| //===-- ARMBaseRegisterInfo.cpp - ARM Register Information ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the base ARM implementation of TargetRegisterInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARM.h" |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMFrameLowering.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMSubtarget.h" |
| #include "MCTargetDesc/ARMAddressingModes.h" |
| #include "MCTargetDesc/ARMBaseInfo.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/VirtRegMap.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <cassert> |
| #include <utility> |
| |
| #define DEBUG_TYPE "arm-register-info" |
| |
| #define GET_REGINFO_TARGET_DESC |
| #include "ARMGenRegisterInfo.inc" |
| |
| using namespace llvm; |
| |
| ARMBaseRegisterInfo::ARMBaseRegisterInfo() |
| : ARMGenRegisterInfo(ARM::LR, 0, 0, ARM::PC) {} |
| |
| static unsigned getFramePointerReg(const ARMSubtarget &STI) { |
| return STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; |
| } |
| |
| const MCPhysReg* |
| ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const { |
| const ARMSubtarget &STI = MF->getSubtarget<ARMSubtarget>(); |
| bool UseSplitPush = STI.splitFramePushPop(*MF); |
| const MCPhysReg *RegList = |
| STI.isTargetDarwin() |
| ? CSR_iOS_SaveList |
| : (UseSplitPush ? CSR_AAPCS_SplitPush_SaveList : CSR_AAPCS_SaveList); |
| |
| const Function &F = MF->getFunction(); |
| if (F.getCallingConv() == CallingConv::GHC) { |
| // GHC set of callee saved regs is empty as all those regs are |
| // used for passing STG regs around |
| return CSR_NoRegs_SaveList; |
| } else if (F.hasFnAttribute("interrupt")) { |
| if (STI.isMClass()) { |
| // M-class CPUs have hardware which saves the registers needed to allow a |
| // function conforming to the AAPCS to function as a handler. |
| return UseSplitPush ? CSR_AAPCS_SplitPush_SaveList : CSR_AAPCS_SaveList; |
| } else if (F.getFnAttribute("interrupt").getValueAsString() == "FIQ") { |
| // Fast interrupt mode gives the handler a private copy of R8-R14, so less |
| // need to be saved to restore user-mode state. |
| return CSR_FIQ_SaveList; |
| } else { |
| // Generally only R13-R14 (i.e. SP, LR) are automatically preserved by |
| // exception handling. |
| return CSR_GenericInt_SaveList; |
| } |
| } |
| |
| if (STI.getTargetLowering()->supportSwiftError() && |
| F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { |
| if (STI.isTargetDarwin()) |
| return CSR_iOS_SwiftError_SaveList; |
| |
| return UseSplitPush ? CSR_AAPCS_SplitPush_SwiftError_SaveList : |
| CSR_AAPCS_SwiftError_SaveList; |
| } |
| |
| if (STI.isTargetDarwin() && F.getCallingConv() == CallingConv::CXX_FAST_TLS) |
| return MF->getInfo<ARMFunctionInfo>()->isSplitCSR() |
| ? CSR_iOS_CXX_TLS_PE_SaveList |
| : CSR_iOS_CXX_TLS_SaveList; |
| return RegList; |
| } |
| |
| const MCPhysReg *ARMBaseRegisterInfo::getCalleeSavedRegsViaCopy( |
| const MachineFunction *MF) const { |
| assert(MF && "Invalid MachineFunction pointer."); |
| if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS && |
| MF->getInfo<ARMFunctionInfo>()->isSplitCSR()) |
| return CSR_iOS_CXX_TLS_ViaCopy_SaveList; |
| return nullptr; |
| } |
| |
| const uint32_t * |
| ARMBaseRegisterInfo::getCallPreservedMask(const MachineFunction &MF, |
| CallingConv::ID CC) const { |
| const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
| if (CC == CallingConv::GHC) |
| // This is academic because all GHC calls are (supposed to be) tail calls |
| return CSR_NoRegs_RegMask; |
| |
| if (STI.getTargetLowering()->supportSwiftError() && |
| MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError)) |
| return STI.isTargetDarwin() ? CSR_iOS_SwiftError_RegMask |
| : CSR_AAPCS_SwiftError_RegMask; |
| |
| if (STI.isTargetDarwin() && CC == CallingConv::CXX_FAST_TLS) |
| return CSR_iOS_CXX_TLS_RegMask; |
| return STI.isTargetDarwin() ? CSR_iOS_RegMask : CSR_AAPCS_RegMask; |
| } |
| |
| const uint32_t* |
| ARMBaseRegisterInfo::getNoPreservedMask() const { |
| return CSR_NoRegs_RegMask; |
| } |
| |
| const uint32_t * |
| ARMBaseRegisterInfo::getTLSCallPreservedMask(const MachineFunction &MF) const { |
| assert(MF.getSubtarget<ARMSubtarget>().isTargetDarwin() && |
| "only know about special TLS call on Darwin"); |
| return CSR_iOS_TLSCall_RegMask; |
| } |
| |
| const uint32_t * |
| ARMBaseRegisterInfo::getSjLjDispatchPreservedMask(const MachineFunction &MF) const { |
| const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
| if (!STI.useSoftFloat() && STI.hasVFP2() && !STI.isThumb1Only()) |
| return CSR_NoRegs_RegMask; |
| else |
| return CSR_FPRegs_RegMask; |
| } |
| |
| const uint32_t * |
| ARMBaseRegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF, |
| CallingConv::ID CC) const { |
| const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
| // This should return a register mask that is the same as that returned by |
| // getCallPreservedMask but that additionally preserves the register used for |
| // the first i32 argument (which must also be the register used to return a |
| // single i32 return value) |
| // |
| // In case that the calling convention does not use the same register for |
| // both or otherwise does not want to enable this optimization, the function |
| // should return NULL |
| if (CC == CallingConv::GHC) |
| // This is academic because all GHC calls are (supposed to be) tail calls |
| return nullptr; |
| return STI.isTargetDarwin() ? CSR_iOS_ThisReturn_RegMask |
| : CSR_AAPCS_ThisReturn_RegMask; |
| } |
| |
| BitVector ARMBaseRegisterInfo:: |
| getReservedRegs(const MachineFunction &MF) const { |
| const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
| const ARMFrameLowering *TFI = getFrameLowering(MF); |
| |
| // FIXME: avoid re-calculating this every time. |
| BitVector Reserved(getNumRegs()); |
| markSuperRegs(Reserved, ARM::SP); |
| markSuperRegs(Reserved, ARM::PC); |
| markSuperRegs(Reserved, ARM::FPSCR); |
| markSuperRegs(Reserved, ARM::APSR_NZCV); |
| if (TFI->hasFP(MF)) |
| markSuperRegs(Reserved, getFramePointerReg(STI)); |
| if (hasBasePointer(MF)) |
| markSuperRegs(Reserved, BasePtr); |
| // Some targets reserve R9. |
| if (STI.isR9Reserved()) |
| markSuperRegs(Reserved, ARM::R9); |
| // Reserve D16-D31 if the subtarget doesn't support them. |
| if (!STI.hasVFP3() || STI.hasD16()) { |
| static_assert(ARM::D31 == ARM::D16 + 15, "Register list not consecutive!"); |
| for (unsigned R = 0; R < 16; ++R) |
| markSuperRegs(Reserved, ARM::D16 + R); |
| } |
| const TargetRegisterClass &RC = ARM::GPRPairRegClass; |
| for (unsigned Reg : RC) |
| for (MCSubRegIterator SI(Reg, this); SI.isValid(); ++SI) |
| if (Reserved.test(*SI)) |
| markSuperRegs(Reserved, Reg); |
| |
| assert(checkAllSuperRegsMarked(Reserved)); |
| return Reserved; |
| } |
| |
| const TargetRegisterClass * |
| ARMBaseRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC, |
| const MachineFunction &) const { |
| const TargetRegisterClass *Super = RC; |
| TargetRegisterClass::sc_iterator I = RC->getSuperClasses(); |
| do { |
| switch (Super->getID()) { |
| case ARM::GPRRegClassID: |
| case ARM::SPRRegClassID: |
| case ARM::DPRRegClassID: |
| case ARM::QPRRegClassID: |
| case ARM::QQPRRegClassID: |
| case ARM::QQQQPRRegClassID: |
| case ARM::GPRPairRegClassID: |
| return Super; |
| } |
| Super = *I++; |
| } while (Super); |
| return RC; |
| } |
| |
| const TargetRegisterClass * |
| ARMBaseRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind) |
| const { |
| return &ARM::GPRRegClass; |
| } |
| |
| const TargetRegisterClass * |
| ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const { |
| if (RC == &ARM::CCRRegClass) |
| return &ARM::rGPRRegClass; // Can't copy CCR registers. |
| return RC; |
| } |
| |
| unsigned |
| ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC, |
| MachineFunction &MF) const { |
| const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
| const ARMFrameLowering *TFI = getFrameLowering(MF); |
| |
| switch (RC->getID()) { |
| default: |
| return 0; |
| case ARM::tGPRRegClassID: { |
| // hasFP ends up calling getMaxCallFrameComputed() which may not be |
| // available when getPressureLimit() is called as part of |
| // ScheduleDAGRRList. |
| bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed() |
| ? TFI->hasFP(MF) : true; |
| return 5 - HasFP; |
| } |
| case ARM::GPRRegClassID: { |
| bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed() |
| ? TFI->hasFP(MF) : true; |
| return 10 - HasFP - (STI.isR9Reserved() ? 1 : 0); |
| } |
| case ARM::SPRRegClassID: // Currently not used as 'rep' register class. |
| case ARM::DPRRegClassID: |
| return 32 - 10; |
| } |
| } |
| |
| // Get the other register in a GPRPair. |
| static unsigned getPairedGPR(unsigned Reg, bool Odd, const MCRegisterInfo *RI) { |
| for (MCSuperRegIterator Supers(Reg, RI); Supers.isValid(); ++Supers) |
| if (ARM::GPRPairRegClass.contains(*Supers)) |
| return RI->getSubReg(*Supers, Odd ? ARM::gsub_1 : ARM::gsub_0); |
| return 0; |
| } |
| |
| // Resolve the RegPairEven / RegPairOdd register allocator hints. |
| bool |
| ARMBaseRegisterInfo::getRegAllocationHints(unsigned VirtReg, |
| ArrayRef<MCPhysReg> Order, |
| SmallVectorImpl<MCPhysReg> &Hints, |
| const MachineFunction &MF, |
| const VirtRegMap *VRM, |
| const LiveRegMatrix *Matrix) const { |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg); |
| |
| unsigned Odd; |
| switch (Hint.first) { |
| case ARMRI::RegPairEven: |
| Odd = 0; |
| break; |
| case ARMRI::RegPairOdd: |
| Odd = 1; |
| break; |
| default: |
| TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM); |
| return false; |
| } |
| |
| // This register should preferably be even (Odd == 0) or odd (Odd == 1). |
| // Check if the other part of the pair has already been assigned, and provide |
| // the paired register as the first hint. |
| unsigned Paired = Hint.second; |
| if (Paired == 0) |
| return false; |
| |
| unsigned PairedPhys = 0; |
| if (TargetRegisterInfo::isPhysicalRegister(Paired)) { |
| PairedPhys = Paired; |
| } else if (VRM && VRM->hasPhys(Paired)) { |
| PairedPhys = getPairedGPR(VRM->getPhys(Paired), Odd, this); |
| } |
| |
| // First prefer the paired physreg. |
| if (PairedPhys && is_contained(Order, PairedPhys)) |
| Hints.push_back(PairedPhys); |
| |
| // Then prefer even or odd registers. |
| for (unsigned Reg : Order) { |
| if (Reg == PairedPhys || (getEncodingValue(Reg) & 1) != Odd) |
| continue; |
| // Don't provide hints that are paired to a reserved register. |
| unsigned Paired = getPairedGPR(Reg, !Odd, this); |
| if (!Paired || MRI.isReserved(Paired)) |
| continue; |
| Hints.push_back(Reg); |
| } |
| return false; |
| } |
| |
| void |
| ARMBaseRegisterInfo::updateRegAllocHint(unsigned Reg, unsigned NewReg, |
| MachineFunction &MF) const { |
| MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg); |
| if ((Hint.first == (unsigned)ARMRI::RegPairOdd || |
| Hint.first == (unsigned)ARMRI::RegPairEven) && |
| TargetRegisterInfo::isVirtualRegister(Hint.second)) { |
| // If 'Reg' is one of the even / odd register pair and it's now changed |
| // (e.g. coalesced) into a different register. The other register of the |
| // pair allocation hint must be updated to reflect the relationship |
| // change. |
| unsigned OtherReg = Hint.second; |
| Hint = MRI->getRegAllocationHint(OtherReg); |
| // Make sure the pair has not already divorced. |
| if (Hint.second == Reg) { |
| MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg); |
| if (TargetRegisterInfo::isVirtualRegister(NewReg)) |
| MRI->setRegAllocationHint(NewReg, |
| Hint.first == (unsigned)ARMRI::RegPairOdd ? ARMRI::RegPairEven |
| : ARMRI::RegPairOdd, OtherReg); |
| } |
| } |
| } |
| |
| bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| const ARMFrameLowering *TFI = getFrameLowering(MF); |
| |
| // When outgoing call frames are so large that we adjust the stack pointer |
| // around the call, we can no longer use the stack pointer to reach the |
| // emergency spill slot. |
| if (needsStackRealignment(MF) && !TFI->hasReservedCallFrame(MF)) |
| return true; |
| |
| // Thumb has trouble with negative offsets from the FP. Thumb2 has a limited |
| // negative range for ldr/str (255), and thumb1 is positive offsets only. |
| // It's going to be better to use the SP or Base Pointer instead. When there |
| // are variable sized objects, we can't reference off of the SP, so we |
| // reserve a Base Pointer. |
| if (AFI->isThumbFunction() && MFI.hasVarSizedObjects()) { |
| // Conservatively estimate whether the negative offset from the frame |
| // pointer will be sufficient to reach. If a function has a smallish |
| // frame, it's less likely to have lots of spills and callee saved |
| // space, so it's all more likely to be within range of the frame pointer. |
| // If it's wrong, the scavenger will still enable access to work, it just |
| // won't be optimal. |
| if (AFI->isThumb2Function() && MFI.getLocalFrameSize() < 128) |
| return false; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const { |
| const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const ARMFrameLowering *TFI = getFrameLowering(MF); |
| // We can't realign the stack if: |
| // 1. Dynamic stack realignment is explicitly disabled, |
| // 2. There are VLAs in the function and the base pointer is disabled. |
| if (!TargetRegisterInfo::canRealignStack(MF)) |
| return false; |
| // Stack realignment requires a frame pointer. If we already started |
| // register allocation with frame pointer elimination, it is too late now. |
| if (!MRI->canReserveReg(getFramePointerReg(MF.getSubtarget<ARMSubtarget>()))) |
| return false; |
| // We may also need a base pointer if there are dynamic allocas or stack |
| // pointer adjustments around calls. |
| if (TFI->hasReservedCallFrame(MF)) |
| return true; |
| // A base pointer is required and allowed. Check that it isn't too late to |
| // reserve it. |
| return MRI->canReserveReg(BasePtr); |
| } |
| |
| bool ARMBaseRegisterInfo:: |
| cannotEliminateFrame(const MachineFunction &MF) const { |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack()) |
| return true; |
| return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() |
| || needsStackRealignment(MF); |
| } |
| |
| unsigned |
| ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const { |
| const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); |
| const ARMFrameLowering *TFI = getFrameLowering(MF); |
| |
| if (TFI->hasFP(MF)) |
| return getFramePointerReg(STI); |
| return ARM::SP; |
| } |
| |
| /// emitLoadConstPool - Emits a load from constpool to materialize the |
| /// specified immediate. |
| void ARMBaseRegisterInfo::emitLoadConstPool( |
| MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, |
| const DebugLoc &dl, unsigned DestReg, unsigned SubIdx, int Val, |
| ARMCC::CondCodes Pred, unsigned PredReg, unsigned MIFlags) const { |
| MachineFunction &MF = *MBB.getParent(); |
| const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| MachineConstantPool *ConstantPool = MF.getConstantPool(); |
| const Constant *C = |
| ConstantInt::get(Type::getInt32Ty(MF.getFunction().getContext()), Val); |
| unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4); |
| |
| BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp)) |
| .addReg(DestReg, getDefRegState(true), SubIdx) |
| .addConstantPoolIndex(Idx) |
| .addImm(0) |
| .add(predOps(Pred, PredReg)) |
| .setMIFlags(MIFlags); |
| } |
| |
| bool ARMBaseRegisterInfo:: |
| requiresRegisterScavenging(const MachineFunction &MF) const { |
| return true; |
| } |
| |
| bool ARMBaseRegisterInfo:: |
| trackLivenessAfterRegAlloc(const MachineFunction &MF) const { |
| return true; |
| } |
| |
| bool ARMBaseRegisterInfo:: |
| requiresFrameIndexScavenging(const MachineFunction &MF) const { |
| return true; |
| } |
| |
| bool ARMBaseRegisterInfo:: |
| requiresVirtualBaseRegisters(const MachineFunction &MF) const { |
| return true; |
| } |
| |
| int64_t ARMBaseRegisterInfo:: |
| getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const { |
| const MCInstrDesc &Desc = MI->getDesc(); |
| unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); |
| int64_t InstrOffs = 0; |
| int Scale = 1; |
| unsigned ImmIdx = 0; |
| switch (AddrMode) { |
| case ARMII::AddrModeT2_i8: |
| case ARMII::AddrModeT2_i12: |
| case ARMII::AddrMode_i12: |
| InstrOffs = MI->getOperand(Idx+1).getImm(); |
| Scale = 1; |
| break; |
| case ARMII::AddrMode5: { |
| // VFP address mode. |
| const MachineOperand &OffOp = MI->getOperand(Idx+1); |
| InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm()); |
| if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub) |
| InstrOffs = -InstrOffs; |
| Scale = 4; |
| break; |
| } |
| case ARMII::AddrMode2: |
| ImmIdx = Idx+2; |
| InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs = -InstrOffs; |
| break; |
| case ARMII::AddrMode3: |
| ImmIdx = Idx+2; |
| InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm()); |
| if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub) |
| InstrOffs = -InstrOffs; |
| break; |
| case ARMII::AddrModeT1_s: |
| ImmIdx = Idx+1; |
| InstrOffs = MI->getOperand(ImmIdx).getImm(); |
| Scale = 4; |
| break; |
| default: |
| llvm_unreachable("Unsupported addressing mode!"); |
| } |
| |
| return InstrOffs * Scale; |
| } |
| |
| /// needsFrameBaseReg - Returns true if the instruction's frame index |
| /// reference would be better served by a base register other than FP |
| /// or SP. Used by LocalStackFrameAllocation to determine which frame index |
| /// references it should create new base registers for. |
| bool ARMBaseRegisterInfo:: |
| needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { |
| for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) { |
| assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!"); |
| } |
| |
| // It's the load/store FI references that cause issues, as it can be difficult |
| // to materialize the offset if it won't fit in the literal field. Estimate |
| // based on the size of the local frame and some conservative assumptions |
| // about the rest of the stack frame (note, this is pre-regalloc, so |
| // we don't know everything for certain yet) whether this offset is likely |
| // to be out of range of the immediate. Return true if so. |
| |
| // We only generate virtual base registers for loads and stores, so |
| // return false for everything else. |
| unsigned Opc = MI->getOpcode(); |
| switch (Opc) { |
| case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12: |
| case ARM::STRi12: case ARM::STRH: case ARM::STRBi12: |
| case ARM::t2LDRi12: case ARM::t2LDRi8: |
| case ARM::t2STRi12: case ARM::t2STRi8: |
| case ARM::VLDRS: case ARM::VLDRD: |
| case ARM::VSTRS: case ARM::VSTRD: |
| case ARM::tSTRspi: case ARM::tLDRspi: |
| break; |
| default: |
| return false; |
| } |
| |
| // Without a virtual base register, if the function has variable sized |
| // objects, all fixed-size local references will be via the frame pointer, |
| // Approximate the offset and see if it's legal for the instruction. |
| // Note that the incoming offset is based on the SP value at function entry, |
| // so it'll be negative. |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| const ARMFrameLowering *TFI = getFrameLowering(MF); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| // Estimate an offset from the frame pointer. |
| // Conservatively assume all callee-saved registers get pushed. R4-R6 |
| // will be earlier than the FP, so we ignore those. |
| // R7, LR |
| int64_t FPOffset = Offset - 8; |
| // ARM and Thumb2 functions also need to consider R8-R11 and D8-D15 |
| if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction()) |
| FPOffset -= 80; |
| // Estimate an offset from the stack pointer. |
| // The incoming offset is relating to the SP at the start of the function, |
| // but when we access the local it'll be relative to the SP after local |
| // allocation, so adjust our SP-relative offset by that allocation size. |
| Offset += MFI.getLocalFrameSize(); |
| // Assume that we'll have at least some spill slots allocated. |
| // FIXME: This is a total SWAG number. We should run some statistics |
| // and pick a real one. |
| Offset += 128; // 128 bytes of spill slots |
| |
| // If there's a frame pointer and the addressing mode allows it, try using it. |
| // The FP is only available if there is no dynamic realignment. We |
| // don't know for sure yet whether we'll need that, so we guess based |
| // on whether there are any local variables that would trigger it. |
| unsigned StackAlign = TFI->getStackAlignment(); |
| if (TFI->hasFP(MF) && |
| !((MFI.getLocalFrameMaxAlign() > StackAlign) && canRealignStack(MF))) { |
| if (isFrameOffsetLegal(MI, getFrameRegister(MF), FPOffset)) |
| return false; |
| } |
| // If we can reference via the stack pointer, try that. |
| // FIXME: This (and the code that resolves the references) can be improved |
| // to only disallow SP relative references in the live range of |
| // the VLA(s). In practice, it's unclear how much difference that |
| // would make, but it may be worth doing. |
| if (!MFI.hasVarSizedObjects() && isFrameOffsetLegal(MI, ARM::SP, Offset)) |
| return false; |
| |
| // The offset likely isn't legal, we want to allocate a virtual base register. |
| return true; |
| } |
| |
| /// materializeFrameBaseRegister - Insert defining instruction(s) for BaseReg to |
| /// be a pointer to FrameIdx at the beginning of the basic block. |
| void ARMBaseRegisterInfo:: |
| materializeFrameBaseRegister(MachineBasicBlock *MBB, |
| unsigned BaseReg, int FrameIdx, |
| int64_t Offset) const { |
| ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>(); |
| unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri : |
| (AFI->isThumb1OnlyFunction() ? ARM::tADDframe : ARM::t2ADDri); |
| |
| MachineBasicBlock::iterator Ins = MBB->begin(); |
| DebugLoc DL; // Defaults to "unknown" |
| if (Ins != MBB->end()) |
| DL = Ins->getDebugLoc(); |
| |
| const MachineFunction &MF = *MBB->getParent(); |
| MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); |
| const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); |
| const MCInstrDesc &MCID = TII.get(ADDriOpc); |
| MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF)); |
| |
| MachineInstrBuilder MIB = BuildMI(*MBB, Ins, DL, MCID, BaseReg) |
| .addFrameIndex(FrameIdx).addImm(Offset); |
| |
| if (!AFI->isThumb1OnlyFunction()) |
| MIB.add(predOps(ARMCC::AL)).add(condCodeOp()); |
| } |
| |
| void ARMBaseRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg, |
| int64_t Offset) const { |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| const ARMBaseInstrInfo &TII = |
| *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| int Off = Offset; // ARM doesn't need the general 64-bit offsets |
| unsigned i = 0; |
| |
| assert(!AFI->isThumb1OnlyFunction() && |
| "This resolveFrameIndex does not support Thumb1!"); |
| |
| while (!MI.getOperand(i).isFI()) { |
| ++i; |
| assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); |
| } |
| bool Done = false; |
| if (!AFI->isThumbFunction()) |
| Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII); |
| else { |
| assert(AFI->isThumb2Function()); |
| Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII); |
| } |
| assert(Done && "Unable to resolve frame index!"); |
| (void)Done; |
| } |
| |
| bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg, |
| int64_t Offset) const { |
| const MCInstrDesc &Desc = MI->getDesc(); |
| unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); |
| unsigned i = 0; |
| for (; !MI->getOperand(i).isFI(); ++i) |
| assert(i+1 < MI->getNumOperands() && "Instr doesn't have FrameIndex operand!"); |
| |
| // AddrMode4 and AddrMode6 cannot handle any offset. |
| if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6) |
| return Offset == 0; |
| |
| unsigned NumBits = 0; |
| unsigned Scale = 1; |
| bool isSigned = true; |
| switch (AddrMode) { |
| case ARMII::AddrModeT2_i8: |
| case ARMII::AddrModeT2_i12: |
| // i8 supports only negative, and i12 supports only positive, so |
| // based on Offset sign, consider the appropriate instruction |
| Scale = 1; |
| if (Offset < 0) { |
| NumBits = 8; |
| Offset = -Offset; |
| } else { |
| NumBits = 12; |
| } |
| break; |
| case ARMII::AddrMode5: |
| // VFP address mode. |
| NumBits = 8; |
| Scale = 4; |
| break; |
| case ARMII::AddrMode_i12: |
| case ARMII::AddrMode2: |
| NumBits = 12; |
| break; |
| case ARMII::AddrMode3: |
| NumBits = 8; |
| break; |
| case ARMII::AddrModeT1_s: |
| NumBits = (BaseReg == ARM::SP ? 8 : 5); |
| Scale = 4; |
| isSigned = false; |
| break; |
| default: |
| llvm_unreachable("Unsupported addressing mode!"); |
| } |
| |
| Offset += getFrameIndexInstrOffset(MI, i); |
| // Make sure the offset is encodable for instructions that scale the |
| // immediate. |
| if ((Offset & (Scale-1)) != 0) |
| return false; |
| |
| if (isSigned && Offset < 0) |
| Offset = -Offset; |
| |
| unsigned Mask = (1 << NumBits) - 1; |
| if ((unsigned)Offset <= Mask * Scale) |
| return true; |
| |
| return false; |
| } |
| |
| void |
| ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II, |
| int SPAdj, unsigned FIOperandNum, |
| RegScavenger *RS) const { |
| MachineInstr &MI = *II; |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| const ARMBaseInstrInfo &TII = |
| *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); |
| const ARMFrameLowering *TFI = getFrameLowering(MF); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| assert(!AFI->isThumb1OnlyFunction() && |
| "This eliminateFrameIndex does not support Thumb1!"); |
| int FrameIndex = MI.getOperand(FIOperandNum).getIndex(); |
| unsigned FrameReg; |
| |
| int Offset = TFI->ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj); |
| |
| // PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the |
| // call frame setup/destroy instructions have already been eliminated. That |
| // means the stack pointer cannot be used to access the emergency spill slot |
| // when !hasReservedCallFrame(). |
| #ifndef NDEBUG |
| if (RS && FrameReg == ARM::SP && RS->isScavengingFrameIndex(FrameIndex)){ |
| assert(TFI->hasReservedCallFrame(MF) && |
| "Cannot use SP to access the emergency spill slot in " |
| "functions without a reserved call frame"); |
| assert(!MF.getFrameInfo().hasVarSizedObjects() && |
| "Cannot use SP to access the emergency spill slot in " |
| "functions with variable sized frame objects"); |
| } |
| #endif // NDEBUG |
| |
| assert(!MI.isDebugValue() && "DBG_VALUEs should be handled in target-independent code"); |
| |
| // Modify MI as necessary to handle as much of 'Offset' as possible |
| bool Done = false; |
| if (!AFI->isThumbFunction()) |
| Done = rewriteARMFrameIndex(MI, FIOperandNum, FrameReg, Offset, TII); |
| else { |
| assert(AFI->isThumb2Function()); |
| Done = rewriteT2FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII); |
| } |
| if (Done) |
| return; |
| |
| // If we get here, the immediate doesn't fit into the instruction. We folded |
| // as much as possible above, handle the rest, providing a register that is |
| // SP+LargeImm. |
| assert((Offset || |
| (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 || |
| (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6) && |
| "This code isn't needed if offset already handled!"); |
| |
| unsigned ScratchReg = 0; |
| int PIdx = MI.findFirstPredOperandIdx(); |
| ARMCC::CondCodes Pred = (PIdx == -1) |
| ? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); |
| unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg(); |
| if (Offset == 0) |
| // Must be addrmode4/6. |
| MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false, false, false); |
| else { |
| ScratchReg = MF.getRegInfo().createVirtualRegister(&ARM::GPRRegClass); |
| if (!AFI->isThumbFunction()) |
| emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, |
| Offset, Pred, PredReg, TII); |
| else { |
| assert(AFI->isThumb2Function()); |
| emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, |
| Offset, Pred, PredReg, TII); |
| } |
| // Update the original instruction to use the scratch register. |
| MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false,true); |
| } |
| } |
| |
| bool ARMBaseRegisterInfo::shouldCoalesce(MachineInstr *MI, |
| const TargetRegisterClass *SrcRC, |
| unsigned SubReg, |
| const TargetRegisterClass *DstRC, |
| unsigned DstSubReg, |
| const TargetRegisterClass *NewRC, |
| LiveIntervals &LIS) const { |
| auto MBB = MI->getParent(); |
| auto MF = MBB->getParent(); |
| const MachineRegisterInfo &MRI = MF->getRegInfo(); |
| // If not copying into a sub-register this should be ok because we shouldn't |
| // need to split the reg. |
| if (!DstSubReg) |
| return true; |
| // Small registers don't frequently cause a problem, so we can coalesce them. |
| if (getRegSizeInBits(*NewRC) < 256 && getRegSizeInBits(*DstRC) < 256 && |
| getRegSizeInBits(*SrcRC) < 256) |
| return true; |
| |
| auto NewRCWeight = |
| MRI.getTargetRegisterInfo()->getRegClassWeight(NewRC); |
| auto SrcRCWeight = |
| MRI.getTargetRegisterInfo()->getRegClassWeight(SrcRC); |
| auto DstRCWeight = |
| MRI.getTargetRegisterInfo()->getRegClassWeight(DstRC); |
| // If the source register class is more expensive than the destination, the |
| // coalescing is probably profitable. |
| if (SrcRCWeight.RegWeight > NewRCWeight.RegWeight) |
| return true; |
| if (DstRCWeight.RegWeight > NewRCWeight.RegWeight) |
| return true; |
| |
| // If the register allocator isn't constrained, we can always allow coalescing |
| // unfortunately we don't know yet if we will be constrained. |
| // The goal of this heuristic is to restrict how many expensive registers |
| // we allow to coalesce in a given basic block. |
| auto AFI = MF->getInfo<ARMFunctionInfo>(); |
| auto It = AFI->getCoalescedWeight(MBB); |
| |
| LLVM_DEBUG(dbgs() << "\tARM::shouldCoalesce - Coalesced Weight: " |
| << It->second << "\n"); |
| LLVM_DEBUG(dbgs() << "\tARM::shouldCoalesce - Reg Weight: " |
| << NewRCWeight.RegWeight << "\n"); |
| |
| // This number is the largest round number that which meets the criteria: |
| // (1) addresses PR18825 |
| // (2) generates better code in some test cases (like vldm-shed-a9.ll) |
| // (3) Doesn't regress any test cases (in-tree, test-suite, and SPEC) |
| // In practice the SizeMultiplier will only factor in for straight line code |
| // that uses a lot of NEON vectors, which isn't terribly common. |
| unsigned SizeMultiplier = MBB->size()/100; |
| SizeMultiplier = SizeMultiplier ? SizeMultiplier : 1; |
| if (It->second < NewRCWeight.WeightLimit * SizeMultiplier) { |
| It->second += NewRCWeight.RegWeight; |
| return true; |
| } |
| return false; |
| } |