElt);
// vXi8 reduction - sub 128-bit vector.
if (VecVT == MVT::v4i8 || VecVT == MVT::v8i8) {
if (VecVT == MVT::v4i8) {
// Pad with zero.
if (Subtarget.hasSSE41()) {
Rdx = DAG.getBitcast(MVT::i32, Rdx);
Rdx = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, MVT::v4i32,
DAG.getConstant(0, DL, MVT::v4i32), Rdx,
DAG.getIntPtrConstant(0, DL));
Rdx = DAG.getBitcast(MVT::v16i8, Rdx);
} else {
Rdx = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i8, Rdx,
DAG.getConstant(0, DL, VecVT));
}
}
if (Rdx.getValueType() == MVT::v8i8) {
// Pad with undef.
Rdx = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, Rdx,
DAG.getUNDEF(MVT::v8i8));
}
Rdx = DAG.getNode(X86ISD::PSADBW, DL, MVT::v2i64, Rdx,
DAG.getConstant(0, DL, MVT::v16i8));
Rdx = DAG.getBitcast(MVT::v16i8, Rdx);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Rdx, Index);
}
// Must be a >=128-bit vector with pow2 elements.
if ((VecVT.getSizeInBits() % 128) != 0 ||
!isPowerOf2_32(VecVT.getVectorNumElements()))
return SDValue();
// vXi8 reduction - sum lo/hi halves then use PSADBW.
if (VT == MVT::i8) {
while (Rdx.getValueSizeInBits() > 128) {
unsigned HalfSize = VecVT.getSizeInBits() / 2;
unsigned HalfElts = VecVT.getVectorNumElements() / 2;
SDValue Lo = extractSubVector(Rdx, 0, DAG, DL, HalfSize);
SDValue Hi = extractSubVector(Rdx, HalfElts, DAG, DL, HalfSize);
Rdx = DAG.getNode(ISD::ADD, DL, Lo.getValueType(), Lo, Hi);
VecVT = Rdx.getValueType();
}
assert(VecVT == MVT::v16i8 && "v16i8 reduction expected");
SDValue Hi = DAG.getVectorShuffle(
MVT::v16i8, DL, Rdx, Rdx,
{8, 9, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1});
Rdx = DAG.getNode(ISD::ADD, DL, MVT::v16i8, Rdx, Hi);
Rdx = DAG.getNode(X86ISD::PSADBW, DL, MVT::v2i64, Rdx,
getZeroVector(MVT::v16i8, Subtarget, DAG, DL));
Rdx = DAG.getBitcast(MVT::v16i8, Rdx);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Rdx, Index);
}
// Only use (F)HADD opcodes if they aren't microcoded or minimizes codesize.
bool OptForSize = DAG.getMachineFunction().getFunction().hasOptSize();
if (!Subtarget.hasFastHorizontalOps() && !OptForSize)
return SDValue();
unsigned HorizOpcode = Opc == ISD::ADD ? X86ISD::HADD : X86ISD::FHADD;
// 256-bit horizontal instructions operate on 128-bit chunks rather than
// across the whole vector, so we need an extract + hop preliminary stage.
// This is the only step where the operands of the hop are not the same value.
// TODO: We could extend this to handle 512-bit or even longer vectors.
if (((VecVT == MVT::v16i16 || VecVT == MVT::v8i32) && Subtarget.hasSSSE3()) ||
((VecVT == MVT::v8f32 || VecVT == MVT::v4f64) && Subtarget.hasSSE3())) {
unsigned NumElts = VecVT.getVectorNumElements();
SDValue Hi = extract128BitVector(Rdx, NumElts / 2, DAG, DL);
SDValue Lo = extract128BitVector(Rdx, 0, DAG, DL);
Rdx = DAG.getNode(HorizOpcode, DL, Lo.getValueType(), Hi, Lo);
VecVT = Rdx.getValueType();
}
if (!((VecVT == MVT::v8i16 || VecVT == MVT::v4i32) && Subtarget.hasSSSE3()) &&
!((VecVT == MVT::v4f32 || VecVT == MVT::v2f64) && Subtarget.hasSSE3()))
return SDValue();
// extract (add (shuf X), X), 0 --> extract (hadd X, X), 0
unsigned ReductionSteps = Log2_32(VecVT.getVectorNumElements());
for (unsigned i = 0; i != ReductionSteps; ++i)
Rdx = DAG.getNode(HorizOpcode, DL, VecVT, Rdx, Rdx);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Rdx, Index);
}
/// Detect vector gather/scatter index generation and convert it from being a
/// bunch of shuffles and extracts into a somewhat faster sequence.
/// For i686, the best sequence is apparently storing the value and loading
/// scalars back, while for x64 we should use 64-bit extracts and shifts.
static SDValue combineExtractVectorElt(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (SDValue NewOp = combineExtractWithShuffle(N, DAG, DCI, Subtarget))
return NewOp;
SDValue InputVector = N->getOperand(0);
SDValue EltIdx = N->getOperand(1);
auto *CIdx = dyn_cast<ConstantSDNode>(EltIdx);
EVT SrcVT = InputVector.getValueType();
EVT VT = N->getValueType(0);
SDLoc dl(InputVector);
bool IsPextr = N->getOpcode() != ISD::EXTRACT_VECTOR_ELT;
unsigned NumSrcElts = SrcVT.getVectorNumElements();
if (CIdx && CIdx->getAPIntValue().uge(NumSrcElts))
return IsPextr ? DAG.getConstant(0, dl, VT) : DAG.getUNDEF(VT);
// Integer Constant Folding.
if (CIdx && VT.isInteger()) {
APInt UndefVecElts;
SmallVector<APInt, 16> EltBits;
unsigned VecEltBitWidth = SrcVT.getScalarSizeInBits();
if (getTargetConstantBitsFromNode(InputVector, VecEltBitWidth, UndefVecElts,
EltBits, true, false)) {
uint64_t Idx = CIdx->getZExtValue();
if (UndefVecElts[Idx])
return IsPextr ? DAG.getConstant(0, dl, VT) : DAG.getUNDEF(VT);
return DAG.getConstant(EltBits[Idx].zextOrSelf(VT.getScalarSizeInBits()),
dl, VT);
}
}
if (IsPextr) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.SimplifyDemandedBits(
SDValue(N, 0), APInt::getAllOnesValue(VT.getSizeInBits()), DCI))
return SDValue(N, 0);
// PEXTR*(PINSR*(v, s, c), c) -> s (with implicit zext handling).
if ((InputVector.getOpcode() == X86ISD::PINSRB ||
InputVector.getOpcode() == X86ISD::PINSRW) &&
InputVector.getOperand(2) == EltIdx) {
assert(SrcVT == InputVector.getOperand(0).getValueType() &&
"Vector type mismatch");
SDValue Scl = InputVector.getOperand(1);
Scl = DAG.getNode(ISD::TRUNCATE, dl, SrcVT.getScalarType(), Scl);
return DAG.getZExtOrTrunc(Scl, dl, VT);
}
// TODO - Remove this once we can handle the implicit zero-extension of
// X86ISD::PEXTRW/X86ISD::PEXTRB in combineHorizontalPredicateResult and
// combineBasicSADPattern.
return SDValue();
}
// Detect mmx extraction of all bits as a i64. It works better as a bitcast.
if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
VT == MVT::i64 && SrcVT == MVT::v1i64 && isNullConstant(EltIdx)) {
SDValue MMXSrc = InputVector.getOperand(0);
// The bitcast source is a direct mmx result.
if (MMXSrc.getValueType() == MVT::x86mmx)
return DAG.getBitcast(VT, InputVector);
}
// Detect mmx to i32 conversion through a v2i32 elt extract.
if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
VT == MVT::i32 && SrcVT == MVT::v2i32 && isNullConstant(EltIdx)) {
SDValue MMXSrc = InputVector.getOperand(0);
// The bitcast source is a direct mmx result.
if (MMXSrc.getValueType() == MVT::x86mmx)
return DAG.getNode(X86ISD::MMX_MOVD2W, dl, MVT::i32, MMXSrc);
}
// Check whether this extract is the root of a sum of absolute differences
// pattern. This has to be done here because we really want it to happen
// pre-legalization,
if (SDValue SAD = combineBasicSADPattern(N, DAG, Subtarget))
return SAD;
// Attempt to replace an all_of/any_of horizontal reduction with a MOVMSK.
if (SDValue Cmp = combineHorizontalPredicateResult(N, DAG, Subtarget))
return Cmp;
// Attempt to replace min/max v8i16/v16i8 reductions with PHMINPOSUW.
if (SDValue MinMax = combineHorizontalMinMaxResult(N, DAG, Subtarget))
return MinMax;
if (SDValue V = combineReductionToHorizontal(N, DAG, Subtarget))
return V;
if (SDValue V = scalarizeExtEltFP(N, DAG))
return V;
// Attempt to extract a i1 element by using MOVMSK to extract the signbits
// and then testing the relevant element.
if (CIdx && SrcVT.getScalarType() == MVT::i1) {
SmallVector<SDNode *, 16> BoolExtracts;
auto IsBoolExtract = [&BoolExtracts](SDNode *Use) {
if (Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(Use->getOperand(1)) &&
Use->getValueType(0) == MVT::i1) {
BoolExtracts.push_back(Use);
return true;
}
return false;
};
if (all_of(InputVector->uses(), IsBoolExtract) &&
BoolExtracts.size() > 1) {
EVT BCVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcElts);
if (SDValue BC =
combineBitcastvxi1(DAG, BCVT, InputVector, dl, Subtarget)) {
for (SDNode *Use : BoolExtracts) {
// extractelement vXi1 X, MaskIdx --> ((movmsk X) & Mask) == Mask
unsigned MaskIdx = Use->getConstantOperandVal(1);
APInt MaskBit = APInt::getOneBitSet(NumSrcElts, MaskIdx);
SDValue Mask = DAG.getConstant(MaskBit, dl, BCVT);
SDValue Res = DAG.getNode(ISD::AND, dl, BCVT, BC, Mask);
Res = DAG.getSetCC(dl, MVT::i1, Res, Mask, ISD::SETEQ);
DCI.CombineTo(Use, Res);
}
return SDValue(N, 0);
}
}
}
return SDValue();
}
/// If a vector select has an operand that is -1 or 0, try to simplify the
/// select to a bitwise logic operation.
/// TODO: Move to DAGCombiner, possibly using TargetLowering::hasAndNot()?
static SDValue
combineVSelectWithAllOnesOrZeros(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = LHS.getValueType();
EVT CondVT = Cond.getValueType();
SDLoc DL(N);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (N->getOpcode() != ISD::VSELECT)
return SDValue();
assert(CondVT.isVector() && "Vector select expects a vector selector!");
// Check if the first operand is all zeros and Cond type is vXi1.
// This situation only applies to avx512.
// TODO: Use isNullOrNullSplat() to distinguish constants with undefs?
// TODO: Can we assert that both operands are not zeros (because that should
// get simplified at node creation time)?
bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
// If both inputs are 0/undef, create a complete zero vector.
// FIXME: As noted above this should be handled by DAGCombiner/getNode.
if (TValIsAllZeros && FValIsAllZeros) {
if (VT.isFloatingPoint())
return DAG.getConstantFP(0.0, DL, VT);
return DAG.getConstant(0, DL, VT);
}
if (TValIsAllZeros && !FValIsAllZeros && Subtarget.hasAVX512() &&
Cond.hasOneUse() && CondVT.getVectorElementType() == MVT::i1) {
// Invert the cond to not(cond) : xor(op,allones)=not(op)
SDValue CondNew = DAG.getNOT(DL, Cond, CondVT);
// Vselect cond, op1, op2 = Vselect not(cond), op2, op1
return DAG.getSelect(DL, VT, CondNew, RHS, LHS);
}
// To use the condition operand as a bitwise mask, it must have elements that
// are the same size as the select elements. Ie, the condition operand must
// have already been promoted from the IR select condition type <N x i1>.
// Don't check if the types themselves are equal because that excludes
// vector floating-point selects.
if (CondVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
return SDValue();
// Try to invert the condition if true value is not all 1s and false value is
// not all 0s. Only do this if the condition has one use.
bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
if (!TValIsAllOnes && !FValIsAllZeros && Cond.hasOneUse() &&
// Check if the selector will be produced by CMPP*/PCMP*.
Cond.getOpcode() == ISD::SETCC &&
// Check if SETCC has already been promoted.
TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
CondVT) {
bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
if (TValIsAllZeros || FValIsAllOnes) {
SDValue CC = Cond.getOperand(2);
ISD::CondCode NewCC = ISD::getSetCCInverse(
cast<CondCodeSDNode>(CC)->get(), Cond.getOperand(0).getValueType());
Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1),
NewCC);
std::swap(LHS, RHS);
TValIsAllOnes = FValIsAllOnes;
FValIsAllZeros = TValIsAllZeros;
}
}
// Cond value must be 'sign splat' to be converted to a logical op.
if (DAG.ComputeNumSignBits(Cond) != CondVT.getScalarSizeInBits())
return SDValue();
// vselect Cond, 111..., 000... -> Cond
if (TValIsAllOnes && FValIsAllZeros)
return DAG.getBitcast(VT, Cond);
if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(CondVT))
return SDValue();
// vselect Cond, 111..., X -> or Cond, X
if (TValIsAllOnes) {
SDValue CastRHS = DAG.getBitcast(CondVT, RHS);
SDValue Or = DAG.getNode(ISD::OR, DL, CondVT, Cond, CastRHS);
return DAG.getBitcast(VT, Or);
}
// vselect Cond, X, 000... -> and Cond, X
if (FValIsAllZeros) {
SDValue CastLHS = DAG.getBitcast(CondVT, LHS);
SDValue And = DAG.getNode(ISD::AND, DL, CondVT, Cond, CastLHS);
return DAG.getBitcast(VT, And);
}
// vselect Cond, 000..., X -> andn Cond, X
if (TValIsAllZeros) {
MVT AndNVT = MVT::getVectorVT(MVT::i64, CondVT.getSizeInBits() / 64);
SDValue CastCond = DAG.getBitcast(AndNVT, Cond);
SDValue CastRHS = DAG.getBitcast(AndNVT, RHS);
SDValue AndN = DAG.getNode(X86ISD::ANDNP, DL, AndNVT, CastCond, CastRHS);
return DAG.getBitcast(VT, AndN);
}
return SDValue();
}
/// If both arms of a vector select are concatenated vectors, split the select,
/// and concatenate the result to eliminate a wide (256-bit) vector instruction:
/// vselect Cond, (concat T0, T1), (concat F0, F1) -->
/// concat (vselect (split Cond), T0, F0), (vselect (split Cond), T1, F1)
static SDValue narrowVectorSelect(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
if (Opcode != X86ISD::BLENDV && Opcode != ISD::VSELECT)
return SDValue();
// TODO: Split 512-bit vectors too?
EVT VT = N->getValueType(0);
if (!VT.is256BitVector())
return SDValue();
// TODO: Split as long as any 2 of the 3 operands are concatenated?
SDValue Cond = N->getOperand(0);
SDValue TVal = N->getOperand(1);
SDValue FVal = N->getOperand(2);
SmallVector<SDValue, 4> CatOpsT, CatOpsF;
if (!TVal.hasOneUse() || !FVal.hasOneUse() ||
!collectConcatOps(TVal.getNode(), CatOpsT) ||
!collectConcatOps(FVal.getNode(), CatOpsF))
return SDValue();
auto makeBlend = [Opcode](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(Opcode, DL, Ops[1].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { Cond, TVal, FVal },
makeBlend, /*CheckBWI*/ false);
}
static SDValue combineSelectOfTwoConstants(SDNode *N, SelectionDAG &DAG) {
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
SDLoc DL(N);
auto *TrueC = dyn_cast<ConstantSDNode>(LHS);
auto *FalseC = dyn_cast<ConstantSDNode>(RHS);
if (!TrueC || !FalseC)
return SDValue();
// Don't do this for crazy integer types.
EVT VT = N->getValueType(0);
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
// We're going to use the condition bit in math or logic ops. We could allow
// this with a wider condition value (post-legalization it becomes an i8),
// but if nothing is creating selects that late, it doesn't matter.
if (Cond.getValueType() != MVT::i1)
return SDValue();
// A power-of-2 multiply is just a shift. LEA also cheaply handles multiply by
// 3, 5, or 9 with i32/i64, so those get transformed too.
// TODO: For constants that overflow or do not differ by power-of-2 or small
// multiplier, convert to 'and' + 'add'.
const APInt &TrueVal = TrueC->getAPIntValue();
const APInt &FalseVal = FalseC->getAPIntValue();
bool OV;
APInt Diff = TrueVal.ssub_ov(FalseVal, OV);
if (OV)
return SDValue();
APInt AbsDiff = Diff.abs();
if (AbsDiff.isPowerOf2() ||
((VT == MVT::i32 || VT == MVT::i64) &&
(AbsDiff == 3 || AbsDiff == 5 || AbsDiff == 9))) {
// We need a positive multiplier constant for shift/LEA codegen. The 'not'
// of the condition can usually be folded into a compare predicate, but even
// without that, the sequence should be cheaper than a CMOV alternative.
if (TrueVal.slt(FalseVal)) {
Cond = DAG.getNOT(DL, Cond, MVT::i1);
std::swap(TrueC, FalseC);
}
// select Cond, TC, FC --> (zext(Cond) * (TC - FC)) + FC
SDValue R = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
// Multiply condition by the difference if non-one.
if (!AbsDiff.isOneValue())
R = DAG.getNode(ISD::MUL, DL, VT, R, DAG.getConstant(AbsDiff, DL, VT));
// Add the base if non-zero.
if (!FalseC->isNullValue())
R = DAG.getNode(ISD::ADD, DL, VT, R, SDValue(FalseC, 0));
return R;
}
return SDValue();
}
/// If this is a *dynamic* select (non-constant condition) and we can match
/// this node with one of the variable blend instructions, restructure the
/// condition so that blends can use the high (sign) bit of each element.
/// This function will also call SimplifyDemandedBits on already created
/// BLENDV to perform additional simplifications.
static SDValue combineVSelectToBLENDV(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue Cond = N->getOperand(0);
if ((N->getOpcode() != ISD::VSELECT &&
N->getOpcode() != X86ISD::BLENDV) ||
ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
return SDValue();
// Don't optimize before the condition has been transformed to a legal type
// and don't ever optimize vector selects that map to AVX512 mask-registers.
unsigned BitWidth = Cond.getScalarValueSizeInBits();
if (BitWidth < 8 || BitWidth > 64)
return SDValue();
// We can only handle the cases where VSELECT is directly legal on the
// subtarget. We custom lower VSELECT nodes with constant conditions and
// this makes it hard to see whether a dynamic VSELECT will correctly
// lower, so we both check the operation's status and explicitly handle the
// cases where a *dynamic* blend will fail even though a constant-condition
// blend could be custom lowered.
// FIXME: We should find a better way to handle this class of problems.
// Potentially, we should combine constant-condition vselect nodes
// pre-legalization into shuffles and not mark as many types as custom
// lowered.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
return SDValue();
// FIXME: We don't support i16-element blends currently. We could and
// should support them by making *all* the bits in the condition be set
// rather than just the high bit and using an i8-element blend.
if (VT.getVectorElementType() == MVT::i16)
return SDValue();
// Dynamic blending was only available from SSE4.1 onward.
if (VT.is128BitVector() && !Subtarget.hasSSE41())
return SDValue();
// Byte blends are only available in AVX2
if (VT == MVT::v32i8 && !Subtarget.hasAVX2())
return SDValue();
// There are no 512-bit blend instructions that use sign bits.
if (VT.is512BitVector())
return SDValue();
auto OnlyUsedAsSelectCond = [](SDValue Cond) {
for (SDNode::use_iterator UI = Cond->use_begin(), UE = Cond->use_end();
UI != UE; ++UI)
if ((UI->getOpcode() != ISD::VSELECT &&
UI->getOpcode() != X86ISD::BLENDV) ||
UI.getOperandNo() != 0)
return false;
return true;
};
if (OnlyUsedAsSelectCond(Cond)) {
APInt DemandedMask(APInt::getSignMask(BitWidth));
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
if (!TLI.SimplifyDemandedBits(Cond, DemandedMask, Known, TLO, 0, true))
return SDValue();
// If we changed the computation somewhere in the DAG, this change will
// affect all users of Cond. Update all the nodes so that we do not use
// the generic VSELECT anymore. Otherwise, we may perform wrong
// optimizations as we messed with the actual expectation for the vector
// boolean values.
for (SDNode *U : Cond->uses()) {
if (U->getOpcode() == X86ISD::BLENDV)
continue;
SDValue SB = DAG.getNode(X86ISD::BLENDV, SDLoc(U), U->getValueType(0),
Cond, U->getOperand(1), U->getOperand(2));
DAG.ReplaceAllUsesOfValueWith(SDValue(U, 0), SB);
DCI.AddToWorklist(U);
}
DCI.CommitTargetLoweringOpt(TLO);
return SDValue(N, 0);
}
// Otherwise we can still at least try to simplify multiple use bits.
APInt DemandedMask(APInt::getSignMask(BitWidth));
APInt DemandedElts(APInt::getAllOnesValue(VT.getVectorNumElements()));
KnownBits Known;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
if (SDValue V = TLI.SimplifyMultipleUseDemandedBits(Cond, DemandedMask,
DemandedElts, DAG, 0))
return DAG.getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0),
V, N->getOperand(1), N->getOperand(2));
return SDValue();
}
// Try to match:
// (or (and (M, (sub 0, X)), (pandn M, X)))
// which is a special case of:
// (select M, (sub 0, X), X)
// Per:
// http://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate
// We know that, if fNegate is 0 or 1:
// (fNegate ? -v : v) == ((v ^ -fNegate) + fNegate)
//
// Here, we have a mask, M (all 1s or 0), and, similarly, we know that:
// ((M & 1) ? -X : X) == ((X ^ -(M & 1)) + (M & 1))
// ( M ? -X : X) == ((X ^ M ) + (M & 1))
// This lets us transform our vselect to:
// (add (xor X, M), (and M, 1))
// And further to:
// (sub (xor X, M), M)
static SDValue combineLogicBlendIntoConditionalNegate(
EVT VT, SDValue Mask, SDValue X, SDValue Y, const SDLoc &DL,
SelectionDAG &DAG, const X86Subtarget &Subtarget) {
EVT MaskVT = Mask.getValueType();
assert(MaskVT.isInteger() &&
DAG.ComputeNumSignBits(Mask) == MaskVT.getScalarSizeInBits() &&
"Mask must be zero/all-bits");
if (X.getValueType() != MaskVT || Y.getValueType() != MaskVT)
return SDValue();
if (!DAG.getTargetLoweringInfo().isOperationLegal(ISD::SUB, MaskVT))
return SDValue();
auto IsNegV = [](SDNode *N, SDValue V) {
return N->getOpcode() == ISD::SUB && N->getOperand(1) == V &&
ISD::isBuildVectorAllZeros(N->getOperand(0).getNode());
};
SDValue V;
if (IsNegV(Y.getNode(), X))
V = X;
else if (IsNegV(X.getNode(), Y))
V = Y;
else
return SDValue();
SDValue SubOp1 = DAG.getNode(ISD::XOR, DL, MaskVT, V, Mask);
SDValue SubOp2 = Mask;
// If the negate was on the false side of the select, then
// the operands of the SUB need to be swapped. PR 27251.
// This is because the pattern being matched above is
// (vselect M, (sub (0, X), X) -> (sub (xor X, M), M)
// but if the pattern matched was
// (vselect M, X, (sub (0, X))), that is really negation of the pattern
// above, -(vselect M, (sub 0, X), X), and therefore the replacement
// pattern also needs to be a negation of the replacement pattern above.
// And -(sub X, Y) is just sub (Y, X), so swapping the operands of the
// sub accomplishes the negation of the replacement pattern.
if (V == Y)
std::swap(SubOp1, SubOp2);
SDValue Res = DAG.getNode(ISD::SUB, DL, MaskVT, SubOp1, SubOp2);
return DAG.getBitcast(VT, Res);
}
/// Do target-specific dag combines on SELECT and VSELECT nodes.
static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
SDValue Cond = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
// Try simplification again because we use this function to optimize
// BLENDV nodes that are not handled by the generic combiner.
if (SDValue V = DAG.simplifySelect(Cond, LHS, RHS))
return V;
EVT VT = LHS.getValueType();
EVT CondVT = Cond.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
bool CondConstantVector = ISD::isBuildVectorOfConstantSDNodes(Cond.getNode());
// Attempt to combine (select M, (sub 0, X), X) -> (sub (xor X, M), M).
// Limit this to cases of non-constant masks that createShuffleMaskFromVSELECT
// can't catch, plus vXi8 cases where we'd likely end up with BLENDV.
if (CondVT.isVector() && CondVT.isInteger() &&
CondVT.getScalarSizeInBits() == VT.getScalarSizeInBits() &&
(!CondConstantVector || CondVT.getScalarType() == MVT::i8) &&
DAG.ComputeNumSignBits(Cond) == CondVT.getScalarSizeInBits())
if (SDValue V = combineLogicBlendIntoConditionalNegate(VT, Cond, RHS, LHS,
DL, DAG, Subtarget))
return V;
// Convert vselects with constant condition into shuffles.
if (CondConstantVector && DCI.isBeforeLegalizeOps()) {
SmallVector<int, 64> Mask;
if (createShuffleMaskFromVSELECT(Mask, Cond))
return DAG.getVectorShuffle(VT, DL, LHS, RHS, Mask);
}
// If we have SSE[12] support, try to form min/max nodes. SSE min/max
// instructions match the semantics of the common C idiom x<y?x:y but not
// x<=y?x:y, because of how they handle negative zero (which can be
// ignored in unsafe-math mode).
// We also try to create v2f32 min/max nodes, which we later widen to v4f32.
if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
VT != MVT::f80 && VT != MVT::f128 &&
(TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
(Subtarget.hasSSE2() ||
(Subtarget.hasSSE1() && VT.getScalarType() == MVT::f32))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
unsigned Opcode = 0;
// Check for x CC y ? x : y.
if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
switch (CC) {
default: break;
case ISD::SETULT:
// Converting this to a min would handle NaNs incorrectly, and swapping
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
!(DAG.isKnownNeverZeroFloat(LHS) ||
DAG.isKnownNeverZeroFloat(RHS)))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMIN;
break;
case ISD::SETOLE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
!DAG.isKnownNeverZeroFloat(LHS) && !DAG.isKnownNeverZeroFloat(RHS))
break;
Opcode = X86ISD::FMIN;
break;
case ISD::SETULE:
// Converting this to a min would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETOLT:
case ISD::SETLT:
case ISD::SETLE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOGE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
!DAG.isKnownNeverZeroFloat(LHS) && !DAG.isKnownNeverZeroFloat(RHS))
break;
Opcode = X86ISD::FMAX;
break;
case ISD::SETUGT:
// Converting this to a max would handle NaNs incorrectly, and swapping
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
!(DAG.isKnownNeverZeroFloat(LHS) ||
DAG.isKnownNeverZeroFloat(RHS)))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMAX;
break;
case ISD::SETUGE:
// Converting this to a max would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETGT:
case ISD::SETGE:
Opcode = X86ISD::FMAX;
break;
}
// Check for x CC y ? y : x -- a min/max with reversed arms.
} else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
DAG.isEqualTo(RHS, Cond.getOperand(0))) {
switch (CC) {
default: break;
case ISD::SETOGE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
!(DAG.isKnownNeverZeroFloat(LHS) ||
DAG.isKnownNeverZeroFloat(RHS))) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMIN;
break;
case ISD::SETUGT:
// Converting this to a min would handle NaNs incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
Opcode = X86ISD::FMIN;
break;
case ISD::SETUGE:
// Converting this to a min would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETOGT:
case ISD::SETGT:
case ISD::SETGE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETULT:
// Converting this to a max would handle NaNs incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
Opcode = X86ISD::FMAX;
break;
case ISD::SETOLE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
if (!DAG.getTarget().Options.NoSignedZerosFPMath &&
!DAG.isKnownNeverZeroFloat(LHS) &&
!DAG.isKnownNeverZeroFloat(RHS)) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMAX;
break;
case ISD::SETULE:
// Converting this to a max would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETOLT:
case ISD::SETLT:
case ISD::SETLE:
Opcode = X86ISD::FMAX;
break;
}
}
if (Opcode)
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
}
// Some mask scalar intrinsics rely on checking if only one bit is set
// and implement it in C code like this:
// A[0] = (U & 1) ? A[0] : W[0];
// This creates some redundant instructions that break pattern matching.
// fold (select (setcc (and (X, 1), 0, seteq), Y, Z)) -> select(and(X, 1),Z,Y)
if (Subtarget.hasAVX512() && N->getOpcode() == ISD::SELECT &&
Cond.getOpcode() == ISD::SETCC && (VT == MVT::f32 || VT == MVT::f64)) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
SDValue AndNode = Cond.getOperand(0);
if (AndNode.getOpcode() == ISD::AND && CC == ISD::SETEQ &&
isNullConstant(Cond.getOperand(1)) &&
isOneConstant(AndNode.getOperand(1))) {
// LHS and RHS swapped due to
// setcc outputting 1 when AND resulted in 0 and vice versa.
AndNode = DAG.getZExtOrTrunc(AndNode, DL, MVT::i8);
return DAG.getNode(ISD::SELECT, DL, VT, AndNode, RHS, LHS);
}
}
// v16i8 (select v16i1, v16i8, v16i8) does not have a proper
// lowering on KNL. In this case we convert it to
// v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
// The same situation all vectors of i8 and i16 without BWI.
// Make sure we extend these even before type legalization gets a chance to
// split wide vectors.
// Since SKX these selects have a proper lowering.
if (Subtarget.hasAVX512() && !Subtarget.hasBWI() && CondVT.isVector() &&
CondVT.getVectorElementType() == MVT::i1 &&
(VT.getVectorElementType() == MVT::i8 ||
VT.getVectorElementType() == MVT::i16)) {
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
return DAG.getNode(N->getOpcode(), DL, VT, Cond, LHS, RHS);
}
// AVX512 - Extend select with zero to merge with target shuffle.
// select(mask, extract_subvector(shuffle(x)), zero) -->
// extract_subvector(select(insert_subvector(mask), shuffle(x), zero))
// TODO - support non target shuffles as well.
if (Subtarget.hasAVX512() && CondVT.isVector() &&
CondVT.getVectorElementType() == MVT::i1) {
auto SelectableOp = [&TLI](SDValue Op) {
return Op.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
isTargetShuffle(Op.getOperand(0).getOpcode()) &&
isNullConstant(Op.getOperand(1)) &&
TLI.isTypeLegal(Op.getOperand(0).getValueType()) &&
Op.hasOneUse() && Op.getOperand(0).hasOneUse();
};
bool SelectableLHS = SelectableOp(LHS);
bool SelectableRHS = SelectableOp(RHS);
bool ZeroLHS = ISD::isBuildVectorAllZeros(LHS.getNode());
bool ZeroRHS = ISD::isBuildVectorAllZeros(RHS.getNode());
if ((SelectableLHS && ZeroRHS) || (SelectableRHS && ZeroLHS)) {
EVT SrcVT = SelectableLHS ? LHS.getOperand(0).getValueType()
: RHS.getOperand(0).getValueType();
unsigned NumSrcElts = SrcVT.getVectorNumElements();
EVT SrcCondVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumSrcElts);
LHS = insertSubVector(DAG.getUNDEF(SrcVT), LHS, 0, DAG, DL,
VT.getSizeInBits());
RHS = insertSubVector(DAG.getUNDEF(SrcVT), RHS, 0, DAG, DL,
VT.getSizeInBits());
Cond = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, SrcCondVT,
DAG.getUNDEF(SrcCondVT), Cond,
DAG.getIntPtrConstant(0, DL));
SDValue Res = DAG.getSelect(DL, SrcVT, Cond, LHS, RHS);
return extractSubVector(Res, 0, DAG, DL, VT.getSizeInBits());
}
}
if (SDValue V = combineSelectOfTwoConstants(N, DAG))
return V;
// Canonicalize max and min:
// (x > y) ? x : y -> (x >= y) ? x : y
// (x < y) ? x : y -> (x <= y) ? x : y
// This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
// the need for an extra compare
// against zero. e.g.
// (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
// subl %esi, %edi
// testl %edi, %edi
// movl $0, %eax
// cmovgl %edi, %eax
// =>
// xorl %eax, %eax
// subl %esi, $edi
// cmovsl %eax, %edi
if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
Cond.hasOneUse() &&
DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGT: {
ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
Cond.getOperand(0), Cond.getOperand(1), NewCC);
return DAG.getSelect(DL, VT, Cond, LHS, RHS);
}
}
}
// Match VSELECTs into subs with unsigned saturation.
if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
// psubus is available in SSE2 for i8 and i16 vectors.
Subtarget.hasSSE2() && VT.getVectorNumElements() >= 2 &&
isPowerOf2_32(VT.getVectorNumElements()) &&
(VT.getVectorElementType() == MVT::i8 ||
VT.getVectorElementType() == MVT::i16)) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
// Check if one of the arms of the VSELECT is a zero vector. If it's on the
// left side invert the predicate to simplify logic below.
SDValue Other;
if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
Other = RHS;
CC = ISD::getSetCCInverse(CC, VT.getVectorElementType());
} else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
Other = LHS;
}
if (Other.getNode() && Other->getNumOperands() == 2 &&
Other->getOperand(0) == Cond.getOperand(0)) {
SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
SDValue CondRHS = Cond->getOperand(1);
// Look for a general sub with unsigned saturation first.
// x >= y ? x-y : 0 --> subus x, y
// x > y ? x-y : 0 --> subus x, y
if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
Other->getOpcode() == ISD::SUB && OpRHS == CondRHS)
return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS)) {
if (isa<BuildVectorSDNode>(CondRHS)) {
// If the RHS is a constant we have to reverse the const
// canonicalization.
// x > C-1 ? x+-C : 0 --> subus x, C
auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
return (!Op && !Cond) ||
(Op && Cond &&
Cond->getAPIntValue() == (-Op->getAPIntValue() - 1));
};
if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT,
/*AllowUndefs*/ true)) {
OpRHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
OpRHS);
return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
}
// Another special case: If C was a sign bit, the sub has been
// canonicalized into a xor.
// FIXME: Would it be better to use computeKnownBits to determine
// whether it's safe to decanonicalize the xor?
// x s< 0 ? x^C : 0 --> subus x, C
if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
if (CC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
OpRHSConst->getAPIntValue().isSignMask()) {
// Note that we have to rebuild the RHS constant here to ensure we
// don't rely on particular values of undef lanes.
OpRHS = DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT);
return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
}
}
}
}
}
}
// Match VSELECTs into add with unsigned saturation.
if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
// paddus is available in SSE2 for i8 and i16 vectors.
Subtarget.hasSSE2() && VT.getVectorNumElements() >= 2 &&
isPowerOf2_32(VT.getVectorNumElements()) &&
(VT.getVectorElementType() == MVT::i8 ||
VT.getVectorElementType() == MVT::i16)) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
SDValue CondLHS = Cond->getOperand(0);
SDValue CondRHS = Cond->getOperand(1);
// Check if one of the arms of the VSELECT is vector with all bits set.
// If it's on the left side invert the predicate to simplify logic below.
SDValue Other;
if (ISD::isBuildVectorAllOnes(LHS.getNode())) {
Other = RHS;
CC = ISD::getSetCCInverse(CC, VT.getVectorElementType());
} else if (ISD::isBuildVectorAllOnes(RHS.getNode())) {
Other = LHS;
}
if (Other.getNode() && Other.getOpcode() == ISD::ADD) {
SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
// Canonicalize condition operands.
if (CC == ISD::SETUGE) {
std::swap(CondLHS, CondRHS);
CC = ISD::SETULE;
}
// We can test against either of the addition operands.
// x <= x+y ? x+y : ~0 --> addus x, y
// x+y >= x ? x+y : ~0 --> addus x, y
if (CC == ISD::SETULE && Other == CondRHS &&
(OpLHS == CondLHS || OpRHS == CondLHS))
return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
if (isa<BuildVectorSDNode>(OpRHS) && isa<BuildVectorSDNode>(CondRHS) &&
CondLHS == OpLHS) {
// If the RHS is a constant we have to reverse the const
// canonicalization.
// x > ~C ? x+C : ~0 --> addus x, C
auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
return Cond->getAPIntValue() == ~Op->getAPIntValue();
};
if (CC == ISD::SETULE &&
ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT))
return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
}
}
}
// Early exit check
if (!TLI.isTypeLegal(VT))
return SDValue();
if (SDValue V = combineVSelectWithAllOnesOrZeros(N, DAG, DCI, Subtarget))
return V;
if (SDValue V = combineVSelectToBLENDV(N, DAG, DCI, Subtarget))
return V;
if (SDValue V = narrowVectorSelect(N, DAG, Subtarget))
return V;
// select(~Cond, X, Y) -> select(Cond, Y, X)
if (CondVT.getScalarType() != MVT::i1)
if (SDValue CondNot = IsNOT(Cond, DAG))
return DAG.getNode(N->getOpcode(), DL, VT,
DAG.getBitcast(CondVT, CondNot), RHS, LHS);
// Custom action for SELECT MMX
if (VT == MVT::x86mmx) {
LHS = DAG.getBitcast(MVT::i64, LHS);
RHS = DAG.getBitcast(MVT::i64, RHS);
SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::i64, Cond, LHS, RHS);
return DAG.getBitcast(VT, newSelect);
}
return SDValue();
}
/// Combine:
/// (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S)
/// to:
/// (brcond/cmov/setcc .., (LADD x, 1), COND_LE)
/// i.e., reusing the EFLAGS produced by the LOCKed instruction.
/// Note that this is only legal for some op/cc combinations.
static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// This combine only operates on CMP-like nodes.
if (!(Cmp.getOpcode() == X86ISD::CMP ||
(Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
return SDValue();
// Can't replace the cmp if it has more uses than the one we're looking at.
// FIXME: We would like to be able to handle this, but would need to make sure
// all uses were updated.
if (!Cmp.hasOneUse())
return SDValue();
// This only applies to variations of the common case:
// (icmp slt x, 0) -> (icmp sle (add x, 1), 0)
// (icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
// (icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
// (icmp sgt x, 0) -> (icmp sge (sub x, 1), 0)
// Using the proper condcodes (see below), overflow is checked for.
// FIXME: We can generalize both constraints:
// - XOR/OR/AND (if they were made to survive AtomicExpand)
// - LHS != 1
// if the result is compared.
SDValue CmpLHS = Cmp.getOperand(0);
SDValue CmpRHS = Cmp.getOperand(1);
if (!CmpLHS.hasOneUse())
return SDValue();
unsigned Opc = CmpLHS.getOpcode();
if (Opc != ISD::ATOMIC_LOAD_ADD && Opc != ISD::ATOMIC_LOAD_SUB)
return SDValue();
SDValue OpRHS = CmpLHS.getOperand(2);
auto *OpRHSC = dyn_cast<ConstantSDNode>(OpRHS);
if (!OpRHSC)
return SDValue();
APInt Addend = OpRHSC->getAPIntValue();
if (Opc == ISD::ATOMIC_LOAD_SUB)
Addend = -Addend;
auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS);
if (!CmpRHSC)
return SDValue();
APInt Comparison = CmpRHSC->getAPIntValue();
// If the addend is the negation of the comparison value, then we can do
// a full comparison by emitting the atomic arithmetic as a locked sub.
if (Comparison == -Addend) {
// The CC is fine, but we need to rewrite the LHS of the comparison as an
// atomic sub.
auto *AN = cast<AtomicSDNode>(CmpLHS.getNode());
auto AtomicSub = DAG.getAtomic(
ISD::ATOMIC_LOAD_SUB, SDLoc(CmpLHS), CmpLHS.getValueType(),
/*Chain*/ CmpLHS.getOperand(0), /*LHS*/ CmpLHS.getOperand(1),
/*RHS*/ DAG.getConstant(-Addend, SDLoc(CmpRHS), CmpRHS.getValueType()),
AN->getMemOperand());
auto LockOp = lowerAtomicArithWithLOCK(AtomicSub, DAG, Subtarget);
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
DAG.getUNDEF(CmpLHS.getValueType()));
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
return LockOp;
}
// We can handle comparisons with zero in a number of cases by manipulating
// the CC used.
if (!Comparison.isNullValue())
return SDValue();
if (CC == X86::COND_S && Addend == 1)
CC = X86::COND_LE;
else if (CC == X86::COND_NS && Addend == 1)
CC = X86::COND_G;
else if (CC == X86::COND_G && Addend == -1)
CC = X86::COND_GE;
else if (CC == X86::COND_LE && Addend == -1)
CC = X86::COND_L;
else
return SDValue();
SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG, Subtarget);
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
DAG.getUNDEF(CmpLHS.getValueType()));
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
return LockOp;
}
// Check whether a boolean test is testing a boolean value generated by
// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
// code.
//
// Simplify the following patterns:
// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
// to (Op EFLAGS Cond)
//
// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
// to (Op EFLAGS !Cond)
//
// where Op could be BRCOND or CMOV.
//
static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
// This combine only operates on CMP-like nodes.
if (!(Cmp.getOpcode() == X86ISD::CMP ||
(Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
return SDValue();
// Quit if not used as a boolean value.
if (CC != X86::COND_E && CC != X86::COND_NE)
return SDValue();
// Check CMP operands. One of them should be 0 or 1 and the other should be
// an SetCC or extended from it.
SDValue Op1 = Cmp.getOperand(0);
SDValue Op2 = Cmp.getOperand(1);
SDValue SetCC;
const ConstantSDNode* C = nullptr;
bool needOppositeCond = (CC == X86::COND_E);
bool checkAgainstTrue = false; // Is it a comparison against 1?
if ((C = dyn_cast<ConstantSDNode>(Op1)))
SetCC = Op2;
else if ((C = dyn_cast<ConstantSDNode>(Op2)))
SetCC = Op1;
else // Quit if all operands are not constants.
return SDValue();
if (C->getZExtValue() == 1) {
needOppositeCond = !needOppositeCond;
checkAgainstTrue = true;
} else if (C->getZExtValue() != 0)
// Quit if the constant is neither 0 or 1.
return SDValue();
bool truncatedToBoolWithAnd = false;
// Skip (zext $x), (trunc $x), or (and $x, 1) node.
while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
SetCC.getOpcode() == ISD::TRUNCATE ||
SetCC.getOpcode() == ISD::AND) {
if (SetCC.getOpcode() == ISD::AND) {
int OpIdx = -1;
if (isOneConstant(SetCC.getOperand(0)))
OpIdx = 1;
if (isOneConstant(SetCC.getOperand(1)))
OpIdx = 0;
if (OpIdx < 0)
break;
SetCC = SetCC.getOperand(OpIdx);
truncatedToBoolWithAnd = true;
} else
SetCC = SetCC.getOperand(0);
}
switch (SetCC.getOpcode()) {
case X86ISD::SETCC_CARRY:
// Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
// simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
// i.e. it's a comparison against true but the result of SETCC_CARRY is not
// truncated to i1 using 'and'.
if (checkAgainstTrue && !truncatedToBoolWithAnd)
break;
assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
"Invalid use of SETCC_CARRY!");
LLVM_FALLTHROUGH;
case X86ISD::SETCC:
// Set the condition code or opposite one if necessary.
CC = X86::CondCode(SetCC.getConstantOperandVal(0));
if (needOppositeCond)
CC = X86::GetOppositeBranchCondition(CC);
return SetCC.getOperand(1);
case X86ISD::CMOV: {
// Check whether false/true value has canonical one, i.e. 0 or 1.
ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
// Quit if true value is not a constant.
if (!TVal)
return SDValue();
// Quit if false value is not a constant.
if (!FVal) {
SDValue Op = SetCC.getOperand(0);
// Skip 'zext' or 'trunc' node.
if (Op.getOpcode() == ISD::ZERO_EXTEND ||
Op.getOpcode() == ISD::TRUNCATE)
Op = Op.getOperand(0);
// A special case for rdrand/rdseed, where 0 is set if false cond is
// found.
if ((Op.getOpcode() != X86ISD::RDRAND &&
Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
return SDValue();
}
// Quit if false value is not the constant 0 or 1.
bool FValIsFalse = true;
if (FVal && FVal->getZExtValue() != 0) {
if (FVal->getZExtValue() != 1)
return SDValue();
// If FVal is 1, opposite cond is needed.
needOppositeCond = !needOppositeCond;
FValIsFalse = false;
}
// Quit if TVal is not the constant opposite of FVal.
if (FValIsFalse && TVal->getZExtValue() != 1)
return SDValue();
if (!FValIsFalse && TVal->getZExtValue() != 0)
return SDValue();
CC = X86::CondCode(SetCC.getConstantOperandVal(2));
if (needOppositeCond)
CC = X86::GetOppositeBranchCondition(CC);
return SetCC.getOperand(3);
}
}
return SDValue();
}
/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
/// Match:
/// (X86or (X86setcc) (X86setcc))
/// (X86cmp (and (X86setcc) (X86setcc)), 0)
static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
X86::CondCode &CC1, SDValue &Flags,
bool &isAnd) {
if (Cond->getOpcode() == X86ISD::CMP) {
if (!isNullConstant(Cond->getOperand(1)))
return false;
Cond = Cond->getOperand(0);
}
isAnd = false;
SDValue SetCC0, SetCC1;
switch (Cond->getOpcode()) {
default: return false;
case ISD::AND:
case X86ISD::AND:
isAnd = true;
LLVM_FALLTHROUGH;
case ISD::OR:
case X86ISD::OR:
SetCC0 = Cond->getOperand(0);
SetCC1 = Cond->getOperand(1);
break;
};
// Make sure we have SETCC nodes, using the same flags value.
if (SetCC0.getOpcode() != X86ISD::SETCC ||
SetCC1.getOpcode() != X86ISD::SETCC ||
SetCC0->getOperand(1) != SetCC1->getOperand(1))
return false;
CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
Flags = SetCC0->getOperand(1);
return true;
}
// When legalizing carry, we create carries via add X, -1
// If that comes from an actual carry, via setcc, we use the
// carry directly.
static SDValue combineCarryThroughADD(SDValue EFLAGS, SelectionDAG &DAG) {
if (EFLAGS.getOpcode() == X86ISD::ADD) {
if (isAllOnesConstant(EFLAGS.getOperand(1))) {
SDValue Carry = EFLAGS.getOperand(0);
while (Carry.getOpcode() == ISD::TRUNCATE ||
Carry.getOpcode() == ISD::ZERO_EXTEND ||
Carry.getOpcode() == ISD::SIGN_EXTEND ||
Carry.getOpcode() == ISD::ANY_EXTEND ||
(Carry.getOpcode() == ISD::AND &&
isOneConstant(Carry.getOperand(1))))
Carry = Carry.getOperand(0);
if (Carry.getOpcode() == X86ISD::SETCC ||
Carry.getOpcode() == X86ISD::SETCC_CARRY) {
// TODO: Merge this code with equivalent in combineAddOrSubToADCOrSBB?
uint64_t CarryCC = Carry.getConstantOperandVal(0);
SDValue CarryOp1 = Carry.getOperand(1);
if (CarryCC == X86::COND_B)
return CarryOp1;
if (CarryCC == X86::COND_A) {
// Try to convert COND_A into COND_B in an attempt to facilitate
// materializing "setb reg".
//
// Do not flip "e > c", where "c" is a constant, because Cmp
// instruction cannot take an immediate as its first operand.
//
if (CarryOp1.getOpcode() == X86ISD::SUB &&
CarryOp1.getNode()->hasOneUse() &&
CarryOp1.getValueType().isInteger() &&
!isa<ConstantSDNode>(CarryOp1.getOperand(1))) {
SDValue SubCommute =
DAG.getNode(X86ISD::SUB, SDLoc(CarryOp1), CarryOp1->getVTList(),
CarryOp1.getOperand(1), CarryOp1.getOperand(0));
return SDValue(SubCommute.getNode(), CarryOp1.getResNo());
}
}
// If this is a check of the z flag of an add with 1, switch to the
// C flag.
if (CarryCC == X86::COND_E &&
CarryOp1.getOpcode() == X86ISD::ADD &&
isOneConstant(CarryOp1.getOperand(1)))
return CarryOp1;
}
}
}
return SDValue();
}
/// Optimize an EFLAGS definition used according to the condition code \p CC
/// into a simpler EFLAGS value, potentially returning a new \p CC and replacing
/// uses of chain values.
static SDValue combineSetCCEFLAGS(SDValue EFLAGS, X86::CondCode &CC,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (CC == X86::COND_B)
if (SDValue Flags = combineCarryThroughADD(EFLAGS, DAG))
return Flags;
if (SDValue R = checkBoolTestSetCCCombine(EFLAGS, CC))
return R;
return combineSetCCAtomicArith(EFLAGS, CC, DAG, Subtarget);
}
/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
static SDValue combineCMov(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
SDValue FalseOp = N->getOperand(0);
SDValue TrueOp = N->getOperand(1);
X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
SDValue Cond = N->getOperand(3);
// cmov X, X, ?, ? --> X
if (TrueOp == FalseOp)
return TrueOp;
// Try to simplify the EFLAGS and condition code operands.
// We can't always do this as FCMOV only supports a subset of X86 cond.
if (SDValue Flags = combineSetCCEFLAGS(Cond, CC, DAG, Subtarget)) {
if (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC)) {
SDValue Ops[] = {FalseOp, TrueOp, DAG.getTargetConstant(CC, DL, MVT::i8),
Flags};
return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
}
}
// If this is a select between two integer constants, try to do some
// optimizations. Note that the operands are ordered the opposite of SELECT
// operands.
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
// Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
// larger than FalseC (the false value).
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
CC = X86::GetOppositeBranchCondition(CC);
std::swap(TrueC, FalseC);
std::swap(TrueOp, FalseOp);
}
// Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
// This is efficient for any integer data type (including i8/i16) and
// shift amount.
if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
Cond = getSETCC(CC, Cond, DL, DAG);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
DAG.getConstant(ShAmt, DL, MVT::i8));
return Cond;
}
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
// for any integer data type, including i8/i16.
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
Cond = getSETCC(CC, Cond, DL, DAG);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
FalseC->getValueType(0), Cond);
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
return Cond;
}
// Optimize cases that will turn into an LEA instruction. This requires
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
APInt Diff = TrueC->getAPIntValue() - FalseC->getAPIntValue();
assert(Diff.getBitWidth() == N->getValueType(0).getSizeInBits() &&
"Implicit constant truncation");
bool isFastMultiplier = false;
if (Diff.ult(10)) {
switch (Diff.getZExtValue()) {
default: break;
case 1: // result = add base, cond
case 2: // result = lea base( , cond*2)
case 3: // result = lea base(cond, cond*2)
case 4: // result = lea base( , cond*4)
case 5: // result = lea base(cond, cond*4)
case 8: // result = lea base( , cond*8)
case 9: // result = lea base(cond, cond*8)
isFastMultiplier = true;
break;
}
}
if (isFastMultiplier) {
Cond = getSETCC(CC, Cond, DL ,DAG);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
Cond);
// Scale the condition by the difference.
if (Diff != 1)
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
DAG.getConstant(Diff, DL, Cond.getValueType()));
// Add the base if non-zero.
if (FalseC->getAPIntValue() != 0)
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
return Cond;
}
}
}
}
// Handle these cases:
// (select (x != c), e, c) -> select (x != c), e, x),
// (select (x == c), c, e) -> select (x == c), x, e)
// where the c is an integer constant, and the "select" is the combination
// of CMOV and CMP.
//
// The rationale for this change is that the conditional-move from a constant
// needs two instructions, however, conditional-move from a register needs
// only one instruction.
//
// CAVEAT: By replacing a constant with a symbolic value, it may obscure
// some instruction-combining opportunities. This opt needs to be
// postponed as late as possible.
//
if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
// the DCI.xxxx conditions are provided to postpone the optimization as
// late as possible.
ConstantSDNode *CmpAgainst = nullptr;
if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
(CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
!isa<ConstantSDNode>(Cond.getOperand(0))) {
if (CC == X86::COND_NE &&
CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
CC = X86::GetOppositeBranchCondition(CC);
std::swap(TrueOp, FalseOp);
}
if (CC == X86::COND_E &&
CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
SDValue Ops[] = {FalseOp, Cond.getOperand(0),
DAG.getTargetConstant(CC, DL, MVT::i8), Cond};
return DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
}
}
}
// Fold and/or of setcc's to double CMOV:
// (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
// (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
//
// This combine lets us generate:
// cmovcc1 (jcc1 if we don't have CMOV)
// cmovcc2 (same)
// instead of:
// setcc1
// setcc2
// and/or
// cmovne (jne if we don't have CMOV)
// When we can't use the CMOV instruction, it might increase branch
// mispredicts.
// When we can use CMOV, or when there is no mispredict, this improves
// throughput and reduces register pressure.
//
if (CC == X86::COND_NE) {
SDValue Flags;
X86::CondCode CC0, CC1;
bool isAndSetCC;
if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
if (isAndSetCC) {
std::swap(FalseOp, TrueOp);
CC0 = X86::GetOppositeBranchCondition(CC0);
CC1 = X86::GetOppositeBranchCondition(CC1);
}
SDValue LOps[] = {FalseOp, TrueOp,
DAG.getTargetConstant(CC0, DL, MVT::i8), Flags};
SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), LOps);
SDValue Ops[] = {LCMOV, TrueOp, DAG.getTargetConstant(CC1, DL, MVT::i8),
Flags};
SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getValueType(0), Ops);
return CMOV;
}
}
// Fold (CMOV C1, (ADD (CTTZ X), C2), (X != 0)) ->
// (ADD (CMOV C1-C2, (CTTZ X), (X != 0)), C2)
// Or (CMOV (ADD (CTTZ X), C2), C1, (X == 0)) ->
// (ADD (CMOV (CTTZ X), C1-C2, (X == 0)), C2)
if ((CC == X86::COND_NE || CC == X86::COND_E) &&
Cond.getOpcode() == X86ISD::CMP && isNullConstant(Cond.getOperand(1))) {
SDValue Add = TrueOp;
SDValue Const = FalseOp;
// Canonicalize the condition code for easier matching and output.
if (CC == X86::COND_E)
std::swap(Add, Const);
// We might have replaced the constant in the cmov with the LHS of the
// compare. If so change it to the RHS of the compare.
if (Const == Cond.getOperand(0))
Const = Cond.getOperand(1);
// Ok, now make sure that Add is (add (cttz X), C2) and Const is a constant.
if (isa<ConstantSDNode>(Const) && Add.getOpcode() == ISD::ADD &&
Add.hasOneUse() && isa<ConstantSDNode>(Add.getOperand(1)) &&
(Add.getOperand(0).getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
Add.getOperand(0).getOpcode() == ISD::CTTZ) &&
Add.getOperand(0).getOperand(0) == Cond.getOperand(0)) {
EVT VT = N->getValueType(0);
// This should constant fold.
SDValue Diff = DAG.getNode(ISD::SUB, DL, VT, Const, Add.getOperand(1));
SDValue CMov =
DAG.getNode(X86ISD::CMOV, DL, VT, Diff, Add.getOperand(0),
DAG.getTargetConstant(X86::COND_NE, DL, MVT::i8), Cond);
return DAG.getNode(ISD::ADD, DL, VT, CMov, Add.getOperand(1));
}
}
return SDValue();
}
/// Different mul shrinking modes.
enum class ShrinkMode { MULS8, MULU8, MULS16, MULU16 };
static bool canReduceVMulWidth(SDNode *N, SelectionDAG &DAG, ShrinkMode &Mode) {
EVT VT = N->getOperand(0).getValueType();
if (VT.getScalarSizeInBits() != 32)
return false;
assert(N->getNumOperands() == 2 && "NumOperands of Mul are 2");
unsigned SignBits[2] = {1, 1};
bool IsPositive[2] = {false, false};
for (unsigned i = 0; i < 2; i++) {
SDValue Opd = N->getOperand(i);
SignBits[i] = DAG.ComputeNumSignBits(Opd);
IsPositive[i] = DAG.SignBitIsZero(Opd);
}
bool AllPositive = IsPositive[0] && IsPositive[1];
unsigned MinSignBits = std::min(SignBits[0], SignBits[1]);
// When ranges are from -128 ~ 127, use MULS8 mode.
if (MinSignBits >= 25)
Mode = ShrinkMode::MULS8;
// When ranges are from 0 ~ 255, use MULU8 mode.
else if (AllPositive && MinSignBits >= 24)
Mode = ShrinkMode::MULU8;
// When ranges are from -32768 ~ 32767, use MULS16 mode.
else if (MinSignBits >= 17)
Mode = ShrinkMode::MULS16;
// When ranges are from 0 ~ 65535, use MULU16 mode.
else if (AllPositive && MinSignBits >= 16)
Mode = ShrinkMode::MULU16;
else
return false;
return true;
}
/// When the operands of vector mul are extended from smaller size values,
/// like i8 and i16, the type of mul may be shrinked to generate more
/// efficient code. Two typical patterns are handled:
/// Pattern1:
/// %2 = sext/zext <N x i8> %1 to <N x i32>
/// %4 = sext/zext <N x i8> %3 to <N x i32>
// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
/// %5 = mul <N x i32> %2, %4
///
/// Pattern2:
/// %2 = zext/sext <N x i16> %1 to <N x i32>
/// %4 = zext/sext <N x i16> %3 to <N x i32>
/// or %4 = build_vector <N x i32> %C1, ..., %CN (%C1..%CN are constants)
/// %5 = mul <N x i32> %2, %4
///
/// There are four mul shrinking modes:
/// If %2 == sext32(trunc8(%2)), i.e., the scalar value range of %2 is
/// -128 to 128, and the scalar value range of %4 is also -128 to 128,
/// generate pmullw+sext32 for it (MULS8 mode).
/// If %2 == zext32(trunc8(%2)), i.e., the scalar value range of %2 is
/// 0 to 255, and the scalar value range of %4 is also 0 to 255,
/// generate pmullw+zext32 for it (MULU8 mode).
/// If %2 == sext32(trunc16(%2)), i.e., the scalar value range of %2 is
/// -32768 to 32767, and the scalar value range of %4 is also -32768 to 32767,
/// generate pmullw+pmulhw for it (MULS16 mode).
/// If %2 == zext32(trunc16(%2)), i.e., the scalar value range of %2 is
/// 0 to 65535, and the scalar value range of %4 is also 0 to 65535,
/// generate pmullw+pmulhuw for it (MULU16 mode).
static SDValue reduceVMULWidth(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Check for legality
// pmullw/pmulhw are not supported by SSE.
if (!Subtarget.hasSSE2())
return SDValue();
// Check for profitability
// pmulld is supported since SSE41. It is better to use pmulld
// instead of pmullw+pmulhw, except for subtargets where pmulld is slower than
// the expansion.
bool OptForMinSize = DAG.getMachineFunction().getFunction().hasMinSize();
if (Subtarget.hasSSE41() && (OptForMinSize || !Subtarget.isPMULLDSlow()))
return SDValue();
ShrinkMode Mode;
if (!canReduceVMulWidth(N, DAG, Mode))
return SDValue();
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getOperand(0).getValueType();
unsigned NumElts = VT.getVectorNumElements();
if ((NumElts % 2) != 0)
return SDValue();
EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16, NumElts);
// Shrink the operands of mul.
SDValue NewN0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N0);
SDValue NewN1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, N1);
// Generate the lower part of mul: pmullw. For MULU8/MULS8, only the
// lower part is needed.
SDValue MulLo = DAG.getNode(ISD::MUL, DL, ReducedVT, NewN0, NewN1);
if (Mode == ShrinkMode::MULU8 || Mode == ShrinkMode::MULS8)
return DAG.getNode((Mode == ShrinkMode::MULU8) ? ISD::ZERO_EXTEND
: ISD::SIGN_EXTEND,
DL, VT, MulLo);
MVT ResVT = MVT::getVectorVT(MVT::i32, NumElts / 2);
// Generate the higher part of mul: pmulhw/pmulhuw. For MULU16/MULS16,
// the higher part is also needed.
SDValue MulHi =
DAG.getNode(Mode == ShrinkMode::MULS16 ? ISD::MULHS : ISD::MULHU, DL,
ReducedVT, NewN0, NewN1);
// Repack the lower part and higher part result of mul into a wider
// result.
// Generate shuffle functioning as punpcklwd.
SmallVector<int, 16> ShuffleMask(NumElts);
for (unsigned i = 0, e = NumElts / 2; i < e; i++) {
ShuffleMask[2 * i] = i;
ShuffleMask[2 * i + 1] = i + NumElts;
}
SDValue ResLo =
DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
ResLo = DAG.getBitcast(ResVT, ResLo);
// Generate shuffle functioning as punpckhwd.
for (unsigned i = 0, e = NumElts / 2; i < e; i++) {
ShuffleMask[2 * i] = i + NumElts / 2;
ShuffleMask[2 * i + 1] = i + NumElts * 3 / 2;
}
SDValue ResHi =
DAG.getVectorShuffle(ReducedVT, DL, MulLo, MulHi, ShuffleMask);
ResHi = DAG.getBitcast(ResVT, ResHi);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ResLo, ResHi);
}
static SDValue combineMulSpecial(uint64_t MulAmt, SDNode *N, SelectionDAG &DAG,
EVT VT, const SDLoc &DL) {
auto combineMulShlAddOrSub = [&](int Mult, int Shift, bool isAdd) {
SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(Mult, DL, VT));
Result = DAG.getNode(ISD::SHL, DL, VT, Result,
DAG.getConstant(Shift, DL, MVT::i8));
Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result,
N->getOperand(0));
return Result;
};
auto combineMulMulAddOrSub = [&](int Mul1, int Mul2, bool isAdd) {
SDValue Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(Mul1, DL, VT));
Result = DAG.getNode(X86ISD::MUL_IMM, DL, VT, Result,
DAG.getConstant(Mul2, DL, VT));
Result = DAG.getNode(isAdd ? ISD::ADD : ISD::SUB, DL, VT, Result,
N->getOperand(0));
return Result;
};
switch (MulAmt) {
default:
break;
case 11:
// mul x, 11 => add ((shl (mul x, 5), 1), x)
return combineMulShlAddOrSub(5, 1, /*isAdd*/ true);
case 21:
// mul x, 21 => add ((shl (mul x, 5), 2), x)
return combineMulShlAddOrSub(5, 2, /*isAdd*/ true);
case 41:
// mul x, 41 => add ((shl (mul x, 5), 3), x)
return combineMulShlAddOrSub(5, 3, /*isAdd*/ true);
case 22:
// mul x, 22 => add (add ((shl (mul x, 5), 2), x), x)
return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
combineMulShlAddOrSub(5, 2, /*isAdd*/ true));
case 19:
// mul x, 19 => add ((shl (mul x, 9), 1), x)
return combineMulShlAddOrSub(9, 1, /*isAdd*/ true);
case 37:
// mul x, 37 => add ((shl (mul x, 9), 2), x)
return combineMulShlAddOrSub(9, 2, /*isAdd*/ true);
case 73:
// mul x, 73 => add ((shl (mul x, 9), 3), x)
return combineMulShlAddOrSub(9, 3, /*isAdd*/ true);
case 13:
// mul x, 13 => add ((shl (mul x, 3), 2), x)
return combineMulShlAddOrSub(3, 2, /*isAdd*/ true);
case 23:
// mul x, 23 => sub ((shl (mul x, 3), 3), x)
return combineMulShlAddOrSub(3, 3, /*isAdd*/ false);
case 26:
// mul x, 26 => add ((mul (mul x, 5), 5), x)
return combineMulMulAddOrSub(5, 5, /*isAdd*/ true);
case 28:
// mul x, 28 => add ((mul (mul x, 9), 3), x)
return combineMulMulAddOrSub(9, 3, /*isAdd*/ true);
case 29:
// mul x, 29 => add (add ((mul (mul x, 9), 3), x), x)
return DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
combineMulMulAddOrSub(9, 3, /*isAdd*/ true));
}
// Another trick. If this is a power 2 + 2/4/8, we can use a shift followed
// by a single LEA.
// First check if this a sum of two power of 2s because that's easy. Then
// count how many zeros are up to the first bit.
// TODO: We can do this even without LEA at a cost of two shifts and an add.
if (isPowerOf2_64(MulAmt & (MulAmt - 1))) {
unsigned ScaleShift = countTrailingZeros(MulAmt);
if (ScaleShift >= 1 && ScaleShift < 4) {
unsigned ShiftAmt = Log2_64((MulAmt & (MulAmt - 1)));
SDValue Shift1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(ShiftAmt, DL, MVT::i8));
SDValue Shift2 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(ScaleShift, DL, MVT::i8));
return DAG.getNode(ISD::ADD, DL, VT, Shift1, Shift2);
}
}
return SDValue();
}
// If the upper 17 bits of each element are zero then we can use PMADDWD,
// which is always at least as quick as PMULLD, except on KNL.
static SDValue combineMulToPMADDWD(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
if (Subtarget.isPMADDWDSlow())
return SDValue();
EVT VT = N->getValueType(0);
// Only support vXi32 vectors.
if (!VT.isVector() || VT.getVectorElementType() != MVT::i32)
return SDValue();
// Make sure the vXi16 type is legal. This covers the AVX512 without BWI case.
// Also allow v2i32 if it will be widened.
MVT WVT = MVT::getVectorVT(MVT::i16, 2 * VT.getVectorNumElements());
if (VT != MVT::v2i32 && !DAG.getTargetLoweringInfo().isTypeLegal(WVT))
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// If we are zero extending two steps without SSE4.1, its better to reduce
// the vmul width instead.
if (!Subtarget.hasSSE41() &&
(N0.getOpcode() == ISD::ZERO_EXTEND &&
N0.getOperand(0).getScalarValueSizeInBits() <= 8) &&
(N1.getOpcode() == ISD::ZERO_EXTEND &&
N1.getOperand(0).getScalarValueSizeInBits() <= 8))
return SDValue();
APInt Mask17 = APInt::getHighBitsSet(32, 17);
if (!DAG.MaskedValueIsZero(N1, Mask17) ||
!DAG.MaskedValueIsZero(N0, Mask17))
return SDValue();
// Use SplitOpsAndApply to handle AVX splitting.
auto PMADDWDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
MVT OpVT = MVT::getVectorVT(MVT::i32, Ops[0].getValueSizeInBits() / 32);
return DAG.getNode(X86ISD::VPMADDWD, DL, OpVT, Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT,
{ DAG.getBitcast(WVT, N0), DAG.getBitcast(WVT, N1) },
PMADDWDBuilder);
}
static SDValue combineMulToPMULDQ(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
EVT VT = N->getValueType(0);
// Only support vXi64 vectors.
if (!VT.isVector() || VT.getVectorElementType() != MVT::i64 ||
VT.getVectorNumElements() < 2 ||
!isPowerOf2_32(VT.getVectorNumElements()))
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// MULDQ returns the 64-bit result of the signed multiplication of the lower
// 32-bits. We can lower with this if the sign bits stretch that far.
if (Subtarget.hasSSE41() && DAG.ComputeNumSignBits(N0) > 32 &&
DAG.ComputeNumSignBits(N1) > 32) {
auto PMULDQBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::PMULDQ, DL, Ops[0].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { N0, N1 },
PMULDQBuilder, /*CheckBWI*/false);
}
// If the upper bits are zero we can use a single pmuludq.
APInt Mask = APInt::getHighBitsSet(64, 32);
if (DAG.MaskedValueIsZero(N0, Mask) && DAG.MaskedValueIsZero(N1, Mask)) {
auto PMULUDQBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::PMULUDQ, DL, Ops[0].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, { N0, N1 },
PMULUDQBuilder, /*CheckBWI*/false);
}
return SDValue();
}
/// Optimize a single multiply with constant into two operations in order to
/// implement it with two cheaper instructions, e.g. LEA + SHL, LEA + LEA.
static SDValue combineMul(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (SDValue V = combineMulToPMADDWD(N, DAG, Subtarget))
return V;
if (SDValue V = combineMulToPMULDQ(N, DAG, Subtarget))
return V;
if (DCI.isBeforeLegalize() && VT.isVector())
return reduceVMULWidth(N, DAG, Subtarget);
if (!MulConstantOptimization)
return SDValue();
// An imul is usually smaller than the alternative sequence.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return SDValue();
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
if (VT != MVT::i64 && VT != MVT::i32)
return SDValue();
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return SDValue();
if (isPowerOf2_64(C->getZExtValue()))
return SDValue();
int64_t SignMulAmt = C->getSExtValue();
assert(SignMulAmt != INT64_MIN && "Int min should have been handled!");
uint64_t AbsMulAmt = SignMulAmt < 0 ? -SignMulAmt : SignMulAmt;
SDLoc DL(N);
if (AbsMulAmt == 3 || AbsMulAmt == 5 || AbsMulAmt == 9) {
SDValue NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(AbsMulAmt, DL, VT));
if (SignMulAmt < 0)
NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
NewMul);
return NewMul;
}
uint64_t MulAmt1 = 0;
uint64_t MulAmt2 = 0;
if ((AbsMulAmt % 9) == 0) {
MulAmt1 = 9;
MulAmt2 = AbsMulAmt / 9;
} else if ((AbsMulAmt % 5) == 0) {
MulAmt1 = 5;
MulAmt2 = AbsMulAmt / 5;
} else if ((AbsMulAmt % 3) == 0) {
MulAmt1 = 3;
MulAmt2 = AbsMulAmt / 3;
}
SDValue NewMul;
// For negative multiply amounts, only allow MulAmt2 to be a power of 2.
if (MulAmt2 &&
(isPowerOf2_64(MulAmt2) ||
(SignMulAmt >= 0 && (MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)))) {
if (isPowerOf2_64(MulAmt2) &&
!(SignMulAmt >= 0 && N->hasOneUse() &&
N->use_begin()->getOpcode() == ISD::ADD))
// If second multiplifer is pow2, issue it first. We want the multiply by
// 3, 5, or 9 to be folded into the addressing mode unless the lone use
// is an add. Only do this for positive multiply amounts since the
// negate would prevent it from being used as an address mode anyway.
std::swap(MulAmt1, MulAmt2);
if (isPowerOf2_64(MulAmt1))
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(MulAmt1, DL, VT));
if (isPowerOf2_64(MulAmt2))
NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
DAG.getConstant(MulAmt2, DL, VT));
// Negate the result.
if (SignMulAmt < 0)
NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
NewMul);
} else if (!Subtarget.slowLEA())
NewMul = combineMulSpecial(C->getZExtValue(), N, DAG, VT, DL);
if (!NewMul) {
assert(C->getZExtValue() != 0 &&
C->getZExtValue() != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX) &&
"Both cases that could cause potential overflows should have "
"already been handled.");
if (isPowerOf2_64(AbsMulAmt - 1)) {
// (mul x, 2^N + 1) => (add (shl x, N), x)
NewMul = DAG.getNode(
ISD::ADD, DL, VT, N->getOperand(0),
DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(AbsMulAmt - 1), DL,
MVT::i8)));
// To negate, subtract the number from zero
if (SignMulAmt < 0)
NewMul = DAG.getNode(ISD::SUB, DL, VT,
DAG.getConstant(0, DL, VT), NewMul);
} else if (isPowerOf2_64(AbsMulAmt + 1)) {
// (mul x, 2^N - 1) => (sub (shl x, N), x)
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(AbsMulAmt + 1),
DL, MVT::i8));
// To negate, reverse the operands of the subtract.
if (SignMulAmt < 0)
NewMul = DAG.getNode(ISD::SUB, DL, VT, N->getOperand(0), NewMul);
else
NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
} else if (SignMulAmt >= 0 && isPowerOf2_64(AbsMulAmt - 2)) {
// (mul x, 2^N + 2) => (add (add (shl x, N), x), x)
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(AbsMulAmt - 2),
DL, MVT::i8));
NewMul = DAG.getNode(ISD::ADD, DL, VT, NewMul, N->getOperand(0));
NewMul = DAG.getNode(ISD::ADD, DL, VT, NewMul, N->getOperand(0));
} else if (SignMulAmt >= 0 && isPowerOf2_64(AbsMulAmt + 2)) {
// (mul x, 2^N - 2) => (sub (sub (shl x, N), x), x)
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(AbsMulAmt + 2),
DL, MVT::i8));
NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
NewMul = DAG.getNode(ISD::SUB, DL, VT, NewMul, N->getOperand(0));
}
}
return NewMul;
}
static SDValue combineShiftLeft(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
// since the result of setcc_c is all zero's or all ones.
if (VT.isInteger() && !VT.isVector() &&
N1C && N0.getOpcode() == ISD::AND &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
SDValue N00 = N0.getOperand(0);
APInt Mask = N0.getConstantOperandAPInt(1);
Mask <<= N1C->getAPIntValue();
bool MaskOK = false;
// We can handle cases concerning bit-widening nodes containing setcc_c if
// we carefully interrogate the mask to make sure we are semantics
// preserving.
// The transform is not safe if the result of C1 << C2 exceeds the bitwidth
// of the underlying setcc_c operation if the setcc_c was zero extended.
// Consider the following example:
// zext(setcc_c) -> i32 0x0000FFFF
// c1 -> i32 0x0000FFFF
// c2 -> i32 0x00000001
// (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
// (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = true;
} else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = true;
} else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
N00.getOpcode() == ISD::ANY_EXTEND) &&
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
}
if (MaskOK && Mask != 0) {
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
}
}
// Hardware support for vector shifts is sparse which makes us scalarize the
// vector operations in many cases. Also, on sandybridge ADD is faster than
// shl.
// (shl V, 1) -> add V,V
if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
assert(N0.getValueType().isVector() && "Invalid vector shift type");
// We shift all of the values by one. In many cases we do not have
// hardware support for this operation. This is better expressed as an ADD
// of two values.
if (N1SplatC->isOne())
return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
}
return SDValue();
}
static SDValue combineShiftRightArithmetic(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned Size = VT.getSizeInBits();
// fold (ashr (shl, a, [56,48,32,24,16]), SarConst)
// into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or
// into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
// depending on sign of (SarConst - [56,48,32,24,16])
// sexts in X86 are MOVs. The MOVs have the same code size
// as above SHIFTs (only SHIFT on 1 has lower code size).
// However the MOVs have 2 advantages to a SHIFT:
// 1. MOVs can write to a register that differs from source
// 2. MOVs accept memory operands
if (VT.isVector() || N1.getOpcode() != ISD::Constant ||
N0.getOpcode() != ISD::SHL || !N0.hasOneUse() ||
N0.getOperand(1).getOpcode() != ISD::Constant)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue();
APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue();
EVT CVT = N1.getValueType();
if (SarConst.isNegative())
return SDValue();
for (MVT SVT : { MVT::i8, MVT::i16, MVT::i32 }) {
unsigned ShiftSize = SVT.getSizeInBits();
// skipping types without corresponding sext/zext and
// ShlConst that is not one of [56,48,32,24,16]
if (ShiftSize >= Size || ShlConst != Size - ShiftSize)
continue;
SDLoc DL(N);
SDValue NN =
DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT));
SarConst = SarConst - (Size - ShiftSize);
if (SarConst == 0)
return NN;
else if (SarConst.isNegative())
return DAG.getNode(ISD::SHL, DL, VT, NN,
DAG.getConstant(-SarConst, DL, CVT));
else
return DAG.getNode(ISD::SRA, DL, VT, NN,
DAG.getConstant(SarConst, DL, CVT));
}
return SDValue();
}
static SDValue combineShiftRightLogical(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
// Only do this on the last DAG combine as it can interfere with other
// combines.
if (!DCI.isAfterLegalizeDAG())
return SDValue();
// Try to improve a sequence of srl (and X, C1), C2 by inverting the order.
// TODO: This is a generic DAG combine that became an x86-only combine to
// avoid shortcomings in other folds such as bswap, bit-test ('bt'), and
// and-not ('andn').
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
return SDValue();
auto *ShiftC = dyn_cast<ConstantSDNode>(N1);
auto *AndC = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (!ShiftC || !AndC)
return SDValue();
// If we can shrink the constant mask below 8-bits or 32-bits, then this
// transform should reduce code size. It may also enable secondary transforms
// from improved known-bits analysis or instruction selection.
APInt MaskVal = AndC->getAPIntValue();
// If this can be matched by a zero extend, don't optimize.
if (MaskVal.isMask()) {
unsigned TO = MaskVal.countTrailingOnes();
if (TO >= 8 && isPowerOf2_32(TO))
return SDValue();
}
APInt NewMaskVal = MaskVal.lshr(ShiftC->getAPIntValue());
unsigned OldMaskSize = MaskVal.getMinSignedBits();
unsigned NewMaskSize = NewMaskVal.getMinSignedBits();
if ((OldMaskSize > 8 && NewMaskSize <= 8) ||
(OldMaskSize > 32 && NewMaskSize <= 32)) {
// srl (and X, AndC), ShiftC --> and (srl X, ShiftC), (AndC >> ShiftC)
SDLoc DL(N);
SDValue NewMask = DAG.getConstant(NewMaskVal, DL, VT);
SDValue NewShift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), N1);
return DAG.getNode(ISD::AND, DL, VT, NewShift, NewMask);
}
return SDValue();
}
static SDValue combineVectorPack(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
assert((X86ISD::PACKSS == Opcode || X86ISD::PACKUS == Opcode) &&
"Unexpected shift opcode");
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
unsigned DstBitsPerElt = VT.getScalarSizeInBits();
unsigned SrcBitsPerElt = 2 * DstBitsPerElt;
assert(N0.getScalarValueSizeInBits() == SrcBitsPerElt &&
N1.getScalarValueSizeInBits() == SrcBitsPerElt &&
"Unexpected PACKSS/PACKUS input type");
bool IsSigned = (X86ISD::PACKSS == Opcode);
// Constant Folding.
APInt UndefElts0, UndefElts1;
SmallVector<APInt, 32> EltBits0, EltBits1;
if ((N0.isUndef() || N->isOnlyUserOf(N0.getNode())) &&
(N1.isUndef() || N->isOnlyUserOf(N1.getNode())) &&
getTargetConstantBitsFromNode(N0, SrcBitsPerElt, UndefElts0, EltBits0) &&
getTargetConstantBitsFromNode(N1, SrcBitsPerElt, UndefElts1, EltBits1)) {
unsigned NumLanes = VT.getSizeInBits() / 128;
unsigned NumDstElts = VT.getVectorNumElements();
unsigned NumSrcElts = NumDstElts / 2;
unsigned NumDstEltsPerLane = NumDstElts / NumLanes;
unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
APInt Undefs(NumDstElts, 0);
SmallVector<APInt, 32> Bits(NumDstElts, APInt::getNullValue(DstBitsPerElt));
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
for (unsigned Elt = 0; Elt != NumDstEltsPerLane; ++Elt) {
unsigned SrcIdx = Lane * NumSrcEltsPerLane + Elt % NumSrcEltsPerLane;
auto &UndefElts = (Elt >= NumSrcEltsPerLane ? UndefElts1 : UndefElts0);
auto &EltBits = (Elt >= NumSrcEltsPerLane ? EltBits1 : EltBits0);
if (UndefElts[SrcIdx]) {
Undefs.setBit(Lane * NumDstEltsPerLane + Elt);
continue;
}
APInt &Val = EltBits[SrcIdx];
if (IsSigned) {
// PACKSS: Truncate signed value with signed saturation.
// Source values less than dst minint are saturated to minint.
// Source values greater than dst maxint are saturated to maxint.
if (Val.isSignedIntN(DstBitsPerElt))
Val = Val.trunc(DstBitsPerElt);
else if (Val.isNegative())
Val = APInt::getSignedMinValue(DstBitsPerElt);
else
Val = APInt::getSignedMaxValue(DstBitsPerElt);
} else {
// PACKUS: Truncate signed value with unsigned saturation.
// Source values less than zero are saturated to zero.
// Source values greater than dst maxuint are saturated to maxuint.
if (Val.isIntN(DstBitsPerElt))
Val = Val.trunc(DstBitsPerElt);
else if (Val.isNegative())
Val = APInt::getNullValue(DstBitsPerElt);
else
Val = APInt::getAllOnesValue(DstBitsPerElt);
}
Bits[Lane * NumDstEltsPerLane + Elt] = Val;
}
}
return getConstVector(Bits, Undefs, VT.getSimpleVT(), DAG, SDLoc(N));
}
// Try to combine a PACKUSWB/PACKSSWB implemented truncate with a regular
// truncate to create a larger truncate.
if (Subtarget.hasAVX512() &&
N0.getOpcode() == ISD::TRUNCATE && N1.isUndef() && VT == MVT::v16i8 &&
N0.getOperand(0).getValueType() == MVT::v8i32) {
if ((IsSigned && DAG.ComputeNumSignBits(N0) > 8) ||
(!IsSigned &&
DAG.MaskedValueIsZero(N0, APInt::getHighBitsSet(16, 8)))) {
if (Subtarget.hasVLX())
return DAG.getNode(X86ISD::VTRUNC, SDLoc(N), VT, N0.getOperand(0));
// Widen input to v16i32 so we can truncate that.
SDLoc dl(N);
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i32,
N0.getOperand(0), DAG.getUNDEF(MVT::v8i32));
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Concat);
}
}
// Attempt to combine as shuffle.
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
return Res;
return SDValue();
}
static SDValue combineVectorShiftVar(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
assert((X86ISD::VSHL == N->getOpcode() || X86ISD::VSRA == N->getOpcode() ||
X86ISD::VSRL == N->getOpcode()) &&
"Unexpected shift opcode");
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Shift zero -> zero.
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return DAG.getConstant(0, SDLoc(N), VT);
// Detect constant shift amounts.
APInt UndefElts;
SmallVector<APInt, 32> EltBits;
if (getTargetConstantBitsFromNode(N1, 64, UndefElts, EltBits, true, false)) {
unsigned X86Opc = getTargetVShiftUniformOpcode(N->getOpcode(), false);
return getTargetVShiftByConstNode(X86Opc, SDLoc(N), VT.getSimpleVT(), N0,
EltBits[0].getZExtValue(), DAG);
}
APInt KnownUndef, KnownZero;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
if (TLI.SimplifyDemandedVectorElts(SDValue(N, 0), DemandedElts, KnownUndef,
KnownZero, DCI))
return SDValue(N, 0);
return SDValue();
}
static SDValue combineVectorShiftImm(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
assert((X86ISD::VSHLI == Opcode || X86ISD::VSRAI == Opcode ||
X86ISD::VSRLI == Opcode) &&
"Unexpected shift opcode");
bool LogicalShift = X86ISD::VSHLI == Opcode || X86ISD::VSRLI == Opcode;
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
assert(VT == N0.getValueType() && (NumBitsPerElt % 8) == 0 &&
"Unexpected value type");
assert(N->getOperand(1).getValueType() == MVT::i8 &&
"Unexpected shift amount type");
// Out of range logical bit shifts are guaranteed to be zero.
// Out of range arithmetic bit shifts splat the sign bit.
unsigned ShiftVal = N->getConstantOperandVal(1);
if (ShiftVal >= NumBitsPerElt) {
if (LogicalShift)
return DAG.getConstant(0, SDLoc(N), VT);
else
ShiftVal = NumBitsPerElt - 1;
}
// Shift N0 by zero -> N0.
if (!ShiftVal)
return N0;
// Shift zero -> zero.
if (ISD::isBuildVectorAllZeros(N0.getNode()))
return DAG.getConstant(0, SDLoc(N), VT);
// Fold (VSRAI (VSRAI X, C1), C2) --> (VSRAI X, (C1 + C2)) with (C1 + C2)
// clamped to (NumBitsPerElt - 1).
if (Opcode == X86ISD::VSRAI && N0.getOpcode() == X86ISD::VSRAI) {
unsigned ShiftVal2 = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
unsigned NewShiftVal = ShiftVal + ShiftVal2;
if (NewShiftVal >= NumBitsPerElt)
NewShiftVal = NumBitsPerElt - 1;
return DAG.getNode(X86ISD::VSRAI, SDLoc(N), VT, N0.getOperand(0),
DAG.getTargetConstant(NewShiftVal, SDLoc(N), MVT::i8));
}
// We can decode 'whole byte' logical bit shifts as shuffles.
if (LogicalShift && (ShiftVal % 8) == 0) {
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
return Res;
}
// Constant Folding.
APInt UndefElts;
SmallVector<APInt, 32> EltBits;
if (N->isOnlyUserOf(N0.getNode()) &&
getTargetConstantBitsFromNode(N0, NumBitsPerElt, UndefElts, EltBits)) {
assert(EltBits.size() == VT.getVectorNumElements() &&
"Unexpected shift value type");
for (APInt &Elt : EltBits) {
if (X86ISD::VSHLI == Opcode)
Elt <<= ShiftVal;
else if (X86ISD::VSRAI == Opcode)
Elt.ashrInPlace(ShiftVal);
else
Elt.lshrInPlace(ShiftVal);
}
return getConstVector(EltBits, UndefElts, VT.getSimpleVT(), DAG, SDLoc(N));
}
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.SimplifyDemandedBits(SDValue(N, 0),
APInt::getAllOnesValue(NumBitsPerElt), DCI))
return SDValue(N, 0);
return SDValue();
}
static SDValue combineVectorInsert(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
assert(((N->getOpcode() == X86ISD::PINSRB && VT == MVT::v16i8) ||
(N->getOpcode() == X86ISD::PINSRW && VT == MVT::v8i16)) &&
"Unexpected vector insertion");
unsigned NumBitsPerElt = VT.getScalarSizeInBits();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.SimplifyDemandedBits(SDValue(N, 0),
APInt::getAllOnesValue(NumBitsPerElt), DCI))
return SDValue(N, 0);
// Attempt to combine PINSRB/PINSRW patterns to a shuffle.
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
return Res;
return SDValue();
}
/// Recognize the distinctive (AND (setcc ...) (setcc ..)) where both setccs
/// reference the same FP CMP, and rewrite for CMPEQSS and friends. Likewise for
/// OR -> CMPNEQSS.
static SDValue combineCompareEqual(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned opcode;
// SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
// we're requiring SSE2 for both.
if (Subtarget.hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CMP0 = N0.getOperand(1);
SDValue CMP1 = N1.getOperand(1);
SDLoc DL(N);
// The SETCCs should both refer to the same CMP.
if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
return SDValue();
SDValue CMP00 = CMP0->getOperand(0);
SDValue CMP01 = CMP0->getOperand(1);
EVT VT = CMP00.getValueType();
if (VT == MVT::f32 || VT == MVT::f64) {
bool ExpectingFlags = false;
// Check for any users that want flags:
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
!ExpectingFlags && UI != UE; ++UI)
switch (UI->getOpcode()) {
default:
case ISD::BR_CC:
case ISD::BRCOND:
case ISD::SELECT:
ExpectingFlags = true;
break;
case ISD::CopyToReg:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
break;
}
if (!ExpectingFlags) {
enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
X86::CondCode tmp = cc0;
cc0 = cc1;
cc1 = tmp;
}
if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
(cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
// FIXME: need symbolic constants for these magic numbers.
// See X86ATTInstPrinter.cpp:printSSECC().
unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
if (Subtarget.hasAVX512()) {
SDValue FSetCC =
DAG.getNode(X86ISD::FSETCCM, DL, MVT::v1i1, CMP00, CMP01,
DAG.getTargetConstant(x86cc, DL, MVT::i8));
// Need to fill with zeros to ensure the bitcast will produce zeroes
// for the upper bits. An EXTRACT_ELEMENT here wouldn't guarantee that.
SDValue Ins = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v16i1,
DAG.getConstant(0, DL, MVT::v16i1),
FSetCC, DAG.getIntPtrConstant(0, DL));
return DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Ins), DL,
N->getSimpleValueType(0));
}
SDValue OnesOrZeroesF =
DAG.getNode(X86ISD::FSETCC, DL, CMP00.getValueType(), CMP00,
CMP01, DAG.getTargetConstant(x86cc, DL, MVT::i8));
bool is64BitFP = (CMP00.getValueType() == MVT::f64);
MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
if (is64BitFP && !Subtarget.is64Bit()) {
// On a 32-bit target, we cannot bitcast the 64-bit float to a
// 64-bit integer, since that's not a legal type. Since
// OnesOrZeroesF is all ones of all zeroes, we don't need all the
// bits, but can do this little dance to extract the lowest 32 bits
// and work with those going forward.
SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
OnesOrZeroesF);
SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
Vector32, DAG.getIntPtrConstant(0, DL));
IntVT = MVT::i32;
}
SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
DAG.getConstant(1, DL, IntVT));
SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
ANDed);
return OneBitOfTruth;
}
}
}
}
return SDValue();
}
/// Try to fold: (and (xor X, -1), Y) -> (andnp X, Y).
static SDValue combineANDXORWithAllOnesIntoANDNP(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::AND);
MVT VT = N->getSimpleValueType(0);
if (!VT.is128BitVector() && !VT.is256BitVector() && !VT.is512BitVector())
return SDValue();
SDValue X, Y;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
if (SDValue Not = IsNOT(N0, DAG)) {
X = Not;
Y = N1;
} else if (SDValue Not = IsNOT(N1, DAG)) {
X = Not;
Y = N0;
} else
return SDValue();
X = DAG.getBitcast(VT, X);
Y = DAG.getBitcast(VT, Y);
return DAG.getNode(X86ISD::ANDNP, SDLoc(N), VT, X, Y);
}
// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
// register. In most cases we actually compare or select YMM-sized registers
// and mixing the two types creates horrible code. This method optimizes
// some of the transition sequences.
// Even with AVX-512 this is still useful for removing casts around logical
// operations on vXi1 mask types.
static SDValue PromoteMaskArithmetic(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
assert(VT.isVector() && "Expected vector type");
assert((N->getOpcode() == ISD::ANY_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND ||
N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
SDValue Narrow = N->getOperand(0);
EVT NarrowVT = Narrow.getValueType();
if (Narrow->getOpcode() != ISD::XOR &&
Narrow->getOpcode() != ISD::AND &&
Narrow->getOpcode() != ISD::OR)
return SDValue();
SDValue N0 = Narrow->getOperand(0);
SDValue N1 = Narrow->getOperand(1);
SDLoc DL(Narrow);
// The Left side has to be a trunc.
if (N0.getOpcode() != ISD::TRUNCATE)
return SDValue();
// The type of the truncated inputs.
if (N0.getOperand(0).getValueType() != VT)
return SDValue();
// The right side has to be a 'trunc' or a constant vector.
bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE &&
N1.getOperand(0).getValueType() == VT;
if (!RHSTrunc &&
!ISD::isBuildVectorOfConstantSDNodes(N1.getNode()))
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), VT))
return SDValue();
// Set N0 and N1 to hold the inputs to the new wide operation.
N0 = N0.getOperand(0);
if (RHSTrunc)
N1 = N1.getOperand(0);
else
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N1);
// Generate the wide operation.
SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, VT, N0, N1);
unsigned Opcode = N->getOpcode();
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode");
case ISD::ANY_EXTEND:
return Op;
case ISD::ZERO_EXTEND:
return DAG.getZeroExtendInReg(Op, DL, NarrowVT.getScalarType());
case ISD::SIGN_EXTEND:
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
Op, DAG.getValueType(NarrowVT));
}
}
/// If both input operands of a logic op are being cast from floating point
/// types, try to convert this into a floating point logic node to avoid
/// unnecessary moves from SSE to integer registers.
static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDLoc DL(N);
if (N0.getOpcode() != ISD::BITCAST || N1.getOpcode() != ISD::BITCAST)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N10 = N1.getOperand(0);
EVT N00Type = N00.getValueType();
EVT N10Type = N10.getValueType();
// Ensure that both types are the same and are legal scalar fp types.
if (N00Type != N10Type ||
!((Subtarget.hasSSE1() && N00Type == MVT::f32) ||
(Subtarget.hasSSE2() && N00Type == MVT::f64)))
return SDValue();
unsigned FPOpcode;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected input node for FP logic conversion");
case ISD::AND: FPOpcode = X86ISD::FAND; break;
case ISD::OR: FPOpcode = X86ISD::FOR; break;
case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
}
SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10);
return DAG.getBitcast(VT, FPLogic);
}
/// If this is a zero/all-bits result that is bitwise-anded with a low bits
/// mask. (Mask == 1 for the x86 lowering of a SETCC + ZEXT), replace the 'and'
/// with a shift-right to eliminate loading the vector constant mask value.
static SDValue combineAndMaskToShift(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Op0 = peekThroughBitcasts(N->getOperand(0));
SDValue Op1 = peekThroughBitcasts(N->getOperand(1));
EVT VT0 = Op0.getValueType();
EVT VT1 = Op1.getValueType();
if (VT0 != VT1 || !VT0.isSimple() || !VT0.isInteger())
return SDValue();
APInt SplatVal;
if (!ISD::isConstantSplatVector(Op1.getNode(), SplatVal) ||
!SplatVal.isMask())
return SDValue();
// Don't prevent creation of ANDN.
if (isBitwiseNot(Op0))
return SDValue();
if (!SupportedVectorShiftWithImm(VT0.getSimpleVT(), Subtarget, ISD::SRL))
return SDValue();
unsigned EltBitWidth = VT0.getScalarSizeInBits();
if (EltBitWidth != DAG.ComputeNumSignBits(Op0))
return SDValue();
SDLoc DL(N);
unsigned ShiftVal = SplatVal.countTrailingOnes();
SDValue ShAmt = DAG.getTargetConstant(EltBitWidth - ShiftVal, DL, MVT::i8);
SDValue Shift = DAG.getNode(X86ISD::VSRLI, DL, VT0, Op0, ShAmt);
return DAG.getBitcast(N->getValueType(0), Shift);
}
// Get the index node from the lowered DAG of a GEP IR instruction with one
// indexing dimension.
static SDValue getIndexFromUnindexedLoad(LoadSDNode *Ld) {
if (Ld->isIndexed())
return SDValue();
SDValue Base = Ld->getBasePtr();
if (Base.getOpcode() != ISD::ADD)
return SDValue();
SDValue ShiftedIndex = Base.getOperand(0);
if (ShiftedIndex.getOpcode() != ISD::SHL)
return SDValue();
return ShiftedIndex.getOperand(0);
}
static bool hasBZHI(const X86Subtarget &Subtarget, MVT VT) {
if (Subtarget.hasBMI2() && VT.isScalarInteger()) {
switch (VT.getSizeInBits()) {
default: return false;
case 64: return Subtarget.is64Bit() ? true : false;
case 32: return true;
}
}
return false;
}
// This function recognizes cases where X86 bzhi instruction can replace and
// 'and-load' sequence.
// In case of loading integer value from an array of constants which is defined
// as follows:
//
// int array[SIZE] = {0x0, 0x1, 0x3, 0x7, 0xF ..., 2^(SIZE-1) - 1}
//
// then applying a bitwise and on the result with another input.
// It's equivalent to performing bzhi (zero high bits) on the input, with the
// same index of the load.
static SDValue combineAndLoadToBZHI(SDNode *Node, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Node->getSimpleValueType(0);
SDLoc dl(Node);
// Check if subtarget has BZHI instruction for the node's type
if (!hasBZHI(Subtarget, VT))
return SDValue();
// Try matching the pattern for both operands.
for (unsigned i = 0; i < 2; i++) {
SDValue N = Node->getOperand(i);
LoadSDNode *Ld = dyn_cast<LoadSDNode>(N.getNode());
// continue if the operand is not a load instruction
if (!Ld)
return SDValue();
const Value *MemOp = Ld->getMemOperand()->getValue();
if (!MemOp)
return SDValue();
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(MemOp)) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
Constant *Init = GV->getInitializer();
Type *Ty = Init->getType();
if (!isa<ConstantDataArray>(Init) ||
!Ty->getArrayElementType()->isIntegerTy() ||
Ty->getArrayElementType()->getScalarSizeInBits() !=
VT.getSizeInBits() ||
Ty->getArrayNumElements() >
Ty->getArrayElementType()->getScalarSizeInBits())
continue;
// Check if the array's constant elements are suitable to our case.
uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
bool ConstantsMatch = true;
for (uint64_t j = 0; j < ArrayElementCount; j++) {
ConstantInt *Elem =
dyn_cast<ConstantInt>(Init->getAggregateElement(j));
if (Elem->getZExtValue() != (((uint64_t)1 << j) - 1)) {
ConstantsMatch = false;
break;
}
}
if (!ConstantsMatch)
continue;
// Do the transformation (For 32-bit type):
// -> (and (load arr[idx]), inp)
// <- (and (srl 0xFFFFFFFF, (sub 32, idx)))
// that will be replaced with one bzhi instruction.
SDValue Inp = (i == 0) ? Node->getOperand(1) : Node->getOperand(0);
SDValue SizeC = DAG.getConstant(VT.getSizeInBits(), dl, MVT::i32);
// Get the Node which indexes into the array.
SDValue Index = getIndexFromUnindexedLoad(Ld);
if (!Index)
return SDValue();
Index = DAG.getZExtOrTrunc(Index, dl, MVT::i32);
SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, SizeC, Index);
Sub = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Sub);
SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
SDValue LShr = DAG.getNode(ISD::SRL, dl, VT, AllOnes, Sub);
return DAG.getNode(ISD::AND, dl, VT, Inp, LShr);
}
}
}
}
return SDValue();
}
// Look for (and (ctpop X), 1) which is the IR form of __builtin_parity.
// Turn it into series of XORs and a setnp.
static SDValue combineParity(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
// We only support 64-bit and 32-bit. 64-bit requires special handling
// unless the 64-bit popcnt instruction is legal.
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isTypeLegal(VT) && TLI.isOperationLegal(ISD::CTPOP, VT))
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// LHS needs to be a single use CTPOP.
if (N0.getOpcode() != ISD::CTPOP || !N0.hasOneUse())
return SDValue();
// RHS needs to be 1.
if (!isOneConstant(N1))
return SDValue();
SDLoc DL(N);
SDValue X = N0.getOperand(0);
// If this is 64-bit, its always best to xor the two 32-bit pieces together
// even if we have popcnt.
if (VT == MVT::i64) {
SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
DAG.getNode(ISD::SRL, DL, VT, X,
DAG.getConstant(32, DL, MVT::i8)));
SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, X);
X = DAG.getNode(ISD::XOR, DL, MVT::i32, Lo, Hi);
// Generate a 32-bit parity idiom. This will bring us back here if we need
// to expand it too.
SDValue Parity = DAG.getNode(ISD::AND, DL, MVT::i32,
DAG.getNode(ISD::CTPOP, DL, MVT::i32, X),
DAG.getConstant(1, DL, MVT::i32));
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Parity);
}
assert(VT == MVT::i32 && "Unexpected VT!");
// Xor the high and low 16-bits together using a 32-bit operation.
SDValue Hi16 = DAG.getNode(ISD::SRL, DL, VT, X,
DAG.getConstant(16, DL, MVT::i8));
X = DAG.getNode(ISD::XOR, DL, VT, X, Hi16);
// Finally xor the low 2 bytes together and use a 8-bit flag setting xor.
// This should allow an h-reg to be used to save a shift.
// FIXME: We only get an h-reg in 32-bit mode.
SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
DAG.getNode(ISD::SRL, DL, VT, X,
DAG.getConstant(8, DL, MVT::i8)));
SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, X);
SDVTList VTs = DAG.getVTList(MVT::i8, MVT::i32);
SDValue Flags = DAG.getNode(X86ISD::XOR, DL, VTs, Lo, Hi).getValue(1);
// Copy the inverse of the parity flag into a register with setcc.
SDValue Setnp = getSETCC(X86::COND_NP, Flags, DL, DAG);
// Zero extend to original type.
return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0), Setnp);
}
// Look for (and (bitcast (vXi1 (concat_vectors (vYi1 setcc), undef,))), C)
// Where C is a mask containing the same number of bits as the setcc and
// where the setcc will freely 0 upper bits of k-register. We can replace the
// undef in the concat with 0s and remove the AND. This mainly helps with
// v2i1/v4i1 setcc being casted to scalar.
static SDValue combineScalarAndWithMaskSetcc(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
EVT VT = N->getValueType(0);
// Make sure this is an AND with constant. We will check the value of the
// constant later.
if (!isa<ConstantSDNode>(N->getOperand(1)))
return SDValue();
// This is implied by the ConstantSDNode.
assert(!VT.isVector() && "Expected scalar VT!");
if (N->getOperand(0).getOpcode() != ISD::BITCAST ||
!N->getOperand(0).hasOneUse() ||
!N->getOperand(0).getOperand(0).hasOneUse())
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Src = N->getOperand(0).getOperand(0);
EVT SrcVT = Src.getValueType();
if (!SrcVT.isVector() || SrcVT.getVectorElementType() != MVT::i1 ||
!TLI.isTypeLegal(SrcVT))
return SDValue();
if (Src.getOpcode() != ISD::CONCAT_VECTORS)
return SDValue();
// We only care about the first subvector of the concat, we expect the
// other subvectors to be ignored due to the AND if we make the change.
SDValue SubVec = Src.getOperand(0);
EVT SubVecVT = SubVec.getValueType();
// First subvector should be a setcc with a legal result type. The RHS of the
// AND should be a mask with this many bits.
if (SubVec.getOpcode() != ISD::SETCC || !TLI.isTypeLegal(SubVecVT) ||
!N->getConstantOperandAPInt(1).isMask(SubVecVT.getVectorNumElements()))
return SDValue();
EVT SetccVT = SubVec.getOperand(0).getValueType();
if (!TLI.isTypeLegal(SetccVT) ||
!(Subtarget.hasVLX() || SetccVT.is512BitVector()))
return SDValue();
if (!(Subtarget.hasBWI() || SetccVT.getScalarSizeInBits() >= 32))
return SDValue();
// We passed all the checks. Rebuild the concat_vectors with zeroes
// and cast it back to VT.
SDLoc dl(N);
SmallVector<SDValue, 4> Ops(Src.getNumOperands(),
DAG.getConstant(0, dl, SubVecVT));
Ops[0] = SubVec;
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT,
Ops);
return DAG.getBitcast(VT, Concat);
}
static SDValue combineAnd(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
// If this is SSE1 only convert to FAND to avoid scalarization.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) {
return DAG.getBitcast(
MVT::v4i32, DAG.getNode(X86ISD::FAND, SDLoc(N), MVT::v4f32,
DAG.getBitcast(MVT::v4f32, N->getOperand(0)),
DAG.getBitcast(MVT::v4f32, N->getOperand(1))));
}
// Use a 32-bit and+zext if upper bits known zero.
if (VT == MVT::i64 && Subtarget.is64Bit() &&
!isa<ConstantSDNode>(N->getOperand(1))) {
APInt HiMask = APInt::getHighBitsSet(64, 32);
if (DAG.MaskedValueIsZero(N->getOperand(1), HiMask) ||
DAG.MaskedValueIsZero(N->getOperand(0), HiMask)) {
SDLoc dl(N);
SDValue LHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, N->getOperand(0));
SDValue RHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, N->getOperand(1));
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64,
DAG.getNode(ISD::AND, dl, MVT::i32, LHS, RHS));
}
}
// This must be done before legalization has expanded the ctpop.
if (SDValue V = combineParity(N, DAG, Subtarget))
return V;
// Match all-of bool scalar reductions into a bitcast/movmsk + cmp.
// TODO: Support multiple SrcOps.
if (VT == MVT::i1) {
SmallVector<SDValue, 2> SrcOps;
if (matchScalarReduction(SDValue(N, 0), ISD::AND, SrcOps) &&
SrcOps.size() == 1) {
SDLoc dl(N);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned NumElts = SrcOps[0].getValueType().getVectorNumElements();
EVT MaskVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
SDValue Mask = combineBitcastvxi1(DAG, MaskVT, SrcOps[0], dl, Subtarget);
if (!Mask && TLI.isTypeLegal(SrcOps[0].getValueType()))
Mask = DAG.getBitcast(MaskVT, SrcOps[0]);
if (Mask) {
APInt AllBits = APInt::getAllOnesValue(NumElts);
return DAG.getSetCC(dl, MVT::i1, Mask,
DAG.getConstant(AllBits, dl, MaskVT), ISD::SETEQ);
}
}
}
if (SDValue V = combineScalarAndWithMaskSetcc(N, DAG, Subtarget))
return V;
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
return R;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
if (SDValue R = combineANDXORWithAllOnesIntoANDNP(N, DAG))
return R;
if (SDValue ShiftRight = combineAndMaskToShift(N, DAG, Subtarget))
return ShiftRight;
if (SDValue R = combineAndLoadToBZHI(N, DAG, Subtarget))
return R;
// Attempt to recursively combine a bitmask AND with shuffles.
if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
return Res;
}
// Attempt to combine a scalar bitmask AND with an extracted shuffle.
if ((VT.getScalarSizeInBits() % 8) == 0 &&
N->getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(N->getOperand(0).getOperand(1))) {
SDValue BitMask = N->getOperand(1);
SDValue SrcVec = N->getOperand(0).getOperand(0);
EVT SrcVecVT = SrcVec.getValueType();
// Check that the constant bitmask masks whole bytes.
APInt UndefElts;
SmallVector<APInt, 64> EltBits;
if (VT == SrcVecVT.getScalarType() &&
N->getOperand(0)->isOnlyUserOf(SrcVec.getNode()) &&
getTargetConstantBitsFromNode(BitMask, 8, UndefElts, EltBits) &&
llvm::all_of(EltBits, [](APInt M) {
return M.isNullValue() || M.isAllOnesValue();
})) {
unsigned NumElts = SrcVecVT.getVectorNumElements();
unsigned Scale = SrcVecVT.getScalarSizeInBits() / 8;
unsigned Idx = N->getOperand(0).getConstantOperandVal(1);
// Create a root shuffle mask from the byte mask and the extracted index.
SmallVector<int, 16> ShuffleMask(NumElts * Scale, SM_SentinelUndef);
for (unsigned i = 0; i != Scale; ++i) {
if (UndefElts[i])
continue;
int VecIdx = Scale * Idx + i;
ShuffleMask[VecIdx] =
EltBits[i].isNullValue() ? SM_SentinelZero : VecIdx;
}
if (SDValue Shuffle = combineX86ShufflesRecursively(
{SrcVec}, 0, SrcVec, ShuffleMask, {}, /*Depth*/ 1,
/*HasVarMask*/ false, /*AllowVarMask*/ true, DAG, Subtarget))
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), VT, Shuffle,
N->getOperand(0).getOperand(1));
}
}
return SDValue();
}
// Canonicalize OR(AND(X,C),AND(Y,~C)) -> OR(AND(X,C),ANDNP(C,Y))
static SDValue canonicalizeBitSelect(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::OR && "Unexpected Opcode");
MVT VT = N->getSimpleValueType(0);
if (!VT.isVector() || (VT.getScalarSizeInBits() % 8) != 0)
return SDValue();
SDValue N0 = peekThroughBitcasts(N->getOperand(0));
SDValue N1 = peekThroughBitcasts(N->getOperand(1));
if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
return SDValue();
// On XOP we'll lower to PCMOV so accept one use. With AVX512, we can use
// VPTERNLOG. Otherwise only do this if either mask has multiple uses already.
bool UseVPTERNLOG = (Subtarget.hasAVX512() && VT.is512BitVector()) ||
Subtarget.hasVLX();
if (!(Subtarget.hasXOP() || UseVPTERNLOG ||
!N0.getOperand(1).hasOneUse() || !N1.getOperand(1).hasOneUse()))
return SDValue();
// Attempt to extract constant byte masks.
APInt UndefElts0, UndefElts1;
SmallVector<APInt, 32> EltBits0, EltBits1;
if (!getTargetConstantBitsFromNode(N0.getOperand(1), 8, UndefElts0, EltBits0,
false, false))
return SDValue();
if (!getTargetConstantBitsFromNode(N1.getOperand(1), 8, UndefElts1, EltBits1,
false, false))
return SDValue();
for (unsigned i = 0, e = EltBits0.size(); i != e; ++i) {
// TODO - add UNDEF elts support.
if (UndefElts0[i] || UndefElts1[i])
return SDValue();
if (EltBits0[i] != ~EltBits1[i])
return SDValue();
}
SDLoc DL(N);
SDValue X = N->getOperand(0);
SDValue Y =
DAG.getNode(X86ISD::ANDNP, DL, VT, DAG.getBitcast(VT, N0.getOperand(1)),
DAG.getBitcast(VT, N1.getOperand(0)));
return DAG.getNode(ISD::OR, DL, VT, X, Y);
}
// Try to match OR(AND(~MASK,X),AND(MASK,Y)) logic pattern.
static bool matchLogicBlend(SDNode *N, SDValue &X, SDValue &Y, SDValue &Mask) {
if (N->getOpcode() != ISD::OR)
return false;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// Canonicalize AND to LHS.
if (N1.getOpcode() == ISD::AND)
std::swap(N0, N1);
// Attempt to match OR(AND(M,Y),ANDNP(M,X)).
if (N0.getOpcode() != ISD::AND || N1.getOpcode() != X86ISD::ANDNP)
return false;
Mask = N1.getOperand(0);
X = N1.getOperand(1);
// Check to see if the mask appeared in both the AND and ANDNP.
if (N0.getOperand(0) == Mask)
Y = N0.getOperand(1);
else if (N0.getOperand(1) == Mask)
Y = N0.getOperand(0);
else
return false;
// TODO: Attempt to match against AND(XOR(-1,M),Y) as well, waiting for
// ANDNP combine allows other combines to happen that prevent matching.
return true;
}
// Try to fold:
// (or (and (m, y), (pandn m, x)))
// into:
// (vselect m, x, y)
// As a special case, try to fold:
// (or (and (m, (sub 0, x)), (pandn m, x)))
// into:
// (sub (xor X, M), M)
static SDValue combineLogicBlendIntoPBLENDV(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::OR && "Unexpected Opcode");
EVT VT = N->getValueType(0);
if (!((VT.is128BitVector() && Subtarget.hasSSE2()) ||
(VT.is256BitVector() && Subtarget.hasInt256())))
return SDValue();
SDValue X, Y, Mask;
if (!matchLogicBlend(N, X, Y, Mask))
return SDValue();
// Validate that X, Y, and Mask are bitcasts, and see through them.
Mask = peekThroughBitcasts(Mask);
X = peekThroughBitcasts(X);
Y = peekThroughBitcasts(Y);
EVT MaskVT = Mask.getValueType();
unsigned EltBits = MaskVT.getScalarSizeInBits();
// TODO: Attempt to handle floating point cases as well?
if (!MaskVT.isInteger() || DAG.ComputeNumSignBits(Mask) != EltBits)
return SDValue();
SDLoc DL(N);
// Attempt to combine to conditional negate: (sub (xor X, M), M)
if (SDValue Res = combineLogicBlendIntoConditionalNegate(VT, Mask, X, Y, DL,
DAG, Subtarget))
return Res;
// PBLENDVB is only available on SSE 4.1.
if (!Subtarget.hasSSE41())
return SDValue();
MVT BlendVT = VT.is256BitVector() ? MVT::v32i8 : MVT::v16i8;
X = DAG.getBitcast(BlendVT, X);
Y = DAG.getBitcast(BlendVT, Y);
Mask = DAG.getBitcast(BlendVT, Mask);
Mask = DAG.getSelect(DL, BlendVT, Mask, Y, X);
return DAG.getBitcast(VT, Mask);
}
// Helper function for combineOrCmpEqZeroToCtlzSrl
// Transforms:
// seteq(cmp x, 0)
// into:
// srl(ctlz x), log2(bitsize(x))
// Input pattern is checked by caller.
static SDValue lowerX86CmpEqZeroToCtlzSrl(SDValue Op, EVT ExtTy,
SelectionDAG &DAG) {
SDValue Cmp = Op.getOperand(1);
EVT VT = Cmp.getOperand(0).getValueType();
unsigned Log2b = Log2_32(VT.getSizeInBits());
SDLoc dl(Op);
SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Cmp->getOperand(0));
// The result of the shift is true or false, and on X86, the 32-bit
// encoding of shr and lzcnt is more desirable.
SDValue Trunc = DAG.getZExtOrTrunc(Clz, dl, MVT::i32);
SDValue Scc = DAG.getNode(ISD::SRL, dl, MVT::i32, Trunc,
DAG.getConstant(Log2b, dl, MVT::i8));
return DAG.getZExtOrTrunc(Scc, dl, ExtTy);
}
// Try to transform:
// zext(or(setcc(eq, (cmp x, 0)), setcc(eq, (cmp y, 0))))
// into:
// srl(or(ctlz(x), ctlz(y)), log2(bitsize(x))
// Will also attempt to match more generic cases, eg:
// zext(or(or(setcc(eq, cmp 0), setcc(eq, cmp 0)), setcc(eq, cmp 0)))
// Only applies if the target supports the FastLZCNT feature.
static SDValue combineOrCmpEqZeroToCtlzSrl(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalize() || !Subtarget.getTargetLowering()->isCtlzFast())
return SDValue();
auto isORCandidate = [](SDValue N) {
return (N->getOpcode() == ISD::OR && N->hasOneUse());
};
// Check the zero extend is extending to 32-bit or more. The code generated by
// srl(ctlz) for 16-bit or less variants of the pattern would require extra
// instructions to clear the upper bits.
if (!N->hasOneUse() || !N->getSimpleValueType(0).bitsGE(MVT::i32) ||
!isORCandidate(N->getOperand(0)))
return SDValue();
// Check the node matches: setcc(eq, cmp 0)
auto isSetCCCandidate = [](SDValue N) {
return N->getOpcode() == X86ISD::SETCC && N->hasOneUse() &&
X86::CondCode(N->getConstantOperandVal(0)) == X86::COND_E &&
N->getOperand(1).getOpcode() == X86ISD::CMP &&
isNullConstant(N->getOperand(1).getOperand(1)) &&
N->getOperand(1).getValueType().bitsGE(MVT::i32);
};
SDNode *OR = N->getOperand(0).getNode();
SDValue LHS = OR->getOperand(0);
SDValue RHS = OR->getOperand(1);
// Save nodes matching or(or, setcc(eq, cmp 0)).
SmallVector<SDNode *, 2> ORNodes;
while (((isORCandidate(LHS) && isSetCCCandidate(RHS)) ||
(isORCandidate(RHS) && isSetCCCandidate(LHS)))) {
ORNodes.push_back(OR);
OR = (LHS->getOpcode() == ISD::OR) ? LHS.getNode() : RHS.getNode();
LHS = OR->getOperand(0);
RHS = OR->getOperand(1);
}
// The last OR node should match or(setcc(eq, cmp 0), setcc(eq, cmp 0)).
if (!(isSetCCCandidate(LHS) && isSetCCCandidate(RHS)) ||
!isORCandidate(SDValue(OR, 0)))
return SDValue();
// We have a or(setcc(eq, cmp 0), setcc(eq, cmp 0)) pattern, try to lower it
// to
// or(srl(ctlz),srl(ctlz)).
// The dag combiner can then fold it into:
// srl(or(ctlz, ctlz)).
EVT VT = OR->getValueType(0);
SDValue NewLHS = lowerX86CmpEqZeroToCtlzSrl(LHS, VT, DAG);
SDValue Ret, NewRHS;
if (NewLHS && (NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG)))
Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, NewLHS, NewRHS);
if (!Ret)
return SDValue();
// Try to lower nodes matching the or(or, setcc(eq, cmp 0)) pattern.
while (ORNodes.size() > 0) {
OR = ORNodes.pop_back_val();
LHS = OR->getOperand(0);
RHS = OR->getOperand(1);
// Swap rhs with lhs to match or(setcc(eq, cmp, 0), or).
if (RHS->getOpcode() == ISD::OR)
std::swap(LHS, RHS);
NewRHS = lowerX86CmpEqZeroToCtlzSrl(RHS, VT, DAG);
if (!NewRHS)
return SDValue();
Ret = DAG.getNode(ISD::OR, SDLoc(OR), VT, Ret, NewRHS);
}
if (Ret)
Ret = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), Ret);
return Ret;
}
static SDValue combineOrShiftToFunnelShift(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::OR && "Expected ISD::OR node");
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegalOrCustom(ISD::FSHL, VT) ||
!TLI.isOperationLegalOrCustom(ISD::FSHR, VT))
return SDValue();
// fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
bool OptForSize = DAG.shouldOptForSize();
unsigned Bits = VT.getScalarSizeInBits();
// SHLD/SHRD instructions have lower register pressure, but on some
// platforms they have higher latency than the equivalent
// series of shifts/or that would otherwise be generated.
// Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
// have higher latencies and we are not optimizing for size.
if (!OptForSize && Subtarget.isSHLDSlow())
return SDValue();
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
EVT ShiftVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
SDValue ShAmt0 = N0.getOperand(1);
if (ShAmt0.getValueType() != ShiftVT)
return SDValue();
SDValue ShAmt1 = N1.getOperand(1);
if (ShAmt1.getValueType() != ShiftVT)
return SDValue();
// Peek through any modulo shift masks.
SDValue ShMsk0;
if (ShAmt0.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(ShAmt0.getOperand(1)) &&
ShAmt0.getConstantOperandAPInt(1) == (Bits - 1)) {
ShMsk0 = ShAmt0;
ShAmt0 = ShAmt0.getOperand(0);
}
SDValue ShMsk1;
if (ShAmt1.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(ShAmt1.getOperand(1)) &&
ShAmt1.getConstantOperandAPInt(1) == (Bits - 1)) {
ShMsk1 = ShAmt1;
ShAmt1 = ShAmt1.getOperand(0);
}
if (ShAmt0.getOpcode() == ISD::TRUNCATE)
ShAmt0 = ShAmt0.getOperand(0);
if (ShAmt1.getOpcode() == ISD::TRUNCATE)
ShAmt1 = ShAmt1.getOperand(0);
SDLoc DL(N);
unsigned Opc = ISD::FSHL;
SDValue Op0 = N0.getOperand(0);
SDValue Op1 = N1.getOperand(0);
if (ShAmt0.getOpcode() == ISD::SUB || ShAmt0.getOpcode() == ISD::XOR) {
Opc = ISD::FSHR;
std::swap(Op0, Op1);
std::swap(ShAmt0, ShAmt1);
std::swap(ShMsk0, ShMsk1);
}
auto GetFunnelShift = [&DAG, &DL, VT, Opc, &ShiftVT](SDValue Op0, SDValue Op1,
SDValue Amt) {
if (Opc == ISD::FSHR)
std::swap(Op0, Op1);
return DAG.getNode(Opc, DL, VT, Op0, Op1,
DAG.getNode(ISD::TRUNCATE, DL, ShiftVT, Amt));
};
// OR( SHL( X, C ), SRL( Y, 32 - C ) ) -> FSHL( X, Y, C )
// OR( SRL( X, C ), SHL( Y, 32 - C ) ) -> FSHR( Y, X, C )
// OR( SHL( X, C ), SRL( SRL( Y, 1 ), XOR( C, 31 ) ) ) -> FSHL( X, Y, C )
// OR( SRL( X, C ), SHL( SHL( Y, 1 ), XOR( C, 31 ) ) ) -> FSHR( Y, X, C )
// OR( SHL( X, AND( C, 31 ) ), SRL( Y, AND( 0 - C, 31 ) ) ) -> FSHL( X, Y, C )
// OR( SRL( X, AND( C, 31 ) ), SHL( Y, AND( 0 - C, 31 ) ) ) -> FSHR( Y, X, C )
if (ShAmt1.getOpcode() == ISD::SUB) {
SDValue Sum = ShAmt1.getOperand(0);
if (auto *SumC = dyn_cast<ConstantSDNode>(Sum)) {
SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
if (ShAmt1Op1.getOpcode() == ISD::AND &&
isa<ConstantSDNode>(ShAmt1Op1.getOperand(1)) &&
ShAmt1Op1.getConstantOperandAPInt(1) == (Bits - 1)) {
ShMsk1 = ShAmt1Op1;
ShAmt1Op1 = ShAmt1Op1.getOperand(0);
}
if (ShAmt1Op1.getOpcode() == ISD::TRUNCATE)
ShAmt1Op1 = ShAmt1Op1.getOperand(0);
if ((SumC->getAPIntValue() == Bits ||
(SumC->getAPIntValue() == 0 && ShMsk1)) &&
ShAmt1Op1 == ShAmt0)
return GetFunnelShift(Op0, Op1, ShAmt0);
}
} else if (auto *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
auto *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
if (ShAmt0C && (ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue()) == Bits)
return GetFunnelShift(Op0, Op1, ShAmt0);
} else if (ShAmt1.getOpcode() == ISD::XOR) {
SDValue Mask = ShAmt1.getOperand(1);
if (auto *MaskC = dyn_cast<ConstantSDNode>(Mask)) {
unsigned InnerShift = (ISD::FSHL == Opc ? ISD::SRL : ISD::SHL);
SDValue ShAmt1Op0 = ShAmt1.getOperand(0);
if (ShAmt1Op0.getOpcode() == ISD::TRUNCATE)
ShAmt1Op0 = ShAmt1Op0.getOperand(0);
if (MaskC->getSExtValue() == (Bits - 1) &&
(ShAmt1Op0 == ShAmt0 || ShAmt1Op0 == ShMsk0)) {
if (Op1.getOpcode() == InnerShift &&
isa<ConstantSDNode>(Op1.getOperand(1)) &&
Op1.getConstantOperandAPInt(1).isOneValue()) {
return GetFunnelShift(Op0, Op1.getOperand(0), ShAmt0);
}
// Test for ADD( Y, Y ) as an equivalent to SHL( Y, 1 ).
if (InnerShift == ISD::SHL && Op1.getOpcode() == ISD::ADD &&
Op1.getOperand(0) == Op1.getOperand(1)) {
return GetFunnelShift(Op0, Op1.getOperand(0), ShAmt0);
}
}
}
}
return SDValue();
}
static SDValue combineOr(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
// If this is SSE1 only convert to FOR to avoid scalarization.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32) {
return DAG.getBitcast(MVT::v4i32,
DAG.getNode(X86ISD::FOR, SDLoc(N), MVT::v4f32,
DAG.getBitcast(MVT::v4f32, N0),
DAG.getBitcast(MVT::v4f32, N1)));
}
// Match any-of bool scalar reductions into a bitcast/movmsk + cmp.
// TODO: Support multiple SrcOps.
if (VT == MVT::i1) {
SmallVector<SDValue, 2> SrcOps;
if (matchScalarReduction(SDValue(N, 0), ISD::OR, SrcOps) &&
SrcOps.size() == 1) {
SDLoc dl(N);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned NumElts = SrcOps[0].getValueType().getVectorNumElements();
EVT MaskVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
SDValue Mask = combineBitcastvxi1(DAG, MaskVT, SrcOps[0], dl, Subtarget);
if (!Mask && TLI.isTypeLegal(SrcOps[0].getValueType()))
Mask = DAG.getBitcast(MaskVT, SrcOps[0]);
if (Mask) {
APInt AllBits = APInt::getNullValue(NumElts);
return DAG.getSetCC(dl, MVT::i1, Mask,
DAG.getConstant(AllBits, dl, MaskVT), ISD::SETNE);
}
}
}
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
return R;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
if (SDValue R = canonicalizeBitSelect(N, DAG, Subtarget))
return R;
if (SDValue R = combineLogicBlendIntoPBLENDV(N, DAG, Subtarget))
return R;
if (SDValue R = combineOrShiftToFunnelShift(N, DAG, Subtarget))
return R;
// Attempt to recursively combine an OR of shuffles.
if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
return Res;
}
return SDValue();
}
/// Try to turn tests against the signbit in the form of:
/// XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
/// into:
/// SETGT(X, -1)
static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
// This is only worth doing if the output type is i8 or i1.
EVT ResultType = N->getValueType(0);
if (ResultType != MVT::i8 && ResultType != MVT::i1)
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// We should be performing an xor against a truncated shift.
if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
return SDValue();
// Make sure we are performing an xor against one.
if (!isOneConstant(N1))
return SDValue();
// SetCC on x86 zero extends so only act on this if it's a logical shift.
SDValue Shift = N0.getOperand(0);
if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
return SDValue();
// Make sure we are truncating from one of i16, i32 or i64.
EVT ShiftTy = Shift.getValueType();
if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
return SDValue();
// Make sure the shift amount extracts the sign bit.
if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
Shift.getConstantOperandAPInt(1) != (ShiftTy.getSizeInBits() - 1))
return SDValue();
// Create a greater-than comparison against -1.
// N.B. Using SETGE against 0 works but we want a canonical looking
// comparison, using SETGT matches up with what TranslateX86CC.
SDLoc DL(N);
SDValue ShiftOp = Shift.getOperand(0);
EVT ShiftOpTy = ShiftOp.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), ResultType);
SDValue Cond = DAG.getSetCC(DL, SetCCResultType, ShiftOp,
DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
if (SetCCResultType != ResultType)
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, ResultType, Cond);
return Cond;
}
/// Turn vector tests of the signbit in the form of:
/// xor (sra X, elt_size(X)-1), -1
/// into:
/// pcmpgt X, -1
///
/// This should be called before type legalization because the pattern may not
/// persist after that.
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (!VT.isSimple())
return SDValue();
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64: if (!Subtarget.hasSSE2()) return SDValue(); break;
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
case MVT::v4i64: if (!Subtarget.hasAVX2()) return SDValue(); break;
}
// There must be a shift right algebraic before the xor, and the xor must be a
// 'not' operation.
SDValue Shift = N->getOperand(0);
SDValue Ones = N->getOperand(1);
if (Shift.getOpcode() != ISD::SRA || !Shift.hasOneUse() ||
!ISD::isBuildVectorAllOnes(Ones.getNode()))
return SDValue();
// The shift should be smearing the sign bit across each vector element.
auto *ShiftAmt =
isConstOrConstSplat(Shift.getOperand(1), /*AllowUndefs*/ true);
if (!ShiftAmt ||
ShiftAmt->getAPIntValue() != (Shift.getScalarValueSizeInBits() - 1))
return SDValue();
// Create a greater-than comparison against -1. We don't use the more obvious
// greater-than-or-equal-to-zero because SSE/AVX don't have that instruction.
return DAG.getSetCC(SDLoc(N), VT, Shift.getOperand(0), Ones, ISD::SETGT);
}
/// Detect patterns of truncation with unsigned saturation:
///
/// 1. (truncate (umin (x, unsigned_max_of_dest_type)) to dest_type).
/// Return the source value x to be truncated or SDValue() if the pattern was
/// not matched.
///
/// 2. (truncate (smin (smax (x, C1), C2)) to dest_type),
/// where C1 >= 0 and C2 is unsigned max of destination type.
///
/// (truncate (smax (smin (x, C2), C1)) to dest_type)
/// where C1 >= 0, C2 is unsigned max of destination type and C1 <= C2.
///
/// These two patterns are equivalent to:
/// (truncate (umin (smax(x, C1), unsigned_max_of_dest_type)) to dest_type)
/// So return the smax(x, C1) value to be truncated or SDValue() if the
/// pattern was not matched.
static SDValue detectUSatPattern(SDValue In, EVT VT, SelectionDAG &DAG,
const SDLoc &DL) {
EVT InVT = In.getValueType();
// Saturation with truncation. We truncate from InVT to VT.
assert(InVT.getScalarSizeInBits() > VT.getScalarSizeInBits() &&
"Unexpected types for truncate operation");
// Match min/max and return limit value as a parameter.
auto MatchMinMax = [](SDValue V, unsigned Opcode, APInt &Limit) -> SDValue {
if (V.getOpcode() == Opcode &&
ISD::isConstantSplatVector(V.getOperand(1).getNode(), Limit))
return V.getOperand(0);
return SDValue();
};
APInt C1, C2;
if (SDValue UMin = MatchMinMax(In, ISD::UMIN, C2))
// C2 should be equal to UINT32_MAX / UINT16_MAX / UINT8_MAX according
// the element size of the destination type.
if (C2.isMask(VT.getScalarSizeInBits()))
return UMin;
if (SDValue SMin = MatchMinMax(In, ISD::SMIN, C2))
if (MatchMinMax(SMin, ISD::SMAX, C1))
if (C1.isNonNegative() && C2.isMask(VT.getScalarSizeInBits()))
return SMin;
if (SDValue SMax = MatchMinMax(In, ISD::SMAX, C1))
if (SDValue SMin = MatchMinMax(SMax, ISD::SMIN, C2))
if (C1.isNonNegative() && C2.isMask(VT.getScalarSizeInBits()) &&
C2.uge(C1)) {
return DAG.getNode(ISD::SMAX, DL, InVT, SMin, In.getOperand(1));
}
return SDValue();
}
/// Detect patterns of truncation with signed saturation:
/// (truncate (smin ((smax (x, signed_min_of_dest_type)),
/// signed_max_of_dest_type)) to dest_type)
/// or:
/// (truncate (smax ((smin (x, signed_max_of_dest_type)),
/// signed_min_of_dest_type)) to dest_type).
/// With MatchPackUS, the smax/smin range is [0, unsigned_max_of_dest_type].
/// Return the source value to be truncated or SDValue() if the pattern was not
/// matched.
static SDValue detectSSatPattern(SDValue In, EVT VT, bool MatchPackUS = false) {
unsigned NumDstBits = VT.getScalarSizeInBits();
unsigned NumSrcBits = In.getScalarValueSizeInBits();
assert(NumSrcBits > NumDstBits && "Unexpected types for truncate operation");
auto MatchMinMax = [](SDValue V, unsigned Opcode,
const APInt &Limit) -> SDValue {
APInt C;
if (V.getOpcode() == Opcode &&
ISD::isConstantSplatVector(V.getOperand(1).getNode(), C) && C == Limit)
return V.getOperand(0);
return SDValue();
};
APInt SignedMax, SignedMin;
if (MatchPackUS) {
SignedMax = APInt::getAllOnesValue(NumDstBits).zext(NumSrcBits);
SignedMin = APInt(NumSrcBits, 0);
} else {
SignedMax = APInt::getSignedMaxValue(NumDstBits).sext(NumSrcBits);
SignedMin = APInt::getSignedMinValue(NumDstBits).sext(NumSrcBits);
}
if (SDValue SMin = MatchMinMax(In, ISD::SMIN, SignedMax))
if (SDValue SMax = MatchMinMax(SMin, ISD::SMAX, SignedMin))
return SMax;
if (SDValue SMax = MatchMinMax(In, ISD::SMAX, SignedMin))
if (SDValue SMin = MatchMinMax(SMax, ISD::SMIN, SignedMax))
return SMin;
return SDValue();
}
static SDValue combineTruncateWithSat(SDValue In, EVT VT, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2() || !VT.isVector())
return SDValue();
EVT SVT = VT.getVectorElementType();
EVT InVT = In.getValueType();
EVT InSVT = InVT.getVectorElementType();
// If we're clamping a signed 32-bit vector to 0-255 and the 32-bit vector is
// split across two registers. We can use a packusdw+perm to clamp to 0-65535
// and concatenate at the same time. Then we can use a final vpmovuswb to
// clip to 0-255.
if (Subtarget.hasBWI() && !Subtarget.useAVX512Regs() &&
InVT == MVT::v16i32 && VT == MVT::v16i8) {
if (auto USatVal = detectSSatPattern(In, VT, true)) {
// Emit a VPACKUSDW+VPERMQ followed by a VPMOVUSWB.
SDValue Mid = truncateVectorWithPACK(X86ISD::PACKUS, MVT::v16i16, USatVal,
DL, DAG, Subtarget);
assert(Mid && "Failed to pack!");
return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, Mid);
}
}
// vXi32 truncate instructions are available with AVX512F.
// vXi16 truncate instructions are only available with AVX512BW.
// For 256-bit or smaller vectors, we require VLX.
// FIXME: We could widen truncates to 512 to remove the VLX restriction.
// If the result type is 256-bits or larger and we have disable 512-bit
// registers, we should go ahead and use the pack instructions if possible.
bool PreferAVX512 = ((Subtarget.hasAVX512() && InSVT == MVT::i32) ||
(Subtarget.hasBWI() && InSVT == MVT::i16)) &&
(InVT.getSizeInBits() > 128) &&
(Subtarget.hasVLX() || InVT.getSizeInBits() > 256) &&
!(!Subtarget.useAVX512Regs() && VT.getSizeInBits() >= 256);
if (isPowerOf2_32(VT.getVectorNumElements()) && !PreferAVX512 &&
VT.getSizeInBits() >= 64 &&
(SVT == MVT::i8 || SVT == MVT::i16) &&
(InSVT == MVT::i16 || InSVT == MVT::i32)) {
if (auto USatVal = detectSSatPattern(In, VT, true)) {
// vXi32 -> vXi8 must be performed as PACKUSWB(PACKSSDW,PACKSSDW).
// Only do this when the result is at least 64 bits or we'll leaving
// dangling PACKSSDW nodes.
if (SVT == MVT::i8 && InSVT == MVT::i32) {
EVT MidVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
VT.getVectorNumElements());
SDValue Mid = truncateVectorWithPACK(X86ISD::PACKSS, MidVT, USatVal, DL,
DAG, Subtarget);
assert(Mid && "Failed to pack!");
SDValue V = truncateVectorWithPACK(X86ISD::PACKUS, VT, Mid, DL, DAG,
Subtarget);
assert(V && "Failed to pack!");
return V;
} else if (SVT == MVT::i8 || Subtarget.hasSSE41())
return truncateVectorWithPACK(X86ISD::PACKUS, VT, USatVal, DL, DAG,
Subtarget);
}
if (auto SSatVal = detectSSatPattern(In, VT))
return truncateVectorWithPACK(X86ISD::PACKSS, VT, SSatVal, DL, DAG,
Subtarget);
}
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isTypeLegal(InVT) && InVT.isVector() && SVT != MVT::i1 &&
Subtarget.hasAVX512() && (InSVT != MVT::i16 || Subtarget.hasBWI())) {
unsigned TruncOpc = 0;
SDValue SatVal;
if (auto SSatVal = detectSSatPattern(In, VT)) {
SatVal = SSatVal;
TruncOpc = X86ISD::VTRUNCS;
} else if (auto USatVal = detectUSatPattern(In, VT, DAG, DL)) {
SatVal = USatVal;
TruncOpc = X86ISD::VTRUNCUS;
}
if (SatVal) {
unsigned ResElts = VT.getVectorNumElements();
// If the input type is less than 512 bits and we don't have VLX, we need
// to widen to 512 bits.
if (!Subtarget.hasVLX() && !InVT.is512BitVector()) {
unsigned NumConcats = 512 / InVT.getSizeInBits();
ResElts *= NumConcats;
SmallVector<SDValue, 4> ConcatOps(NumConcats, DAG.getUNDEF(InVT));
ConcatOps[0] = SatVal;
InVT = EVT::getVectorVT(*DAG.getContext(), InSVT,
NumConcats * InVT.getVectorNumElements());
SatVal = DAG.getNode(ISD::CONCAT_VECTORS, DL, InVT, ConcatOps);
}
// Widen the result if its narrower than 128 bits.
if (ResElts * SVT.getSizeInBits() < 128)
ResElts = 128 / SVT.getSizeInBits();
EVT TruncVT = EVT::getVectorVT(*DAG.getContext(), SVT, ResElts);
SDValue Res = DAG.getNode(TruncOpc, DL, TruncVT, SatVal);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
}
}
return SDValue();
}
/// This function detects the AVG pattern between vectors of unsigned i8/i16,
/// which is c = (a + b + 1) / 2, and replace this operation with the efficient
/// X86ISD::AVG instruction.
static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &DL) {
if (!VT.isVector())
return SDValue();
EVT InVT = In.getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT ScalarVT = VT.getVectorElementType();
if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) &&
NumElems >= 2 && isPowerOf2_32(NumElems)))
return SDValue();
// InScalarVT is the intermediate type in AVG pattern and it should be greater
// than the original input type (i8/i16).
EVT InScalarVT = InVT.getVectorElementType();
if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits())
return SDValue();
if (!Subtarget.hasSSE2())
return SDValue();
// Detect the following pattern:
//
// %1 = zext <N x i8> %a to <N x i32>
// %2 = zext <N x i8> %b to <N x i32>
// %3 = add nuw nsw <N x i32> %1, <i32 1 x N>
// %4 = add nuw nsw <N x i32> %3, %2
// %5 = lshr <N x i32> %N, <i32 1 x N>
// %6 = trunc <N x i32> %5 to <N x i8>
//
// In AVX512, the last instruction can also be a trunc store.
if (In.getOpcode() != ISD::SRL)
return SDValue();
// A lambda checking the given SDValue is a constant vector and each element
// is in the range [Min, Max].
auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) {
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV || !BV->isConstant())
return false;
for (SDValue Op : V->ops()) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
if (!C)
return false;
const APInt &Val = C->getAPIntValue();
if (Val.ult(Min) || Val.ugt(Max))
return false;
}
return true;
};
// Check if each element of the vector is right-shifted by one.
auto LHS = In.getOperand(0);
auto RHS = In.getOperand(1);
if (!IsConstVectorInRange(RHS, 1, 1))
return SDValue();
if (LHS.getOpcode() != ISD::ADD)
return SDValue();
// Detect a pattern of a + b + 1 where the order doesn't matter.
SDValue Operands[3];
Operands[0] = LHS.getOperand(0);
Operands[1] = LHS.getOperand(1);
auto AVGBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::AVG, DL, Ops[0].getValueType(), Ops);
};
// Take care of the case when one of the operands is a constant vector whose
// element is in the range [1, 256].
if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) &&
Operands[0].getOpcode() == ISD::ZERO_EXTEND &&
Operands[0].getOperand(0).getValueType() == VT) {
// The pattern is detected. Subtract one from the constant vector, then
// demote it and emit X86ISD::AVG instruction.
SDValue VecOnes = DAG.getConstant(1, DL, InVT);
Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], VecOnes);
Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]);
return SplitOpsAndApply(DAG, Subtarget, DL, VT,
{ Operands[0].getOperand(0), Operands[1] },
AVGBuilder);
}
// Matches 'add like' patterns: add(Op0,Op1) + zext(or(Op0,Op1)).
// Match the or case only if its 'add-like' - can be replaced by an add.
auto FindAddLike = [&](SDValue V, SDValue &Op0, SDValue &Op1) {
if (ISD::ADD == V.getOpcode()) {
Op0 = V.getOperand(0);
Op1 = V.getOperand(1);
return true;
}
if (ISD::ZERO_EXTEND != V.getOpcode())
return false;
V = V.getOperand(0);
if (V.getValueType() != VT || ISD::OR != V.getOpcode() ||
!DAG.haveNoCommonBitsSet(V.getOperand(0), V.getOperand(1)))
return false;
Op0 = V.getOperand(0);
Op1 = V.getOperand(1);
return true;
};
SDValue Op0, Op1;
if (FindAddLike(Operands[0], Op0, Op1))
std::swap(Operands[0], Operands[1]);
else if (!FindAddLike(Operands[1], Op0, Op1))
return SDValue();
Operands[2] = Op0;
Operands[1] = Op1;
// Now we have three operands of two additions. Check that one of them is a
// constant vector with ones, and the other two can be promoted from i8/i16.
for (int i = 0; i < 3; ++i) {
if (!IsConstVectorInRange(Operands[i], 1, 1))
continue;
std::swap(Operands[i], Operands[2]);
// Check if Operands[0] and Operands[1] are results of type promotion.
for (int j = 0; j < 2; ++j)
if (Operands[j].getValueType() != VT) {
if (Operands[j].getOpcode() != ISD::ZERO_EXTEND ||
Operands[j].getOperand(0).getValueType() != VT)
return SDValue();
Operands[j] = Operands[j].getOperand(0);
}
// The pattern is detected, emit X86ISD::AVG instruction(s).
return SplitOpsAndApply(DAG, Subtarget, DL, VT, {Operands[0], Operands[1]},
AVGBuilder);
}
return SDValue();
}
static SDValue combineLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
LoadSDNode *Ld = cast<LoadSDNode>(N);
EVT RegVT = Ld->getValueType(0);
EVT MemVT = Ld->getMemoryVT();
SDLoc dl(Ld);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// For chips with slow 32-byte unaligned loads, break the 32-byte operation
// into two 16-byte operations. Also split non-temporal aligned loads on
// pre-AVX2 targets as 32-byte loads will lower to regular temporal loads.
ISD::LoadExtType Ext = Ld->getExtensionType();
bool Fast;
unsigned Alignment = Ld->getAlignment();
if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
Ext == ISD::NON_EXTLOAD &&
((Ld->isNonTemporal() && !Subtarget.hasInt256() && Alignment >= 16) ||
(TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
*Ld->getMemOperand(), &Fast) &&
!Fast))) {
unsigned NumElems = RegVT.getVectorNumElements();
if (NumElems < 2)
return SDValue();
unsigned HalfAlign = 16;
SDValue Ptr1 = Ld->getBasePtr();
SDValue Ptr2 = DAG.getMemBasePlusOffset(Ptr1, HalfAlign, dl);
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
NumElems / 2);
SDValue Load1 =
DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr1, Ld->getPointerInfo(),
Alignment, Ld->getMemOperand()->getFlags());
SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr2,
Ld->getPointerInfo().getWithOffset(HalfAlign),
MinAlign(Alignment, HalfAlign),
Ld->getMemOperand()->getFlags());
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
Load1.getValue(1), Load2.getValue(1));
SDValue NewVec = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Load1, Load2);
return DCI.CombineTo(N, NewVec, TF, true);
}
// Bool vector load - attempt to cast to an integer, as we have good
// (vXiY *ext(vXi1 bitcast(iX))) handling.
if (Ext == ISD::NON_EXTLOAD && !Subtarget.hasAVX512() && RegVT.isVector() &&
RegVT.getScalarType() == MVT::i1 && DCI.isBeforeLegalize()) {
unsigned NumElts = RegVT.getVectorNumElements();
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumElts);
if (TLI.isTypeLegal(IntVT)) {
SDValue IntLoad = DAG.getLoad(IntVT, dl, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Alignment,
Ld->getMemOperand()->getFlags());
SDValue BoolVec = DAG.getBitcast(RegVT, IntLoad);
return DCI.CombineTo(N, BoolVec, IntLoad.getValue(1), true);
}
}
return SDValue();
}
/// If V is a build vector of boolean constants and exactly one of those
/// constants is true, return the operand index of that true element.
/// Otherwise, return -1.
static int getOneTrueElt(SDValue V) {
// This needs to be a build vector of booleans.
// TODO: Checking for the i1 type matches the IR definition for the mask,
// but the mask check could be loosened to i8 or other types. That might
// also require checking more than 'allOnesValue'; eg, the x86 HW
// instructions only require that the MSB is set for each mask element.
// The ISD::MSTORE comments/definition do not specify how the mask operand
// is formatted.
auto *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV || BV->getValueType(0).getVectorElementType() != MVT::i1)
return -1;
int TrueIndex = -1;
unsigned NumElts = BV->getValueType(0).getVectorNumElements();
for (unsigned i = 0; i < NumElts; ++i) {
const SDValue &Op = BV->getOperand(i);
if (Op.isUndef())
continue;
auto *ConstNode = dyn_cast<ConstantSDNode>(Op);
if (!ConstNode)
return -1;
if (ConstNode->getAPIntValue().isAllOnesValue()) {
// If we already found a one, this is too many.
if (TrueIndex >= 0)
return -1;
TrueIndex = i;
}
}
return TrueIndex;
}
/// Given a masked memory load/store operation, return true if it has one mask
/// bit set. If it has one mask bit set, then also return the memory address of
/// the scalar element to load/store, the vector index to insert/extract that
/// scalar element, and the alignment for the scalar memory access.
static bool getParamsForOneTrueMaskedElt(MaskedLoadStoreSDNode *MaskedOp,
SelectionDAG &DAG, SDValue &Addr,
SDValue &Index, unsigned &Alignment) {
int TrueMaskElt = getOneTrueElt(MaskedOp->getMask());
if (TrueMaskElt < 0)
return false;
// Get the address of the one scalar element that is specified by the mask
// using the appropriate offset from the base pointer.
EVT EltVT = MaskedOp->getMemoryVT().getVectorElementType();
Addr = MaskedOp->getBasePtr();
if (TrueMaskElt != 0) {
unsigned Offset = TrueMaskElt * EltVT.getStoreSize();
Addr = DAG.getMemBasePlusOffset(Addr, Offset, SDLoc(MaskedOp));
}
Index = DAG.getIntPtrConstant(TrueMaskElt, SDLoc(MaskedOp));
Alignment = MinAlign(MaskedOp->getAlignment(), EltVT.getStoreSize());
return true;
}
/// If exactly one element of the mask is set for a non-extending masked load,
/// it is a scalar load and vector insert.
/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
/// mask have already been optimized in IR, so we don't bother with those here.
static SDValue
reduceMaskedLoadToScalarLoad(MaskedLoadSDNode *ML, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
assert(ML->isUnindexed() && "Unexpected indexed masked load!");
// TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
// However, some target hooks may need to be added to know when the transform
// is profitable. Endianness would also have to be considered.
SDValue Addr, VecIndex;
unsigned Alignment;
if (!getParamsForOneTrueMaskedElt(ML, DAG, Addr, VecIndex, Alignment))
return SDValue();
// Load the one scalar element that is specified by the mask using the
// appropriate offset from the base pointer.
SDLoc DL(ML);
EVT VT = ML->getValueType(0);
EVT EltVT = VT.getVectorElementType();
SDValue Load =
DAG.getLoad(EltVT, DL, ML->getChain(), Addr, ML->getPointerInfo(),
Alignment, ML->getMemOperand()->getFlags());
// Insert the loaded element into the appropriate place in the vector.
SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
ML->getPassThru(), Load, VecIndex);
return DCI.CombineTo(ML, Insert, Load.getValue(1), true);
}
static SDValue
combineMaskedLoadConstantMask(MaskedLoadSDNode *ML, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
assert(ML->isUnindexed() && "Unexpected indexed masked load!");
if (!ISD::isBuildVectorOfConstantSDNodes(ML->getMask().getNode()))
return SDValue();
SDLoc DL(ML);
EVT VT = ML->getValueType(0);
// If we are loading the first and last elements of a vector, it is safe and
// always faster to load the whole vector. Replace the masked load with a
// vector load and select.
unsigned NumElts = VT.getVectorNumElements();
BuildVectorSDNode *MaskBV = cast<BuildVectorSDNode>(ML->getMask());
bool LoadFirstElt = !isNullConstant(MaskBV->getOperand(0));
bool LoadLastElt = !isNullConstant(MaskBV->getOperand(NumElts - 1));
if (LoadFirstElt && LoadLastElt) {
SDValue VecLd = DAG.getLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
ML->getMemOperand());
SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), VecLd,
ML->getPassThru());
return DCI.CombineTo(ML, Blend, VecLd.getValue(1), true);
}
// Convert a masked load with a constant mask into a masked load and a select.
// This allows the select operation to use a faster kind of select instruction
// (for example, vblendvps -> vblendps).
// Don't try this if the pass-through operand is already undefined. That would
// cause an infinite loop because that's what we're about to create.
if (ML->getPassThru().isUndef())
return SDValue();
if (ISD::isBuildVectorAllZeros(ML->getPassThru().getNode()))
return SDValue();
// The new masked load has an undef pass-through operand. The select uses the
// original pass-through operand.
SDValue NewML = DAG.getMaskedLoad(
VT, DL, ML->getChain(), ML->getBasePtr(), ML->getOffset(), ML->getMask(),
DAG.getUNDEF(VT), ML->getMemoryVT(), ML->getMemOperand(),
ML->getAddressingMode(), ML->getExtensionType());
SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), NewML,
ML->getPassThru());
return DCI.CombineTo(ML, Blend, NewML.getValue(1), true);
}
static SDValue combineMaskedLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
// TODO: Expanding load with constant mask may be optimized as well.
if (Mld->isExpandingLoad())
return SDValue();
if (Mld->getExtensionType() == ISD::NON_EXTLOAD) {
if (SDValue ScalarLoad = reduceMaskedLoadToScalarLoad(Mld, DAG, DCI))
return ScalarLoad;
// TODO: Do some AVX512 subsets benefit from this transform?
if (!Subtarget.hasAVX512())
if (SDValue Blend = combineMaskedLoadConstantMask(Mld, DAG, DCI))
return Blend;
}
return SDValue();
}
/// If exactly one element of the mask is set for a non-truncating masked store,
/// it is a vector extract and scalar store.
/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
/// mask have already been optimized in IR, so we don't bother with those here.
static SDValue reduceMaskedStoreToScalarStore(MaskedStoreSDNode *MS,
SelectionDAG &DAG) {
// TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
// However, some target hooks may need to be added to know when the transform
// is profitable. Endianness would also have to be considered.
SDValue Addr, VecIndex;
unsigned Alignment;
if (!getParamsForOneTrueMaskedElt(MS, DAG, Addr, VecIndex, Alignment))
return SDValue();
// Extract the one scalar element that is actually being stored.
SDLoc DL(MS);
EVT VT = MS->getValue().getValueType();
EVT EltVT = VT.getVectorElementType();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
MS->getValue(), VecIndex);
// Store that element at the appropriate offset from the base pointer.
return DAG.getStore(MS->getChain(), DL, Extract, Addr, MS->getPointerInfo(),
Alignment, MS->getMemOperand()->getFlags());
}
static SDValue combineMaskedStore(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
if (Mst->isCompressingStore())
return SDValue();
EVT VT = Mst->getValue().getValueType();
SDLoc dl(Mst);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (Mst->isTruncatingStore())
return SDValue();
if (SDValue ScalarStore = reduceMaskedStoreToScalarStore(Mst, DAG))
return ScalarStore;
// If the mask value has been legalized to a non-boolean vector, try to
// simplify ops leading up to it. We only demand the MSB of each lane.
SDValue Mask = Mst->getMask();
if (Mask.getScalarValueSizeInBits() != 1) {
APInt DemandedMask(APInt::getSignMask(VT.getScalarSizeInBits()));
if (TLI.SimplifyDemandedBits(Mask, DemandedMask, DCI))
return SDValue(N, 0);
}
SDValue Value = Mst->getValue();
if (Value.getOpcode() == ISD::TRUNCATE && Value.getNode()->hasOneUse() &&
TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(),
Mst->getMemoryVT())) {
return DAG.getMaskedStore(Mst->getChain(), SDLoc(N), Value.getOperand(0),
Mst->getBasePtr(), Mst->getOffset(), Mask,
Mst->getMemoryVT(), Mst->getMemOperand(),
Mst->getAddressingMode(), true);
}
return SDValue();
}
static SDValue combineStore(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
StoreSDNode *St = cast<StoreSDNode>(N);
EVT StVT = St->getMemoryVT();
SDLoc dl(St);
unsigned Alignment = St->getAlignment();
SDValue StoredVal = St->getValue();
EVT VT = StoredVal.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Convert a store of vXi1 into a store of iX and a bitcast.
if (!Subtarget.hasAVX512() && VT == StVT && VT.isVector() &&
VT.getVectorElementType() == MVT::i1) {
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), VT.getVectorNumElements());
StoredVal = DAG.getBitcast(NewVT, StoredVal);
return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
// If this is a store of a scalar_to_vector to v1i1, just use a scalar store.
// This will avoid a copy to k-register.
if (VT == MVT::v1i1 && VT == StVT && Subtarget.hasAVX512() &&
StoredVal.getOpcode() == ISD::SCALAR_TO_VECTOR &&
StoredVal.getOperand(0).getValueType() == MVT::i8) {
return DAG.getStore(St->getChain(), dl, StoredVal.getOperand(0),
St->getBasePtr(), St->getPointerInfo(),
St->getAlignment(), St->getMemOperand()->getFlags());
}
// Widen v2i1/v4i1 stores to v8i1.
if ((VT == MVT::v2i1 || VT == MVT::v4i1) && VT == StVT &&
Subtarget.hasAVX512()) {
unsigned NumConcats = 8 / VT.getVectorNumElements();
SmallVector<SDValue, 4> Ops(NumConcats, DAG.getUNDEF(VT));
Ops[0] = StoredVal;
StoredVal = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i1, Ops);
return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
// Turn vXi1 stores of constants into a scalar store.
if ((VT == MVT::v8i1 || VT == MVT::v16i1 || VT == MVT::v32i1 ||
VT == MVT::v64i1) && VT == StVT && TLI.isTypeLegal(VT) &&
ISD::isBuildVectorOfConstantSDNodes(StoredVal.getNode())) {
// If its a v64i1 store without 64-bit support, we need two stores.
if (VT == MVT::v64i1 && !Subtarget.is64Bit()) {
SDValue Lo = DAG.getBuildVector(MVT::v32i1, dl,
StoredVal->ops().slice(0, 32));
Lo = combinevXi1ConstantToInteger(Lo, DAG);
SDValue Hi = DAG.getBuildVector(MVT::v32i1, dl,
StoredVal->ops().slice(32, 32));
Hi = combinevXi1ConstantToInteger(Hi, DAG);
SDValue Ptr0 = St->getBasePtr();
SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 4, dl);
SDValue Ch0 =
DAG.getStore(St->getChain(), dl, Lo, Ptr0, St->getPointerInfo(),
Alignment, St->getMemOperand()->getFlags());
SDValue Ch1 =
DAG.getStore(St->getChain(), dl, Hi, Ptr1,
St->getPointerInfo().getWithOffset(4),
MinAlign(Alignment, 4U),
St->getMemOperand()->getFlags());
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
}
StoredVal = combinevXi1ConstantToInteger(StoredVal, DAG);
return DAG.getStore(St->getChain(), dl, StoredVal, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
// If we are saving a 32-byte vector and 32-byte stores are slow, such as on
// Sandy Bridge, perform two 16-byte stores.
bool Fast;
if (VT.is256BitVector() && StVT == VT &&
TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
*St->getMemOperand(), &Fast) &&
!Fast) {
unsigned NumElems = VT.getVectorNumElements();
if (NumElems < 2)
return SDValue();
return splitVectorStore(St, DAG);
}
// Split under-aligned vector non-temporal stores.
if (St->isNonTemporal() && StVT == VT && Alignment < VT.getStoreSize()) {
// ZMM/YMM nt-stores - either it can be stored as a series of shorter
// vectors or the legalizer can scalarize it to use MOVNTI.
if (VT.is256BitVector() || VT.is512BitVector()) {
unsigned NumElems = VT.getVectorNumElements();
if (NumElems < 2)
return SDValue();
return splitVectorStore(St, DAG);
}
// XMM nt-stores - scalarize this to f64 nt-stores on SSE4A, else i32/i64
// to use MOVNTI.
if (VT.is128BitVector() && Subtarget.hasSSE2()) {
MVT NTVT = Subtarget.hasSSE4A()
? MVT::v2f64
: (TLI.isTypeLegal(MVT::i64) ? MVT::v2i64 : MVT::v4i32);
return scalarizeVectorStore(St, NTVT, DAG);
}
}
// Try to optimize v16i16->v16i8 truncating stores when BWI is not
// supported, but avx512f is by extending to v16i32 and truncating.
if (!St->isTruncatingStore() && VT == MVT::v16i8 && !Subtarget.hasBWI() &&
St->getValue().getOpcode() == ISD::TRUNCATE &&
St->getValue().getOperand(0).getValueType() == MVT::v16i16 &&
TLI.isTruncStoreLegal(MVT::v16i32, MVT::v16i8) &&
St->getValue().hasOneUse() && !DCI.isBeforeLegalizeOps()) {
SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::v16i32, St->getValue());
return DAG.getTruncStore(St->getChain(), dl, Ext, St->getBasePtr(),
MVT::v16i8, St->getMemOperand());
}
// Try to fold a VTRUNCUS or VTRUNCS into a truncating store.
if (!St->isTruncatingStore() && StoredVal.hasOneUse() &&
(StoredVal.getOpcode() == X86ISD::VTRUNCUS ||
StoredVal.getOpcode() == X86ISD::VTRUNCS) &&
TLI.isTruncStoreLegal(StoredVal.getOperand(0).getValueType(), VT)) {
bool IsSigned = StoredVal.getOpcode() == X86ISD::VTRUNCS;
return EmitTruncSStore(IsSigned, St->getChain(),
dl, StoredVal.getOperand(0), St->getBasePtr(),
VT, St->getMemOperand(), DAG);
}
// Optimize trunc store (of multiple scalars) to shuffle and store.
// First, pack all of the elements in one place. Next, store to memory
// in fewer chunks.
if (St->isTruncatingStore() && VT.isVector()) {
// Check if we can detect an AVG pattern from the truncation. If yes,
// replace the trunc store by a normal store with the result of X86ISD::AVG
// instruction.
if (DCI.isBeforeLegalize() || TLI.isTypeLegal(St->getMemoryVT()))
if (SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG,
Subtarget, dl))
return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
if (TLI.isTruncStoreLegal(VT, StVT)) {
if (SDValue Val = detectSSatPattern(St->getValue(), St->getMemoryVT()))
return EmitTruncSStore(true /* Signed saturation */, St->getChain(),
dl, Val, St->getBasePtr(),
St->getMemoryVT(), St->getMemOperand(), DAG);
if (SDValue Val = detectUSatPattern(St->getValue(), St->getMemoryVT(),
DAG, dl))
return EmitTruncSStore(false /* Unsigned saturation */, St->getChain(),
dl, Val, St->getBasePtr(),
St->getMemoryVT(), St->getMemOperand(), DAG);
}
return SDValue();
}
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
// the FP state in cases where an emms may be missing.
// A preferable solution to the general problem is to figure out the right
// places to insert EMMS. This qualifies as a quick hack.
// Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
if (VT.getSizeInBits() != 64)
return SDValue();
const Function &F = DAG.getMachineFunction().getFunction();
bool NoImplicitFloatOps = F.hasFnAttribute(Attribute::NoImplicitFloat);
bool F64IsLegal =
!Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2();
if ((VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit()) &&
isa<LoadSDNode>(St->getValue()) &&
cast<LoadSDNode>(St->getValue())->isSimple() &&
St->getChain().hasOneUse() && St->isSimple()) {
LoadSDNode *Ld = cast<LoadSDNode>(St->getValue().getNode());
if (!ISD::isNormalLoad(Ld))
return SDValue();
// Avoid the transformation if there are multiple uses of the loaded value.
if (!Ld->hasNUsesOfValue(1, 0))
return SDValue();
SDLoc LdDL(Ld);
SDLoc StDL(N);
// Lower to a single movq load/store pair.
SDValue NewLd = DAG.getLoad(MVT::f64, LdDL, Ld->getChain(),
Ld->getBasePtr(), Ld->getMemOperand());
// Make sure new load is placed in same chain order.
DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
return DAG.getStore(St->getChain(), StDL, NewLd, St->getBasePtr(),
St->getMemOperand());
}
// This is similar to the above case, but here we handle a scalar 64-bit
// integer store that is extracted from a vector on a 32-bit target.
// If we have SSE2, then we can treat it like a floating-point double
// to get past legalization. The execution dependencies fixup pass will
// choose the optimal machine instruction for the store if this really is
// an integer or v2f32 rather than an f64.
if (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit() &&
St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue OldExtract = St->getOperand(1);
SDValue ExtOp0 = OldExtract.getOperand(0);
unsigned VecSize = ExtOp0.getValueSizeInBits();
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
BitCast, OldExtract.getOperand(1));
return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
St->getPointerInfo(), St->getAlignment(),
St->getMemOperand()->getFlags());
}
return SDValue();
}
/// Return 'true' if this vector operation is "horizontal"
/// and return the operands for the horizontal operation in LHS and RHS. A
/// horizontal operation performs the binary operation on successive elements
/// of its first operand, then on successive elements of its second operand,
/// returning the resulting values in a vector. For example, if
/// A = < float a0, float a1, float a2, float a3 >
/// and
/// B = < float b0, float b1, float b2, float b3 >
/// then the result of doing a horizontal operation on A and B is
/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
/// A horizontal-op B, for some already available A and B, and if so then LHS is
/// set to A, RHS to B, and the routine returns 'true'.
static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
bool IsCommutative) {
// If either operand is undef, bail out. The binop should be simplified.
if (LHS.isUndef() || RHS.isUndef())
return false;
// Look for the following pattern:
// A = < float a0, float a1, float a2, float a3 >
// B = < float b0, float b1, float b2, float b3 >
// and
// LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
// RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
// then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
// which is A horizontal-op B.
MVT VT = LHS.getSimpleValueType();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for horizontal add/sub");
unsigned NumElts = VT.getVectorNumElements();
// TODO - can we make a general helper method that does all of this for us?
auto GetShuffle = [&](SDValue Op, SDValue &N0, SDValue &N1,
SmallVectorImpl<int> &ShuffleMask) {
if (Op.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (!Op.getOperand(0).isUndef())
N0 = Op.getOperand(0);
if (!Op.getOperand(1).isUndef())
N1 = Op.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask();
ShuffleMask.append(Mask.begin(), Mask.end());
return;
}
bool UseSubVector = false;
if (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
Op.getOperand(0).getValueType().is256BitVector() &&
llvm::isNullConstant(Op.getOperand(1))) {
Op = Op.getOperand(0);
UseSubVector = true;
}
bool IsUnary;
SmallVector<SDValue, 2> SrcOps;
SmallVector<int, 16> SrcShuffleMask;
SDValue BC = peekThroughBitcasts(Op);
if (isTargetShuffle(BC.getOpcode()) &&
getTargetShuffleMask(BC.getNode(), BC.getSimpleValueType(), false,
SrcOps, SrcShuffleMask, IsUnary)) {
if (!UseSubVector && SrcShuffleMask.size() == NumElts &&
SrcOps.size() <= 2) {
N0 = SrcOps.size() > 0 ? SrcOps[0] : SDValue();
N1 = SrcOps.size() > 1 ? SrcOps[1] : SDValue();
ShuffleMask.append(SrcShuffleMask.begin(), SrcShuffleMask.end());
}
if (UseSubVector && (SrcShuffleMask.size() == (NumElts * 2)) &&
SrcOps.size() == 1) {
N0 = extract128BitVector(SrcOps[0], 0, DAG, SDLoc(Op));
N1 = extract128BitVector(SrcOps[0], NumElts, DAG, SDLoc(Op));
ArrayRef<int> Mask = ArrayRef<int>(SrcShuffleMask).slice(0, NumElts);
ShuffleMask.append(Mask.begin(), Mask.end());
}
}
};
// View LHS in the form
// LHS = VECTOR_SHUFFLE A, B, LMask
// If LHS is not a shuffle, then pretend it is the identity shuffle:
// LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
// NOTE: A default initialized SDValue represents an UNDEF of type VT.
SDValue A, B;
SmallVector<int, 16> LMask;
GetShuffle(LHS, A, B, LMask);
// Likewise, view RHS in the form
// RHS = VECTOR_SHUFFLE C, D, RMask
SDValue C, D;
SmallVector<int, 16> RMask;
GetShuffle(RHS, C, D, RMask);
// At least one of the operands should be a vector shuffle.
unsigned NumShuffles = (LMask.empty() ? 0 : 1) + (RMask.empty() ? 0 : 1);
if (NumShuffles == 0)
return false;
if (LMask.empty()) {
A = LHS;
for (unsigned i = 0; i != NumElts; ++i)
LMask.push_back(i);
}
if (RMask.empty()) {
C = RHS;
for (unsigned i = 0; i != NumElts; ++i)
RMask.push_back(i);
}
// If A and B occur in reverse order in RHS, then canonicalize by commuting
// RHS operands and shuffle mask.
if (A != C) {
std::swap(C, D);
ShuffleVectorSDNode::commuteMask(RMask);
}
// Check that the shuffles are both shuffling the same vectors.
if (!(A == C && B == D))
return false;
// LHS and RHS are now:
// LHS = shuffle A, B, LMask
// RHS = shuffle A, B, RMask
// Check that the masks correspond to performing a horizontal operation.
// AVX defines horizontal add/sub to operate independently on 128-bit lanes,
// so we just repeat the inner loop if this is a 256-bit op.
unsigned Num128BitChunks = VT.getSizeInBits() / 128;
unsigned NumEltsPer128BitChunk = NumElts / Num128BitChunks;
assert((NumEltsPer128BitChunk % 2 == 0) &&
"Vector type should have an even number of elements in each lane");
for (unsigned j = 0; j != NumElts; j += NumEltsPer128BitChunk) {
for (unsigned i = 0; i != NumEltsPer128BitChunk; ++i) {
// Ignore undefined components.
int LIdx = LMask[i + j], RIdx = RMask[i + j];
if (LIdx < 0 || RIdx < 0 ||
(!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
(!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
continue;
// The low half of the 128-bit result must choose from A.
// The high half of the 128-bit result must choose from B,
// unless B is undef. In that case, we are always choosing from A.
unsigned NumEltsPer64BitChunk = NumEltsPer128BitChunk / 2;
unsigned Src = B.getNode() ? i >= NumEltsPer64BitChunk : 0;
// Check that successive elements are being operated on. If not, this is
// not a horizontal operation.
int Index = 2 * (i % NumEltsPer64BitChunk) + NumElts * Src + j;
if (!(LIdx == Index && RIdx == Index + 1) &&
!(IsCommutative && LIdx == Index + 1 && RIdx == Index))
return false;
}
}
LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
if (!shouldUseHorizontalOp(LHS == RHS && NumShuffles < 2, DAG, Subtarget))
return false;
LHS = DAG.getBitcast(VT, LHS);
RHS = DAG.getBitcast(VT, RHS);
return true;
}
/// Do target-specific dag combines on floating-point adds/subs.
static SDValue combineFaddFsub(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
bool IsFadd = N->getOpcode() == ISD::FADD;
auto HorizOpcode = IsFadd ? X86ISD::FHADD : X86ISD::FHSUB;
assert((IsFadd || N->getOpcode() == ISD::FSUB) && "Wrong opcode");
// Try to synthesize horizontal add/sub from adds/subs of shuffles.
if (((Subtarget.hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
(Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, DAG, Subtarget, IsFadd))
return DAG.getNode(HorizOpcode, SDLoc(N), VT, LHS, RHS);
return SDValue();
}
/// Attempt to pre-truncate inputs to arithmetic ops if it will simplify
/// the codegen.
/// e.g. TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) )
/// TODO: This overlaps with the generic combiner's visitTRUNCATE. Remove
/// anything that is guaranteed to be transformed by DAGCombiner.
static SDValue combineTruncatedArithmetic(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &DL) {
assert(N->getOpcode() == ISD::TRUNCATE && "Wrong opcode");
SDValue Src = N->getOperand(0);
unsigned SrcOpcode = Src.getOpcode();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
EVT SrcVT = Src.getValueType();
auto IsFreeTruncation = [VT](SDValue Op) {
unsigned TruncSizeInBits = VT.getScalarSizeInBits();
// See if this has been extended from a smaller/equal size to
// the truncation size, allowing a truncation to combine with the extend.
unsigned Opcode = Op.getOpcode();
if ((Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND ||
Opcode == ISD::ZERO_EXTEND) &&
Op.getOperand(0).getScalarValueSizeInBits() <= TruncSizeInBits)
return true;
// See if this is a single use constant which can be constant folded.
// NOTE: We don't peek throught bitcasts here because there is currently
// no support for constant folding truncate+bitcast+vector_of_constants. So
// we'll just send up with a truncate on both operands which will
// get turned back into (truncate (binop)) causing an infinite loop.
return ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
};
auto TruncateArithmetic = [&](SDValue N0, SDValue N1) {
SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, VT, N0);
SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
return DAG.getNode(SrcOpcode, DL, VT, Trunc0, Trunc1);
};
// Don't combine if the operation has other uses.
if (!Src.hasOneUse())
return SDValue();
// Only support vector truncation for now.
// TODO: i64 scalar math would benefit as well.
if (!VT.isVector())
return SDValue();
// In most cases its only worth pre-truncating if we're only facing the cost
// of one truncation.
// i.e. if one of the inputs will constant fold or the input is repeated.
switch (SrcOpcode) {
case ISD::AND:
case ISD::XOR:
case ISD::OR: {
SDValue Op0 = Src.getOperand(0);
SDValue Op1 = Src.getOperand(1);
if (TLI.isOperationLegalOrPromote(SrcOpcode, VT) &&
(Op0 == Op1 || IsFreeTruncation(Op0) || IsFreeTruncation(Op1)))
return TruncateArithmetic(Op0, Op1);
break;
}
case ISD::MUL:
// X86 is rubbish at scalar and vector i64 multiplies (until AVX512DQ) - its
// better to truncate if we have the chance.
if (SrcVT.getScalarType() == MVT::i64 &&
TLI.isOperationLegal(SrcOpcode, VT) &&
!TLI.isOperationLegal(SrcOpcode, SrcVT))
return TruncateArithmetic(Src.getOperand(0), Src.getOperand(1));
LLVM_FALLTHROUGH;
case ISD::ADD: {
SDValue Op0 = Src.getOperand(0);
SDValue Op1 = Src.getOperand(1);
if (TLI.isOperationLegal(SrcOpcode, VT) &&
(Op0 == Op1 || IsFreeTruncation(Op0) || IsFreeTruncation(Op1)))
return TruncateArithmetic(Op0, Op1);
break;
}
case ISD::SUB: {
// TODO: ISD::SUB We are conservative and require both sides to be freely
// truncatable to avoid interfering with combineSubToSubus.
SDValue Op0 = Src.getOperand(0);
SDValue Op1 = Src.getOperand(1);
if (TLI.isOperationLegal(SrcOpcode, VT) &&
(Op0 == Op1 || (IsFreeTruncation(Op0) && IsFreeTruncation(Op1))))
return TruncateArithmetic(Op0, Op1);
break;
}
}
return SDValue();
}
/// Truncate using ISD::AND mask and X86ISD::PACKUS.
/// e.g. trunc <8 x i32> X to <8 x i16> -->
/// MaskX = X & 0xffff (clear high bits to prevent saturation)
/// packus (extract_subv MaskX, 0), (extract_subv MaskX, 1)
static SDValue combineVectorTruncationWithPACKUS(SDNode *N, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = N->getOperand(0);
EVT InVT = In.getValueType();
EVT OutVT = N->getValueType(0);
APInt Mask = APInt::getLowBitsSet(InVT.getScalarSizeInBits(),
OutVT.getScalarSizeInBits());
In = DAG.getNode(ISD::AND, DL, InVT, In, DAG.getConstant(Mask, DL, InVT));
return truncateVectorWithPACK(X86ISD::PACKUS, OutVT, In, DL, DAG, Subtarget);
}
/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS.
static SDValue combineVectorTruncationWithPACKSS(SDNode *N, const SDLoc &DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = N->getOperand(0);
EVT InVT = In.getValueType();
EVT OutVT = N->getValueType(0);
In = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, InVT, In,
DAG.getValueType(OutVT));
return truncateVectorWithPACK(X86ISD::PACKSS, OutVT, In, DL, DAG, Subtarget);
}
/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into
/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type
/// legalization the truncation will be translated into a BUILD_VECTOR with each
/// element that is extracted from a vector and then truncated, and it is
/// difficult to do this optimization based on them.
static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT OutVT = N->getValueType(0);
if (!OutVT.isVector())
return SDValue();
SDValue In = N->getOperand(0);
if (!In.getValueType().isSimple())
return SDValue();
EVT InVT = In.getValueType();
unsigned NumElems = OutVT.getVectorNumElements();
// TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on
// SSE2, and we need to take care of it specially.
// AVX512 provides vpmovdb.
if (!Subtarget.hasSSE2() || Subtarget.hasAVX2())
return SDValue();
EVT OutSVT = OutVT.getVectorElementType();
EVT InSVT = InVT.getVectorElementType();
if (!((InSVT == MVT::i32 || InSVT == MVT::i64) &&
(OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) &&
NumElems >= 8))
return SDValue();
// SSSE3's pshufb results in less instructions in the cases below.
if (Subtarget.hasSSSE3() && NumElems == 8 &&
((OutSVT == MVT::i8 && InSVT != MVT::i64) ||
(InSVT == MVT::i32 && OutSVT == MVT::i16)))
return SDValue();
SDLoc DL(N);
// SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PACKUS
// for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to
// truncate 2 x v4i32 to v8i16.
if (Subtarget.hasSSE41() || OutSVT == MVT::i8)
return combineVectorTruncationWithPACKUS(N, DL, Subtarget, DAG);
if (InSVT == MVT::i32)
return combineVectorTruncationWithPACKSS(N, DL, Subtarget, DAG);
return SDValue();
}
/// This function transforms vector truncation of 'extended sign-bits' or
/// 'extended zero-bits' values.
/// vXi16/vXi32/vXi64 to vXi8/vXi16/vXi32 into X86ISD::PACKSS/PACKUS operations.
static SDValue combineVectorSignBitsTruncation(SDNode *N, const SDLoc &DL,
SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// Requires SSE2.
if (!Subtarget.hasSSE2())
return SDValue();
if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple())
return SDValue();
SDValue In = N->getOperand(0);
if (!In.getValueType().isSimple())
return SDValue();
MVT VT = N->getValueType(0).getSimpleVT();
MVT SVT = VT.getScalarType();
MVT InVT = In.getValueType().getSimpleVT();
MVT InSVT = InVT.getScalarType();
// Check we have a truncation suited for PACKSS/PACKUS.
if (!VT.is128BitVector() && !VT.is256BitVector())
return SDValue();
if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32)
return SDValue();
if (InSVT != MVT::i16 && InSVT != MVT::i32 && InSVT != MVT::i64)
return SDValue();
// AVX512 has fast truncate, but if the input is already going to be split,
// there's no harm in trying pack.
if (Subtarget.hasAVX512() &&
!(!Subtarget.useAVX512Regs() && VT.is256BitVector() &&
InVT.is512BitVector()))
return SDValue();
unsigned NumPackedSignBits = std::min<unsigned>(SVT.getSizeInBits(), 16);
unsigned NumPackedZeroBits = Subtarget.hasSSE41() ? NumPackedSignBits : 8;
// Use PACKUS if the input has zero-bits that extend all the way to the
// packed/truncated value. e.g. masks, zext_in_reg, etc.
KnownBits Known = DAG.computeKnownBits(In);
unsigned NumLeadingZeroBits = Known.countMinLeadingZeros();
if (NumLeadingZeroBits >= (InSVT.getSizeInBits() - NumPackedZeroBits))
return truncateVectorWithPACK(X86ISD::PACKUS, VT, In, DL, DAG, Subtarget);
// Use PACKSS if the input has sign-bits that extend all the way to the
// packed/truncated value. e.g. Comparison result, sext_in_reg, etc.
unsigned NumSignBits = DAG.ComputeNumSignBits(In);
if (NumSignBits > (InSVT.getSizeInBits() - NumPackedSignBits))
return truncateVectorWithPACK(X86ISD::PACKSS, VT, In, DL, DAG, Subtarget);
return SDValue();
}
// Try to form a MULHU or MULHS node by looking for
// (trunc (srl (mul ext, ext), 16))
// TODO: This is X86 specific because we want to be able to handle wide types
// before type legalization. But we can only do it if the vector will be
// legalized via widening/splitting. Type legalization can't handle promotion
// of a MULHU/MULHS. There isn't a way to convey this to the generic DAG
// combiner.
static SDValue combinePMULH(SDValue Src, EVT VT, const SDLoc &DL,
SelectionDAG &DAG, const X86Subtarget &Subtarget) {
// First instruction should be a right shift of a multiply.
if (Src.getOpcode() != ISD::SRL ||
Src.getOperand(0).getOpcode() != ISD::MUL)
return SDValue();
if (!Subtarget.hasSSE2())
return SDValue();
// Only handle vXi16 types that are at least 128-bits unless they will be
// widened.
if (!VT.isVector() || VT.getVectorElementType() != MVT::i16)
return SDValue();
// Input type should be vXi32.
EVT InVT = Src.getValueType();
if (InVT.getVectorElementType() != MVT::i32)
return SDValue();
// Need a shift by 16.
APInt ShiftAmt;
if (!ISD::isConstantSplatVector(Src.getOperand(1).getNode(), ShiftAmt) ||
ShiftAmt != 16)
return SDValue();
SDValue LHS = Src.getOperand(0).getOperand(0);
SDValue RHS = Src.getOperand(0).getOperand(1);
unsigned ExtOpc = LHS.getOpcode();
if ((ExtOpc != ISD::SIGN_EXTEND && ExtOpc != ISD::ZERO_EXTEND) ||
RHS.getOpcode() != ExtOpc)
return SDValue();
// Peek through the extends.
LHS = LHS.getOperand(0);
RHS = RHS.getOperand(0);
// Ensure the input types match.
if (LHS.getValueType() != VT || RHS.getValueType() != VT)
return SDValue();
unsigned Opc = ExtOpc == ISD::SIGN_EXTEND ? ISD::MULHS : ISD::MULHU;
return DAG.getNode(Opc, DL, VT, LHS, RHS);
}
// Attempt to match PMADDUBSW, which multiplies corresponding unsigned bytes
// from one vector with signed bytes from another vector, adds together
// adjacent pairs of 16-bit products, and saturates the result before
// truncating to 16-bits.
//
// Which looks something like this:
// (i16 (ssat (add (mul (zext (even elts (i8 A))), (sext (even elts (i8 B)))),
// (mul (zext (odd elts (i8 A)), (sext (odd elts (i8 B))))))))
static SDValue detectPMADDUBSW(SDValue In, EVT VT, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const SDLoc &DL) {
if (!VT.isVector() || !Subtarget.hasSSSE3())
return SDValue();
unsigned NumElems = VT.getVectorNumElements();
EVT ScalarVT = VT.getVectorElementType();
if (ScalarVT != MVT::i16 || NumElems < 8 || !isPowerOf2_32(NumElems))
return SDValue();
SDValue SSatVal = detectSSatPattern(In, VT);
if (!SSatVal || SSatVal.getOpcode() != ISD::ADD)
return SDValue();
// Ok this is a signed saturation of an ADD. See if this ADD is adding pairs
// of multiplies from even/odd elements.
SDValue N0 = SSatVal.getOperand(0);
SDValue N1 = SSatVal.getOperand(1);
if (N0.getOpcode() != ISD::MUL || N1.getOpcode() != ISD::MUL)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
// TODO: Handle constant vectors and use knownbits/computenumsignbits?
// Canonicalize zero_extend to LHS.
if (N01.getOpcode() == ISD::ZERO_EXTEND)
std::swap(N00, N01);
if (N11.getOpcode() == ISD::ZERO_EXTEND)
std::swap(N10, N11);
// Ensure we have a zero_extend and a sign_extend.
if (N00.getOpcode() != ISD::ZERO_EXTEND ||
N01.getOpcode() != ISD::SIGN_EXTEND ||
N10.getOpcode() != ISD::ZERO_EXTEND ||
N11.getOpcode() != ISD::SIGN_EXTEND)
return SDValue();
// Peek through the extends.
N00 = N00.getOperand(0);
N01 = N01.getOperand(0);
N10 = N10.getOperand(0);
N11 = N11.getOperand(0);
// Ensure the extend is from vXi8.
if (N00.getValueType().getVectorElementType() != MVT::i8 ||
N01.getValueType().getVectorElementType() != MVT::i8 ||
N10.getValueType().getVectorElementType() != MVT::i8 ||
N11.getValueType().getVectorElementType() != MVT::i8)
return SDValue();
// All inputs should be build_vectors.
if (N00.getOpcode() != ISD::BUILD_VECTOR ||
N01.getOpcode() != ISD::BUILD_VECTOR ||
N10.getOpcode() != ISD::BUILD_VECTOR ||
N11.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// N00/N10 are zero extended. N01/N11 are sign extended.
// For each element, we need to ensure we have an odd element from one vector
// multiplied by the odd element of another vector and the even element from
// one of the same vectors being multiplied by the even element from the
// other vector. So we need to make sure for each element i, this operator
// is being performed:
// A[2 * i] * B[2 * i] + A[2 * i + 1] * B[2 * i + 1]
SDValue ZExtIn, SExtIn;
for (unsigned i = 0; i != NumElems; ++i) {
SDValue N00Elt = N00.getOperand(i);
SDValue N01Elt = N01.getOperand(i);
SDValue N10Elt = N10.getOperand(i);
SDValue N11Elt = N11.getOperand(i);
// TODO: Be more tolerant to undefs.
if (N00Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N01Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N10Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N11Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
auto *ConstN00Elt = dyn_cast<ConstantSDNode>(N00Elt.getOperand(1));
auto *ConstN01Elt = dyn_cast<ConstantSDNode>(N01Elt.getOperand(1));
auto *ConstN10Elt = dyn_cast<ConstantSDNode>(N10Elt.getOperand(1));
auto *ConstN11Elt = dyn_cast<ConstantSDNode>(N11Elt.getOperand(1));
if (!ConstN00Elt || !ConstN01Elt || !ConstN10Elt || !ConstN11Elt)
return SDValue();
unsigned IdxN00 = ConstN00Elt->getZExtValue();
unsigned IdxN01 = ConstN01Elt->getZExtValue();
unsigned IdxN10 = ConstN10Elt->getZExtValue();
unsigned IdxN11 = ConstN11Elt->getZExtValue();
// Add is commutative so indices can be reordered.
if (IdxN00 > IdxN10) {
std::swap(IdxN00, IdxN10);
std::swap(IdxN01, IdxN11);
}
// N0 indices be the even element. N1 indices must be the next odd element.
if (IdxN00 != 2 * i || IdxN10 != 2 * i + 1 ||
IdxN01 != 2 * i || IdxN11 != 2 * i + 1)
return SDValue();
SDValue N00In = N00Elt.getOperand(0);
SDValue N01In = N01Elt.getOperand(0);
SDValue N10In = N10Elt.getOperand(0);
SDValue N11In = N11Elt.getOperand(0);
// First time we find an input capture it.
if (!ZExtIn) {
ZExtIn = N00In;
SExtIn = N01In;
}
if (ZExtIn != N00In || SExtIn != N01In ||
ZExtIn != N10In || SExtIn != N11In)
return SDValue();
}
auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
// Shrink by adding truncate nodes and let DAGCombine fold with the
// sources.
EVT InVT = Ops[0].getValueType();
assert(InVT.getScalarType() == MVT::i8 &&
"Unexpected scalar element type");
assert(InVT == Ops[1].getValueType() && "Operands' types mismatch");
EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
InVT.getVectorNumElements() / 2);
return DAG.getNode(X86ISD::VPMADDUBSW, DL, ResVT, Ops[0], Ops[1]);
};
return SplitOpsAndApply(DAG, Subtarget, DL, VT, { ZExtIn, SExtIn },
PMADDBuilder);
}
static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(0);
SDLoc DL(N);
// Attempt to pre-truncate inputs to arithmetic ops instead.
if (SDValue V = combineTruncatedArithmetic(N, DAG, Subtarget, DL))
return V;
// Try to detect AVG pattern first.
if (SDValue Avg = detectAVGPattern(Src, VT, DAG, Subtarget, DL))
return Avg;
// Try to detect PMADD
if (SDValue PMAdd = detectPMADDUBSW(Src, VT, DAG, Subtarget, DL))
return PMAdd;
// Try to combine truncation with signed/unsigned saturation.
if (SDValue Val = combineTruncateWithSat(Src, VT, DL, DAG, Subtarget))
return Val;
// Try to combine PMULHUW/PMULHW for vXi16.
if (SDValue V = combinePMULH(Src, VT, DL, DAG, Subtarget))
return V;
// The bitcast source is a direct mmx result.
// Detect bitcasts between i32 to x86mmx
if (Src.getOpcode() == ISD::BITCAST && VT == MVT::i32) {
SDValue BCSrc = Src.getOperand(0);
if (BCSrc.getValueType() == MVT::x86mmx)
return DAG.getNode(X86ISD::MMX_MOVD2W, DL, MVT::i32, BCSrc);
}
// Try to truncate extended sign/zero bits with PACKSS/PACKUS.
if (SDValue V = combineVectorSignBitsTruncation(N, DL, DAG, Subtarget))
return V;
return combineVectorTruncation(N, DAG, Subtarget);
}
static SDValue combineVTRUNC(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue In = N->getOperand(0);
SDLoc DL(N);
if (auto SSatVal = detectSSatPattern(In, VT))
return DAG.getNode(X86ISD::VTRUNCS, DL, VT, SSatVal);
if (auto USatVal = detectUSatPattern(In, VT, DAG, DL))
return DAG.getNode(X86ISD::VTRUNCUS, DL, VT, USatVal);
return SDValue();
}
/// Returns the negated value if the node \p N flips sign of FP value.
///
/// FP-negation node may have different forms: FNEG(x), FXOR (x, 0x80000000)
/// or FSUB(0, x)
/// AVX512F does not have FXOR, so FNEG is lowered as
/// (bitcast (xor (bitcast x), (bitcast ConstantFP(0x80000000)))).
/// In this case we go though all bitcasts.
/// This also recognizes splat of a negated value and returns the splat of that
/// value.
static SDValue isFNEG(SelectionDAG &DAG, SDNode *N, unsigned Depth = 0) {
if (N->getOpcode() == ISD::FNEG)
return N->getOperand(0);
// Don't recurse exponentially.
if (Depth > SelectionDAG::MaxRecursionDepth)
return SDValue();
unsigned ScalarSize = N->getValueType(0).getScalarSizeInBits();
SDValue Op = peekThroughBitcasts(SDValue(N, 0));
EVT VT = Op->getValueType(0);
// Make sure the element size doesn't change.
if (VT.getScalarSizeInBits() != ScalarSize)
return SDValue();
unsigned Opc = Op.getOpcode();
switch (Opc) {
case ISD::VECTOR_SHUFFLE: {
// For a VECTOR_SHUFFLE(VEC1, VEC2), if the VEC2 is undef, then the negate
// of this is VECTOR_SHUFFLE(-VEC1, UNDEF). The mask can be anything here.
if (!Op.getOperand(1).isUndef())
return SDValue();
if (SDValue NegOp0 = isFNEG(DAG, Op.getOperand(0).getNode(), Depth + 1))
if (NegOp0.getValueType() == VT) // FIXME: Can we do better?
return DAG.getVectorShuffle(VT, SDLoc(Op), NegOp0, DAG.getUNDEF(VT),
cast<ShuffleVectorSDNode>(Op)->getMask());
break;
}
case ISD::INSERT_VECTOR_ELT: {
// Negate of INSERT_VECTOR_ELT(UNDEF, V, INDEX) is INSERT_VECTOR_ELT(UNDEF,
// -V, INDEX).
SDValue InsVector = Op.getOperand(0);
SDValue InsVal = Op.getOperand(1);
if (!InsVector.isUndef())
return SDValue();
if (SDValue NegInsVal = isFNEG(DAG, InsVal.getNode(), Depth + 1))
if (NegInsVal.getValueType() == VT.getVectorElementType()) // FIXME
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), VT, InsVector,
NegInsVal, Op.getOperand(2));
break;
}
case ISD::FSUB:
case ISD::XOR:
case X86ISD::FXOR: {
SDValue Op1 = Op.getOperand(1);
SDValue Op0 = Op.getOperand(0);
// For XOR and FXOR, we want to check if constant
// bits of Op1 are sign bit masks. For FSUB, we
// have to check if constant bits of Op0 are sign
// bit masks and hence we swap the operands.
if (Opc == ISD::FSUB)
std::swap(Op0, Op1);
APInt UndefElts;
SmallVector<APInt, 16> EltBits;
// Extract constant bits and see if they are all
// sign bit masks. Ignore the undef elements.
if (getTargetConstantBitsFromNode(Op1, ScalarSize, UndefElts, EltBits,
/* AllowWholeUndefs */ true,
/* AllowPartialUndefs */ false)) {
for (unsigned I = 0, E = EltBits.size(); I < E; I++)
if (!UndefElts[I] && !EltBits[I].isSignMask())
return SDValue();
return peekThroughBitcasts(Op0);
}
}
}
return SDValue();
}
static unsigned negateFMAOpcode(unsigned Opcode, bool NegMul, bool NegAcc,
bool NegRes) {
if (NegMul) {
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode");
case ISD::FMA: Opcode = X86ISD::FNMADD; break;
case X86ISD::FMADD_RND: Opcode = X86ISD::FNMADD_RND; break;
case X86ISD::FMSUB: Opcode = X86ISD::FNMSUB; break;
case X86ISD::FMSUB_RND: Opcode = X86ISD::FNMSUB_RND; break;
case X86ISD::FNMADD: Opcode = ISD::FMA; break;
case X86ISD::FNMADD_RND: Opcode = X86ISD::FMADD_RND; break;
case X86ISD::FNMSUB: Opcode = X86ISD::FMSUB; break;
case X86ISD::FNMSUB_RND: Opcode = X86ISD::FMSUB_RND; break;
}
}
if (NegAcc) {
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode");
case ISD::FMA: Opcode = X86ISD::FMSUB; break;
case X86ISD::FMADD_RND: Opcode = X86ISD::FMSUB_RND; break;
case X86ISD::FMSUB: Opcode = ISD::FMA; break;
case X86ISD::FMSUB_RND: Opcode = X86ISD::FMADD_RND; break;
case X86ISD::FNMADD: Opcode = X86ISD::FNMSUB; break;
case X86ISD::FNMADD_RND: Opcode = X86ISD::FNMSUB_RND; break;
case X86ISD::FNMSUB: Opcode = X86ISD::FNMADD; break;
case X86ISD::FNMSUB_RND: Opcode = X86ISD::FNMADD_RND; break;
case X86ISD::FMADDSUB: Opcode = X86ISD::FMSUBADD; break;
case X86ISD::FMADDSUB_RND: Opcode = X86ISD::FMSUBADD_RND; break;
case X86ISD::FMSUBADD: Opcode = X86ISD::FMADDSUB; break;
case X86ISD::FMSUBADD_RND: Opcode = X86ISD::FMADDSUB_RND; break;
}
}
if (NegRes) {
switch (Opcode) {
default: llvm_unreachable("Unexpected opcode");
case ISD::FMA: Opcode = X86ISD::FNMSUB; break;
case X86ISD::FMADD_RND: Opcode = X86ISD::FNMSUB_RND; break;
case X86ISD::FMSUB: Opcode = X86ISD::FNMADD; break;
case X86ISD::FMSUB_RND: Opcode = X86ISD::FNMADD_RND; break;
case X86ISD::FNMADD: Opcode = X86ISD::FMSUB; break;
case X86ISD::FNMADD_RND: Opcode = X86ISD::FMSUB_RND; break;
case X86ISD::FNMSUB: Opcode = ISD::FMA; break;
case X86ISD::FNMSUB_RND: Opcode = X86ISD::FMADD_RND; break;
}
}
return Opcode;
}
/// Do target-specific dag combines on floating point negations.
static SDValue combineFneg(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT OrigVT = N->getValueType(0);
SDValue Arg = isFNEG(DAG, N);
if (!Arg)
return SDValue();
EVT VT = Arg.getValueType();
EVT SVT = VT.getScalarType();
SDLoc DL(N);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
// If we're negating a FMUL node on a target with FMA, then we can avoid the
// use of a constant by performing (-0 - A*B) instead.
// FIXME: Check rounding control flags as well once it becomes available.
if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
Arg->getFlags().hasNoSignedZeros() && Subtarget.hasAnyFMA()) {
SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
SDValue NewNode = DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Zero);
return DAG.getBitcast(OrigVT, NewNode);
}
// If we're negating an FMA node, then we can adjust the
// instruction to include the extra negation.
if (Arg.hasOneUse() && Subtarget.hasAnyFMA()) {
switch (Arg.getOpcode()) {
case ISD::FMA:
case X86ISD::FMSUB:
case X86ISD::FNMADD:
case X86ISD::FNMSUB:
case X86ISD::FMADD_RND:
case X86ISD::FMSUB_RND:
case X86ISD::FNMADD_RND:
case X86ISD::FNMSUB_RND: {
// We can't handle scalar intrinsic node here because it would only
// invert one element and not the whole vector. But we could try to handle
// a negation of the lower element only.
unsigned NewOpcode = negateFMAOpcode(Arg.getOpcode(), false, false, true);
return DAG.getBitcast(OrigVT, DAG.getNode(NewOpcode, DL, VT, Arg->ops()));
}
}
}
return SDValue();
}
char X86TargetLowering::isNegatibleForFree(SDValue Op, SelectionDAG &DAG,
bool LegalOperations,
bool ForCodeSize,
unsigned Depth) const {
// fneg patterns are removable even if they have multiple uses.
if (isFNEG(DAG, Op.getNode(), Depth))
return 2;
// Don't recurse exponentially.
if (Depth > SelectionDAG::MaxRecursionDepth)
return 0;
EVT VT = Op.getValueType();
EVT SVT = VT.getScalarType();
switch (Op.getOpcode()) {
case ISD::FMA:
case X86ISD::FMSUB:
case X86ISD::FNMADD:
case X86ISD::FNMSUB:
case X86ISD::FMADD_RND:
case X86ISD::FMSUB_RND:
case X86ISD::FNMADD_RND:
case X86ISD::FNMSUB_RND: {
if (!Op.hasOneUse() || !Subtarget.hasAnyFMA() || !isTypeLegal(VT) ||
!(SVT == MVT::f32 || SVT == MVT::f64) || !LegalOperations)
break;
// This is always negatible for free but we might be able to remove some
// extra operand negations as well.
for (int i = 0; i != 3; ++i) {
char V = isNegatibleForFree(Op.getOperand(i), DAG, LegalOperations,
ForCodeSize, Depth + 1);
if (V == 2)
return V;
}
return 1;
}
}
return TargetLowering::isNegatibleForFree(Op, DAG, LegalOperations,
ForCodeSize, Depth);
}
SDValue X86TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
bool LegalOperations,
bool ForCodeSize,
unsigned Depth) const {
// fneg patterns are removable even if they have multiple uses.
if (SDValue Arg = isFNEG(DAG, Op.getNode(), Depth))
return DAG.getBitcast(Op.getValueType(), Arg);
EVT VT = Op.getValueType();
EVT SVT = VT.getScalarType();
unsigned Opc = Op.getOpcode();
switch (Opc) {
case ISD::FMA:
case X86ISD::FMSUB:
case X86ISD::FNMADD:
case X86ISD::FNMSUB:
case X86ISD::FMADD_RND:
case X86ISD::FMSUB_RND:
case X86ISD::FNMADD_RND:
case X86ISD::FNMSUB_RND: {
if (!Op.hasOneUse() || !Subtarget.hasAnyFMA() || !isTypeLegal(VT) ||
!(SVT == MVT::f32 || SVT == MVT::f64) || !LegalOperations)
break;
// This is always negatible for free but we might be able to remove some
// extra operand negations as well.
SmallVector<SDValue, 4> NewOps(Op.getNumOperands(), SDValue());
for (int i = 0; i != 3; ++i) {
char V = isNegatibleForFree(Op.getOperand(i), DAG, LegalOperations,
ForCodeSize, Depth + 1);
if (V == 2)
NewOps[i] = getNegatedExpression(Op.getOperand(i), DAG, LegalOperations,
ForCodeSize, Depth + 1);
}
bool NegA = !!NewOps[0];
bool NegB = !!NewOps[1];
bool NegC = !!NewOps[2];
unsigned NewOpc = negateFMAOpcode(Opc, NegA != NegB, NegC, true);
// Fill in the non-negated ops with the original values.
for (int i = 0, e = Op.getNumOperands(); i != e; ++i)
if (!NewOps[i])
NewOps[i] = Op.getOperand(i);
return DAG.getNode(NewOpc, SDLoc(Op), VT, NewOps);
}
}
return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
ForCodeSize, Depth);
}
static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = N->getSimpleValueType(0);
// If we have integer vector types available, use the integer opcodes.
if (!VT.isVector() || !Subtarget.hasSSE2())
return SDValue();
SDLoc dl(N);
unsigned IntBits = VT.getScalarSizeInBits();
MVT IntSVT = MVT::getIntegerVT(IntBits);
MVT IntVT = MVT::getVectorVT(IntSVT, VT.getSizeInBits() / IntBits);
SDValue Op0 = DAG.getBitcast(IntVT, N->getOperand(0));
SDValue Op1 = DAG.getBitcast(IntVT, N->getOperand(1));
unsigned IntOpcode;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected FP logic op");
case X86ISD::FOR: IntOpcode = ISD::OR; break;
case X86ISD::FXOR: IntOpcode = ISD::XOR; break;
case X86ISD::FAND: IntOpcode = ISD::AND; break;
case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break;
}
SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1);
return DAG.getBitcast(VT, IntOp);
}
/// Fold a xor(setcc cond, val), 1 --> setcc (inverted(cond), val)
static SDValue foldXor1SetCC(SDNode *N, SelectionDAG &DAG) {
if (N->getOpcode() != ISD::XOR)
return SDValue();
SDValue LHS = N->getOperand(0);
if (!isOneConstant(N->getOperand(1)) || LHS->getOpcode() != X86ISD::SETCC)
return SDValue();
X86::CondCode NewCC = X86::GetOppositeBranchCondition(
X86::CondCode(LHS->getConstantOperandVal(0)));
SDLoc DL(N);
return getSETCC(NewCC, LHS->getOperand(1), DL, DAG);
}
static SDValue combineXor(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// If this is SSE1 only convert to FXOR to avoid scalarization.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() &&
N->getValueType(0) == MVT::v4i32) {
return DAG.getBitcast(
MVT::v4i32, DAG.getNode(X86ISD::FXOR, SDLoc(N), MVT::v4f32,
DAG.getBitcast(MVT::v4f32, N->getOperand(0)),
DAG.getBitcast(MVT::v4f32, N->getOperand(1))));
}
if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
return Cmp;
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue SetCC = foldXor1SetCC(N, DAG))
return SetCC;
if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
return RV;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
return combineFneg(N, DAG, Subtarget);
}
static SDValue combineBEXTR(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
EVT VT = N->getValueType(0);
unsigned NumBits = VT.getSizeInBits();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// TODO - Constant Folding.
if (auto *Cst1 = dyn_cast<ConstantSDNode>(Op1)) {
// Reduce Cst1 to the bottom 16-bits.
// NOTE: SimplifyDemandedBits won't do this for constants.
const APInt &Val1 = Cst1->getAPIntValue();
APInt MaskedVal1 = Val1 & 0xFFFF;
if (MaskedVal1 != Val1)
return DAG.getNode(X86ISD::BEXTR, SDLoc(N), VT, Op0,
DAG.getConstant(MaskedVal1, SDLoc(N), VT));
}
// Only bottom 16-bits of the control bits are required.
APInt DemandedMask(APInt::getLowBitsSet(NumBits, 16));
if (TLI.SimplifyDemandedBits(Op1, DemandedMask, DCI))
return SDValue(N, 0);
return SDValue();
}
static bool isNullFPScalarOrVectorConst(SDValue V) {
return isNullFPConstant(V) || ISD::isBuildVectorAllZeros(V.getNode());
}
/// If a value is a scalar FP zero or a vector FP zero (potentially including
/// undefined elements), return a zero constant that may be used to fold away
/// that value. In the case of a vector, the returned constant will not contain
/// undefined elements even if the input parameter does. This makes it suitable
/// to be used as a replacement operand with operations (eg, bitwise-and) where
/// an undef should not propagate.
static SDValue getNullFPConstForNullVal(SDValue V, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!isNullFPScalarOrVectorConst(V))
return SDValue();
if (V.getValueType().isVector())
return getZeroVector(V.getSimpleValueType(), Subtarget, DAG, SDLoc(V));
return V;
}
static SDValue combineFAndFNotToFAndn(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
// Vector types are handled in combineANDXORWithAllOnesIntoANDNP().
if (!((VT == MVT::f32 && Subtarget.hasSSE1()) ||
(VT == MVT::f64 && Subtarget.hasSSE2()) ||
(VT == MVT::v4f32 && Subtarget.hasSSE1() && !Subtarget.hasSSE2())))
return SDValue();
auto isAllOnesConstantFP = [](SDValue V) {
if (V.getSimpleValueType().isVector())
return ISD::isBuildVectorAllOnes(V.getNode());
auto *C = dyn_cast<ConstantFPSDNode>(V);
return C && C->getConstantFPValue()->isAllOnesValue();
};
// fand (fxor X, -1), Y --> fandn X, Y
if (N0.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N0.getOperand(1)))
return DAG.getNode(X86ISD::FANDN, DL, VT, N0.getOperand(0), N1);
// fand X, (fxor Y, -1) --> fandn Y, X
if (N1.getOpcode() == X86ISD::FXOR && isAllOnesConstantFP(N1.getOperand(1)))
return DAG.getNode(X86ISD::FANDN, DL, VT, N1.getOperand(0), N0);
return SDValue();
}
/// Do target-specific dag combines on X86ISD::FAND nodes.
static SDValue combineFAnd(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// FAND(0.0, x) -> 0.0
if (SDValue V = getNullFPConstForNullVal(N->getOperand(0), DAG, Subtarget))
return V;
// FAND(x, 0.0) -> 0.0
if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
return V;
if (SDValue V = combineFAndFNotToFAndn(N, DAG, Subtarget))
return V;
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
/// Do target-specific dag combines on X86ISD::FANDN nodes.
static SDValue combineFAndn(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// FANDN(0.0, x) -> x
if (isNullFPScalarOrVectorConst(N->getOperand(0)))
return N->getOperand(1);
// FANDN(x, 0.0) -> 0.0
if (SDValue V = getNullFPConstForNullVal(N->getOperand(1), DAG, Subtarget))
return V;
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
static SDValue combineFOr(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
// F[X]OR(0.0, x) -> x
if (isNullFPScalarOrVectorConst(N->getOperand(0)))
return N->getOperand(1);
// F[X]OR(x, 0.0) -> x
if (isNullFPScalarOrVectorConst(N->getOperand(1)))
return N->getOperand(0);
if (SDValue NewVal = combineFneg(N, DAG, Subtarget))
return NewVal;
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
static SDValue combineFMinFMax(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
// FMIN/FMAX are commutative if no NaNs and no negative zeros are allowed.
if (!DAG.getTarget().Options.NoNaNsFPMath ||
!DAG.getTarget().Options.NoSignedZerosFPMath)
return SDValue();
// If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
// into FMINC and FMAXC, which are Commutative operations.
unsigned NewOp = 0;
switch (N->getOpcode()) {
default: llvm_unreachable("unknown opcode");
case X86ISD::FMIN: NewOp = X86ISD::FMINC; break;
case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
}
return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1));
}
static SDValue combineFMinNumFMaxNum(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (Subtarget.useSoftFloat())
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = N->getValueType(0);
if (!((Subtarget.hasSSE1() && VT == MVT::f32) ||
(Subtarget.hasSSE2() && VT == MVT::f64) ||
(VT.isVector() && TLI.isTypeLegal(VT))))
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDLoc DL(N);
auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN;
// If we don't have to respect NaN inputs, this is a direct translation to x86
// min/max instructions.
if (DAG.getTarget().Options.NoNaNsFPMath || N->getFlags().hasNoNaNs())
return DAG.getNode(MinMaxOp, DL, VT, Op0, Op1, N->getFlags());
// If one of the operands is known non-NaN use the native min/max instructions
// with the non-NaN input as second operand.
if (DAG.isKnownNeverNaN(Op1))
return DAG.getNode(MinMaxOp, DL, VT, Op0, Op1, N->getFlags());
if (DAG.isKnownNeverNaN(Op0))
return DAG.getNode(MinMaxOp, DL, VT, Op1, Op0, N->getFlags());
// If we have to respect NaN inputs, this takes at least 3 instructions.
// Favor a library call when operating on a scalar and minimizing code size.
if (!VT.isVector() && DAG.getMachineFunction().getFunction().hasMinSize())
return SDValue();
EVT SetCCType = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
VT);
// There are 4 possibilities involving NaN inputs, and these are the required
// outputs:
// Op1
// Num NaN
// ----------------
// Num | Max | Op0 |
// Op0 ----------------
// NaN | Op1 | NaN |
// ----------------
//
// The SSE FP max/min instructions were not designed for this case, but rather
// to implement:
// Min = Op1 < Op0 ? Op1 : Op0
// Max = Op1 > Op0 ? Op1 : Op0
//
// So they always return Op0 if either input is a NaN. However, we can still
// use those instructions for fmaxnum by selecting away a NaN input.
// If either operand is NaN, the 2nd source operand (Op0) is passed through.
SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0);
SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType, Op0, Op0, ISD::SETUO);
// If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands
// are NaN, the NaN value of Op1 is the result.
return DAG.getSelect(DL, VT, IsOp0Nan, Op1, MinOrMax);
}
static SDValue combineX86INT_TO_FP(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
APInt KnownUndef, KnownZero;
APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
if (TLI.SimplifyDemandedVectorElts(SDValue(N, 0), DemandedElts, KnownUndef,
KnownZero, DCI))
return SDValue(N, 0);
// Convert a full vector load into vzload when not all bits are needed.
SDValue In = N->getOperand(0);
MVT InVT = In.getSimpleValueType();
if (VT.getVectorNumElements() < InVT.getVectorNumElements() &&
ISD::isNormalLoad(In.getNode()) && In.hasOneUse()) {
assert(InVT.is128BitVector() && "Expected 128-bit input vector");
LoadSDNode *LN = cast<LoadSDNode>(N->getOperand(0));
// Unless the load is volatile or atomic.
if (LN->isSimple()) {
SDLoc dl(N);
unsigned NumBits = InVT.getScalarSizeInBits() * VT.getVectorNumElements();
MVT MemVT = MVT::getIntegerVT(NumBits);
MVT LoadVT = MVT::getVectorVT(MemVT, 128 / NumBits);
SDVTList Tys = DAG.getVTList(LoadVT, MVT::Other);
SDValue Ops[] = { LN->getChain(), LN->getBasePtr() };
SDValue VZLoad =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, MemVT,
LN->getPointerInfo(),
LN->getAlignment(),
LN->getMemOperand()->getFlags());
SDValue Convert = DAG.getNode(N->getOpcode(), dl, VT,
DAG.getBitcast(InVT, VZLoad));
DCI.CombineTo(N, Convert);
DAG.ReplaceAllUsesOfValueWith(SDValue(LN, 1), VZLoad.getValue(1));
return SDValue(N, 0);
}
}
return SDValue();
}
static SDValue combineCVTP2I_CVTTP2I(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// FIXME: Handle strict fp nodes.
EVT VT = N->getValueType(0);
// Convert a full vector load into vzload when not all bits are needed.
SDValue In = N->getOperand(0);
MVT InVT = In.getSimpleValueType();
if (VT.getVectorNumElements() < InVT.getVectorNumElements() &&
ISD::isNormalLoad(In.getNode()) && In.hasOneUse()) {
assert(InVT.is128BitVector() && "Expected 128-bit input vector");
LoadSDNode *LN = cast<LoadSDNode>(In);
// Unless the load is volatile or atomic.
if (LN->isSimple()) {
SDLoc dl(N);
unsigned NumBits = InVT.getScalarSizeInBits() * VT.getVectorNumElements();
MVT MemVT = MVT::getFloatingPointVT(NumBits);
MVT LoadVT = MVT::getVectorVT(MemVT, 128 / NumBits);
SDVTList Tys = DAG.getVTList(LoadVT, MVT::Other);
SDValue Ops[] = { LN->getChain(), LN->getBasePtr() };
SDValue VZLoad =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, MemVT,
LN->getPointerInfo(),
LN->getAlignment(),
LN->getMemOperand()->getFlags());
SDValue Convert = DAG.getNode(N->getOpcode(), dl, VT,
DAG.getBitcast(InVT, VZLoad));
DCI.CombineTo(N, Convert);
DAG.ReplaceAllUsesOfValueWith(SDValue(LN, 1), VZLoad.getValue(1));
return SDValue(N, 0);
}
}
return SDValue();
}
/// Do target-specific dag combines on X86ISD::ANDNP nodes.
static SDValue combineAndnp(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
MVT VT = N->getSimpleValueType(0);
// ANDNP(0, x) -> x
if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()))
return N->getOperand(1);
// ANDNP(x, 0) -> 0
if (ISD::isBuildVectorAllZeros(N->getOperand(1).getNode()))
return DAG.getConstant(0, SDLoc(N), VT);
// Turn ANDNP back to AND if input is inverted.
if (SDValue Not = IsNOT(N->getOperand(0), DAG))
return DAG.getNode(ISD::AND, SDLoc(N), VT, DAG.getBitcast(VT, Not),
N->getOperand(1));
// Attempt to recursively combine a bitmask ANDNP with shuffles.
if (VT.isVector() && (VT.getScalarSizeInBits() % 8) == 0) {
SDValue Op(N, 0);
if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
return Res;
}
return SDValue();
}
static SDValue combineBT(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// BT ignores high bits in the bit index operand.
unsigned BitWidth = N1.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
if (SDValue DemandedN1 = DAG.GetDemandedBits(N1, DemandedMask))
return DAG.getNode(X86ISD::BT, SDLoc(N), MVT::i32, N0, DemandedN1);
return SDValue();
}
// Try to combine sext_in_reg of a cmov of constants by extending the constants.
static SDValue combineSextInRegCmov(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
EVT DstVT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
if (ExtraVT != MVT::i8 && ExtraVT != MVT::i16)
return SDValue();
// Look through single use any_extends / truncs.
SDValue IntermediateBitwidthOp;
if ((N0.getOpcode() == ISD::ANY_EXTEND || N0.getOpcode() == ISD::TRUNCATE) &&
N0.hasOneUse()) {
IntermediateBitwidthOp = N0;
N0 = N0.getOperand(0);
}
// See if we have a single use cmov.
if (N0.getOpcode() != X86ISD::CMOV || !N0.hasOneUse())
return SDValue();
SDValue CMovOp0 = N0.getOperand(0);
SDValue CMovOp1 = N0.getOperand(1);
// Make sure both operands are constants.
if (!isa<ConstantSDNode>(CMovOp0.getNode()) ||
!isa<ConstantSDNode>(CMovOp1.getNode()))
return SDValue();
SDLoc DL(N);
// If we looked through an any_extend/trunc above, add one to the constants.
if (IntermediateBitwidthOp) {
unsigned IntermediateOpc = IntermediateBitwidthOp.getOpcode();
CMovOp0 = DAG.getNode(IntermediateOpc, DL, DstVT, CMovOp0);
CMovOp1 = DAG.getNode(IntermediateOpc, DL, DstVT, CMovOp1);
}
CMovOp0 = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, DstVT, CMovOp0, N1);
CMovOp1 = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, DstVT, CMovOp1, N1);
EVT CMovVT = DstVT;
// We do not want i16 CMOV's. Promote to i32 and truncate afterwards.
if (DstVT == MVT::i16) {
CMovVT = MVT::i32;
CMovOp0 = DAG.getNode(ISD::ZERO_EXTEND, DL, CMovVT, CMovOp0);
CMovOp1 = DAG.getNode(ISD::ZERO_EXTEND, DL, CMovVT, CMovOp1);
}
SDValue CMov = DAG.getNode(X86ISD::CMOV, DL, CMovVT, CMovOp0, CMovOp1,
N0.getOperand(2), N0.getOperand(3));
if (CMovVT != DstVT)
CMov = DAG.getNode(ISD::TRUNCATE, DL, DstVT, CMov);
return CMov;
}
static SDValue combineSignExtendInReg(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
if (SDValue V = combineSextInRegCmov(N, DAG))
return V;
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
SDLoc dl(N);
// The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
// both SSE and AVX2 since there is no sign-extended shift right
// operation on a vector with 64-bit elements.
//(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
// (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND)) {
SDValue N00 = N0.getOperand(0);
// EXTLOAD has a better solution on AVX2,
// it may be replaced with X86ISD::VSEXT node.
if (N00.getOpcode() == ISD::LOAD && Subtarget.hasInt256())
if (!ISD::isNormalLoad(N00.getNode()))
return SDValue();
if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
N00, N1);
return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
}
}
return SDValue();
}
/// sext(add_nsw(x, C)) --> add(sext(x), C_sext)
/// zext(add_nuw(x, C)) --> add(zext(x), C_zext)
/// Promoting a sign/zero extension ahead of a no overflow 'add' exposes
/// opportunities to combine math ops, use an LEA, or use a complex addressing
/// mode. This can eliminate extend, add, and shift instructions.
static SDValue promoteExtBeforeAdd(SDNode *Ext, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (Ext->getOpcode() != ISD::SIGN_EXTEND &&
Ext->getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
// TODO: This should be valid for other integer types.
EVT VT = Ext->getValueType(0);
if (VT != MVT::i64)
return SDValue();
SDValue Add = Ext->getOperand(0);
if (Add.getOpcode() != ISD::ADD)
return SDValue();
bool Sext = Ext->getOpcode() == ISD::SIGN_EXTEND;
bool NSW = Add->getFlags().hasNoSignedWrap();
bool NUW = Add->getFlags().hasNoUnsignedWrap();
// We need an 'add nsw' feeding into the 'sext' or 'add nuw' feeding
// into the 'zext'
if ((Sext && !NSW) || (!Sext && !NUW))
return SDValue();
// Having a constant operand to the 'add' ensures that we are not increasing
// the instruction count because the constant is extended for free below.
// A constant operand can also become the displacement field of an LEA.
auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1));
if (!AddOp1)
return SDValue();
// Don't make the 'add' bigger if there's no hope of combining it with some
// other 'add' or 'shl' instruction.
// TODO: It may be profitable to generate simpler LEA instructions in place
// of single 'add' instructions, but the cost model for selecting an LEA
// currently has a high threshold.
bool HasLEAPotential = false;
for (auto *User : Ext->uses()) {
if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) {
HasLEAPotential = true;
break;
}
}
if (!HasLEAPotential)
return SDValue();
// Everything looks good, so pull the '{s|z}ext' ahead of the 'add'.
int64_t AddConstant = Sext ? AddOp1->getSExtValue() : AddOp1->getZExtValue();
SDValue AddOp0 = Add.getOperand(0);
SDValue NewExt = DAG.getNode(Ext->getOpcode(), SDLoc(Ext), VT, AddOp0);
SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT);
// The wider add is guaranteed to not wrap because both operands are
// sign-extended.
SDNodeFlags Flags;
Flags.setNoSignedWrap(NSW);
Flags.setNoUnsignedWrap(NUW);
return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewExt, NewConstant, Flags);
}
// If we face {ANY,SIGN,ZERO}_EXTEND that is applied to a CMOV with constant
// operands and the result of CMOV is not used anywhere else - promote CMOV
// itself instead of promoting its result. This could be beneficial, because:
// 1) X86TargetLowering::EmitLoweredSelect later can do merging of two
// (or more) pseudo-CMOVs only when they go one-after-another and
// getting rid of result extension code after CMOV will help that.
// 2) Promotion of constant CMOV arguments is free, hence the
// {ANY,SIGN,ZERO}_EXTEND will just be deleted.
// 3) 16-bit CMOV encoding is 4 bytes, 32-bit CMOV is 3-byte, so this
// promotion is also good in terms of code-size.
// (64-bit CMOV is 4-bytes, that's why we don't do 32-bit => 64-bit
// promotion).
static SDValue combineToExtendCMOV(SDNode *Extend, SelectionDAG &DAG) {
SDValue CMovN = Extend->getOperand(0);
if (CMovN.getOpcode() != X86ISD::CMOV || !CMovN.hasOneUse())
return SDValue();
EVT TargetVT = Extend->getValueType(0);
unsigned ExtendOpcode = Extend->getOpcode();
SDLoc DL(Extend);
EVT VT = CMovN.getValueType();
SDValue CMovOp0 = CMovN.getOperand(0);
SDValue CMovOp1 = CMovN.getOperand(1);
if (!isa<ConstantSDNode>(CMovOp0.getNode()) ||
!isa<ConstantSDNode>(CMovOp1.getNode()))
return SDValue();
// Only extend to i32 or i64.
if (TargetVT != MVT::i32 && TargetVT != MVT::i64)
return SDValue();
// Only extend from i16 unless its a sign_extend from i32. Zext/aext from i32
// are free.
if (VT != MVT::i16 && !(ExtendOpcode == ISD::SIGN_EXTEND && VT == MVT::i32))
return SDValue();
// If this a zero extend to i64, we should only extend to i32 and use a free
// zero extend to finish.
EVT ExtendVT = TargetVT;
if (TargetVT == MVT::i64 && ExtendOpcode != ISD::SIGN_EXTEND)
ExtendVT = MVT::i32;
CMovOp0 = DAG.getNode(ExtendOpcode, DL, ExtendVT, CMovOp0);
CMovOp1 = DAG.getNode(ExtendOpcode, DL, ExtendVT, CMovOp1);
SDValue Res = DAG.getNode(X86ISD::CMOV, DL, ExtendVT, CMovOp0, CMovOp1,
CMovN.getOperand(2), CMovN.getOperand(3));
// Finish extending if needed.
if (ExtendVT != TargetVT)
Res = DAG.getNode(ExtendOpcode, DL, TargetVT, Res);
return Res;
}
// Convert (vXiY *ext(vXi1 bitcast(iX))) to extend_in_reg(broadcast(iX)).
// This is more or less the reverse of combineBitcastvxi1.
static SDValue
combineToExtendBoolVectorInReg(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND &&
Opcode != ISD::ANY_EXTEND)
return SDValue();
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (!Subtarget.hasSSE2() || Subtarget.hasAVX512())
return SDValue();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT SVT = VT.getScalarType();
EVT InSVT = N0.getValueType().getScalarType();
unsigned EltSizeInBits = SVT.getSizeInBits();
// Input type must be extending a bool vector (bit-casted from a scalar
// integer) to legal integer types.
if (!VT.isVector())
return SDValue();
if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16 && SVT != MVT::i8)
return SDValue();
if (InSVT != MVT::i1 || N0.getOpcode() != ISD::BITCAST)
return SDValue();
SDValue N00 = N0.getOperand(0);
EVT SclVT = N0.getOperand(0).getValueType();
if (!SclVT.isScalarInteger())
return SDValue();
SDLoc DL(N);
SDValue Vec;
SmallVector<int, 32> ShuffleMask;
unsigned NumElts = VT.getVectorNumElements();
assert(NumElts == SclVT.getSizeInBits() && "Unexpected bool vector size");
// Broadcast the scalar integer to the vector elements.
if (NumElts > EltSizeInBits) {
// If the scalar integer is greater than the vector element size, then we
// must split it down into sub-sections for broadcasting. For example:
// i16 -> v16i8 (i16 -> v8i16 -> v16i8) with 2 sub-sections.
// i32 -> v32i8 (i32 -> v8i32 -> v32i8) with 4 sub-sections.
assert((NumElts % EltSizeInBits) == 0 && "Unexpected integer scale");
unsigned Scale = NumElts / EltSizeInBits;
EVT BroadcastVT =
EVT::getVectorVT(*DAG.getContext(), SclVT, EltSizeInBits);
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, BroadcastVT, N00);
Vec = DAG.getBitcast(VT, Vec);
for (unsigned i = 0; i != Scale; ++i)
ShuffleMask.append(EltSizeInBits, i);
} else {
// For smaller scalar integers, we can simply any-extend it to the vector
// element size (we don't care about the upper bits) and broadcast it to all
// elements.
SDValue Scl = DAG.getAnyExtOrTrunc(N00, DL, SVT);
Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Scl);
ShuffleMask.append(NumElts, 0);
}
Vec = DAG.getVectorShuffle(VT, DL, Vec, Vec, ShuffleMask);
// Now, mask the relevant bit in each element.
SmallVector<SDValue, 32> Bits;
for (unsigned i = 0; i != NumElts; ++i) {
int BitIdx = (i % EltSizeInBits);
APInt Bit = APInt::getBitsSet(EltSizeInBits, BitIdx, BitIdx + 1);
Bits.push_back(DAG.getConstant(Bit, DL, SVT));
}
SDValue BitMask = DAG.getBuildVector(VT, DL, Bits);
Vec = DAG.getNode(ISD::AND, DL, VT, Vec, BitMask);
// Compare against the bitmask and extend the result.
EVT CCVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, NumElts);
Vec = DAG.getSetCC(DL, CCVT, Vec, BitMask, ISD::SETEQ);
Vec = DAG.getSExtOrTrunc(Vec, DL, VT);
// For SEXT, this is now done, otherwise shift the result down for
// zero-extension.
if (Opcode == ISD::SIGN_EXTEND)
return Vec;
return DAG.getNode(ISD::SRL, DL, VT, Vec,
DAG.getConstant(EltSizeInBits - 1, DL, VT));
}
// Attempt to combine a (sext/zext (setcc)) to a setcc with a xmm/ymm/zmm
// result type.
static SDValue combineExtSetcc(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
SDLoc dl(N);
// Only do this combine with AVX512 for vector extends.
if (!Subtarget.hasAVX512() || !VT.isVector() || N0.getOpcode() != ISD::SETCC)
return SDValue();
// Only combine legal element types.
EVT SVT = VT.getVectorElementType();
if (SVT != MVT::i8 && SVT != MVT::i16 && SVT != MVT::i32 &&
SVT != MVT::i64 && SVT != MVT::f32 && SVT != MVT::f64)
return SDValue();
// We can only do this if the vector size in 256 bits or less.
unsigned Size = VT.getSizeInBits();
if (Size > 256)
return SDValue();
// Don't fold if the condition code can't be handled by PCMPEQ/PCMPGT since
// that's the only integer compares with we have.
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
if (ISD::isUnsignedIntSetCC(CC))
return SDValue();
// Only do this combine if the extension will be fully consumed by the setcc.
EVT N00VT = N0.getOperand(0).getValueType();
EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
if (Size != MatchingVecType.getSizeInBits())
return SDValue();
SDValue Res = DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
if (N->getOpcode() == ISD::ZERO_EXTEND)
Res = DAG.getZeroExtendInReg(Res, dl, N0.getValueType().getScalarType());
return Res;
}
static SDValue combineSext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT InVT = N0.getValueType();
SDLoc DL(N);
if (SDValue NewCMov = combineToExtendCMOV(N, DAG))
return NewCMov;
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue V = combineExtSetcc(N, DAG, Subtarget))
return V;
if (InVT == MVT::i1 && N0.getOpcode() == ISD::XOR &&
isAllOnesConstant(N0.getOperand(1)) && N0.hasOneUse()) {
// Invert and sign-extend a boolean is the same as zero-extend and subtract
// 1 because 0 becomes -1 and 1 becomes 0. The subtract is efficiently
// lowered with an LEA or a DEC. This is the same as: select Bool, 0, -1.
// sext (xor Bool, -1) --> sub (zext Bool), 1
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, Zext, DAG.getConstant(1, DL, VT));
}
if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget))
return V;
if (VT.isVector())
if (SDValue R = PromoteMaskArithmetic(N, DAG, Subtarget))
return R;
if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
return NewAdd;
return SDValue();
}
static SDValue combineFMA(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
// Let legalize expand this if it isn't a legal type yet.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isTypeLegal(VT))
return SDValue();
EVT ScalarVT = VT.getScalarType();
if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA())
return SDValue();
SDValue A = N->getOperand(0);
SDValue B = N->getOperand(1);
SDValue C = N->getOperand(2);
auto invertIfNegative = [&DAG, &TLI, &DCI](SDValue &V) {
bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
bool LegalOperations = !DCI.isBeforeLegalizeOps();
if (TLI.isNegatibleForFree(V, DAG, LegalOperations, CodeSize) == 2) {
V = TLI.getNegatedExpression(V, DAG, LegalOperations, CodeSize);
return true;
}
// Look through extract_vector_elts. If it comes from an FNEG, create a
// new extract from the FNEG input.
if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
isNullConstant(V.getOperand(1))) {
SDValue Vec = V.getOperand(0);
if (TLI.isNegatibleForFree(Vec, DAG, LegalOperations, CodeSize) == 2) {
SDValue NegVal =
TLI.getNegatedExpression(Vec, DAG, LegalOperations, CodeSize);
V = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(V), V.getValueType(),
NegVal, V.getOperand(1));
return true;
}
}
return false;
};
// Do not convert the passthru input of scalar intrinsics.
// FIXME: We could allow negations of the lower element only.
bool NegA = invertIfNegative(A);
bool NegB = invertIfNegative(B);
bool NegC = invertIfNegative(C);
if (!NegA && !NegB && !NegC)
return SDValue();
unsigned NewOpcode =
negateFMAOpcode(N->getOpcode(), NegA != NegB, NegC, false);
if (N->getNumOperands() == 4)
return DAG.getNode(NewOpcode, dl, VT, A, B, C, N->getOperand(3));
return DAG.getNode(NewOpcode, dl, VT, A, B, C);
}
// Combine FMADDSUB(A, B, FNEG(C)) -> FMSUBADD(A, B, C)
// Combine FMSUBADD(A, B, FNEG(C)) -> FMADDSUB(A, B, C)
static SDValue combineFMADDSUB(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
bool LegalOperations = !DCI.isBeforeLegalizeOps();
SDValue N2 = N->getOperand(2);
if (TLI.isNegatibleForFree(N2, DAG, LegalOperations, CodeSize) != 2)
return SDValue();
SDValue NegN2 = TLI.getNegatedExpression(N2, DAG, LegalOperations, CodeSize);
unsigned NewOpcode = negateFMAOpcode(N->getOpcode(), false, true, false);
if (N->getNumOperands() == 4)
return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1),
NegN2, N->getOperand(3));
return DAG.getNode(NewOpcode, dl, VT, N->getOperand(0), N->getOperand(1),
NegN2);
}
static SDValue combineZext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
// (and (i32 x86isd::setcc_carry), 1)
// This eliminates the zext. This transformation is necessary because
// ISD::SETCC is always legalized to i8.
SDLoc dl(N);
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.getOpcode() == ISD::AND &&
N0.hasOneUse() &&
N0.getOperand(0).hasOneUse()) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
if (!isOneConstant(N0.getOperand(1)))
return SDValue();
return DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
N00.getOperand(0), N00.getOperand(1)),
DAG.getConstant(1, dl, VT));
}
}
if (N0.getOpcode() == ISD::TRUNCATE &&
N0.hasOneUse() &&
N0.getOperand(0).hasOneUse()) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
return DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
N00.getOperand(0), N00.getOperand(1)),
DAG.getConstant(1, dl, VT));
}
}
if (SDValue NewCMov = combineToExtendCMOV(N, DAG))
return NewCMov;
if (DCI.isBeforeLegalizeOps())
if (SDValue V = combineExtSetcc(N, DAG, Subtarget))
return V;
if (SDValue V = combineToExtendBoolVectorInReg(N, DAG, DCI, Subtarget))
return V;
if (VT.isVector())
if (SDValue R = PromoteMaskArithmetic(N, DAG, Subtarget))
return R;
if (SDValue NewAdd = promoteExtBeforeAdd(N, DAG, Subtarget))
return NewAdd;
if (SDValue R = combineOrCmpEqZeroToCtlzSrl(N, DAG, DCI, Subtarget))
return R;
// TODO: Combine with any target/faux shuffle.
if (N0.getOpcode() == X86ISD::PACKUS && N0.getValueSizeInBits() == 128 &&
VT.getScalarSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits()) {
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
unsigned NumSrcEltBits = N00.getScalarValueSizeInBits();
APInt ZeroMask = APInt::getHighBitsSet(NumSrcEltBits, NumSrcEltBits / 2);
if ((N00.isUndef() || DAG.MaskedValueIsZero(N00, ZeroMask)) &&
(N01.isUndef() || DAG.MaskedValueIsZero(N01, ZeroMask))) {
return concatSubVectors(N00, N01, DAG, dl);
}
}
return SDValue();
}
/// Recursive helper for combineVectorSizedSetCCEquality() to see if we have a
/// recognizable memcmp expansion.
static bool isOrXorXorTree(SDValue X, bool Root = true) {
if (X.getOpcode() == ISD::OR)
return isOrXorXorTree(X.getOperand(0), false) &&
isOrXorXorTree(X.getOperand(1), false);
if (Root)
return false;
return X.getOpcode() == ISD::XOR;
}
/// Recursive helper for combineVectorSizedSetCCEquality() to emit the memcmp
/// expansion.
template<typename F>
static SDValue emitOrXorXorTree(SDValue X, SDLoc &DL, SelectionDAG &DAG,
EVT VecVT, EVT CmpVT, bool HasPT, F SToV) {
SDValue Op0 = X.getOperand(0);
SDValue Op1 = X.getOperand(1);
if (X.getOpcode() == ISD::OR) {
SDValue A = emitOrXorXorTree(Op0, DL, DAG, VecVT, CmpVT, HasPT, SToV);
SDValue B = emitOrXorXorTree(Op1, DL, DAG, VecVT, CmpVT, HasPT, SToV);
if (VecVT != CmpVT)
return DAG.getNode(ISD::OR, DL, CmpVT, A, B);
if (HasPT)
return DAG.getNode(ISD::OR, DL, VecVT, A, B);
return DAG.getNode(ISD::AND, DL, CmpVT, A, B);
} else if (X.getOpcode() == ISD::XOR) {
SDValue A = SToV(Op0);
SDValue B = SToV(Op1);
if (VecVT != CmpVT)
return DAG.getSetCC(DL, CmpVT, A, B, ISD::SETNE);
if (HasPT)
return DAG.getNode(ISD::XOR, DL, VecVT, A, B);
return DAG.getSetCC(DL, CmpVT, A, B, ISD::SETEQ);
}
llvm_unreachable("Impossible");
}
/// Try to map a 128-bit or larger integer comparison to vector instructions
/// before type legalization splits it up into chunks.
static SDValue combineVectorSizedSetCCEquality(SDNode *SetCC, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
assert((CC == ISD::SETNE || CC == ISD::SETEQ) && "Bad comparison predicate");
// We're looking for an oversized integer equality comparison.
SDValue X = SetCC->getOperand(0);
SDValue Y = SetCC->getOperand(1);
EVT OpVT = X.getValueType();
unsigned OpSize = OpVT.getSizeInBits();
if (!OpVT.isScalarInteger() || OpSize < 128)
return SDValue();
// Ignore a comparison with zero because that gets special treatment in
// EmitTest(). But make an exception for the special case of a pair of
// logically-combined vector-sized operands compared to zero. This pattern may
// be generated by the memcmp expansion pass with oversized integer compares
// (see PR33325).
bool IsOrXorXorTreeCCZero = isNullConstant(Y) && isOrXorXorTree(X);
if (isNullConstant(Y) && !IsOrXorXorTreeCCZero)
return SDValue();
// Don't perform this combine if constructing the vector will be expensive.
auto IsVectorBitCastCheap = [](SDValue X) {
X = peekThroughBitcasts(X);
return isa<ConstantSDNode>(X) || X.getValueType().isVector() ||
X.getOpcode() == ISD::LOAD;
};
if ((!IsVectorBitCastCheap(X) || !IsVectorBitCastCheap(Y)) &&
!IsOrXorXorTreeCCZero)
return SDValue();
EVT VT = SetCC->getValueType(0);
SDLoc DL(SetCC);
bool HasAVX = Subtarget.hasAVX();
// Use XOR (plus OR) and PTEST after SSE4.1 for 128/256-bit operands.
// Use PCMPNEQ (plus OR) and KORTEST for 512-bit operands.
// Otherwise use PCMPEQ (plus AND) and mask testing.
if ((OpSize == 128 && Subtarget.hasSSE2()) ||
(OpSize == 256 && HasAVX) ||
(OpSize == 512 && Subtarget.useAVX512Regs())) {
bool HasPT = Subtarget.hasSSE41();
// PTEST and MOVMSK are slow on Knights Landing and Knights Mill and widened
// vector registers are essentially free. (Technically, widening registers
// prevents load folding, but the tradeoff is worth it.)
bool PreferKOT = Subtarget.preferMaskRegisters();
bool NeedZExt = PreferKOT && !Subtarget.hasVLX() && OpSize != 512;
EVT VecVT = MVT::v16i8;
EVT CmpVT = PreferKOT ? MVT::v16i1 : VecVT;
if (OpSize == 256) {
VecVT = MVT::v32i8;
CmpVT = PreferKOT ? MVT::v32i1 : VecVT;
}
EVT CastVT = VecVT;
bool NeedsAVX512FCast = false;
if (OpSize == 512 || NeedZExt) {
if (Subtarget.hasBWI()) {
VecVT = MVT::v64i8;
CmpVT = MVT::v64i1;
if (OpSize == 512)
CastVT = VecVT;
} else {
VecVT = MVT::v16i32;
CmpVT = MVT::v16i1;
CastVT = OpSize == 512 ? VecVT :
OpSize == 256 ? MVT::v8i32 : MVT::v4i32;
NeedsAVX512FCast = true;
}
}
auto ScalarToVector = [&](SDValue X) -> SDValue {
bool TmpZext = false;
EVT TmpCastVT = CastVT;
if (X.getOpcode() == ISD::ZERO_EXTEND) {
SDValue OrigX = X.getOperand(0);
unsigned OrigSize = OrigX.getScalarValueSizeInBits();
if (OrigSize < OpSize) {
if (OrigSize == 128) {
TmpCastVT = NeedsAVX512FCast ? MVT::v4i32 : MVT::v16i8;
X = OrigX;
TmpZext = true;
} else if (OrigSize == 256) {
TmpCastVT = NeedsAVX512FCast ? MVT::v8i32 : MVT::v32i8;
X = OrigX;
TmpZext = true;
}
}
}
X = DAG.getBitcast(TmpCastVT, X);
if (!NeedZExt && !TmpZext)
return X;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
MVT VecIdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VecVT,
DAG.getConstant(0, DL, VecVT), X,
DAG.getConstant(0, DL, VecIdxVT));
};
SDValue Cmp;
if (IsOrXorXorTreeCCZero) {
// This is a bitwise-combined equality comparison of 2 pairs of vectors:
// setcc i128 (or (xor A, B), (xor C, D)), 0, eq|ne
// Use 2 vector equality compares and 'and' the results before doing a
// MOVMSK.
Cmp = emitOrXorXorTree(X, DL, DAG, VecVT, CmpVT, HasPT, ScalarToVector);
} else {
SDValue VecX = ScalarToVector(X);
SDValue VecY = ScalarToVector(Y);
if (VecVT != CmpVT) {
Cmp = DAG.getSetCC(DL, CmpVT, VecX, VecY, ISD::SETNE);
} else if (HasPT) {
Cmp = DAG.getNode(ISD::XOR, DL, VecVT, VecX, VecY);
} else {
Cmp = DAG.getSetCC(DL, CmpVT, VecX, VecY, ISD::SETEQ);
}
}
// AVX512 should emit a setcc that will lower to kortest.
if (VecVT != CmpVT) {
EVT KRegVT = CmpVT == MVT::v64i1 ? MVT::i64 :
CmpVT == MVT::v32i1 ? MVT::i32 : MVT::i16;
return DAG.getSetCC(DL, VT, DAG.getBitcast(KRegVT, Cmp),
DAG.getConstant(0, DL, KRegVT), CC);
}
if (HasPT) {
SDValue BCCmp = DAG.getBitcast(OpSize == 256 ? MVT::v4i64 : MVT::v2i64,
Cmp);
SDValue PT = DAG.getNode(X86ISD::PTEST, DL, MVT::i32, BCCmp, BCCmp);
X86::CondCode X86CC = CC == ISD::SETEQ ? X86::COND_E : X86::COND_NE;
SDValue SetCC = getSETCC(X86CC, PT, DL, DAG);
return DAG.getNode(ISD::TRUNCATE, DL, VT, SetCC.getValue(0));
}
// If all bytes match (bitmask is 0x(FFFF)FFFF), that's equality.
// setcc i128 X, Y, eq --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, eq
// setcc i128 X, Y, ne --> setcc (pmovmskb (pcmpeqb X, Y)), 0xFFFF, ne
// setcc i256 X, Y, eq --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, eq
// setcc i256 X, Y, ne --> setcc (vpmovmskb (vpcmpeqb X, Y)), 0xFFFFFFFF, ne
SDValue MovMsk = DAG.getNode(X86ISD::MOVMSK, DL, MVT::i32, Cmp);
SDValue FFFFs = DAG.getConstant(OpSize == 128 ? 0xFFFF : 0xFFFFFFFF, DL,
MVT::i32);
return DAG.getSetCC(DL, VT, MovMsk, FFFFs, CC);
}
return SDValue();
}
static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
const ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
const SDValue LHS = N->getOperand(0);
const SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
EVT OpVT = LHS.getValueType();
SDLoc DL(N);
if (CC == ISD::SETNE || CC == ISD::SETEQ) {
// 0-x == y --> x+y == 0
// 0-x != y --> x+y != 0
if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
LHS.hasOneUse()) {
SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, RHS, LHS.getOperand(1));
return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
}
// x == 0-y --> x+y == 0
// x != 0-y --> x+y != 0
if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
RHS.hasOneUse()) {
SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
}
if (SDValue V = combineVectorSizedSetCCEquality(N, DAG, Subtarget))
return V;
}
if (VT.isVector() && VT.getVectorElementType() == MVT::i1 &&
(CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
// Using temporaries to avoid messing up operand ordering for later
// transformations if this doesn't work.
SDValue Op0 = LHS;
SDValue Op1 = RHS;
ISD::CondCode TmpCC = CC;
// Put build_vector on the right.
if (Op0.getOpcode() == ISD::BUILD_VECTOR) {
std::swap(Op0, Op1);
TmpCC = ISD::getSetCCSwappedOperands(TmpCC);
}
bool IsSEXT0 =
(Op0.getOpcode() == ISD::SIGN_EXTEND) &&
(Op0.getOperand(0).getValueType().getVectorElementType() == MVT::i1);
bool IsVZero1 = ISD::isBuildVectorAllZeros(Op1.getNode());
if (IsSEXT0 && IsVZero1) {
assert(VT == Op0.getOperand(0).getValueType() &&
"Uexpected operand type");
if (TmpCC == ISD::SETGT)
return DAG.getConstant(0, DL, VT);
if (TmpCC == ISD::SETLE)
return DAG.getConstant(1, DL, VT);
if (TmpCC == ISD::SETEQ || TmpCC == ISD::SETGE)
return DAG.getNOT(DL, Op0.getOperand(0), VT);
assert((TmpCC == ISD::SETNE || TmpCC == ISD::SETLT) &&
"Unexpected condition code!");
return Op0.getOperand(0);
}
}
// If we have AVX512, but not BWI and this is a vXi16/vXi8 setcc, just
// pre-promote its result type since vXi1 vectors don't get promoted
// during type legalization.
// NOTE: The element count check is to ignore operand types that need to
// go through type promotion to a 128-bit vector.
if (Subtarget.hasAVX512() && !Subtarget.hasBWI() && VT.isVector() &&
VT.getVectorElementType() == MVT::i1 &&
(OpVT.getVectorElementType() == MVT::i8 ||
OpVT.getVectorElementType() == MVT::i16)) {
SDValue Setcc = DAG.getSetCC(DL, OpVT, LHS, RHS, CC);
return DAG.getNode(ISD::TRUNCATE, DL, VT, Setcc);
}
// For an SSE1-only target, lower a comparison of v4f32 to X86ISD::CMPP early
// to avoid scalarization via legalization because v4i32 is not a legal type.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE2() && VT == MVT::v4i32 &&
LHS.getValueType() == MVT::v4f32)
return LowerVSETCC(SDValue(N, 0), Subtarget, DAG);
return SDValue();
}
static SDValue combineMOVMSK(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue Src = N->getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
MVT VT = N->getSimpleValueType(0);
unsigned NumBits = VT.getScalarSizeInBits();
unsigned NumElts = SrcVT.getVectorNumElements();
// Perform constant folding.
if (ISD::isBuildVectorOfConstantSDNodes(Src.getNode())) {
assert(VT == MVT::i32 && "Unexpected result type");
APInt Imm(32, 0);
for (unsigned Idx = 0, e = Src.getNumOperands(); Idx < e; ++Idx) {
if (!Src.getOperand(Idx).isUndef() &&
Src.getConstantOperandAPInt(Idx).isNegative())
Imm.setBit(Idx);
}
return DAG.getConstant(Imm, SDLoc(N), VT);
}
// Look through int->fp bitcasts that don't change the element width.
unsigned EltWidth = SrcVT.getScalarSizeInBits();
if (Subtarget.hasSSE2() && Src.getOpcode() == ISD::BITCAST &&
Src.getOperand(0).getScalarValueSizeInBits() == EltWidth)
return DAG.getNode(X86ISD::MOVMSK, SDLoc(N), VT, Src.getOperand(0));
// Fold movmsk(not(x)) -> not(movmsk) to improve folding of movmsk results
// with scalar comparisons.
if (SDValue NotSrc = IsNOT(Src, DAG)) {
SDLoc DL(N);
APInt NotMask = APInt::getLowBitsSet(NumBits, NumElts);
NotSrc = DAG.getBitcast(SrcVT, NotSrc);
return DAG.getNode(ISD::XOR, DL, VT,
DAG.getNode(X86ISD::MOVMSK, DL, VT, NotSrc),
DAG.getConstant(NotMask, DL, VT));
}
// Simplify the inputs.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
APInt DemandedMask(APInt::getAllOnesValue(NumBits));
if (TLI.SimplifyDemandedBits(SDValue(N, 0), DemandedMask, DCI))
return SDValue(N, 0);
return SDValue();
}
static SDValue combineX86GatherScatter(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// With vector masks we only demand the upper bit of the mask.
SDValue Mask = cast<X86MaskedGatherScatterSDNode>(N)->getMask();
if (Mask.getScalarValueSizeInBits() != 1) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
APInt DemandedMask(APInt::getSignMask(Mask.getScalarValueSizeInBits()));
if (TLI.SimplifyDemandedBits(Mask, DemandedMask, DCI))
return SDValue(N, 0);
}
return SDValue();
}
static SDValue combineGatherScatter(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
SDLoc DL(N);
auto *GorS = cast<MaskedGatherScatterSDNode>(N);
SDValue Chain = GorS->getChain();
SDValue Index = GorS->getIndex();
SDValue Mask = GorS->getMask();
SDValue Base = GorS->getBasePtr();
SDValue Scale = GorS->getScale();
if (DCI.isBeforeLegalize()) {
unsigned IndexWidth = Index.getScalarValueSizeInBits();
// Shrink constant indices if they are larger than 32-bits.
// Only do this before legalize types since v2i64 could become v2i32.
// FIXME: We could check that the type is legal if we're after legalize
// types, but then we would need to construct test cases where that happens.
// FIXME: We could support more than just constant vectors, but we need to
// careful with costing. A truncate that can be optimized out would be fine.
// Otherwise we might only want to create a truncate if it avoids a split.
if (auto *BV = dyn_cast<BuildVectorSDNode>(Index)) {
if (BV->isConstant() && IndexWidth > 32 &&
DAG.ComputeNumSignBits(Index) > (IndexWidth - 32)) {
unsigned NumElts = Index.getValueType().getVectorNumElements();
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
Index = DAG.getNode(ISD::TRUNCATE, DL, NewVT, Index);
if (auto *Gather = dyn_cast<MaskedGatherSDNode>(GorS)) {
SDValue Ops[] = { Chain, Gather->getPassThru(),
Mask, Base, Index, Scale } ;
return DAG.getMaskedGather(Gather->getVTList(),
Gather->getMemoryVT(), DL, Ops,
Gather->getMemOperand(),
Gather->getIndexType());
}
auto *Scatter = cast<MaskedScatterSDNode>(GorS);
SDValue Ops[] = { Chain, Scatter->getValue(),
Mask, Base, Index, Scale };
return DAG.getMaskedScatter(Scatter->getVTList(),
Scatter->getMemoryVT(), DL,
Ops, Scatter->getMemOperand(),
Scatter->getIndexType());
}
}
// Shrink any sign/zero extends from 32 or smaller to larger than 32 if
// there are sufficient sign bits. Only do this before legalize types to
// avoid creating illegal types in truncate.
if ((Index.getOpcode() == ISD::SIGN_EXTEND ||
Index.getOpcode() == ISD::ZERO_EXTEND) &&
IndexWidth > 32 &&
Index.getOperand(0).getScalarValueSizeInBits() <= 32 &&
DAG.ComputeNumSignBits(Index) > (IndexWidth - 32)) {
unsigned NumElts = Index.getValueType().getVectorNumElements();
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
Index = DAG.getNode(ISD::TRUNCATE, DL, NewVT, Index);
if (auto *Gather = dyn_cast<MaskedGatherSDNode>(GorS)) {
SDValue Ops[] = { Chain, Gather->getPassThru(),
Mask, Base, Index, Scale } ;
return DAG.getMaskedGather(Gather->getVTList(),
Gather->getMemoryVT(), DL, Ops,
Gather->getMemOperand(),
Gather->getIndexType());
}
auto *Scatter = cast<MaskedScatterSDNode>(GorS);
SDValue Ops[] = { Chain, Scatter->getValue(),
Mask, Base, Index, Scale };
return DAG.getMaskedScatter(Scatter->getVTList(),
Scatter->getMemoryVT(), DL,
Ops, Scatter->getMemOperand(),
Scatter->getIndexType());
}
}
if (DCI.isBeforeLegalizeOps()) {
unsigned IndexWidth = Index.getScalarValueSizeInBits();
// Make sure the index is either i32 or i64
if (IndexWidth != 32 && IndexWidth != 64) {
MVT EltVT = IndexWidth > 32 ? MVT::i64 : MVT::i32;
EVT IndexVT = EVT::getVectorVT(*DAG.getContext(), EltVT,
Index.getValueType().getVectorNumElements());
Index = DAG.getSExtOrTrunc(Index, DL, IndexVT);
if (auto *Gather = dyn_cast<MaskedGatherSDNode>(GorS)) {
SDValue Ops[] = { Chain, Gather->getPassThru(),
Mask, Base, Index, Scale } ;
return DAG.getMaskedGather(Gather->getVTList(),
Gather->getMemoryVT(), DL, Ops,
Gather->getMemOperand(),
Gather->getIndexType());
}
auto *Scatter = cast<MaskedScatterSDNode>(GorS);
SDValue Ops[] = { Chain, Scatter->getValue(),
Mask, Base, Index, Scale };
return DAG.getMaskedScatter(Scatter->getVTList(),
Scatter->getMemoryVT(), DL,
Ops, Scatter->getMemOperand(),
Scatter->getIndexType());
}
}
// With vector masks we only demand the upper bit of the mask.
if (Mask.getScalarValueSizeInBits() != 1) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
APInt DemandedMask(APInt::getSignMask(Mask.getScalarValueSizeInBits()));
if (TLI.SimplifyDemandedBits(Mask, DemandedMask, DCI))
return SDValue(N, 0);
}
return SDValue();
}
// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
static SDValue combineX86SetCC(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
SDValue EFLAGS = N->getOperand(1);
// Try to simplify the EFLAGS and condition code operands.
if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget))
return getSETCC(CC, Flags, DL, DAG);
return SDValue();
}
/// Optimize branch condition evaluation.
static SDValue combineBrCond(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
SDValue EFLAGS = N->getOperand(3);
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
// Try to simplify the EFLAGS and condition code operands.
// Make sure to not keep references to operands, as combineSetCCEFLAGS can
// RAUW them under us.
if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG, Subtarget)) {
SDValue Cond = DAG.getTargetConstant(CC, DL, MVT::i8);
return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
N->getOperand(1), Cond, Flags);
}
return SDValue();
}
static SDValue combineVectorCompareAndMaskUnaryOp(SDNode *N,
SelectionDAG &DAG) {
// Take advantage of vector comparisons producing 0 or -1 in each lane to
// optimize away operation when it's from a constant.
//
// The general transformation is:
// UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
// AND(VECTOR_CMP(x,y), constant2)
// constant2 = UNARYOP(constant)
// Early exit if this isn't a vector operation, the operand of the
// unary operation isn't a bitwise AND, or if the sizes of the operations
// aren't the same.
EVT VT = N->getValueType(0);
bool IsStrict = N->isStrictFPOpcode();
SDValue Op0 = N->getOperand(IsStrict ? 1 : 0);
if (!VT.isVector() || Op0->getOpcode() != ISD::AND ||
Op0->getOperand(0)->getOpcode() != ISD::SETCC ||
VT.getSizeInBits() != Op0.getValueSizeInBits())
return SDValue();
// Now check that the other operand of the AND is a constant. We could
// make the transformation for non-constant splats as well, but it's unclear
// that would be a benefit as it would not eliminate any operations, just
// perform one more step in scalar code before moving to the vector unit.
if (auto *BV = dyn_cast<BuildVectorSDNode>(Op0.getOperand(1))) {
// Bail out if the vector isn't a constant.
if (!BV->isConstant())
return SDValue();
// Everything checks out. Build up the new and improved node.
SDLoc DL(N);
EVT IntVT = BV->getValueType(0);
// Create a new constant of the appropriate type for the transformed
// DAG.
SDValue SourceConst;
if (IsStrict)
SourceConst = DAG.getNode(N->getOpcode(), DL, {VT, MVT::Other},
{N->getOperand(0), SDValue(BV, 0)});
else
SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
// The AND node needs bitcasts to/from an integer vector type around it.
SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, Op0->getOperand(0),
MaskConst);
SDValue Res = DAG.getBitcast(VT, NewAnd);
if (IsStrict)
return DAG.getMergeValues({Res, SourceConst.getValue(1)}, DL);
return Res;
}
return SDValue();
}
/// If we are converting a value to floating-point, try to replace scalar
/// truncate of an extracted vector element with a bitcast. This tries to keep
/// the sequence on XMM registers rather than moving between vector and GPRs.
static SDValue combineToFPTruncExtElt(SDNode *N, SelectionDAG &DAG) {
// TODO: This is currently only used by combineSIntToFP, but it is generalized
// to allow being called by any similar cast opcode.
// TODO: Consider merging this into lowering: vectorizeExtractedCast().
SDValue Trunc = N->getOperand(0);
if (!Trunc.hasOneUse() || Trunc.getOpcode() != ISD::TRUNCATE)
return SDValue();
SDValue ExtElt = Trunc.getOperand(0);
if (!ExtElt.hasOneUse() || ExtElt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isNullConstant(ExtElt.getOperand(1)))
return SDValue();
EVT TruncVT = Trunc.getValueType();
EVT SrcVT = ExtElt.getValueType();
unsigned DestWidth = TruncVT.getSizeInBits();
unsigned SrcWidth = SrcVT.getSizeInBits();
if (SrcWidth % DestWidth != 0)
return SDValue();
// inttofp (trunc (extelt X, 0)) --> inttofp (extelt (bitcast X), 0)
EVT SrcVecVT = ExtElt.getOperand(0).getValueType();
unsigned VecWidth = SrcVecVT.getSizeInBits();
unsigned NumElts = VecWidth / DestWidth;
EVT BitcastVT = EVT::getVectorVT(*DAG.getContext(), TruncVT, NumElts);
SDValue BitcastVec = DAG.getBitcast(BitcastVT, ExtElt.getOperand(0));
SDLoc DL(N);
SDValue NewExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TruncVT,
BitcastVec, ExtElt.getOperand(1));
return DAG.getNode(N->getOpcode(), DL, N->getValueType(0), NewExtElt);
}
static SDValue combineUIntToFP(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
bool IsStrict = N->isStrictFPOpcode();
SDValue Op0 = N->getOperand(IsStrict ? 1 : 0);
EVT VT = N->getValueType(0);
EVT InVT = Op0.getValueType();
// UINT_TO_FP(vXi1) -> SINT_TO_FP(ZEXT(vXi1 to vXi32))
// UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32))
// UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32))
if (InVT.isVector() && InVT.getScalarSizeInBits() < 32) {
SDLoc dl(N);
EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements());
SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
// UINT_TO_FP isn't legal without AVX512 so use SINT_TO_FP.
if (IsStrict)
return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {VT, MVT::Other},
{N->getOperand(0), P});
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
}
// Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
// optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
// the optimization here.
if (DAG.SignBitIsZero(Op0)) {
if (IsStrict)
return DAG.getNode(ISD::STRICT_SINT_TO_FP, SDLoc(N), {VT, MVT::Other},
{N->getOperand(0), Op0});
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, Op0);
}
return SDValue();
}
static SDValue combineSIntToFP(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// First try to optimize away the conversion entirely when it's
// conditionally from a constant. Vectors only.
bool IsStrict = N->isStrictFPOpcode();
if (SDValue Res = combineVectorCompareAndMaskUnaryOp(N, DAG))
return Res;
// Now move on to more general possibilities.
SDValue Op0 = N->getOperand(IsStrict ? 1 : 0);
EVT VT = N->getValueType(0);
EVT InVT = Op0.getValueType();
// SINT_TO_FP(vXi1) -> SINT_TO_FP(SEXT(vXi1 to vXi32))
// SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
// SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
if (InVT.isVector() && InVT.getScalarSizeInBits() < 32) {
SDLoc dl(N);
EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements());
SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
if (IsStrict)
return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {VT, MVT::Other},
{N->getOperand(0), P});
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
}
// Without AVX512DQ we only support i64 to float scalar conversion. For both
// vectors and scalars, see if we know that the upper bits are all the sign
// bit, in which case we can truncate the input to i32 and convert from that.
if (InVT.getScalarSizeInBits() > 32 && !Subtarget.hasDQI()) {
unsigned BitWidth = InVT.getScalarSizeInBits();
unsigned NumSignBits = DAG.ComputeNumSignBits(Op0);
if (NumSignBits >= (BitWidth - 31)) {
EVT TruncVT = MVT::i32;
if (InVT.isVector())
TruncVT = EVT::getVectorVT(*DAG.getContext(), TruncVT,
InVT.getVectorNumElements());
SDLoc dl(N);
if (DCI.isBeforeLegalize() || TruncVT != MVT::v2i32) {
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Op0);
if (IsStrict)
return DAG.getNode(ISD::STRICT_SINT_TO_FP, dl, {VT, MVT::Other},
{N->getOperand(0), Trunc});
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, Trunc);
}
// If we're after legalize and the type is v2i32 we need to shuffle and
// use CVTSI2P.
assert(InVT == MVT::v2i64 && "Unexpected VT!");
SDValue Cast = DAG.getBitcast(MVT::v4i32, Op0);
SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Cast, Cast,
{ 0, 2, -1, -1 });
if (IsStrict)
return DAG.getNode(X86ISD::STRICT_CVTSI2P, dl, {VT, MVT::Other},
{N->getOperand(0), Shuf});
return DAG.getNode(X86ISD::CVTSI2P, dl, VT, Shuf);
}
}
// Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
// a 32-bit target where SSE doesn't support i64->FP operations.
if (!Subtarget.useSoftFloat() && Subtarget.hasX87() &&
Op0.getOpcode() == ISD::LOAD) {
LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
EVT LdVT = Ld->getValueType(0);
// This transformation is not supported if the result type is f16 or f128.
if (VT == MVT::f16 || VT == MVT::f128)
return SDValue();
// If we have AVX512DQ we can use packed conversion instructions unless
// the VT is f80.
if (Subtarget.hasDQI() && VT != MVT::f80)
return SDValue();
if (Ld->isSimple() && !VT.isVector() &&
ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
!Subtarget.is64Bit() && LdVT == MVT::i64) {
std::pair<SDValue, SDValue> Tmp = Subtarget.getTargetLowering()->BuildFILD(
SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Tmp.second);
return Tmp.first;
}
}
if (IsStrict)
return SDValue();
if (SDValue V = combineToFPTruncExtElt(N, DAG))
return V;
return SDValue();
}
static bool needCarryOrOverflowFlag(SDValue Flags) {
assert(Flags.getValueType() == MVT::i32 && "Unexpected VT!");
for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
X86::CondCode CC;
switch (User->getOpcode()) {
default:
// Be conservative.
return true;
case X86ISD::SETCC:
case X86ISD::SETCC_CARRY:
CC = (X86::CondCode)User->getConstantOperandVal(0);
break;
case X86ISD::BRCOND:
CC = (X86::CondCode)User->getConstantOperandVal(2);
break;
case X86ISD::CMOV:
CC = (X86::CondCode)User->getConstantOperandVal(2);
break;
}
switch (CC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
case X86::COND_O: case X86::COND_NO:
case X86::COND_G: case X86::COND_GE:
case X86::COND_L: case X86::COND_LE:
return true;
}
}
return false;
}
static bool onlyZeroFlagUsed(SDValue Flags) {
assert(Flags.getValueType() == MVT::i32 && "Unexpected VT!");
for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
UI != UE; ++UI) {
SDNode *User = *UI;
unsigned CCOpNo;
switch (User->getOpcode()) {
default:
// Be conservative.
return false;
case X86ISD::SETCC: CCOpNo = 0; break;
case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
case X86ISD::BRCOND: CCOpNo = 2; break;
case X86ISD::CMOV: CCOpNo = 2; break;
}
X86::CondCode CC = (X86::CondCode)User->getConstantOperandVal(CCOpNo);
if (CC != X86::COND_E && CC != X86::COND_NE)
return false;
}
return true;
}
static SDValue combineCMP(SDNode *N, SelectionDAG &DAG) {
// Only handle test patterns.
if (!isNullConstant(N->getOperand(1)))
return SDValue();
// If we have a CMP of a truncated binop, see if we can make a smaller binop
// and use its flags directly.
// TODO: Maybe we should try promoting compares that only use the zero flag
// first if we can prove the upper bits with computeKnownBits?
SDLoc dl(N);
SDValue Op = N->getOperand(0);
EVT VT = Op.getValueType();
// If we have a constant logical shift that's only used in a comparison
// against zero turn it into an equivalent AND. This allows turning it into
// a TEST instruction later.
if ((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) &&
Op.hasOneUse() && isa<ConstantSDNode>(Op.getOperand(1)) &&
onlyZeroFlagUsed(SDValue(N, 0))) {
unsigned BitWidth = VT.getSizeInBits();
const APInt &ShAmt = Op.getConstantOperandAPInt(1);
if (ShAmt.ult(BitWidth)) { // Avoid undefined shifts.
unsigned MaskBits = BitWidth - ShAmt.getZExtValue();
APInt Mask = Op.getOpcode() == ISD::SRL
? APInt::getHighBitsSet(BitWidth, MaskBits)
: APInt::getLowBitsSet(BitWidth, MaskBits);
if (Mask.isSignedIntN(32)) {
Op = DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0),
DAG.getConstant(Mask, dl, VT));
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, dl, VT));
}
}
}
// Look for a truncate with a single use.
if (Op.getOpcode() != ISD::TRUNCATE || !Op.hasOneUse())
return SDValue();
Op = Op.getOperand(0);
// Arithmetic op can only have one use.
if (!Op.hasOneUse())
return SDValue();
unsigned NewOpc;
switch (Op.getOpcode()) {
default: return SDValue();
case ISD::AND:
// Skip and with constant. We have special handling for and with immediate
// during isel to generate test instructions.
if (isa<ConstantSDNode>(Op.getOperand(1)))
return SDValue();
NewOpc = X86ISD::AND;
break;
case ISD::OR: NewOpc = X86ISD::OR; break;
case ISD::XOR: NewOpc = X86ISD::XOR; break;
case ISD::ADD:
// If the carry or overflow flag is used, we can't truncate.
if (needCarryOrOverflowFlag(SDValue(N, 0)))
return SDValue();
NewOpc = X86ISD::ADD;
break;
case ISD::SUB:
// If the carry or overflow flag is used, we can't truncate.
if (needCarryOrOverflowFlag(SDValue(N, 0)))
return SDValue();
NewOpc = X86ISD::SUB;
break;
}
// We found an op we can narrow. Truncate its inputs.
SDValue Op0 = DAG.getNode(ISD::TRUNCATE, dl, VT, Op.getOperand(0));
SDValue Op1 = DAG.getNode(ISD::TRUNCATE, dl, VT, Op.getOperand(1));
// Use a X86 specific opcode to avoid DAG combine messing with it.
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
Op = DAG.getNode(NewOpc, dl, VTs, Op0, Op1);
// For AND, keep a CMP so that we can match the test pattern.
if (NewOpc == X86ISD::AND)
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, dl, VT));
// Return the flags.
return Op.getValue(1);
}
static SDValue combineX86AddSub(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
assert((X86ISD::ADD == N->getOpcode() || X86ISD::SUB == N->getOpcode()) &&
"Expected X86ISD::ADD or X86ISD::SUB");
SDLoc DL(N);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
MVT VT = LHS.getSimpleValueType();
unsigned GenericOpc = X86ISD::ADD == N->getOpcode() ? ISD::ADD : ISD::SUB;
// If we don't use the flag result, simplify back to a generic ADD/SUB.
if (!N->hasAnyUseOfValue(1)) {
SDValue Res = DAG.getNode(GenericOpc, DL, VT, LHS, RHS);
return DAG.getMergeValues({Res, DAG.getConstant(0, DL, MVT::i32)}, DL);
}
// Fold any similar generic ADD/SUB opcodes to reuse this node.
auto MatchGeneric = [&](SDValue N0, SDValue N1, bool Negate) {
SDValue Ops[] = {N0, N1};
SDVTList VTs = DAG.getVTList(N->getValueType(0));
if (SDNode *GenericAddSub = DAG.getNodeIfExists(GenericOpc, VTs, Ops)) {
SDValue Op(N, 0);
if (Negate)
Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
DCI.CombineTo(GenericAddSub, Op);
}
};
MatchGeneric(LHS, RHS, false);
MatchGeneric(RHS, LHS, X86ISD::SUB == N->getOpcode());
return SDValue();
}
static SDValue combineSBB(SDNode *N, SelectionDAG &DAG) {
if (SDValue Flags = combineCarryThroughADD(N->getOperand(2), DAG)) {
MVT VT = N->getSimpleValueType(0);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
return DAG.getNode(X86ISD::SBB, SDLoc(N), VTs,
N->getOperand(0), N->getOperand(1),
Flags);
}
// Fold SBB(SUB(X,Y),0,Carry) -> SBB(X,Y,Carry)
// iff the flag result is dead.
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0.getOpcode() == ISD::SUB && isNullConstant(Op1) &&
!N->hasAnyUseOfValue(1))
return DAG.getNode(X86ISD::SBB, SDLoc(N), N->getVTList(), Op0.getOperand(0),
Op0.getOperand(1), N->getOperand(2));
return SDValue();
}
// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
static SDValue combineADC(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// If the LHS and RHS of the ADC node are zero, then it can't overflow and
// the result is either zero or one (depending on the input carry bit).
// Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
if (X86::isZeroNode(N->getOperand(0)) &&
X86::isZeroNode(N->getOperand(1)) &&
// We don't have a good way to replace an EFLAGS use, so only do this when
// dead right now.
SDValue(N, 1).use_empty()) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
SDValue Res1 =
DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getTargetConstant(X86::COND_B, DL, MVT::i8),
N->getOperand(2)),
DAG.getConstant(1, DL, VT));
return DCI.CombineTo(N, Res1, CarryOut);
}
if (SDValue Flags = combineCarryThroughADD(N->getOperand(2), DAG)) {
MVT VT = N->getSimpleValueType(0);
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
return DAG.getNode(X86ISD::ADC, SDLoc(N), VTs,
N->getOperand(0), N->getOperand(1),
Flags);
}
return SDValue();
}
/// If this is an add or subtract where one operand is produced by a cmp+setcc,
/// then try to convert it to an ADC or SBB. This replaces TEST+SET+{ADD/SUB}
/// with CMP+{ADC, SBB}.
static SDValue combineAddOrSubToADCOrSBB(SDNode *N, SelectionDAG &DAG) {
bool IsSub = N->getOpcode() == ISD::SUB;
SDValue X = N->getOperand(0);
SDValue Y = N->getOperand(1);
// If this is an add, canonicalize a zext operand to the RHS.
// TODO: Incomplete? What if both sides are zexts?
if (!IsSub && X.getOpcode() == ISD::ZERO_EXTEND &&
Y.getOpcode() != ISD::ZERO_EXTEND)
std::swap(X, Y);
// Look through a one-use zext.
bool PeekedThroughZext = false;
if (Y.getOpcode() == ISD::ZERO_EXTEND && Y.hasOneUse()) {
Y = Y.getOperand(0);
PeekedThroughZext = true;
}
// If this is an add, canonicalize a setcc operand to the RHS.
// TODO: Incomplete? What if both sides are setcc?
// TODO: Should we allow peeking through a zext of the other operand?
if (!IsSub && !PeekedThroughZext && X.getOpcode() == X86ISD::SETCC &&
Y.getOpcode() != X86ISD::SETCC)
std::swap(X, Y);
if (Y.getOpcode() != X86ISD::SETCC || !Y.hasOneUse())
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
X86::CondCode CC = (X86::CondCode)Y.getConstantOperandVal(0);
// If X is -1 or 0, then we have an opportunity to avoid constants required in
// the general case below.
auto *ConstantX = dyn_cast<ConstantSDNode>(X);
if (ConstantX) {
if ((!IsSub && CC == X86::COND_AE && ConstantX->isAllOnesValue()) ||
(IsSub && CC == X86::COND_B && ConstantX->isNullValue())) {
// This is a complicated way to get -1 or 0 from the carry flag:
// -1 + SETAE --> -1 + (!CF) --> CF ? -1 : 0 --> SBB %eax, %eax
// 0 - SETB --> 0 - (CF) --> CF ? -1 : 0 --> SBB %eax, %eax
return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getTargetConstant(X86::COND_B, DL, MVT::i8),
Y.getOperand(1));
}
if ((!IsSub && CC == X86::COND_BE && ConstantX->isAllOnesValue()) ||
(IsSub && CC == X86::COND_A && ConstantX->isNullValue())) {
SDValue EFLAGS = Y->getOperand(1);
if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
EFLAGS.getValueType().isInteger() &&
!isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
// Swap the operands of a SUB, and we have the same pattern as above.
// -1 + SETBE (SUB A, B) --> -1 + SETAE (SUB B, A) --> SUB + SBB
// 0 - SETA (SUB A, B) --> 0 - SETB (SUB B, A) --> SUB + SBB
SDValue NewSub = DAG.getNode(
X86ISD::SUB, SDLoc(EFLAGS), EFLAGS.getNode()->getVTList(),
EFLAGS.getOperand(1), EFLAGS.getOperand(0));
SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getTargetConstant(X86::COND_B, DL, MVT::i8),
NewEFLAGS);
}
}
}
if (CC == X86::COND_B) {
// X + SETB Z --> adc X, 0
// X - SETB Z --> sbb X, 0
return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL,
DAG.getVTList(VT, MVT::i32), X,
DAG.getConstant(0, DL, VT), Y.getOperand(1));
}
if (CC == X86::COND_A) {
SDValue EFLAGS = Y->getOperand(1);
// Try to convert COND_A into COND_B in an attempt to facilitate
// materializing "setb reg".
//
// Do not flip "e > c", where "c" is a constant, because Cmp instruction
// cannot take an immediate as its first operand.
//
if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.getNode()->hasOneUse() &&
EFLAGS.getValueType().isInteger() &&
!isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
EFLAGS.getNode()->getVTList(),
EFLAGS.getOperand(1), EFLAGS.getOperand(0));
SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL,
DAG.getVTList(VT, MVT::i32), X,
DAG.getConstant(0, DL, VT), NewEFLAGS);
}
}
if (CC != X86::COND_E && CC != X86::COND_NE)
return SDValue();
SDValue Cmp = Y.getOperand(1);
if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
!X86::isZeroNode(Cmp.getOperand(1)) ||
!Cmp.getOperand(0).getValueType().isInteger())
return SDValue();
SDValue Z = Cmp.getOperand(0);
EVT ZVT = Z.getValueType();
// If X is -1 or 0, then we have an opportunity to avoid constants required in
// the general case below.
if (ConstantX) {
// 'neg' sets the carry flag when Z != 0, so create 0 or -1 using 'sbb' with
// fake operands:
// 0 - (Z != 0) --> sbb %eax, %eax, (neg Z)
// -1 + (Z == 0) --> sbb %eax, %eax, (neg Z)
if ((IsSub && CC == X86::COND_NE && ConstantX->isNullValue()) ||
(!IsSub && CC == X86::COND_E && ConstantX->isAllOnesValue())) {
SDValue Zero = DAG.getConstant(0, DL, ZVT);
SDVTList X86SubVTs = DAG.getVTList(ZVT, MVT::i32);
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, X86SubVTs, Zero, Z);
return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getTargetConstant(X86::COND_B, DL, MVT::i8),
SDValue(Neg.getNode(), 1));
}
// cmp with 1 sets the carry flag when Z == 0, so create 0 or -1 using 'sbb'
// with fake operands:
// 0 - (Z == 0) --> sbb %eax, %eax, (cmp Z, 1)
// -1 + (Z != 0) --> sbb %eax, %eax, (cmp Z, 1)
if ((IsSub && CC == X86::COND_E && ConstantX->isNullValue()) ||
(!IsSub && CC == X86::COND_NE && ConstantX->isAllOnesValue())) {
SDValue One = DAG.getConstant(1, DL, ZVT);
SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One);
return DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getTargetConstant(X86::COND_B, DL, MVT::i8), Cmp1);
}
}
// (cmp Z, 1) sets the carry flag if Z is 0.
SDValue One = DAG.getConstant(1, DL, ZVT);
SDValue Cmp1 = DAG.getNode(X86ISD::CMP, DL, MVT::i32, Z, One);
// Add the flags type for ADC/SBB nodes.
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
// X - (Z != 0) --> sub X, (zext(setne Z, 0)) --> adc X, -1, (cmp Z, 1)
// X + (Z != 0) --> add X, (zext(setne Z, 0)) --> sbb X, -1, (cmp Z, 1)
if (CC == X86::COND_NE)
return DAG.getNode(IsSub ? X86ISD::ADC : X86ISD::SBB, DL, VTs, X,
DAG.getConstant(-1ULL, DL, VT), Cmp1);
// X - (Z == 0) --> sub X, (zext(sete Z, 0)) --> sbb X, 0, (cmp Z, 1)
// X + (Z == 0) --> add X, (zext(sete Z, 0)) --> adc X, 0, (cmp Z, 1)
return DAG.getNode(IsSub ? X86ISD::SBB : X86ISD::ADC, DL, VTs, X,
DAG.getConstant(0, DL, VT), Cmp1);
}
static SDValue combineLoopMAddPattern(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
EVT VT = N->getValueType(0);
// If the vector size is less than 128, or greater than the supported RegSize,
// do not use PMADD.
if (!VT.isVector() || VT.getVectorNumElements() < 8)
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
auto UsePMADDWD = [&](SDValue Op) {
ShrinkMode Mode;
return Op.getOpcode() == ISD::MUL &&
canReduceVMulWidth(Op.getNode(), DAG, Mode) &&
Mode != ShrinkMode::MULU16 &&
(!Subtarget.hasSSE41() ||
(Op->isOnlyUserOf(Op.getOperand(0).getNode()) &&
Op->isOnlyUserOf(Op.getOperand(1).getNode())));
};
SDValue MulOp, OtherOp;
if (UsePMADDWD(Op0)) {
MulOp = Op0;
OtherOp = Op1;
} else if (UsePMADDWD(Op1)) {
MulOp = Op1;
OtherOp = Op0;
} else
return SDValue();
SDLoc DL(N);
EVT ReducedVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
VT.getVectorNumElements());
EVT MAddVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
VT.getVectorNumElements() / 2);
// Shrink the operands of mul.
SDValue N0 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(0));
SDValue N1 = DAG.getNode(ISD::TRUNCATE, DL, ReducedVT, MulOp->getOperand(1));
// Madd vector size is half of the original vector size
auto PMADDWDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
MVT OpVT = MVT::getVectorVT(MVT::i32, Ops[0].getValueSizeInBits() / 32);
return DAG.getNode(X86ISD::VPMADDWD, DL, OpVT, Ops);
};
SDValue Madd = SplitOpsAndApply(DAG, Subtarget, DL, MAddVT, { N0, N1 },
PMADDWDBuilder);
// Fill the rest of the output with 0
SDValue Zero = DAG.getConstant(0, DL, Madd.getSimpleValueType());
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Madd, Zero);
// Preserve the reduction flag on the ADD. We may need to revisit for the
// other operand.
SDNodeFlags Flags;
Flags.setVectorReduction(true);
return DAG.getNode(ISD::ADD, DL, VT, Concat, OtherOp, Flags);
}
static SDValue combineLoopSADPattern(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
SDLoc DL(N);
EVT VT = N->getValueType(0);
// TODO: There's nothing special about i32, any integer type above i16 should
// work just as well.
if (!VT.isVector() || !VT.isSimple() ||
!(VT.getVectorElementType() == MVT::i32))
return SDValue();
unsigned RegSize = 128;
if (Subtarget.useBWIRegs())
RegSize = 512;
else if (Subtarget.hasAVX())
RegSize = 256;
// We only handle v16i32 for SSE2 / v32i32 for AVX / v64i32 for AVX512.
// TODO: We should be able to handle larger vectors by splitting them before
// feeding them into several SADs, and then reducing over those.
if (VT.getSizeInBits() / 4 > RegSize)
return SDValue();
// We know N is a reduction add. To match SAD, we need one of the operands to
// be an ABS.
SDValue AbsOp = N->getOperand(0);
SDValue OtherOp = N->getOperand(1);
if (AbsOp.getOpcode() != ISD::ABS)
std::swap(AbsOp, OtherOp);
if (AbsOp.getOpcode() != ISD::ABS)
return SDValue();
// Check whether we have an abs-diff pattern feeding into the select.
SDValue SadOp0, SadOp1;
if(!detectZextAbsDiff(AbsOp, SadOp0, SadOp1))
return SDValue();
// SAD pattern detected. Now build a SAD instruction and an addition for
// reduction. Note that the number of elements of the result of SAD is less
// than the number of elements of its input. Therefore, we could only update
// part of elements in the reduction vector.
SDValue Sad = createPSADBW(DAG, SadOp0, SadOp1, DL, Subtarget);
// The output of PSADBW is a vector of i64.
// We need to turn the vector of i64 into a vector of i32.
// If the reduction vector is at least as wide as the psadbw result, just
// bitcast. If it's narrower which can only occur for v2i32, bits 127:16 of
// the PSADBW will be zero. If we promote/ narrow vectors, truncate the v2i64
// result to v2i32 which will be removed by type legalization. If we/ widen
// narrow vectors then we bitcast to v4i32 and extract v2i32.
MVT ResVT = MVT::getVectorVT(MVT::i32, Sad.getValueSizeInBits() / 32);
Sad = DAG.getNode(ISD::BITCAST, DL, ResVT, Sad);
if (VT.getSizeInBits() > ResVT.getSizeInBits()) {
// Fill the upper elements with zero to match the add width.
assert(VT.getSizeInBits() % ResVT.getSizeInBits() == 0 && "Unexpected VTs");
unsigned NumConcats = VT.getSizeInBits() / ResVT.getSizeInBits();
SmallVector<SDValue, 4> Ops(NumConcats, DAG.getConstant(0, DL, ResVT));
Ops[0] = Sad;
Sad = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Ops);
} else if (VT.getSizeInBits() < ResVT.getSizeInBits()) {
Sad = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Sad,
DAG.getIntPtrConstant(0, DL));
}
// Preserve the reduction flag on the ADD. We may need to revisit for the
// other operand.
SDNodeFlags Flags;
Flags.setVectorReduction(true);
return DAG.getNode(ISD::ADD, DL, VT, Sad, OtherOp, Flags);
}
static SDValue matchPMADDWD(SelectionDAG &DAG, SDValue Op0, SDValue Op1,
const SDLoc &DL, EVT VT,
const X86Subtarget &Subtarget) {
// Example of pattern we try to detect:
// t := (v8i32 mul (sext (v8i16 x0), (sext (v8i16 x1))))
//(add (build_vector (extract_elt t, 0),
// (extract_elt t, 2),
// (extract_elt t, 4),
// (extract_elt t, 6)),
// (build_vector (extract_elt t, 1),
// (extract_elt t, 3),
// (extract_elt t, 5),
// (extract_elt t, 7)))
if (!Subtarget.hasSSE2())
return SDValue();
if (Op0.getOpcode() != ISD::BUILD_VECTOR ||
Op1.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
if (!VT.isVector() || VT.getVectorElementType() != MVT::i32 ||
VT.getVectorNumElements() < 4 ||
!isPowerOf2_32(VT.getVectorNumElements()))
return SDValue();
// Check if one of Op0,Op1 is of the form:
// (build_vector (extract_elt Mul, 0),
// (extract_elt Mul, 2),
// (extract_elt Mul, 4),
// ...
// the other is of the form:
// (build_vector (extract_elt Mul, 1),
// (extract_elt Mul, 3),
// (extract_elt Mul, 5),
// ...
// and identify Mul.
SDValue Mul;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; i += 2) {
SDValue Op0L = Op0->getOperand(i), Op1L = Op1->getOperand(i),
Op0H = Op0->getOperand(i + 1), Op1H = Op1->getOperand(i + 1);
// TODO: Be more tolerant to undefs.
if (Op0L.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op1L.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op0H.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op1H.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
auto *Const0L = dyn_cast<ConstantSDNode>(Op0L->getOperand(1));
auto *Const1L = dyn_cast<ConstantSDNode>(Op1L->getOperand(1));
auto *Const0H = dyn_cast<ConstantSDNode>(Op0H->getOperand(1));
auto *Const1H = dyn_cast<ConstantSDNode>(Op1H->getOperand(1));
if (!Const0L || !Const1L || !Const0H || !Const1H)
return SDValue();
unsigned Idx0L = Const0L->getZExtValue(), Idx1L = Const1L->getZExtValue(),
Idx0H = Const0H->getZExtValue(), Idx1H = Const1H->getZExtValue();
// Commutativity of mul allows factors of a product to reorder.
if (Idx0L > Idx1L)
std::swap(Idx0L, Idx1L);
if (Idx0H > Idx1H)
std::swap(Idx0H, Idx1H);
// Commutativity of add allows pairs of factors to reorder.
if (Idx0L > Idx0H) {
std::swap(Idx0L, Idx0H);
std::swap(Idx1L, Idx1H);
}
if (Idx0L != 2 * i || Idx1L != 2 * i + 1 || Idx0H != 2 * i + 2 ||
Idx1H != 2 * i + 3)
return SDValue();
if (!Mul) {
// First time an extract_elt's source vector is visited. Must be a MUL
// with 2X number of vector elements than the BUILD_VECTOR.
// Both extracts must be from same MUL.
Mul = Op0L->getOperand(0);
if (Mul->getOpcode() != ISD::MUL ||
Mul.getValueType().getVectorNumElements() != 2 * e)
return SDValue();
}
// Check that the extract is from the same MUL previously seen.
if (Mul != Op0L->getOperand(0) || Mul != Op1L->getOperand(0) ||
Mul != Op0H->getOperand(0) || Mul != Op1H->getOperand(0))
return SDValue();
}
// Check if the Mul source can be safely shrunk.
ShrinkMode Mode;
if (!canReduceVMulWidth(Mul.getNode(), DAG, Mode) ||
Mode == ShrinkMode::MULU16)
return SDValue();
auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
// Shrink by adding truncate nodes and let DAGCombine fold with the
// sources.
EVT InVT = Ops[0].getValueType();
assert(InVT.getScalarType() == MVT::i32 &&
"Unexpected scalar element type");
assert(InVT == Ops[1].getValueType() && "Operands' types mismatch");
EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements() / 2);
EVT TruncVT = EVT::getVectorVT(*DAG.getContext(), MVT::i16,
InVT.getVectorNumElements());
return DAG.getNode(X86ISD::VPMADDWD, DL, ResVT,
DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Ops[0]),
DAG.getNode(ISD::TRUNCATE, DL, TruncVT, Ops[1]));
};
return SplitOpsAndApply(DAG, Subtarget, DL, VT,
{ Mul.getOperand(0), Mul.getOperand(1) },
PMADDBuilder);
}
// Attempt to turn this pattern into PMADDWD.
// (mul (add (sext (build_vector)), (sext (build_vector))),
// (add (sext (build_vector)), (sext (build_vector)))
static SDValue matchPMADDWD_2(SelectionDAG &DAG, SDValue N0, SDValue N1,
const SDLoc &DL, EVT VT,
const X86Subtarget &Subtarget) {
if (!Subtarget.hasSSE2())
return SDValue();
if (N0.getOpcode() != ISD::MUL || N1.getOpcode() != ISD::MUL)
return SDValue();
if (!VT.isVector() || VT.getVectorElementType() != MVT::i32 ||
VT.getVectorNumElements() < 4 ||
!isPowerOf2_32(VT.getVectorNumElements()))
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
SDValue N10 = N1.getOperand(0);
SDValue N11 = N1.getOperand(1);
// All inputs need to be sign extends.
// TODO: Support ZERO_EXTEND from known positive?
if (N00.getOpcode() != ISD::SIGN_EXTEND ||
N01.getOpcode() != ISD::SIGN_EXTEND ||
N10.getOpcode() != ISD::SIGN_EXTEND ||
N11.getOpcode() != ISD::SIGN_EXTEND)
return SDValue();
// Peek through the extends.
N00 = N00.getOperand(0);
N01 = N01.getOperand(0);
N10 = N10.getOperand(0);
N11 = N11.getOperand(0);
// Must be extending from vXi16.
EVT InVT = N00.getValueType();
if (InVT.getVectorElementType() != MVT::i16 || N01.getValueType() != InVT ||
N10.getValueType() != InVT || N11.getValueType() != InVT)
return SDValue();
// All inputs should be build_vectors.
if (N00.getOpcode() != ISD::BUILD_VECTOR ||
N01.getOpcode() != ISD::BUILD_VECTOR ||
N10.getOpcode() != ISD::BUILD_VECTOR ||
N11.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
// For each element, we need to ensure we have an odd element from one vector
// multiplied by the odd element of another vector and the even element from
// one of the same vectors being multiplied by the even element from the
// other vector. So we need to make sure for each element i, this operator
// is being performed:
// A[2 * i] * B[2 * i] + A[2 * i + 1] * B[2 * i + 1]
SDValue In0, In1;
for (unsigned i = 0; i != N00.getNumOperands(); ++i) {
SDValue N00Elt = N00.getOperand(i);
SDValue N01Elt = N01.getOperand(i);
SDValue N10Elt = N10.getOperand(i);
SDValue N11Elt = N11.getOperand(i);
// TODO: Be more tolerant to undefs.
if (N00Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N01Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N10Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
N11Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
auto *ConstN00Elt = dyn_cast<ConstantSDNode>(N00Elt.getOperand(1));
auto *ConstN01Elt = dyn_cast<ConstantSDNode>(N01Elt.getOperand(1));
auto *ConstN10Elt = dyn_cast<ConstantSDNode>(N10Elt.getOperand(1));
auto *ConstN11Elt = dyn_cast<ConstantSDNode>(N11Elt.getOperand(1));
if (!ConstN00Elt || !ConstN01Elt || !ConstN10Elt || !ConstN11Elt)
return SDValue();
unsigned IdxN00 = ConstN00Elt->getZExtValue();
unsigned IdxN01 = ConstN01Elt->getZExtValue();
unsigned IdxN10 = ConstN10Elt->getZExtValue();
unsigned IdxN11 = ConstN11Elt->getZExtValue();
// Add is commutative so indices can be reordered.
if (IdxN00 > IdxN10) {
std::swap(IdxN00, IdxN10);
std::swap(IdxN01, IdxN11);
}
// N0 indices be the even element. N1 indices must be the next odd element.
if (IdxN00 != 2 * i || IdxN10 != 2 * i + 1 ||
IdxN01 != 2 * i || IdxN11 != 2 * i + 1)
return SDValue();
SDValue N00In = N00Elt.getOperand(0);
SDValue N01In = N01Elt.getOperand(0);
SDValue N10In = N10Elt.getOperand(0);
SDValue N11In = N11Elt.getOperand(0);
// First time we find an input capture it.
if (!In0) {
In0 = N00In;
In1 = N01In;
}
// Mul is commutative so the input vectors can be in any order.
// Canonicalize to make the compares easier.
if (In0 != N00In)
std::swap(N00In, N01In);
if (In0 != N10In)
std::swap(N10In, N11In);
if (In0 != N00In || In1 != N01In || In0 != N10In || In1 != N11In)
return SDValue();
}
auto PMADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
// Shrink by adding truncate nodes and let DAGCombine fold with the
// sources.
EVT OpVT = Ops[0].getValueType();
assert(OpVT.getScalarType() == MVT::i16 &&
"Unexpected scalar element type");
assert(OpVT == Ops[1].getValueType() && "Operands' types mismatch");
EVT ResVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
OpVT.getVectorNumElements() / 2);
return DAG.getNode(X86ISD::VPMADDWD, DL, ResVT, Ops[0], Ops[1]);
};
return SplitOpsAndApply(DAG, Subtarget, DL, VT, { In0, In1 },
PMADDBuilder);
}
static SDValue combineAdd(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
const SDNodeFlags Flags = N->getFlags();
if (Flags.hasVectorReduction()) {
if (SDValue Sad = combineLoopSADPattern(N, DAG, Subtarget))
return Sad;
if (SDValue MAdd = combineLoopMAddPattern(N, DAG, Subtarget))
return MAdd;
}
EVT VT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (SDValue MAdd = matchPMADDWD(DAG, Op0, Op1, SDLoc(N), VT, Subtarget))
return MAdd;
if (SDValue MAdd = matchPMADDWD_2(DAG, Op0, Op1, SDLoc(N), VT, Subtarget))
return MAdd;
// Try to synthesize horizontal adds from adds of shuffles.
if ((VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v16i16 ||
VT == MVT::v8i32) &&
Subtarget.hasSSSE3() &&
isHorizontalBinOp(Op0, Op1, DAG, Subtarget, true)) {
auto HADDBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::HADD, DL, Ops[0].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, {Op0, Op1},
HADDBuilder);
}
// If vectors of i1 are legal, turn (add (zext (vXi1 X)), Y) into
// (sub Y, (sext (vXi1 X))).
// FIXME: We have the (sub Y, (zext (vXi1 X))) -> (add (sext (vXi1 X)), Y) in
// generic DAG combine without a legal type check, but adding this there
// caused regressions.
if (VT.isVector()) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (Op0.getOpcode() == ISD::ZERO_EXTEND &&
Op0.getOperand(0).getValueType().getVectorElementType() == MVT::i1 &&
TLI.isTypeLegal(Op0.getOperand(0).getValueType())) {
SDLoc DL(N);
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op0.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, Op1, SExt);
}
if (Op1.getOpcode() == ISD::ZERO_EXTEND &&
Op1.getOperand(0).getValueType().getVectorElementType() == MVT::i1 &&
TLI.isTypeLegal(Op1.getOperand(0).getValueType())) {
SDLoc DL(N);
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op1.getOperand(0));
return DAG.getNode(ISD::SUB, DL, VT, Op0, SExt);
}
}
return combineAddOrSubToADCOrSBB(N, DAG);
}
static SDValue combineSubToSubus(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
EVT VT = N->getValueType(0);
if (!VT.isVector())
return SDValue();
// PSUBUS is supported, starting from SSE2, but truncation for v8i32
// is only worth it with SSSE3 (PSHUFB).
EVT EltVT = VT.getVectorElementType();
if (!(Subtarget.hasSSE2() && (EltVT == MVT::i8 || EltVT == MVT::i16)) &&
!(Subtarget.hasSSSE3() && (VT == MVT::v8i32 || VT == MVT::v8i64)) &&
!(Subtarget.useBWIRegs() && (VT == MVT::v16i32)))
return SDValue();
SDValue SubusLHS, SubusRHS;
// Try to find umax(a,b) - b or a - umin(a,b) patterns
// they may be converted to subus(a,b).
// TODO: Need to add IR canonicalization for this code.
if (Op0.getOpcode() == ISD::UMAX) {
SubusRHS = Op1;
SDValue MaxLHS = Op0.getOperand(0);
SDValue MaxRHS = Op0.getOperand(1);
if (MaxLHS == Op1)
SubusLHS = MaxRHS;
else if (MaxRHS == Op1)
SubusLHS = MaxLHS;
else
return SDValue();
} else if (Op1.getOpcode() == ISD::UMIN) {
SubusLHS = Op0;
SDValue MinLHS = Op1.getOperand(0);
SDValue MinRHS = Op1.getOperand(1);
if (MinLHS == Op0)
SubusRHS = MinRHS;
else if (MinRHS == Op0)
SubusRHS = MinLHS;
else
return SDValue();
} else
return SDValue();
// PSUBUS doesn't support v8i32/v8i64/v16i32, but it can be enabled with
// special preprocessing in some cases.
if (EltVT == MVT::i8 || EltVT == MVT::i16)
return DAG.getNode(ISD::USUBSAT, SDLoc(N), VT, SubusLHS, SubusRHS);
assert((VT == MVT::v8i32 || VT == MVT::v16i32 || VT == MVT::v8i64) &&
"Unexpected VT!");
// Special preprocessing case can be only applied
// if the value was zero extended from 16 bit,
// so we require first 16 bits to be zeros for 32 bit
// values, or first 48 bits for 64 bit values.
KnownBits Known = DAG.computeKnownBits(SubusLHS);
unsigned NumZeros = Known.countMinLeadingZeros();
if ((VT == MVT::v8i64 && NumZeros < 48) || NumZeros < 16)
return SDValue();
EVT ExtType = SubusLHS.getValueType();
EVT ShrinkedType;
if (VT == MVT::v8i32 || VT == MVT::v8i64)
ShrinkedType = MVT::v8i16;
else
ShrinkedType = NumZeros >= 24 ? MVT::v16i8 : MVT::v16i16;
// If SubusLHS is zeroextended - truncate SubusRHS to it's
// size SubusRHS = umin(0xFFF.., SubusRHS).
SDValue SaturationConst =
DAG.getConstant(APInt::getLowBitsSet(ExtType.getScalarSizeInBits(),
ShrinkedType.getScalarSizeInBits()),
SDLoc(SubusLHS), ExtType);
SDValue UMin = DAG.getNode(ISD::UMIN, SDLoc(SubusLHS), ExtType, SubusRHS,
SaturationConst);
SDValue NewSubusLHS =
DAG.getZExtOrTrunc(SubusLHS, SDLoc(SubusLHS), ShrinkedType);
SDValue NewSubusRHS = DAG.getZExtOrTrunc(UMin, SDLoc(SubusRHS), ShrinkedType);
SDValue Psubus = DAG.getNode(ISD::USUBSAT, SDLoc(N), ShrinkedType,
NewSubusLHS, NewSubusRHS);
// Zero extend the result, it may be used somewhere as 32 bit,
// if not zext and following trunc will shrink.
return DAG.getZExtOrTrunc(Psubus, SDLoc(N), ExtType);
}
static SDValue combineSub(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// X86 can't encode an immediate LHS of a sub. See if we can push the
// negation into a preceding instruction.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
// If the RHS of the sub is a XOR with one use and a constant, invert the
// immediate. Then add one to the LHS of the sub so we can turn
// X-Y -> X+~Y+1, saving one register.
if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
isa<ConstantSDNode>(Op1.getOperand(1))) {
const APInt &XorC = Op1.getConstantOperandAPInt(1);
EVT VT = Op0.getValueType();
SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
Op1.getOperand(0),
DAG.getConstant(~XorC, SDLoc(Op1), VT));
return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
}
}
// Try to synthesize horizontal subs from subs of shuffles.
EVT VT = N->getValueType(0);
if ((VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v16i16 ||
VT == MVT::v8i32) &&
Subtarget.hasSSSE3() &&
isHorizontalBinOp(Op0, Op1, DAG, Subtarget, false)) {
auto HSUBBuilder = [](SelectionDAG &DAG, const SDLoc &DL,
ArrayRef<SDValue> Ops) {
return DAG.getNode(X86ISD::HSUB, DL, Ops[0].getValueType(), Ops);
};
return SplitOpsAndApply(DAG, Subtarget, SDLoc(N), VT, {Op0, Op1},
HSUBBuilder);
}
// Try to create PSUBUS if SUB's argument is max/min
if (SDValue V = combineSubToSubus(N, DAG, Subtarget))
return V;
return combineAddOrSubToADCOrSBB(N, DAG);
}
static SDValue combineVectorCompare(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = N->getSimpleValueType(0);
SDLoc DL(N);
if (N->getOperand(0) == N->getOperand(1)) {
if (N->getOpcode() == X86ISD::PCMPEQ)
return DAG.getConstant(-1, DL, VT);
if (N->getOpcode() == X86ISD::PCMPGT)
return DAG.getConstant(0, DL, VT);
}
return SDValue();
}
/// Helper that combines an array of subvector ops as if they were the operands
/// of a ISD::CONCAT_VECTORS node, but may have come from another source (e.g.
/// ISD::INSERT_SUBVECTOR). The ops are assumed to be of the same type.
static SDValue combineConcatVectorOps(const SDLoc &DL, MVT VT,
ArrayRef<SDValue> Ops, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
assert(Subtarget.hasAVX() && "AVX assumed for concat_vectors");
if (llvm::all_of(Ops, [](SDValue Op) { return Op.isUndef(); }))
return DAG.getUNDEF(VT);
if (llvm::all_of(Ops, [](SDValue Op) {
return ISD::isBuildVectorAllZeros(Op.getNode());
}))
return getZeroVector(VT, Subtarget, DAG, DL);
SDValue Op0 = Ops[0];
// Fold subvector loads into one.
// If needed, look through bitcasts to get to the load.
if (auto *FirstLd = dyn_cast<LoadSDNode>(peekThroughBitcasts(Op0))) {
bool Fast;
const X86TargetLowering *TLI = Subtarget.getTargetLowering();
if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
*FirstLd->getMemOperand(), &Fast) &&
Fast) {
if (SDValue Ld =
EltsFromConsecutiveLoads(VT, Ops, DL, DAG, Subtarget, false))
return Ld;
}
}
// Repeated subvectors.
if (llvm::all_of(Ops, [Op0](SDValue Op) { return Op == Op0; })) {
// If this broadcast/subv_broadcast is inserted into both halves, use a
// larger broadcast/subv_broadcast.
if (Op0.getOpcode() == X86ISD::VBROADCAST ||
Op0.getOpcode() == X86ISD::SUBV_BROADCAST)
return DAG.getNode(Op0.getOpcode(), DL, VT, Op0.getOperand(0));
// concat_vectors(movddup(x),movddup(x)) -> broadcast(x)
if (Op0.getOpcode() == X86ISD::MOVDDUP && VT == MVT::v4f64 &&
(Subtarget.hasAVX2() || MayFoldLoad(Op0.getOperand(0))))
return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f64,
Op0.getOperand(0),
DAG.getIntPtrConstant(0, DL)));
// concat_vectors(scalar_to_vector(x),scalar_to_vector(x)) -> broadcast(x)
if (Op0.getOpcode() == ISD::SCALAR_TO_VECTOR &&
(Subtarget.hasAVX2() ||
(VT.getScalarSizeInBits() >= 32 && MayFoldLoad(Op0.getOperand(0)))) &&
Op0.getOperand(0).getValueType() == VT.getScalarType())
return DAG.getNode(X86ISD::VBROADCAST, DL, VT, Op0.getOperand(0));
}
bool IsSplat = llvm::all_of(Ops, [&Op0](SDValue Op) { return Op == Op0; });
// Repeated opcode.
// TODO - combineX86ShufflesRecursively should handle shuffle concatenation
// but it currently struggles with different vector widths.
if (llvm::all_of(Ops, [Op0](SDValue Op) {
return Op.getOpcode() == Op0.getOpcode();
})) {
unsigned NumOps = Ops.size();
switch (Op0.getOpcode()) {
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::PSHUFD:
if (!IsSplat && NumOps == 2 && VT.is256BitVector() &&
Subtarget.hasInt256() && Op0.getOperand(1) == Ops[1].getOperand(1)) {
SmallVector<SDValue, 2> Src;
for (unsigned i = 0; i != NumOps; ++i)
Src.push_back(Ops[i].getOperand(0));
return DAG.getNode(Op0.getOpcode(), DL, VT,
DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Src),
Op0.getOperand(1));
}
LLVM_FALLTHROUGH;
case X86ISD::VPERMILPI:
// TODO - add support for vXf64/vXi64 shuffles.
if (!IsSplat && NumOps == 2 && (VT == MVT::v8f32 || VT == MVT::v8i32) &&
Subtarget.hasAVX() && Op0.getOperand(1) == Ops[1].getOperand(1)) {
SmallVector<SDValue, 2> Src;
for (unsigned i = 0; i != NumOps; ++i)
Src.push_back(DAG.getBitcast(MVT::v4f32, Ops[i].getOperand(0)));
SDValue Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8f32, Src);
Res = DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, Res,
Op0.getOperand(1));
return DAG.getBitcast(VT, Res);
}
break;
case X86ISD::PACKUS:
if (NumOps == 2 && VT.is256BitVector() && Subtarget.hasInt256()) {
SmallVector<SDValue, 2> LHS, RHS;
for (unsigned i = 0; i != NumOps; ++i) {
LHS.push_back(Ops[i].getOperand(0));
RHS.push_back(Ops[i].getOperand(1));
}
MVT SrcVT = Op0.getOperand(0).getSimpleValueType();
SrcVT = MVT::getVectorVT(SrcVT.getScalarType(),
NumOps * SrcVT.getVectorNumElements());
return DAG.getNode(Op0.getOpcode(), DL, VT,
DAG.getNode(ISD::CONCAT_VECTORS, DL, SrcVT, LHS),
DAG.getNode(ISD::CONCAT_VECTORS, DL, SrcVT, RHS));
}
break;
}
}
return SDValue();
}
static SDValue combineConcatVectors(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
EVT SrcVT = N->getOperand(0).getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Don't do anything for i1 vectors.
if (VT.getVectorElementType() == MVT::i1)
return SDValue();
if (Subtarget.hasAVX() && TLI.isTypeLegal(VT) && TLI.isTypeLegal(SrcVT)) {
SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
if (SDValue R = combineConcatVectorOps(SDLoc(N), VT.getSimpleVT(), Ops, DAG,
DCI, Subtarget))
return R;
}
return SDValue();
}
static SDValue combineInsertSubvector(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
MVT OpVT = N->getSimpleValueType(0);
bool IsI1Vector = OpVT.getVectorElementType() == MVT::i1;
SDLoc dl(N);
SDValue Vec = N->getOperand(0);
SDValue SubVec = N->getOperand(1);
uint64_t IdxVal = N->getConstantOperandVal(2);
MVT SubVecVT = SubVec.getSimpleValueType();
if (Vec.isUndef() && SubVec.isUndef())
return DAG.getUNDEF(OpVT);
// Inserting undefs/zeros into zeros/undefs is a zero vector.
if ((Vec.isUndef() || ISD::isBuildVectorAllZeros(Vec.getNode())) &&
(SubVec.isUndef() || ISD::isBuildVectorAllZeros(SubVec.getNode())))
return getZeroVector(OpVT, Subtarget, DAG, dl);
if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
// If we're inserting into a zero vector and then into a larger zero vector,
// just insert into the larger zero vector directly.
if (SubVec.getOpcode() == ISD::INSERT_SUBVECTOR &&
ISD::isBuildVectorAllZeros(SubVec.getOperand(0).getNode())) {
uint64_t Idx2Val = SubVec.getConstantOperandVal(2);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
getZeroVector(OpVT, Subtarget, DAG, dl),
SubVec.getOperand(1),
DAG.getIntPtrConstant(IdxVal + Idx2Val, dl));
}
// If we're inserting into a zero vector and our input was extracted from an
// insert into a zero vector of the same type and the extraction was at
// least as large as the original insertion. Just insert the original
// subvector into a zero vector.
if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR && IdxVal == 0 &&
isNullConstant(SubVec.getOperand(1)) &&
SubVec.getOperand(0).getOpcode() == ISD::INSERT_SUBVECTOR) {
SDValue Ins = SubVec.getOperand(0);
if (isNullConstant(Ins.getOperand(2)) &&
ISD::isBuildVectorAllZeros(Ins.getOperand(0).getNode()) &&
Ins.getOperand(1).getValueSizeInBits() <= SubVecVT.getSizeInBits())
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
getZeroVector(OpVT, Subtarget, DAG, dl),
Ins.getOperand(1), N->getOperand(2));
}
}
// Stop here if this is an i1 vector.
if (IsI1Vector)
return SDValue();
// If this is an insert of an extract, combine to a shuffle. Don't do this
// if the insert or extract can be represented with a subregister operation.
if (SubVec.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
SubVec.getOperand(0).getSimpleValueType() == OpVT &&
(IdxVal != 0 || !Vec.isUndef())) {
int ExtIdxVal = SubVec.getConstantOperandVal(1);
if (ExtIdxVal != 0) {
int VecNumElts = OpVT.getVectorNumElements();
int SubVecNumElts = SubVecVT.getVectorNumElements();
SmallVector<int, 64> Mask(VecNumElts);
// First create an identity shuffle mask.
for (int i = 0; i != VecNumElts; ++i)
Mask[i] = i;
// Now insert the extracted portion.
for (int i = 0; i != SubVecNumElts; ++i)
Mask[i + IdxVal] = i + ExtIdxVal + VecNumElts;
return DAG.getVectorShuffle(OpVT, dl, Vec, SubVec.getOperand(0), Mask);
}
}
// Match concat_vector style patterns.
SmallVector<SDValue, 2> SubVectorOps;
if (collectConcatOps(N, SubVectorOps)) {
if (SDValue Fold =
combineConcatVectorOps(dl, OpVT, SubVectorOps, DAG, DCI, Subtarget))
return Fold;
// If we're inserting all zeros into the upper half, change this to
// a concat with zero. We will match this to a move
// with implicit upper bit zeroing during isel.
// We do this here because we don't want combineConcatVectorOps to
// create INSERT_SUBVECTOR from CONCAT_VECTORS.
if (SubVectorOps.size() == 2 &&
ISD::isBuildVectorAllZeros(SubVectorOps[1].getNode()))
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT,
getZeroVector(OpVT, Subtarget, DAG, dl),
SubVectorOps[0], DAG.getIntPtrConstant(0, dl));
}
// If this is a broadcast insert into an upper undef, use a larger broadcast.
if (Vec.isUndef() && IdxVal != 0 && SubVec.getOpcode() == X86ISD::VBROADCAST)
return DAG.getNode(X86ISD::VBROADCAST, dl, OpVT, SubVec.getOperand(0));
// If this is a broadcast load inserted into an upper undef, use a larger
// broadcast load.
if (Vec.isUndef() && IdxVal != 0 && SubVec.hasOneUse() &&
SubVec.getOpcode() == X86ISD::VBROADCAST_LOAD) {
auto *MemIntr = cast<MemIntrinsicSDNode>(SubVec);
SDVTList Tys = DAG.getVTList(OpVT, MVT::Other);
SDValue Ops[] = { MemIntr->getChain(), MemIntr->getBasePtr() };
SDValue BcastLd =
DAG.getMemIntrinsicNode(X86ISD::VBROADCAST_LOAD, dl, Tys, Ops,
MemIntr->getMemoryVT(),
MemIntr->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(SDValue(MemIntr, 1), BcastLd.getValue(1));
return BcastLd;
}
return SDValue();
}
/// If we are extracting a subvector of a vector select and the select condition
/// is composed of concatenated vectors, try to narrow the select width. This
/// is a common pattern for AVX1 integer code because 256-bit selects may be
/// legal, but there is almost no integer math/logic available for 256-bit.
/// This function should only be called with legal types (otherwise, the calls
/// to get simple value types will assert).
static SDValue narrowExtractedVectorSelect(SDNode *Ext, SelectionDAG &DAG) {
SDValue Sel = peekThroughBitcasts(Ext->getOperand(0));
SmallVector<SDValue, 4> CatOps;
if (Sel.getOpcode() != ISD::VSELECT ||
!collectConcatOps(Sel.getOperand(0).getNode(), CatOps))
return SDValue();
// Note: We assume simple value types because this should only be called with
// legal operations/types.
// TODO: This can be extended to handle extraction to 256-bits.
MVT VT = Ext->getSimpleValueType(0);
if (!VT.is128BitVector())
return SDValue();
MVT SelCondVT = Sel.getOperand(0).getSimpleValueType();
if (!SelCondVT.is256BitVector() && !SelCondVT.is512BitVector())
return SDValue();
MVT WideVT = Ext->getOperand(0).getSimpleValueType();
MVT SelVT = Sel.getSimpleValueType();
assert((SelVT.is256BitVector() || SelVT.is512BitVector()) &&
"Unexpected vector type with legal operations");
unsigned SelElts = SelVT.getVectorNumElements();
unsigned CastedElts = WideVT.getVectorNumElements();
unsigned ExtIdx = cast<ConstantSDNode>(Ext->getOperand(1))->getZExtValue();
if (SelElts % CastedElts == 0) {
// The select has the same or more (narrower) elements than the extract
// operand. The extraction index gets scaled by that factor.
ExtIdx *= (SelElts / CastedElts);
} else if (CastedElts % SelElts == 0) {
// The select has less (wider) elements than the extract operand. Make sure
// that the extraction index can be divided evenly.
unsigned IndexDivisor = CastedElts / SelElts;
if (ExtIdx % IndexDivisor != 0)
return SDValue();
ExtIdx /= IndexDivisor;
} else {
llvm_unreachable("Element count of simple vector types are not divisible?");
}
unsigned NarrowingFactor = WideVT.getSizeInBits() / VT.getSizeInBits();
unsigned NarrowElts = SelElts / NarrowingFactor;
MVT NarrowSelVT = MVT::getVectorVT(SelVT.getVectorElementType(), NarrowElts);
SDLoc DL(Ext);
SDValue ExtCond = extract128BitVector(Sel.getOperand(0), ExtIdx, DAG, DL);
SDValue ExtT = extract128BitVector(Sel.getOperand(1), ExtIdx, DAG, DL);
SDValue ExtF = extract128BitVector(Sel.getOperand(2), ExtIdx, DAG, DL);
SDValue NarrowSel = DAG.getSelect(DL, NarrowSelVT, ExtCond, ExtT, ExtF);
return DAG.getBitcast(VT, NarrowSel);
}
static SDValue combineExtractSubvector(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// For AVX1 only, if we are extracting from a 256-bit and+not (which will
// eventually get combined/lowered into ANDNP) with a concatenated operand,
// split the 'and' into 128-bit ops to avoid the concatenate and extract.
// We let generic combining take over from there to simplify the
// insert/extract and 'not'.
// This pattern emerges during AVX1 legalization. We handle it before lowering
// to avoid complications like splitting constant vector loads.
// Capture the original wide type in the likely case that we need to bitcast
// back to this type.
if (!N->getValueType(0).isSimple())
return SDValue();
MVT VT = N->getSimpleValueType(0);
SDValue InVec = N->getOperand(0);
SDValue InVecBC = peekThroughBitcasts(InVec);
EVT InVecVT = InVec.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (Subtarget.hasAVX() && !Subtarget.hasAVX2() &&
TLI.isTypeLegal(InVecVT) &&
InVecVT.getSizeInBits() == 256 && InVecBC.getOpcode() == ISD::AND) {
auto isConcatenatedNot = [] (SDValue V) {
V = peekThroughBitcasts(V);
if (!isBitwiseNot(V))
return false;
SDValue NotOp = V->getOperand(0);
return peekThroughBitcasts(NotOp).getOpcode() == ISD::CONCAT_VECTORS;
};
if (isConcatenatedNot(InVecBC.getOperand(0)) ||
isConcatenatedNot(InVecBC.getOperand(1))) {
// extract (and v4i64 X, (not (concat Y1, Y2))), n -> andnp v2i64 X(n), Y1
SDValue Concat = split256IntArith(InVecBC, DAG);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT,
DAG.getBitcast(InVecVT, Concat), N->getOperand(1));
}
}
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue V = narrowExtractedVectorSelect(N, DAG))
return V;
unsigned IdxVal = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
if (ISD::isBuildVectorAllZeros(InVec.getNode()))
return getZeroVector(VT, Subtarget, DAG, SDLoc(N));
if (ISD::isBuildVectorAllOnes(InVec.getNode())) {
if (VT.getScalarType() == MVT::i1)
return DAG.getConstant(1, SDLoc(N), VT);
return getOnesVector(VT, DAG, SDLoc(N));
}
if (InVec.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getBuildVector(
VT, SDLoc(N),
InVec.getNode()->ops().slice(IdxVal, VT.getVectorNumElements()));
// If we are extracting from an insert into a zero vector, replace with a
// smaller insert into zero if we don't access less than the original
// subvector. Don't do this for i1 vectors.
if (VT.getVectorElementType() != MVT::i1 &&
InVec.getOpcode() == ISD::INSERT_SUBVECTOR && IdxVal == 0 &&
InVec.hasOneUse() && isNullConstant(InVec.getOperand(2)) &&
ISD::isBuildVectorAllZeros(InVec.getOperand(0).getNode()) &&
InVec.getOperand(1).getValueSizeInBits() <= VT.getSizeInBits()) {
SDLoc DL(N);
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
getZeroVector(VT, Subtarget, DAG, DL),
InVec.getOperand(1), InVec.getOperand(2));
}
// If we're extracting from a broadcast then we're better off just
// broadcasting to the smaller type directly, assuming this is the only use.
// As its a broadcast we don't care about the extraction index.
if (InVec.getOpcode() == X86ISD::VBROADCAST && InVec.hasOneUse() &&
InVec.getOperand(0).getValueSizeInBits() <= VT.getSizeInBits())
return DAG.getNode(X86ISD::VBROADCAST, SDLoc(N), VT, InVec.getOperand(0));
if (InVec.getOpcode() == X86ISD::VBROADCAST_LOAD && InVec.hasOneUse()) {
auto *MemIntr = cast<MemIntrinsicSDNode>(InVec);
if (MemIntr->getMemoryVT().getSizeInBits() <= VT.getSizeInBits()) {
SDVTList Tys = DAG.getVTList(VT, MVT::Other);
SDValue Ops[] = { MemIntr->getChain(), MemIntr->getBasePtr() };
SDValue BcastLd =
DAG.getMemIntrinsicNode(X86ISD::VBROADCAST_LOAD, SDLoc(N), Tys, Ops,
MemIntr->getMemoryVT(),
MemIntr->getMemOperand());
DAG.ReplaceAllUsesOfValueWith(SDValue(MemIntr, 1), BcastLd.getValue(1));
return BcastLd;
}
}
// If we're extracting the lowest subvector and we're the only user,
// we may be able to perform this with a smaller vector width.
if (IdxVal == 0 && InVec.hasOneUse()) {
unsigned InOpcode = InVec.getOpcode();
if (VT == MVT::v2f64 && InVecVT == MVT::v4f64) {
// v2f64 CVTDQ2PD(v4i32).
if (InOpcode == ISD::SINT_TO_FP &&
InVec.getOperand(0).getValueType() == MVT::v4i32) {
return DAG.getNode(X86ISD::CVTSI2P, SDLoc(N), VT, InVec.getOperand(0));
}
// v2f64 CVTUDQ2PD(v4i32).
if (InOpcode == ISD::UINT_TO_FP && Subtarget.hasVLX() &&
InVec.getOperand(0).getValueType() == MVT::v4i32) {
return DAG.getNode(X86ISD::CVTUI2P, SDLoc(N), VT, InVec.getOperand(0));
}
// v2f64 CVTPS2PD(v4f32).
if (InOpcode == ISD::FP_EXTEND &&
InVec.getOperand(0).getValueType() == MVT::v4f32) {
return DAG.getNode(X86ISD::VFPEXT, SDLoc(N), VT, InVec.getOperand(0));
}
}
if ((InOpcode == ISD::ANY_EXTEND ||
InOpcode == ISD::ANY_EXTEND_VECTOR_INREG ||
InOpcode == ISD::ZERO_EXTEND ||
InOpcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
InOpcode == ISD::SIGN_EXTEND ||
InOpcode == ISD::SIGN_EXTEND_VECTOR_INREG) &&
VT.is128BitVector() &&
InVec.getOperand(0).getSimpleValueType().is128BitVector()) {
unsigned ExtOp = getOpcode_EXTEND_VECTOR_INREG(InOpcode);
return DAG.getNode(ExtOp, SDLoc(N), VT, InVec.getOperand(0));
}
if (InOpcode == ISD::VSELECT &&
InVec.getOperand(0).getValueType().is256BitVector() &&
InVec.getOperand(1).getValueType().is256BitVector() &&
InVec.getOperand(2).getValueType().is256BitVector()) {
SDLoc DL(N);
SDValue Ext0 = extractSubVector(InVec.getOperand(0), 0, DAG, DL, 128);
SDValue Ext1 = extractSubVector(InVec.getOperand(1), 0, DAG, DL, 128);
SDValue Ext2 = extractSubVector(InVec.getOperand(2), 0, DAG, DL, 128);
return DAG.getNode(InOpcode, DL, VT, Ext0, Ext1, Ext2);
}
}
return SDValue();
}
static SDValue combineScalarToVector(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(0);
SDLoc DL(N);
// If this is a scalar to vector to v1i1 from an AND with 1, bypass the and.
// This occurs frequently in our masked scalar intrinsic code and our
// floating point select lowering with AVX512.
// TODO: SimplifyDemandedBits instead?
if (VT == MVT::v1i1 && Src.getOpcode() == ISD::AND && Src.hasOneUse())
if (auto *C = dyn_cast<ConstantSDNode>(Src.getOperand(1)))
if (C->getAPIntValue().isOneValue())
return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v1i1,
Src.getOperand(0));
// Combine scalar_to_vector of an extract_vector_elt into an extract_subvec.
if (VT == MVT::v1i1 && Src.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Src.hasOneUse() && Src.getOperand(0).getValueType().isVector() &&
Src.getOperand(0).getValueType().getVectorElementType() == MVT::i1)
if (auto *C = dyn_cast<ConstantSDNode>(Src.getOperand(1)))
if (C->isNullValue())
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src.getOperand(0),
Src.getOperand(1));
// Reduce v2i64 to v4i32 if we don't need the upper bits.
// TODO: Move to DAGCombine?
if (VT == MVT::v2i64 && Src.getOpcode() == ISD::ANY_EXTEND &&
Src.getValueType() == MVT::i64 && Src.hasOneUse() &&
Src.getOperand(0).getScalarValueSizeInBits() <= 32)
return DAG.getBitcast(
VT, DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v4i32,
DAG.getAnyExtOrTrunc(Src.getOperand(0), DL, MVT::i32)));
return SDValue();
}
// Simplify PMULDQ and PMULUDQ operations.
static SDValue combinePMULDQ(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
// Canonicalize constant to RHS.
if (DAG.isConstantIntBuildVectorOrConstantInt(LHS) &&
!DAG.isConstantIntBuildVectorOrConstantInt(RHS))
return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), RHS, LHS);
// Multiply by zero.
// Don't return RHS as it may contain UNDEFs.
if (ISD::isBuildVectorAllZeros(RHS.getNode()))
return DAG.getConstant(0, SDLoc(N), N->getValueType(0));
// PMULDQ/PMULUDQ only uses lower 32 bits from each vector element.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.SimplifyDemandedBits(SDValue(N, 0), APInt::getAllOnesValue(64), DCI))
return SDValue(N, 0);
// If the input is an extend_invec and the SimplifyDemandedBits call didn't
// convert it to any_extend_invec, due to the LegalOperations check, do the
// conversion directly to a vector shuffle manually. This exposes combine
// opportunities missed by combineExtInVec not calling
// combineX86ShufflesRecursively on SSE4.1 targets.
// FIXME: This is basically a hack around several other issues related to
// ANY_EXTEND_VECTOR_INREG.
if (N->getValueType(0) == MVT::v2i64 && LHS.hasOneUse() &&
(LHS.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG ||
LHS.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG) &&
LHS.getOperand(0).getValueType() == MVT::v4i32) {
SDLoc dl(N);
LHS = DAG.getVectorShuffle(MVT::v4i32, dl, LHS.getOperand(0),
LHS.getOperand(0), { 0, -1, 1, -1 });
LHS = DAG.getBitcast(MVT::v2i64, LHS);
return DAG.getNode(N->getOpcode(), dl, MVT::v2i64, LHS, RHS);
}
if (N->getValueType(0) == MVT::v2i64 && RHS.hasOneUse() &&
(RHS.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG ||
RHS.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG) &&
RHS.getOperand(0).getValueType() == MVT::v4i32) {
SDLoc dl(N);
RHS = DAG.getVectorShuffle(MVT::v4i32, dl, RHS.getOperand(0),
RHS.getOperand(0), { 0, -1, 1, -1 });
RHS = DAG.getBitcast(MVT::v2i64, RHS);
return DAG.getNode(N->getOpcode(), dl, MVT::v2i64, LHS, RHS);
}
return SDValue();
}
static SDValue combineExtInVec(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue In = N->getOperand(0);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Try to merge vector loads and extend_inreg to an extload.
if (!DCI.isBeforeLegalizeOps() && ISD::isNormalLoad(In.getNode()) &&
In.hasOneUse()) {
auto *Ld = cast<LoadSDNode>(In);
if (Ld->isSimple()) {
MVT SVT = In.getSimpleValueType().getVectorElementType();
ISD::LoadExtType Ext = N->getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
EVT MemVT = EVT::getVectorVT(*DAG.getContext(), SVT,
VT.getVectorNumElements());
if (TLI.isLoadExtLegal(Ext, VT, MemVT)) {
SDValue Load =
DAG.getExtLoad(Ext, SDLoc(N), VT, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), MemVT, Ld->getAlignment(),
Ld->getMemOperand()->getFlags());
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
return Load;
}
}
}
// Attempt to combine as a shuffle.
// TODO: SSE41 support
if (Subtarget.hasAVX() && N->getOpcode() != ISD::SIGN_EXTEND_VECTOR_INREG) {
SDValue Op(N, 0);
if (TLI.isTypeLegal(VT) && TLI.isTypeLegal(In.getValueType()))
if (SDValue Res = combineX86ShufflesRecursively(Op, DAG, Subtarget))
return Res;
}
return SDValue();
}
static SDValue combineKSHIFT(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
if (ISD::isBuildVectorAllZeros(N->getOperand(0).getNode()))
return DAG.getConstant(0, SDLoc(N), VT);
APInt KnownUndef, KnownZero;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
APInt DemandedElts = APInt::getAllOnesValue(VT.getVectorNumElements());
if (TLI.SimplifyDemandedVectorElts(SDValue(N, 0), DemandedElts, KnownUndef,
KnownZero, DCI))
return SDValue(N, 0);
return SDValue();
}
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: break;
case ISD::SCALAR_TO_VECTOR:
return combineScalarToVector(N, DAG);
case ISD::EXTRACT_VECTOR_ELT:
case X86ISD::PEXTRW:
case X86ISD::PEXTRB:
return combineExtractVectorElt(N, DAG, DCI, Subtarget);
case ISD::CONCAT_VECTORS:
return combineConcatVectors(N, DAG, DCI, Subtarget);
case ISD::INSERT_SUBVECTOR:
return combineInsertSubvector(N, DAG, DCI, Subtarget);
case ISD::EXTRACT_SUBVECTOR:
return combineExtractSubvector(N, DAG, DCI, Subtarget);
case ISD::VSELECT:
case ISD::SELECT:
case X86ISD::BLENDV: return combineSelect(N, DAG, DCI, Subtarget);
case ISD::BITCAST: return combineBitcast(N, DAG, DCI, Subtarget);
case X86ISD::CMOV: return combineCMov(N, DAG, DCI, Subtarget);
case X86ISD::CMP: return combineCMP(N, DAG);
case ISD::ADD: return combineAdd(N, DAG, DCI, Subtarget);
case ISD::SUB: return combineSub(N, DAG, DCI, Subtarget);
case X86ISD::ADD:
case X86ISD::SUB: return combineX86AddSub(N, DAG, DCI);
case X86ISD::SBB: return combineSBB(N, DAG);
case X86ISD::ADC: return combineADC(N, DAG, DCI);
case ISD::MUL: return combineMul(N, DAG, DCI, Subtarget);
case ISD::SHL: return combineShiftLeft(N, DAG);
case ISD::SRA: return combineShiftRightArithmetic(N, DAG);
case ISD::SRL: return combineShiftRightLogical(N, DAG, DCI);
case ISD::AND: return combineAnd(N, DAG, DCI, Subtarget);
case ISD::OR: return combineOr(N, DAG, DCI, Subtarget);
case ISD::XOR: return combineXor(N, DAG, DCI, Subtarget);
case X86ISD::BEXTR: return combineBEXTR(N, DAG, DCI, Subtarget);
case ISD::LOAD: return combineLoad(N, DAG, DCI, Subtarget);
case ISD::MLOAD: return combineMaskedLoad(N, DAG, DCI, Subtarget);
case ISD::STORE: return combineStore(N, DAG, DCI, Subtarget);
case ISD::MSTORE: return combineMaskedStore(N, DAG, DCI, Subtarget);
case ISD::SINT_TO_FP:
case ISD::STRICT_SINT_TO_FP:
return combineSIntToFP(N, DAG, DCI, Subtarget);
case ISD::UINT_TO_FP:
case ISD::STRICT_UINT_TO_FP:
return combineUIntToFP(N, DAG, Subtarget);
case ISD::FADD:
case ISD::FSUB: return combineFaddFsub(N, DAG, Subtarget);
case ISD::FNEG: return combineFneg(N, DAG, Subtarget);
case ISD::TRUNCATE: return combineTruncate(N, DAG, Subtarget);
case X86ISD::VTRUNC: return combineVTRUNC(N, DAG);
case X86ISD::ANDNP: return combineAndnp(N, DAG, DCI, Subtarget);
case X86ISD::FAND: return combineFAnd(N, DAG, Subtarget);
case X86ISD::FANDN: return combineFAndn(N, DAG, Subtarget);
case X86ISD::FXOR:
case X86ISD::FOR: return combineFOr(N, DAG, Subtarget);
case X86ISD::FMIN:
case X86ISD::FMAX: return combineFMinFMax(N, DAG);
case ISD::FMINNUM:
case ISD::FMAXNUM: return combineFMinNumFMaxNum(N, DAG, Subtarget);
case X86ISD::CVTSI2P:
case X86ISD::CVTUI2P: return combineX86INT_TO_FP(N, DAG, DCI);
case X86ISD::CVTP2SI:
case X86ISD::CVTP2UI:
case X86ISD::CVTTP2SI:
case X86ISD::CVTTP2UI: return combineCVTP2I_CVTTP2I(N, DAG, DCI);
case X86ISD::BT: return combineBT(N, DAG, DCI);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND: return combineZext(N, DAG, DCI, Subtarget);
case ISD::SIGN_EXTEND: return combineSext(N, DAG, DCI, Subtarget);
case ISD::SIGN_EXTEND_INREG: return combineSignExtendInReg(N, DAG, Subtarget);
case ISD::ANY_EXTEND_VECTOR_INREG:
case ISD::SIGN_EXTEND_VECTOR_INREG:
case ISD::ZERO_EXTEND_VECTOR_INREG: return combineExtInVec(N, DAG, DCI,
Subtarget);
case ISD::SETCC: return combineSetCC(N, DAG, Subtarget);
case X86ISD::SETCC: return combineX86SetCC(N, DAG, Subtarget);
case X86ISD::BRCOND: return combineBrCond(N, DAG, Subtarget);
case X86ISD::PACKSS:
case X86ISD::PACKUS: return combineVectorPack(N, DAG, DCI, Subtarget);
case X86ISD::VSHL:
case X86ISD::VSRA:
case X86ISD::VSRL:
return combineVectorShiftVar(N, DAG, DCI, Subtarget);
case X86ISD::VSHLI:
case X86ISD::VSRAI:
case X86ISD::VSRLI:
return combineVectorShiftImm(N, DAG, DCI, Subtarget);
case X86ISD::PINSRB:
case X86ISD::PINSRW: return combineVectorInsert(N, DAG, DCI, Subtarget);
case X86ISD::SHUFP: // Handle all target specific shuffles
case X86ISD::INSERTPS:
case X86ISD::EXTRQI:
case X86ISD::INSERTQI:
case X86ISD::PALIGNR:
case X86ISD::VSHLDQ:
case X86ISD::VSRLDQ:
case X86ISD::BLENDI:
case X86ISD::UNPCKH:
case X86ISD::UNPCKL:
case X86ISD::MOVHLPS:
case X86ISD::MOVLHPS:
case X86ISD::PSHUFB:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::MOVDDUP:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::VBROADCAST:
case X86ISD::VPPERM:
case X86ISD::VPERMI:
case X86ISD::VPERMV:
case X86ISD::VPERMV3:
case X86ISD::VPERMIL2:
case X86ISD::VPERMILPI:
case X86ISD::VPERMILPV:
case X86ISD::VPERM2X128:
case X86ISD::SHUF128:
case X86ISD::VZEXT_MOVL:
case ISD::VECTOR_SHUFFLE: return combineShuffle(N, DAG, DCI,Subtarget);
case X86ISD::FMADD_RND:
case X86ISD::FMSUB:
case X86ISD::FMSUB_RND:
case X86ISD::FNMADD:
case X86ISD::FNMADD_RND:
case X86ISD::FNMSUB:
case X86ISD::FNMSUB_RND:
case ISD::FMA: return combineFMA(N, DAG, DCI, Subtarget);
case X86ISD::FMADDSUB_RND:
case X86ISD::FMSUBADD_RND:
case X86ISD::FMADDSUB:
case X86ISD::FMSUBADD: return combineFMADDSUB(N, DAG, DCI);
case X86ISD::MOVMSK: return combineMOVMSK(N, DAG, DCI, Subtarget);
case X86ISD::MGATHER:
case X86ISD::MSCATTER: return combineX86GatherScatter(N, DAG, DCI);
case ISD::MGATHER:
case ISD::MSCATTER: return combineGatherScatter(N, DAG, DCI);
case X86ISD::PCMPEQ:
case X86ISD::PCMPGT: return combineVectorCompare(N, DAG, Subtarget);
case X86ISD::PMULDQ:
case X86ISD::PMULUDQ: return combinePMULDQ(N, DAG, DCI, Subtarget);
case X86ISD::KSHIFTL:
case X86ISD::KSHIFTR: return combineKSHIFT(N, DAG, DCI);
}
return SDValue();
}
bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
if (!isTypeLegal(VT))
return false;
// There are no vXi8 shifts.
if (Opc == ISD::SHL && VT.isVector() && VT.getVectorElementType() == MVT::i8)
return false;
// TODO: Almost no 8-bit ops are desirable because they have no actual
// size/speed advantages vs. 32-bit ops, but they do have a major
// potential disadvantage by causing partial register stalls.
//
// 8-bit multiply/shl is probably not cheaper than 32-bit multiply/shl, and
// we have specializations to turn 32-bit multiply/shl into LEA or other ops.
// Also, see the comment in "IsDesirableToPromoteOp" - where we additionally
// check for a constant operand to the multiply.
if ((Opc == ISD::MUL || Opc == ISD::SHL) && VT == MVT::i8)
return false;
// i16 instruction encodings are longer and some i16 instructions are slow,
// so those are not desirable.
if (VT == MVT::i16) {
switch (Opc) {
default:
break;
case ISD::LOAD:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::SUB:
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
return false;
}
}
// Any legal type not explicitly accounted for above here is desirable.
return true;
}
SDValue X86TargetLowering::expandIndirectJTBranch(const SDLoc& dl,
SDValue Value, SDValue Addr,
SelectionDAG &DAG) const {
const Module *M = DAG.getMachineFunction().getMMI().getModule();
Metadata *IsCFProtectionSupported = M->getModuleFlag("cf-protection-branch");
if (IsCFProtectionSupported) {
// In case control-flow branch protection is enabled, we need to add
// notrack prefix to the indirect branch.
// In order to do that we create NT_BRIND SDNode.
// Upon ISEL, the pattern will convert it to jmp with NoTrack prefix.
return DAG.getNode(X86ISD::NT_BRIND, dl, MVT::Other, Value, Addr);
}
return TargetLowering::expandIndirectJTBranch(dl, Value, Addr, DAG);
}
bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
EVT VT = Op.getValueType();
bool Is8BitMulByConstant = VT == MVT::i8 && Op.getOpcode() == ISD::MUL &&
isa<ConstantSDNode>(Op.getOperand(1));
// i16 is legal, but undesirable since i16 instruction encodings are longer
// and some i16 instructions are slow.
// 8-bit multiply-by-constant can usually be expanded to something cheaper
// using LEA and/or other ALU ops.
if (VT != MVT::i16 && !Is8BitMulByConstant)
return false;
auto IsFoldableRMW = [](SDValue Load, SDValue Op) {
if (!Op.hasOneUse())
return false;
SDNode *User = *Op->use_begin();
if (!ISD::isNormalStore(User))
return false;
auto *Ld = cast<LoadSDNode>(Load);
auto *St = cast<StoreSDNode>(User);
return Ld->getBasePtr() == St->getBasePtr();
};
auto IsFoldableAtomicRMW = [](SDValue Load, SDValue Op) {
if (!Load.hasOneUse() || Load.getOpcode() != ISD::ATOMIC_LOAD)
return false;
if (!Op.hasOneUse())
return false;
SDNode *User = *Op->use_begin();
if (User->getOpcode() != ISD::ATOMIC_STORE)
return false;
auto *Ld = cast<AtomicSDNode>(Load);
auto *St = cast<AtomicSDNode>(User);
return Ld->getBasePtr() == St->getBasePtr();
};
bool Commute = false;
switch (Op.getOpcode()) {
default: return false;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: {
SDValue N0 = Op.getOperand(0);
// Look out for (store (shl (load), x)).
if (MayFoldLoad(N0) && IsFoldableRMW(N0, Op))
return false;
break;
}
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
Commute = true;
LLVM_FALLTHROUGH;
case ISD::SUB: {
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
// Avoid disabling potential load folding opportunities.
if (MayFoldLoad(N1) &&
(!Commute || !isa<ConstantSDNode>(N0) ||
(Op.getOpcode() != ISD::MUL && IsFoldableRMW(N1, Op))))
return false;
if (MayFoldLoad(N0) &&
((Commute && !isa<ConstantSDNode>(N1)) ||
(Op.getOpcode() != ISD::MUL && IsFoldableRMW(N0, Op))))
return false;
if (IsFoldableAtomicRMW(N0, Op) ||
(Commute && IsFoldableAtomicRMW(N1, Op)))
return false;
}
}
PVT = MVT::i32;
return true;
}
bool X86TargetLowering::
isDesirableToCombineBuildVectorToShuffleTruncate(
ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const {
assert(SrcVT.getVectorNumElements() == ShuffleMask.size() &&
"Element count mismatch");
assert(
Subtarget.getTargetLowering()->isShuffleMaskLegal(ShuffleMask, SrcVT) &&
"Shuffle Mask expected to be legal");
// For 32-bit elements VPERMD is better than shuffle+truncate.
// TODO: After we improve lowerBuildVector, add execption for VPERMW.
if (SrcVT.getScalarSizeInBits() == 32 || !Subtarget.hasAVX2())
return false;
if (is128BitLaneCrossingShuffleMask(SrcVT.getSimpleVT(), ShuffleMask))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// X86 Inline Assembly Support
//===----------------------------------------------------------------------===//
// Helper to match a string separated by whitespace.
static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
for (StringRef Piece : Pieces) {
if (!S.startswith(Piece)) // Check if the piece matches.
return false;
S = S.substr(Piece.size());
StringRef::size_type Pos = S.find_first_not_of(" \t");
if (Pos == 0) // We matched a prefix.
return false;
S = S.substr(Pos);
}
return S.empty();
}
static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
if (AsmPieces.size() == 3)
return true;
else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
return true;
}
}
return false;
}
bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
const std::string &AsmStr = IA->getAsmString();
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
if (!Ty || Ty->getBitWidth() % 16 != 0)
return false;
// TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
SmallVector<StringRef, 4> AsmPieces;
SplitString(AsmStr, AsmPieces, ";\n");
switch (AsmPieces.size()) {
default: return false;
case 1:
// FIXME: this should verify that we are targeting a 486 or better. If not,
// we will turn this bswap into something that will be lowered to logical
// ops instead of emitting the bswap asm. For now, we don't support 486 or
// lower so don't worry about this.
// bswap $0
if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
// No need to check constraints, nothing other than the equivalent of
// "=r,0" would be valid here.
return IntrinsicLowering::LowerToByteSwap(CI);
}
// rorw $$8, ${0:w} --> llvm.bswap.i16
if (CI->getType()->isIntegerTy(16) &&
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
(matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
AsmPieces.clear();
StringRef ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
if (clobbersFlagRegisters(AsmPieces))
return IntrinsicLowering::LowerToByteSwap(CI);
}
break;
case 3:
if (CI->getType()->isIntegerTy(32) &&
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
AsmPieces.clear();
StringRef ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
if (clobbersFlagRegisters(AsmPieces))
return IntrinsicLowering::LowerToByteSwap(CI);
}
if (CI->getType()->isIntegerTy(64)) {
InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
if (Constraints.size() >= 2 &&
Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
// bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
return IntrinsicLowering::LowerToByteSwap(CI);
}
}
break;
}
return false;
}
static X86::CondCode parseConstraintCode(llvm::StringRef Constraint) {
X86::CondCode Cond = StringSwitch<X86::CondCode>(Constraint)
.Case("{@cca}", X86::COND_A)
.Case("{@ccae}", X86::COND_AE)
.Case("{@ccb}", X86::COND_B)
.Case("{@ccbe}", X86::COND_BE)
.Case("{@ccc}", X86::COND_B)
.Case("{@cce}", X86::COND_E)
.Case("{@ccz}", X86::COND_E)
.Case("{@ccg}", X86::COND_G)
.Case("{@ccge}", X86::COND_GE)
.Case("{@ccl}", X86::COND_L)
.Case("{@ccle}", X86::COND_LE)
.Case("{@ccna}", X86::COND_BE)
.Case("{@ccnae}", X86::COND_B)
.Case("{@ccnb}", X86::COND_AE)
.Case("{@ccnbe}", X86::COND_A)
.Case("{@ccnc}", X86::COND_AE)
.Case("{@ccne}", X86::COND_NE)
.Case("{@ccnz}", X86::COND_NE)
.Case("{@ccng}", X86::COND_LE)
.Case("{@ccnge}", X86::COND_L)
.Case("{@ccnl}", X86::COND_GE)
.Case("{@ccnle}", X86::COND_G)
.Case("{@ccno}", X86::COND_NO)
.Case("{@ccnp}", X86::COND_P)
.Case("{@ccns}", X86::COND_NS)
.Case("{@cco}", X86::COND_O)
.Case("{@ccp}", X86::COND_P)
.Case("{@ccs}", X86::COND_S)
.Default(X86::COND_INVALID);
return Cond;
}
/// Given a constraint letter, return the type of constraint for this target.
X86TargetLowering::ConstraintType
X86TargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'R':
case 'q':
case 'Q':
case 'f':
case 't':
case 'u':
case 'y':
case 'x':
case 'v':
case 'Y':
case 'l':
case 'k': // AVX512 masking registers.
return C_RegisterClass;
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
case 'A':
return C_Register;
case 'I':
case 'J':
case 'K':
case 'N':
case 'G':
case 'L':
case 'M':
return C_Immediate;
case 'C':
case 'e':
case 'Z':
return C_Other;
default:
break;
}
}
else if (Constraint.size() == 2) {
switch (Constraint[0]) {
default:
break;
case 'Y':
switch (Constraint[1]) {
default:
break;
case 'z':
case '0':
return C_Register;
case 'i':
case 'm':
case 'k':
case 't':
case '2':
return C_RegisterClass;
}
}
} else if (parseConstraintCode(Constraint) != X86::COND_INVALID)
return C_Other;
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
X86TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
LLVM_FALLTHROUGH;
case 'R':
case 'q':
case 'Q':
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
case 'A':
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_SpecificReg;
break;
case 'f':
case 't':
case 'u':
if (type->isFloatingPointTy())
weight = CW_SpecificReg;
break;
case 'y':
if (type->isX86_MMXTy() && Subtarget.hasMMX())
weight = CW_SpecificReg;
break;
case 'Y': {
unsigned Size = StringRef(constraint).size();
// Pick 'i' as the next char as 'Yi' and 'Y' are synonymous, when matching 'Y'
char NextChar = Size == 2 ? constraint[1] : 'i';
if (Size > 2)
break;
switch (NextChar) {
default:
return CW_Invalid;
// XMM0
case 'z':
case '0':
if ((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1())
return CW_SpecificReg;
return CW_Invalid;
// Conditional OpMask regs (AVX512)
case 'k':
if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512())
return CW_Register;
return CW_Invalid;
// Any MMX reg
case 'm':
if (type->isX86_MMXTy() && Subtarget.hasMMX())
return weight;
return CW_Invalid;
// Any SSE reg when ISA >= SSE2, same as 'Y'
case 'i':
case 't':
case '2':
if (!Subtarget.hasSSE2())
return CW_Invalid;
break;
}
// Fall through (handle "Y" constraint).
LLVM_FALLTHROUGH;
}
case 'v':
if ((type->getPrimitiveSizeInBits() == 512) && Subtarget.hasAVX512())
weight = CW_Register;
LLVM_FALLTHROUGH;
case 'x':
if (((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) ||
((type->getPrimitiveSizeInBits() == 256) && Subtarget.hasAVX()))
weight = CW_Register;
break;
case 'k':
// Enable conditional vector operations using %k<#> registers.
if ((type->getPrimitiveSizeInBits() == 64) && Subtarget.hasAVX512())
weight = CW_Register;
break;
case 'I':
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
if (C->getZExtValue() <= 31)
weight = CW_Constant;
}
break;
case 'J':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 63)
weight = CW_Constant;
}
break;
case 'K':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
weight = CW_Constant;
}
break;
case 'L':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
weight = CW_Constant;
}
break;
case 'M':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 3)
weight = CW_Constant;
}
break;
case 'N':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 0xff)
weight = CW_Constant;
}
break;
case 'G':
case 'C':
if (isa<ConstantFP>(CallOperandVal)) {
weight = CW_Constant;
}
break;
case 'e':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getSExtValue() >= -0x80000000LL) &&
(C->getSExtValue() <= 0x7fffffffLL))
weight = CW_Constant;
}
break;
case 'Z':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 0xffffffff)
weight = CW_Constant;
}
break;
}
return weight;
}
/// Try to replace an X constraint, which matches anything, with another that
/// has more specific requirements based on the type of the corresponding
/// operand.
const char *X86TargetLowering::
LowerXConstraint(EVT ConstraintVT) const {
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
// 'f' like normal targets.
if (ConstraintVT.isFloatingPoint()) {
if (Subtarget.hasSSE2())
return "Y";
if (Subtarget.hasSSE1())
return "x";
}
return TargetLowering::LowerXConstraint(ConstraintVT);
}
// Lower @cc targets via setcc.
SDValue X86TargetLowering::LowerAsmOutputForConstraint(
SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
SelectionDAG &DAG) const {
X86::CondCode Cond = parseConstraintCode(OpInfo.ConstraintCode);
if (Cond == X86::COND_INVALID)
return SDValue();
// Check that return type is valid.
if (OpInfo.ConstraintVT.isVector() || !OpInfo.ConstraintVT.isInteger() ||
OpInfo.ConstraintVT.getSizeInBits() < 8)
report_fatal_error("Flag output operand is of invalid type");
// Get EFLAGS register. Only update chain when copyfrom is glued.
if (Flag.getNode()) {
Flag = DAG.getCopyFromReg(Chain, DL, X86::EFLAGS, MVT::i32, Flag);
Chain = Flag.getValue(1);
} else
Flag = DAG.getCopyFromReg(Chain, DL, X86::EFLAGS, MVT::i32);
// Extract CC code.
SDValue CC = getSETCC(Cond, Flag, DL, DAG);
// Extend to 32-bits
SDValue Result = DAG.getNode(ISD::ZERO_EXTEND, DL, OpInfo.ConstraintVT, CC);
return Result;
}
/// Lower the specified operand into the Ops vector.
/// If it is invalid, don't add anything to Ops.
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Only support length 1 constraints for now.
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'I':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 31) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'J':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 63) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'K':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (isInt<8>(C->getSExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'L':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
(Subtarget.is64Bit() && C->getZExtValue() == 0xffffffff)) {
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'M':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 3) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'N':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 255) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'O':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 127) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'e': {
// 32-bit signed value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
C->getSExtValue())) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
break;
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
}
return;
}
case 'Z': {
// 32-bit unsigned value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
C->getZExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
return;
}
case 'i': {
// Literal immediates are always ok.
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
bool IsBool = CST->getConstantIntValue()->getBitWidth() == 1;
BooleanContent BCont = getBooleanContents(MVT::i64);
ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
: ISD::SIGN_EXTEND;
int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? CST->getZExtValue()
: CST->getSExtValue();
Result = DAG.getTargetConstant(ExtVal, SDLoc(Op), MVT::i64);
break;
}
// In any sort of PIC mode addresses need to be computed at runtime by
// adding in a register or some sort of table lookup. These can't
// be used as immediates.
if (Subtarget.isPICStyleGOT() || Subtarget.isPICStyleStubPIC())
return;
// If we are in non-pic codegen mode, we allow the address of a global (with
// an optional displacement) to be used with 'i'.
if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op))
// If we require an extra load to get this address, as in PIC mode, we
// can't accept it.
if (isGlobalStubReference(
Subtarget.classifyGlobalReference(GA->getGlobal())))
return;
break;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
/// Check if \p RC is a general purpose register class.
/// I.e., GR* or one of their variant.
static bool isGRClass(const TargetRegisterClass &RC) {
return RC.hasSuperClassEq(&X86::GR8RegClass) ||
RC.hasSuperClassEq(&X86::GR16RegClass) ||
RC.hasSuperClassEq(&X86::GR32RegClass) ||
RC.hasSuperClassEq(&X86::GR64RegClass) ||
RC.hasSuperClassEq(&X86::LOW32_ADDR_ACCESS_RBPRegClass);
}
/// Check if \p RC is a vector register class.
/// I.e., FR* / VR* or one of their variant.
static bool isFRClass(const TargetRegisterClass &RC) {
return RC.hasSuperClassEq(&X86::FR32XRegClass) ||
RC.hasSuperClassEq(&X86::FR64XRegClass) ||
RC.hasSuperClassEq(&X86::VR128XRegClass) ||
RC.hasSuperClassEq(&X86::VR256XRegClass) ||
RC.hasSuperClassEq(&X86::VR512RegClass);
}
/// Check if \p RC is a mask register class.
/// I.e., VK* or one of their variant.
static bool isVKClass(const TargetRegisterClass &RC) {
return RC.hasSuperClassEq(&X86::VK1RegClass) ||
RC.hasSuperClassEq(&X86::VK2RegClass) ||
RC.hasSuperClassEq(&X86::VK4RegClass) ||
RC.hasSuperClassEq(&X86::VK8RegClass) ||
RC.hasSuperClassEq(&X86::VK16RegClass) ||
RC.hasSuperClassEq(&X86::VK32RegClass) ||
RC.hasSuperClassEq(&X86::VK64RegClass);
}
std::pair<unsigned, const TargetRegisterClass *>
X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
// First, see if this is a constraint that directly corresponds to an LLVM
// register class.
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
// 'A' means [ER]AX + [ER]DX.
case 'A':
if (Subtarget.is64Bit())
return std::make_pair(X86::RAX, &X86::GR64_ADRegClass);
assert((Subtarget.is32Bit() || Subtarget.is16Bit()) &&
"Expecting 64, 32 or 16 bit subtarget");
return std::make_pair(X86::EAX, &X86::GR32_ADRegClass);
// TODO: Slight differences here in allocation order and leaving
// RIP in the class. Do they matter any more here than they do
// in the normal allocation?
case 'k':
if (Subtarget.hasAVX512()) {
if (VT == MVT::i1)
return std::make_pair(0U, &X86::VK1RegClass);
if (VT == MVT::i8)
return std::make_pair(0U, &X86::VK8RegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::VK16RegClass);
}
if (Subtarget.hasBWI()) {
if (VT == MVT::i32)
return std::make_pair(0U, &X86::VK32RegClass);
if (VT == MVT::i64)
return std::make_pair(0U, &X86::VK64RegClass);
}
break;
case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
if (Subtarget.is64Bit()) {
if (VT == MVT::i32 || VT == MVT::f32)
return std::make_pair(0U, &X86::GR32RegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16RegClass);
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8RegClass);
if (VT == MVT::i64 || VT == MVT::f64)
return std::make_pair(0U, &X86::GR64RegClass);
break;
}
LLVM_FALLTHROUGH;
// 32-bit fallthrough
case 'Q': // Q_REGS
if (VT == MVT::i32 || VT == MVT::f32)
return std::make_pair(0U, &X86::GR32_ABCDRegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16_ABCDRegClass);
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
if (VT == MVT::i64)
return std::make_pair(0U, &X86::GR64_ABCDRegClass);
break;
case 'r': // GENERAL_REGS
case 'l': // INDEX_REGS
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8RegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16RegClass);
if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget.is64Bit())
return std::make_pair(0U, &X86::GR32RegClass);
return std::make_pair(0U, &X86::GR64RegClass);
case 'R': // LEGACY_REGS
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8_NOREXRegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16_NOREXRegClass);
if (VT == MVT::i32 || !Subtarget.is64Bit())
return std::make_pair(0U, &X86::GR32_NOREXRegClass);
return std::make_pair(0U, &X86::GR64_NOREXRegClass);
case 'f': // FP Stack registers.
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
// value to the correct fpstack register class.
if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, &X86::RFP32RegClass);
if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, &X86::RFP64RegClass);
return std::make_pair(0U, &X86::RFP80RegClass);
case 'y': // MMX_REGS if MMX allowed.
if (!Subtarget.hasMMX()) break;
return std::make_pair(0U, &X86::VR64RegClass);
case 'Y': // SSE_REGS if SSE2 allowed
if (!Subtarget.hasSSE2()) break;
LLVM_FALLTHROUGH;
case 'v':
case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
if (!Subtarget.hasSSE1()) break;
bool VConstraint = (Constraint[0] == 'v');
switch (VT.SimpleTy) {
default: break;
// Scalar SSE types.
case MVT::f32:
case MVT::i32:
if (VConstraint && Subtarget.hasVLX())
return std::make_pair(0U, &X86::FR32XRegClass);
return std::make_pair(0U, &X86::FR32RegClass);
case MVT::f64:
case MVT::i64:
if (VConstraint && Subtarget.hasVLX())
return std::make_pair(0U, &X86::FR64XRegClass);
return std::make_pair(0U, &X86::FR64RegClass);
// TODO: Handle i128 in FR128RegClass after it is tested well.
// Vector types and fp128.
case MVT::f128:
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
if (VConstraint && Subtarget.hasVLX())
return std::make_pair(0U, &X86::VR128XRegClass);
return std::make_pair(0U, &X86::VR128RegClass);
// AVX types.
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
case MVT::v4i64:
case MVT::v8f32:
case MVT::v4f64:
if (VConstraint && Subtarget.hasVLX())
return std::make_pair(0U, &X86::VR256XRegClass);
if (Subtarget.hasAVX())
return std::make_pair(0U, &X86::VR256RegClass);
break;
case MVT::v8f64:
case MVT::v16f32:
case MVT::v16i32:
case MVT::v8i64:
if (!Subtarget.hasAVX512()) break;
if (VConstraint)
return std::make_pair(0U, &X86::VR512RegClass);
return std::make_pair(0U, &X86::VR512_0_15RegClass);
}
break;
}
} else if (Constraint.size() == 2 && Constraint[0] == 'Y') {
switch (Constraint[1]) {
default:
break;
case 'i':
case 't':
case '2':
return getRegForInlineAsmConstraint(TRI, "Y", VT);
case 'm':
if (!Subtarget.hasMMX()) break;
return std::make_pair(0U, &X86::VR64RegClass);
case 'z':
case '0':
if (!Subtarget.hasSSE1()) break;
return std::make_pair(X86::XMM0, &X86::VR128RegClass);
case 'k':
// This register class doesn't allocate k0 for masked vector operation.
if (Subtarget.hasAVX512()) {
if (VT == MVT::i1)
return std::make_pair(0U, &X86::VK1WMRegClass);
if (VT == MVT::i8)
return std::make_pair(0U, &X86::VK8WMRegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::VK16WMRegClass);
}
if (Subtarget.hasBWI()) {
if (VT == MVT::i32)
return std::make_pair(0U, &X86::VK32WMRegClass);
if (VT == MVT::i64)
return std::make_pair(0U, &X86::VK64WMRegClass);
}
break;
}
}
if (parseConstraintCode(Constraint) != X86::COND_INVALID)
return std::make_pair(0U, &X86::GR32RegClass);
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass*> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
// Not found as a standard register?
if (!Res.second) {
// Map st(0) -> st(7) -> ST0
if (Constraint.size() == 7 && Constraint[0] == '{' &&
tolower(Constraint[1]) == 's' && tolower(Constraint[2]) == 't' &&
Constraint[3] == '(' &&
(Constraint[4] >= '0' && Constraint[4] <= '7') &&
Constraint[5] == ')' && Constraint[6] == '}') {
// st(7) is not allocatable and thus not a member of RFP80. Return
// singleton class in cases where we have a reference to it.
if (Constraint[4] == '7')
return std::make_pair(X86::FP7, &X86::RFP80_7RegClass);
return std::make_pair(X86::FP0 + Constraint[4] - '0',
&X86::RFP80RegClass);
}
// GCC allows "st(0)" to be called just plain "st".
if (StringRef("{st}").equals_lower(Constraint))
return std::make_pair(X86::FP0, &X86::RFP80RegClass);
// flags -> EFLAGS
if (StringRef("{flags}").equals_lower(Constraint))
return std::make_pair(X86::EFLAGS, &X86::CCRRegClass);
// dirflag -> DF
if (StringRef("{dirflag}").equals_lower(Constraint))
return std::make_pair(X86::DF, &X86::DFCCRRegClass);
// fpsr -> FPSW
if (StringRef("{fpsr}").equals_lower(Constraint))
return std::make_pair(X86::FPSW, &X86::FPCCRRegClass);
return Res;
}
// Make sure it isn't a register that requires 64-bit mode.
if (!Subtarget.is64Bit() &&
(isFRClass(*Res.second) || isGRClass(*Res.second)) &&
TRI->getEncodingValue(Res.first) >= 8) {
// Register requires REX prefix, but we're in 32-bit mode.
return std::make_pair(0, nullptr);
}
// Make sure it isn't a register that requires AVX512.
if (!Subtarget.hasAVX512() && isFRClass(*Res.second) &&
TRI->getEncodingValue(Res.first) & 0x10) {
// Register requires EVEX prefix.
return std::make_pair(0, nullptr);
}
// Otherwise, check to see if this is a register class of the wrong value
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
// turn into {ax},{dx}.
// MVT::Other is used to specify clobber names.
if (TRI->isTypeLegalForClass(*Res.second, VT) || VT == MVT::Other)
return Res; // Correct type already, nothing to do.
// Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
// return "eax". This should even work for things like getting 64bit integer
// registers when given an f64 type.
const TargetRegisterClass *Class = Res.second;
// The generic code will match the first register class that contains the
// given register. Thus, based on the ordering of the tablegened file,
// the "plain" GR classes might not come first.
// Therefore, use a helper method.
if (isGRClass(*Class)) {
unsigned Size = VT.getSizeInBits();
if (Size == 1) Size = 8;
unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size);
if (DestReg > 0) {
bool is64Bit = Subtarget.is64Bit();
const TargetRegisterClass *RC =
Size == 8 ? (is64Bit ? &X86::GR8RegClass : &X86::GR8_NOREXRegClass)
: Size == 16 ? (is64Bit ? &X86::GR16RegClass : &X86::GR16_NOREXRegClass)
: Size == 32 ? (is64Bit ? &X86::GR32RegClass : &X86::GR32_NOREXRegClass)
: Size == 64 ? (is64Bit ? &X86::GR64RegClass : nullptr)
: nullptr;
if (Size == 64 && !is64Bit) {
// Model GCC's behavior here and select a fixed pair of 32-bit
// registers.
switch (DestReg) {
case X86::RAX:
return std::make_pair(X86::EAX, &X86::GR32_ADRegClass);
case X86::RDX:
return std::make_pair(X86::EDX, &X86::GR32_DCRegClass);
case X86::RCX:
return std::make_pair(X86::ECX, &X86::GR32_CBRegClass);
case X86::RBX:
return std::make_pair(X86::EBX, &X86::GR32_BSIRegClass);
case X86::RSI:
return std::make_pair(X86::ESI, &X86::GR32_SIDIRegClass);
case X86::RDI:
return std::make_pair(X86::EDI, &X86::GR32_DIBPRegClass);
case X86::RBP:
return std::make_pair(X86::EBP, &X86::GR32_BPSPRegClass);
default:
return std::make_pair(0, nullptr);
}
}
if (RC && RC->contains(DestReg))
return std::make_pair(DestReg, RC);
return Res;
}
// No register found/type mismatch.
return std::make_pair(0, nullptr);
} else if (isFRClass(*Class)) {
// Handle references to XMM physical registers that got mapped into the
// wrong class. This can happen with constraints like {xmm0} where the
// target independent register mapper will just pick the first match it can
// find, ignoring the required type.
// TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
if (VT == MVT::f32 || VT == MVT::i32)
Res.second = &X86::FR32XRegClass;
else if (VT == MVT::f64 || VT == MVT::i64)
Res.second = &X86::FR64XRegClass;
else if (TRI->isTypeLegalForClass(X86::VR128XRegClass, VT))
Res.second = &X86::VR128XRegClass;
else if (TRI->isTypeLegalForClass(X86::VR256XRegClass, VT))
Res.second = &X86::VR256XRegClass;
else if (TRI->isTypeLegalForClass(X86::VR512RegClass, VT))
Res.second = &X86::VR512RegClass;
else {
// Type mismatch and not a clobber: Return an error;
Res.first = 0;
Res.second = nullptr;
}
} else if (isVKClass(*Class)) {
if (VT == MVT::i1)
Res.second = &X86::VK1RegClass;
else if (VT == MVT::i8)
Res.second = &X86::VK8RegClass;
else if (VT == MVT::i16)
Res.second = &X86::VK16RegClass;
else if (VT == MVT::i32)
Res.second = &X86::VK32RegClass;
else if (VT == MVT::i64)
Res.second = &X86::VK64RegClass;
else {
// Type mismatch and not a clobber: Return an error;
Res.first = 0;
Res.second = nullptr;
}
}
return Res;
}
int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// Scaling factors are not free at all.
// An indexed folded instruction, i.e., inst (reg1, reg2, scale),
// will take 2 allocations in the out of order engine instead of 1
// for plain addressing mode, i.e. inst (reg1).
// E.g.,
// vaddps (%rsi,%rdx), %ymm0, %ymm1
// Requires two allocations (one for the load, one for the computation)
// whereas:
// vaddps (%rsi), %ymm0, %ymm1
// Requires just 1 allocation, i.e., freeing allocations for other operations
// and having less micro operations to execute.
//
// For some X86 architectures, this is even worse because for instance for
// stores, the complex addressing mode forces the instruction to use the
// "load" ports instead of the dedicated "store" port.
// E.g., on Haswell:
// vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
// vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
if (isLegalAddressingMode(DL, AM, Ty, AS))
// Scale represents reg2 * scale, thus account for 1
// as soon as we use a second register.
return AM.Scale != 0;
return -1;
}
bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const {
// Integer division on x86 is expensive. However, when aggressively optimizing
// for code size, we prefer to use a div instruction, as it is usually smaller
// than the alternative sequence.
// The exception to this is vector division. Since x86 doesn't have vector
// integer division, leaving the division as-is is a loss even in terms of
// size, because it will have to be scalarized, while the alternative code
// sequence can be performed in vector form.
bool OptSize =
Attr.hasAttribute(AttributeList::FunctionIndex, Attribute::MinSize);
return OptSize && !VT.isVector();
}
void X86TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
if (!Subtarget.is64Bit())
return;
// Update IsSplitCSR in X86MachineFunctionInfo.
X86MachineFunctionInfo *AFI =
Entry->getParent()->getInfo<X86MachineFunctionInfo>();
AFI->setIsSplitCSR(true);
}
void X86TargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (X86::GR64RegClass.contains(*I))
RC = &X86::GR64RegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
Register NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
// FIXME: this currently does not emit CFI pseudo-instructions, it works
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
// nounwind. If we want to generalize this later, we may need to emit
// CFI pseudo-instructions.
assert(
Entry->getParent()->getFunction().hasFnAttribute(Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}
bool X86TargetLowering::supportSwiftError() const {
return Subtarget.is64Bit();
}
/// Returns the name of the symbol used to emit stack probes or the empty
/// string if not applicable.
StringRef
X86TargetLowering::getStackProbeSymbolName(MachineFunction &MF) const {
// If the function specifically requests stack probes, emit them.
if (MF.getFunction().hasFnAttribute("probe-stack"))
return MF.getFunction().getFnAttribute("probe-stack").getValueAsString();
// Generally, if we aren't on Windows, the platform ABI does not include
// support for stack probes, so don't emit them.
if (!Subtarget.isOSWindows() || Subtarget.isTargetMachO() ||
MF.getFunction().hasFnAttribute("no-stack-arg-probe"))
return "";
// We need a stack probe to conform to the Windows ABI. Choose the right
// symbol.
if (Subtarget.is64Bit())
return Subtarget.isTargetCygMing() ? "___chkstk_ms" : "__chkstk";
return Subtarget.isTargetCygMing() ? "_alloca" : "_chkstk";
}
unsigned
X86TargetLowering::getStackProbeSize(MachineFunction &MF) const {
// The default stack probe size is 4096 if the function has no stackprobesize
// attribute.
unsigned StackProbeSize = 4096;
const Function &Fn = MF.getFunction();
if (Fn.hasFnAttribute("stack-probe-size"))
Fn.getFnAttribute("stack-probe-size")
.getValueAsString()
.getAsInteger(0, StackProbeSize);
return StackProbeSize;
}