| //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Implements the AMDGPU specific subclass of TargetSubtarget. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPUSubtarget.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "AMDGPUCallLowering.h" |
| #include "AMDGPUInstructionSelector.h" |
| #include "AMDGPULegalizerInfo.h" |
| #include "AMDGPURegisterBankInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "amdgpu-subtarget" |
| |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #define GET_SUBTARGETINFO_CTOR |
| #define AMDGPUSubtarget GCNSubtarget |
| #include "AMDGPUGenSubtargetInfo.inc" |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #define GET_SUBTARGETINFO_CTOR |
| #undef AMDGPUSubtarget |
| #include "R600GenSubtargetInfo.inc" |
| |
| static cl::opt<bool> DisablePowerSched( |
| "amdgpu-disable-power-sched", |
| cl::desc("Disable scheduling to minimize mAI power bursts"), |
| cl::init(false)); |
| |
| static cl::opt<bool> EnableVGPRIndexMode( |
| "amdgpu-vgpr-index-mode", |
| cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), |
| cl::init(false)); |
| |
| GCNSubtarget::~GCNSubtarget() = default; |
| |
| R600Subtarget & |
| R600Subtarget::initializeSubtargetDependencies(const Triple &TT, |
| StringRef GPU, StringRef FS) { |
| SmallString<256> FullFS("+promote-alloca,"); |
| FullFS += FS; |
| ParseSubtargetFeatures(GPU, FullFS); |
| |
| // FIXME: I don't think think Evergreen has any useful support for |
| // denormals, but should be checked. Should we issue a warning somewhere |
| // if someone tries to enable these? |
| if (getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS) { |
| FP32Denormals = false; |
| } |
| |
| HasMulU24 = getGeneration() >= EVERGREEN; |
| HasMulI24 = hasCaymanISA(); |
| |
| return *this; |
| } |
| |
| GCNSubtarget & |
| GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, |
| StringRef GPU, StringRef FS) { |
| // Determine default and user-specified characteristics |
| // On SI+, we want FP64 denormals to be on by default. FP32 denormals can be |
| // enabled, but some instructions do not respect them and they run at the |
| // double precision rate, so don't enable by default. |
| // |
| // We want to be able to turn these off, but making this a subtarget feature |
| // for SI has the unhelpful behavior that it unsets everything else if you |
| // disable it. |
| // |
| // Similarly we want enable-prt-strict-null to be on by default and not to |
| // unset everything else if it is disabled |
| |
| // Assuming ECC is enabled is the conservative default. |
| SmallString<256> FullFS("+promote-alloca,+load-store-opt,+sram-ecc,+xnack,"); |
| |
| if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA. |
| FullFS += "+flat-for-global,+unaligned-buffer-access,+trap-handler,"; |
| |
| // FIXME: I don't think think Evergreen has any useful support for |
| // denormals, but should be checked. Should we issue a warning somewhere |
| // if someone tries to enable these? |
| if (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) { |
| FullFS += "+fp64-fp16-denormals,"; |
| } else { |
| FullFS += "-fp32-denormals,"; |
| } |
| |
| FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS |
| |
| // Disable mutually exclusive bits. |
| if (FS.find_lower("+wavefrontsize") != StringRef::npos) { |
| if (FS.find_lower("wavefrontsize16") == StringRef::npos) |
| FullFS += "-wavefrontsize16,"; |
| if (FS.find_lower("wavefrontsize32") == StringRef::npos) |
| FullFS += "-wavefrontsize32,"; |
| if (FS.find_lower("wavefrontsize64") == StringRef::npos) |
| FullFS += "-wavefrontsize64,"; |
| } |
| |
| FullFS += FS; |
| |
| ParseSubtargetFeatures(GPU, FullFS); |
| |
| // We don't support FP64 for EG/NI atm. |
| assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); |
| |
| // Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es |
| // on VI and newer hardware to avoid assertion failures due to missing ADDR64 |
| // variants of MUBUF instructions. |
| if (!hasAddr64() && !FS.contains("flat-for-global")) { |
| FlatForGlobal = true; |
| } |
| |
| // Set defaults if needed. |
| if (MaxPrivateElementSize == 0) |
| MaxPrivateElementSize = 4; |
| |
| if (LDSBankCount == 0) |
| LDSBankCount = 32; |
| |
| if (TT.getArch() == Triple::amdgcn) { |
| if (LocalMemorySize == 0) |
| LocalMemorySize = 32768; |
| |
| // Do something sensible for unspecified target. |
| if (!HasMovrel && !HasVGPRIndexMode) |
| HasMovrel = true; |
| } |
| |
| // Don't crash on invalid devices. |
| if (WavefrontSize == 0) |
| WavefrontSize = 64; |
| |
| HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; |
| |
| if (DoesNotSupportXNACK && EnableXNACK) { |
| ToggleFeature(AMDGPU::FeatureXNACK); |
| EnableXNACK = false; |
| } |
| |
| // ECC is on by default, but turn it off if the hardware doesn't support it |
| // anyway. This matters for the gfx9 targets with d16 loads, but don't support |
| // ECC. |
| if (DoesNotSupportSRAMECC && EnableSRAMECC) { |
| ToggleFeature(AMDGPU::FeatureSRAMECC); |
| EnableSRAMECC = false; |
| } |
| |
| return *this; |
| } |
| |
| AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : |
| TargetTriple(TT), |
| Has16BitInsts(false), |
| HasMadMixInsts(false), |
| FP32Denormals(false), |
| FPExceptions(false), |
| HasSDWA(false), |
| HasVOP3PInsts(false), |
| HasMulI24(true), |
| HasMulU24(true), |
| HasInv2PiInlineImm(false), |
| HasFminFmaxLegacy(true), |
| EnablePromoteAlloca(false), |
| HasTrigReducedRange(false), |
| MaxWavesPerEU(10), |
| LocalMemorySize(0), |
| WavefrontSize(0) |
| { } |
| |
| GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, |
| const GCNTargetMachine &TM) : |
| AMDGPUGenSubtargetInfo(TT, GPU, FS), |
| AMDGPUSubtarget(TT), |
| TargetTriple(TT), |
| Gen(TT.getOS() == Triple::AMDHSA ? SEA_ISLANDS : SOUTHERN_ISLANDS), |
| InstrItins(getInstrItineraryForCPU(GPU)), |
| LDSBankCount(0), |
| MaxPrivateElementSize(0), |
| |
| FastFMAF32(false), |
| HalfRate64Ops(false), |
| |
| FP64FP16Denormals(false), |
| FlatForGlobal(false), |
| AutoWaitcntBeforeBarrier(false), |
| CodeObjectV3(false), |
| UnalignedScratchAccess(false), |
| UnalignedBufferAccess(false), |
| |
| HasApertureRegs(false), |
| EnableXNACK(false), |
| DoesNotSupportXNACK(false), |
| EnableCuMode(false), |
| TrapHandler(false), |
| |
| EnableLoadStoreOpt(false), |
| EnableUnsafeDSOffsetFolding(false), |
| EnableSIScheduler(false), |
| EnableDS128(false), |
| EnablePRTStrictNull(false), |
| DumpCode(false), |
| |
| FP64(false), |
| GCN3Encoding(false), |
| CIInsts(false), |
| GFX8Insts(false), |
| GFX9Insts(false), |
| GFX10Insts(false), |
| GFX7GFX8GFX9Insts(false), |
| SGPRInitBug(false), |
| HasSMemRealTime(false), |
| HasIntClamp(false), |
| HasFmaMixInsts(false), |
| HasMovrel(false), |
| HasVGPRIndexMode(false), |
| HasScalarStores(false), |
| HasScalarAtomics(false), |
| HasSDWAOmod(false), |
| HasSDWAScalar(false), |
| HasSDWASdst(false), |
| HasSDWAMac(false), |
| HasSDWAOutModsVOPC(false), |
| HasDPP(false), |
| HasDPP8(false), |
| HasR128A16(false), |
| HasNSAEncoding(false), |
| HasDLInsts(false), |
| HasDot1Insts(false), |
| HasDot2Insts(false), |
| HasDot3Insts(false), |
| HasDot4Insts(false), |
| HasDot5Insts(false), |
| HasDot6Insts(false), |
| HasMAIInsts(false), |
| HasPkFmacF16Inst(false), |
| HasAtomicFaddInsts(false), |
| EnableSRAMECC(false), |
| DoesNotSupportSRAMECC(false), |
| HasNoSdstCMPX(false), |
| HasVscnt(false), |
| HasRegisterBanking(false), |
| HasVOP3Literal(false), |
| HasNoDataDepHazard(false), |
| FlatAddressSpace(false), |
| FlatInstOffsets(false), |
| FlatGlobalInsts(false), |
| FlatScratchInsts(false), |
| ScalarFlatScratchInsts(false), |
| AddNoCarryInsts(false), |
| HasUnpackedD16VMem(false), |
| LDSMisalignedBug(false), |
| HasMFMAInlineLiteralBug(false), |
| |
| ScalarizeGlobal(false), |
| |
| HasVcmpxPermlaneHazard(false), |
| HasVMEMtoScalarWriteHazard(false), |
| HasSMEMtoVectorWriteHazard(false), |
| HasInstFwdPrefetchBug(false), |
| HasVcmpxExecWARHazard(false), |
| HasLdsBranchVmemWARHazard(false), |
| HasNSAtoVMEMBug(false), |
| HasOffset3fBug(false), |
| HasFlatSegmentOffsetBug(false), |
| |
| FeatureDisable(false), |
| InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), |
| TLInfo(TM, *this), |
| FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { |
| MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); |
| CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); |
| Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); |
| RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); |
| InstSelector.reset(new AMDGPUInstructionSelector( |
| *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); |
| } |
| |
| unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { |
| if (getGeneration() < GFX10) |
| return 1; |
| |
| switch (Opcode) { |
| case AMDGPU::V_LSHLREV_B64: |
| case AMDGPU::V_LSHLREV_B64_gfx10: |
| case AMDGPU::V_LSHL_B64: |
| case AMDGPU::V_LSHRREV_B64: |
| case AMDGPU::V_LSHRREV_B64_gfx10: |
| case AMDGPU::V_LSHR_B64: |
| case AMDGPU::V_ASHRREV_I64: |
| case AMDGPU::V_ASHRREV_I64_gfx10: |
| case AMDGPU::V_ASHR_I64: |
| return 1; |
| } |
| |
| return 2; |
| } |
| |
| unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, |
| const Function &F) const { |
| if (NWaves == 1) |
| return getLocalMemorySize(); |
| unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; |
| unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); |
| if (!WorkGroupsPerCu) |
| return 0; |
| unsigned MaxWaves = getMaxWavesPerEU(); |
| return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves; |
| } |
| |
| unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, |
| const Function &F) const { |
| unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; |
| unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize); |
| if (!WorkGroupsPerCu) |
| return 0; |
| unsigned MaxWaves = getMaxWavesPerEU(); |
| unsigned Limit = getLocalMemorySize() * MaxWaves / WorkGroupsPerCu; |
| unsigned NumWaves = Limit / (Bytes ? Bytes : 1u); |
| NumWaves = std::min(NumWaves, MaxWaves); |
| NumWaves = std::max(NumWaves, 1u); |
| return NumWaves; |
| } |
| |
| unsigned |
| AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { |
| const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); |
| } |
| |
| std::pair<unsigned, unsigned> |
| AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { |
| switch (CC) { |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_LS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| return std::make_pair(1, getWavefrontSize()); |
| default: |
| return std::make_pair(1u, getMaxFlatWorkGroupSize()); |
| } |
| } |
| |
| std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( |
| const Function &F) const { |
| // Default minimum/maximum flat work group sizes. |
| std::pair<unsigned, unsigned> Default = |
| getDefaultFlatWorkGroupSize(F.getCallingConv()); |
| |
| // Requested minimum/maximum flat work group sizes. |
| std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( |
| F, "amdgpu-flat-work-group-size", Default); |
| |
| // Make sure requested minimum is less than requested maximum. |
| if (Requested.first > Requested.second) |
| return Default; |
| |
| // Make sure requested values do not violate subtarget's specifications. |
| if (Requested.first < getMinFlatWorkGroupSize()) |
| return Default; |
| if (Requested.second > getMaxFlatWorkGroupSize()) |
| return Default; |
| |
| return Requested; |
| } |
| |
| std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( |
| const Function &F) const { |
| // Default minimum/maximum number of waves per execution unit. |
| std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); |
| |
| // Default/requested minimum/maximum flat work group sizes. |
| std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F); |
| |
| // If minimum/maximum flat work group sizes were explicitly requested using |
| // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum |
| // number of waves per execution unit to values implied by requested |
| // minimum/maximum flat work group sizes. |
| unsigned MinImpliedByFlatWorkGroupSize = |
| getMaxWavesPerEU(FlatWorkGroupSizes.second); |
| bool RequestedFlatWorkGroupSize = false; |
| |
| if (F.hasFnAttribute("amdgpu-flat-work-group-size")) { |
| Default.first = MinImpliedByFlatWorkGroupSize; |
| RequestedFlatWorkGroupSize = true; |
| } |
| |
| // Requested minimum/maximum number of waves per execution unit. |
| std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( |
| F, "amdgpu-waves-per-eu", Default, true); |
| |
| // Make sure requested minimum is less than requested maximum. |
| if (Requested.second && Requested.first > Requested.second) |
| return Default; |
| |
| // Make sure requested values do not violate subtarget's specifications. |
| if (Requested.first < getMinWavesPerEU() || |
| Requested.first > getMaxWavesPerEU()) |
| return Default; |
| if (Requested.second > getMaxWavesPerEU()) |
| return Default; |
| |
| // Make sure requested values are compatible with values implied by requested |
| // minimum/maximum flat work group sizes. |
| if (RequestedFlatWorkGroupSize && |
| Requested.first < MinImpliedByFlatWorkGroupSize) |
| return Default; |
| |
| return Requested; |
| } |
| |
| bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { |
| Function *Kernel = I->getParent()->getParent(); |
| unsigned MinSize = 0; |
| unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; |
| bool IdQuery = false; |
| |
| // If reqd_work_group_size is present it narrows value down. |
| if (auto *CI = dyn_cast<CallInst>(I)) { |
| const Function *F = CI->getCalledFunction(); |
| if (F) { |
| unsigned Dim = UINT_MAX; |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::amdgcn_workitem_id_x: |
| case Intrinsic::r600_read_tidig_x: |
| IdQuery = true; |
| LLVM_FALLTHROUGH; |
| case Intrinsic::r600_read_local_size_x: |
| Dim = 0; |
| break; |
| case Intrinsic::amdgcn_workitem_id_y: |
| case Intrinsic::r600_read_tidig_y: |
| IdQuery = true; |
| LLVM_FALLTHROUGH; |
| case Intrinsic::r600_read_local_size_y: |
| Dim = 1; |
| break; |
| case Intrinsic::amdgcn_workitem_id_z: |
| case Intrinsic::r600_read_tidig_z: |
| IdQuery = true; |
| LLVM_FALLTHROUGH; |
| case Intrinsic::r600_read_local_size_z: |
| Dim = 2; |
| break; |
| default: |
| break; |
| } |
| if (Dim <= 3) { |
| if (auto Node = Kernel->getMetadata("reqd_work_group_size")) |
| if (Node->getNumOperands() == 3) |
| MinSize = MaxSize = mdconst::extract<ConstantInt>( |
| Node->getOperand(Dim))->getZExtValue(); |
| } |
| } |
| } |
| |
| if (!MaxSize) |
| return false; |
| |
| // Range metadata is [Lo, Hi). For ID query we need to pass max size |
| // as Hi. For size query we need to pass Hi + 1. |
| if (IdQuery) |
| MinSize = 0; |
| else |
| ++MaxSize; |
| |
| MDBuilder MDB(I->getContext()); |
| MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), |
| APInt(32, MaxSize)); |
| I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); |
| return true; |
| } |
| |
| uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, |
| Align &MaxAlign) const { |
| assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || |
| F.getCallingConv() == CallingConv::SPIR_KERNEL); |
| |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| uint64_t ExplicitArgBytes = 0; |
| MaxAlign = Align::None(); |
| |
| for (const Argument &Arg : F.args()) { |
| Type *ArgTy = Arg.getType(); |
| |
| const Align Alignment(DL.getABITypeAlignment(ArgTy)); |
| uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); |
| ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; |
| MaxAlign = std::max(MaxAlign, Alignment); |
| } |
| |
| return ExplicitArgBytes; |
| } |
| |
| unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, |
| Align &MaxAlign) const { |
| uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); |
| |
| unsigned ExplicitOffset = getExplicitKernelArgOffset(F); |
| |
| uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; |
| unsigned ImplicitBytes = getImplicitArgNumBytes(F); |
| if (ImplicitBytes != 0) { |
| const Align Alignment = getAlignmentForImplicitArgPtr(); |
| TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; |
| } |
| |
| // Being able to dereference past the end is useful for emitting scalar loads. |
| return alignTo(TotalSize, 4); |
| } |
| |
| R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS, |
| const TargetMachine &TM) : |
| R600GenSubtargetInfo(TT, GPU, FS), |
| AMDGPUSubtarget(TT), |
| InstrInfo(*this), |
| FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0), |
| FMA(false), |
| CaymanISA(false), |
| CFALUBug(false), |
| HasVertexCache(false), |
| R600ALUInst(false), |
| FP64(false), |
| TexVTXClauseSize(0), |
| Gen(R600), |
| TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)), |
| InstrItins(getInstrItineraryForCPU(GPU)) { } |
| |
| void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, |
| unsigned NumRegionInstrs) const { |
| // Track register pressure so the scheduler can try to decrease |
| // pressure once register usage is above the threshold defined by |
| // SIRegisterInfo::getRegPressureSetLimit() |
| Policy.ShouldTrackPressure = true; |
| |
| // Enabling both top down and bottom up scheduling seems to give us less |
| // register spills than just using one of these approaches on its own. |
| Policy.OnlyTopDown = false; |
| Policy.OnlyBottomUp = false; |
| |
| // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. |
| if (!enableSIScheduler()) |
| Policy.ShouldTrackLaneMasks = true; |
| } |
| |
| bool GCNSubtarget::hasMadF16() const { |
| return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16) != -1; |
| } |
| |
| bool GCNSubtarget::useVGPRIndexMode() const { |
| return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode()); |
| } |
| |
| unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { |
| if (getGeneration() >= AMDGPUSubtarget::GFX10) |
| return getMaxWavesPerEU(); |
| |
| if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { |
| if (SGPRs <= 80) |
| return 10; |
| if (SGPRs <= 88) |
| return 9; |
| if (SGPRs <= 100) |
| return 8; |
| return 7; |
| } |
| if (SGPRs <= 48) |
| return 10; |
| if (SGPRs <= 56) |
| return 9; |
| if (SGPRs <= 64) |
| return 8; |
| if (SGPRs <= 72) |
| return 7; |
| if (SGPRs <= 80) |
| return 6; |
| return 5; |
| } |
| |
| unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const { |
| unsigned MaxWaves = getMaxWavesPerEU(); |
| unsigned Granule = getVGPRAllocGranule(); |
| if (VGPRs < Granule) |
| return MaxWaves; |
| unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule; |
| return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves); |
| } |
| |
| unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { |
| const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); |
| if (getGeneration() >= AMDGPUSubtarget::GFX10) |
| return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. |
| |
| if (MFI.hasFlatScratchInit()) { |
| if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). |
| if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) |
| return 4; // FLAT_SCRATCH, VCC (in that order). |
| } |
| |
| if (isXNACKEnabled()) |
| return 4; // XNACK, VCC (in that order). |
| return 2; // VCC. |
| } |
| |
| unsigned GCNSubtarget::computeOccupancy(const MachineFunction &MF, |
| unsigned LDSSize, |
| unsigned NumSGPRs, |
| unsigned NumVGPRs) const { |
| unsigned Occupancy = |
| std::min(getMaxWavesPerEU(), |
| getOccupancyWithLocalMemSize(LDSSize, MF.getFunction())); |
| if (NumSGPRs) |
| Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); |
| if (NumVGPRs) |
| Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); |
| return Occupancy; |
| } |
| |
| unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // Compute maximum number of SGPRs function can use using default/requested |
| // minimum number of waves per execution unit. |
| std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU(); |
| unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); |
| unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); |
| |
| // Check if maximum number of SGPRs was explicitly requested using |
| // "amdgpu-num-sgpr" attribute. |
| if (F.hasFnAttribute("amdgpu-num-sgpr")) { |
| unsigned Requested = AMDGPU::getIntegerAttribute( |
| F, "amdgpu-num-sgpr", MaxNumSGPRs); |
| |
| // Make sure requested value does not violate subtarget's specifications. |
| if (Requested && (Requested <= getReservedNumSGPRs(MF))) |
| Requested = 0; |
| |
| // If more SGPRs are required to support the input user/system SGPRs, |
| // increase to accommodate them. |
| // |
| // FIXME: This really ends up using the requested number of SGPRs + number |
| // of reserved special registers in total. Theoretically you could re-use |
| // the last input registers for these special registers, but this would |
| // require a lot of complexity to deal with the weird aliasing. |
| unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs(); |
| if (Requested && Requested < InputNumSGPRs) |
| Requested = InputNumSGPRs; |
| |
| // Make sure requested value is compatible with values implied by |
| // default/requested minimum/maximum number of waves per execution unit. |
| if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) |
| Requested = 0; |
| if (WavesPerEU.second && |
| Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) |
| Requested = 0; |
| |
| if (Requested) |
| MaxNumSGPRs = Requested; |
| } |
| |
| if (hasSGPRInitBug()) |
| MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; |
| |
| return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF), |
| MaxAddressableNumSGPRs); |
| } |
| |
| unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); |
| |
| // Compute maximum number of VGPRs function can use using default/requested |
| // minimum number of waves per execution unit. |
| std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU(); |
| unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); |
| |
| // Check if maximum number of VGPRs was explicitly requested using |
| // "amdgpu-num-vgpr" attribute. |
| if (F.hasFnAttribute("amdgpu-num-vgpr")) { |
| unsigned Requested = AMDGPU::getIntegerAttribute( |
| F, "amdgpu-num-vgpr", MaxNumVGPRs); |
| |
| // Make sure requested value is compatible with values implied by |
| // default/requested minimum/maximum number of waves per execution unit. |
| if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) |
| Requested = 0; |
| if (WavesPerEU.second && |
| Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) |
| Requested = 0; |
| |
| if (Requested) |
| MaxNumVGPRs = Requested; |
| } |
| |
| return MaxNumVGPRs; |
| } |
| |
| void GCNSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst, |
| SDep &Dep) const { |
| if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || |
| !Src->isInstr() || !Dst->isInstr()) |
| return; |
| |
| MachineInstr *SrcI = Src->getInstr(); |
| MachineInstr *DstI = Dst->getInstr(); |
| |
| if (SrcI->isBundle()) { |
| const SIRegisterInfo *TRI = getRegisterInfo(); |
| auto Reg = Dep.getReg(); |
| MachineBasicBlock::const_instr_iterator I(SrcI->getIterator()); |
| MachineBasicBlock::const_instr_iterator E(SrcI->getParent()->instr_end()); |
| unsigned Lat = 0; |
| for (++I; I != E && I->isBundledWithPred(); ++I) { |
| if (I->modifiesRegister(Reg, TRI)) |
| Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I); |
| else if (Lat) |
| --Lat; |
| } |
| Dep.setLatency(Lat); |
| } else if (DstI->isBundle()) { |
| const SIRegisterInfo *TRI = getRegisterInfo(); |
| auto Reg = Dep.getReg(); |
| MachineBasicBlock::const_instr_iterator I(DstI->getIterator()); |
| MachineBasicBlock::const_instr_iterator E(DstI->getParent()->instr_end()); |
| unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *SrcI); |
| for (++I; I != E && I->isBundledWithPred() && Lat; ++I) { |
| if (I->readsRegister(Reg, TRI)) |
| break; |
| --Lat; |
| } |
| Dep.setLatency(Lat); |
| } |
| } |
| |
| namespace { |
| struct MemOpClusterMutation : ScheduleDAGMutation { |
| const SIInstrInfo *TII; |
| |
| MemOpClusterMutation(const SIInstrInfo *tii) : TII(tii) {} |
| |
| void apply(ScheduleDAGInstrs *DAG) override { |
| SUnit *SUa = nullptr; |
| // Search for two consequent memory operations and link them |
| // to prevent scheduler from moving them apart. |
| // In DAG pre-process SUnits are in the original order of |
| // the instructions before scheduling. |
| for (SUnit &SU : DAG->SUnits) { |
| MachineInstr &MI2 = *SU.getInstr(); |
| if (!MI2.mayLoad() && !MI2.mayStore()) { |
| SUa = nullptr; |
| continue; |
| } |
| if (!SUa) { |
| SUa = &SU; |
| continue; |
| } |
| |
| MachineInstr &MI1 = *SUa->getInstr(); |
| if ((TII->isVMEM(MI1) && TII->isVMEM(MI2)) || |
| (TII->isFLAT(MI1) && TII->isFLAT(MI2)) || |
| (TII->isSMRD(MI1) && TII->isSMRD(MI2)) || |
| (TII->isDS(MI1) && TII->isDS(MI2))) { |
| SU.addPredBarrier(SUa); |
| |
| for (const SDep &SI : SU.Preds) { |
| if (SI.getSUnit() != SUa) |
| SUa->addPred(SDep(SI.getSUnit(), SDep::Artificial)); |
| } |
| |
| if (&SU != &DAG->ExitSU) { |
| for (const SDep &SI : SUa->Succs) { |
| if (SI.getSUnit() != &SU) |
| SI.getSUnit()->addPred(SDep(&SU, SDep::Artificial)); |
| } |
| } |
| } |
| |
| SUa = &SU; |
| } |
| } |
| }; |
| |
| struct FillMFMAShadowMutation : ScheduleDAGMutation { |
| const SIInstrInfo *TII; |
| |
| ScheduleDAGMI *DAG; |
| |
| FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} |
| |
| bool isSALU(const SUnit *SU) const { |
| const MachineInstr *MI = SU->getInstr(); |
| return MI && TII->isSALU(*MI) && !MI->isTerminator(); |
| } |
| |
| bool isVALU(const SUnit *SU) const { |
| const MachineInstr *MI = SU->getInstr(); |
| return MI && TII->isVALU(*MI); |
| } |
| |
| bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const { |
| if (Pred->NodeNum < Succ->NodeNum) |
| return true; |
| |
| SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred}); |
| |
| for (unsigned I = 0; I < Succs.size(); ++I) { |
| for (const SDep &SI : Succs[I]->Succs) { |
| const SUnit *SU = SI.getSUnit(); |
| if (SU != Succs[I] && llvm::find(Succs, SU) == Succs.end()) |
| Succs.push_back(SU); |
| } |
| } |
| |
| SmallPtrSet<const SUnit*, 32> Visited; |
| while (!Preds.empty()) { |
| const SUnit *SU = Preds.pop_back_val(); |
| if (llvm::find(Succs, SU) != Succs.end()) |
| return false; |
| Visited.insert(SU); |
| for (const SDep &SI : SU->Preds) |
| if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit())) |
| Preds.push_back(SI.getSUnit()); |
| } |
| |
| return true; |
| } |
| |
| // Link as much SALU intructions in chain as possible. Return the size |
| // of the chain. Links up to MaxChain instructions. |
| unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, |
| SmallPtrSetImpl<SUnit *> &Visited) const { |
| SmallVector<SUnit *, 8> Worklist({To}); |
| unsigned Linked = 0; |
| |
| while (!Worklist.empty() && MaxChain-- > 0) { |
| SUnit *SU = Worklist.pop_back_val(); |
| if (!Visited.insert(SU).second) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); |
| dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); |
| |
| if (SU->addPred(SDep(From, SDep::Artificial), false)) |
| ++Linked; |
| |
| for (SDep &SI : From->Succs) { |
| SUnit *SUv = SI.getSUnit(); |
| if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU)) |
| SUv->addPred(SDep(SU, SDep::Artificial), false); |
| } |
| |
| for (SDep &SI : SU->Succs) { |
| SUnit *Succ = SI.getSUnit(); |
| if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ)) |
| Worklist.push_back(Succ); |
| } |
| } |
| |
| return Linked; |
| } |
| |
| void apply(ScheduleDAGInstrs *DAGInstrs) override { |
| const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); |
| if (!ST.hasMAIInsts() || DisablePowerSched) |
| return; |
| DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); |
| const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); |
| if (!TSchedModel || DAG->SUnits.empty()) |
| return; |
| |
| // Scan for MFMA long latency instructions and try to add a dependency |
| // of available SALU instructions to give them a chance to fill MFMA |
| // shadow. That is desirable to fill MFMA shadow with SALU instructions |
| // rather than VALU to prevent power consumption bursts and throttle. |
| auto LastSALU = DAG->SUnits.begin(); |
| auto E = DAG->SUnits.end(); |
| SmallPtrSet<SUnit*, 32> Visited; |
| for (SUnit &SU : DAG->SUnits) { |
| MachineInstr &MAI = *SU.getInstr(); |
| if (!TII->isMAI(MAI) || |
| MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32 || |
| MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32) |
| continue; |
| |
| unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; |
| |
| LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); |
| dbgs() << "Need " << Lat |
| << " instructions to cover latency.\n"); |
| |
| // Find up to Lat independent scalar instructions as early as |
| // possible such that they can be scheduled after this MFMA. |
| for ( ; Lat && LastSALU != E; ++LastSALU) { |
| if (Visited.count(&*LastSALU)) |
| continue; |
| |
| if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU)) |
| continue; |
| |
| Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); |
| } |
| } |
| } |
| }; |
| } // namespace |
| |
| void GCNSubtarget::getPostRAMutations( |
| std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { |
| Mutations.push_back(std::make_unique<MemOpClusterMutation>(&InstrInfo)); |
| Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); |
| } |
| |
| const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { |
| if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) |
| return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); |
| else |
| return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); |
| } |
| |
| const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { |
| if (TM.getTargetTriple().getArch() == Triple::amdgcn) |
| return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); |
| else |
| return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); |
| } |