| //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the X86 implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86InstrInfo.h" |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86InstrFoldTables.h" |
| #include "X86MachineFunctionInfo.h" |
| #include "X86Subtarget.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/CodeGen/LivePhysRegs.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetOptions.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "x86-instr-info" |
| |
| #define GET_INSTRINFO_CTOR_DTOR |
| #include "X86GenInstrInfo.inc" |
| |
| static cl::opt<bool> |
| NoFusing("disable-spill-fusing", |
| cl::desc("Disable fusing of spill code into instructions"), |
| cl::Hidden); |
| static cl::opt<bool> |
| PrintFailedFusing("print-failed-fuse-candidates", |
| cl::desc("Print instructions that the allocator wants to" |
| " fuse, but the X86 backend currently can't"), |
| cl::Hidden); |
| static cl::opt<bool> |
| ReMatPICStubLoad("remat-pic-stub-load", |
| cl::desc("Re-materialize load from stub in PIC mode"), |
| cl::init(false), cl::Hidden); |
| static cl::opt<unsigned> |
| PartialRegUpdateClearance("partial-reg-update-clearance", |
| cl::desc("Clearance between two register writes " |
| "for inserting XOR to avoid partial " |
| "register update"), |
| cl::init(64), cl::Hidden); |
| static cl::opt<unsigned> |
| UndefRegClearance("undef-reg-clearance", |
| cl::desc("How many idle instructions we would like before " |
| "certain undef register reads"), |
| cl::init(128), cl::Hidden); |
| |
| |
| // Pin the vtable to this file. |
| void X86InstrInfo::anchor() {} |
| |
| X86InstrInfo::X86InstrInfo(X86Subtarget &STI) |
| : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 |
| : X86::ADJCALLSTACKDOWN32), |
| (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 |
| : X86::ADJCALLSTACKUP32), |
| X86::CATCHRET, |
| (STI.is64Bit() ? X86::RETQ : X86::RETL)), |
| Subtarget(STI), RI(STI.getTargetTriple()) { |
| } |
| |
| bool |
| X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, |
| unsigned &SrcReg, unsigned &DstReg, |
| unsigned &SubIdx) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case X86::MOVSX16rr8: |
| case X86::MOVZX16rr8: |
| case X86::MOVSX32rr8: |
| case X86::MOVZX32rr8: |
| case X86::MOVSX64rr8: |
| if (!Subtarget.is64Bit()) |
| // It's not always legal to reference the low 8-bit of the larger |
| // register in 32-bit mode. |
| return false; |
| LLVM_FALLTHROUGH; |
| case X86::MOVSX32rr16: |
| case X86::MOVZX32rr16: |
| case X86::MOVSX64rr16: |
| case X86::MOVSX64rr32: { |
| if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) |
| // Be conservative. |
| return false; |
| SrcReg = MI.getOperand(1).getReg(); |
| DstReg = MI.getOperand(0).getReg(); |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::MOVSX16rr8: |
| case X86::MOVZX16rr8: |
| case X86::MOVSX32rr8: |
| case X86::MOVZX32rr8: |
| case X86::MOVSX64rr8: |
| SubIdx = X86::sub_8bit; |
| break; |
| case X86::MOVSX32rr16: |
| case X86::MOVZX32rr16: |
| case X86::MOVSX64rr16: |
| SubIdx = X86::sub_16bit; |
| break; |
| case X86::MOVSX64rr32: |
| SubIdx = X86::sub_32bit; |
| break; |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { |
| const MachineFunction *MF = MI.getParent()->getParent(); |
| const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); |
| |
| if (isFrameInstr(MI)) { |
| unsigned StackAlign = TFI->getStackAlignment(); |
| int SPAdj = alignTo(getFrameSize(MI), StackAlign); |
| SPAdj -= getFrameAdjustment(MI); |
| if (!isFrameSetup(MI)) |
| SPAdj = -SPAdj; |
| return SPAdj; |
| } |
| |
| // To know whether a call adjusts the stack, we need information |
| // that is bound to the following ADJCALLSTACKUP pseudo. |
| // Look for the next ADJCALLSTACKUP that follows the call. |
| if (MI.isCall()) { |
| const MachineBasicBlock *MBB = MI.getParent(); |
| auto I = ++MachineBasicBlock::const_iterator(MI); |
| for (auto E = MBB->end(); I != E; ++I) { |
| if (I->getOpcode() == getCallFrameDestroyOpcode() || |
| I->isCall()) |
| break; |
| } |
| |
| // If we could not find a frame destroy opcode, then it has already |
| // been simplified, so we don't care. |
| if (I->getOpcode() != getCallFrameDestroyOpcode()) |
| return 0; |
| |
| return -(I->getOperand(1).getImm()); |
| } |
| |
| // Currently handle only PUSHes we can reasonably expect to see |
| // in call sequences |
| switch (MI.getOpcode()) { |
| default: |
| return 0; |
| case X86::PUSH32i8: |
| case X86::PUSH32r: |
| case X86::PUSH32rmm: |
| case X86::PUSH32rmr: |
| case X86::PUSHi32: |
| return 4; |
| case X86::PUSH64i8: |
| case X86::PUSH64r: |
| case X86::PUSH64rmm: |
| case X86::PUSH64rmr: |
| case X86::PUSH64i32: |
| return 8; |
| } |
| } |
| |
| /// Return true and the FrameIndex if the specified |
| /// operand and follow operands form a reference to the stack frame. |
| bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, |
| int &FrameIndex) const { |
| if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && |
| MI.getOperand(Op + X86::AddrScaleAmt).isImm() && |
| MI.getOperand(Op + X86::AddrIndexReg).isReg() && |
| MI.getOperand(Op + X86::AddrDisp).isImm() && |
| MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && |
| MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && |
| MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { |
| FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { |
| switch (Opcode) { |
| default: |
| return false; |
| case X86::MOV8rm: |
| case X86::KMOVBkm: |
| MemBytes = 1; |
| return true; |
| case X86::MOV16rm: |
| case X86::KMOVWkm: |
| MemBytes = 2; |
| return true; |
| case X86::MOV32rm: |
| case X86::MOVSSrm: |
| case X86::VMOVSSZrm: |
| case X86::VMOVSSrm: |
| case X86::KMOVDkm: |
| MemBytes = 4; |
| return true; |
| case X86::MOV64rm: |
| case X86::LD_Fp64m: |
| case X86::MOVSDrm: |
| case X86::VMOVSDrm: |
| case X86::VMOVSDZrm: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| case X86::KMOVQkm: |
| MemBytes = 8; |
| return true; |
| case X86::MOVAPSrm: |
| case X86::MOVUPSrm: |
| case X86::MOVAPDrm: |
| case X86::MOVUPDrm: |
| case X86::MOVDQArm: |
| case X86::MOVDQUrm: |
| case X86::VMOVAPSrm: |
| case X86::VMOVUPSrm: |
| case X86::VMOVAPDrm: |
| case X86::VMOVUPDrm: |
| case X86::VMOVDQArm: |
| case X86::VMOVDQUrm: |
| case X86::VMOVAPSZ128rm: |
| case X86::VMOVUPSZ128rm: |
| case X86::VMOVAPSZ128rm_NOVLX: |
| case X86::VMOVUPSZ128rm_NOVLX: |
| case X86::VMOVAPDZ128rm: |
| case X86::VMOVUPDZ128rm: |
| case X86::VMOVDQU8Z128rm: |
| case X86::VMOVDQU16Z128rm: |
| case X86::VMOVDQA32Z128rm: |
| case X86::VMOVDQU32Z128rm: |
| case X86::VMOVDQA64Z128rm: |
| case X86::VMOVDQU64Z128rm: |
| MemBytes = 16; |
| return true; |
| case X86::VMOVAPSYrm: |
| case X86::VMOVUPSYrm: |
| case X86::VMOVAPDYrm: |
| case X86::VMOVUPDYrm: |
| case X86::VMOVDQAYrm: |
| case X86::VMOVDQUYrm: |
| case X86::VMOVAPSZ256rm: |
| case X86::VMOVUPSZ256rm: |
| case X86::VMOVAPSZ256rm_NOVLX: |
| case X86::VMOVUPSZ256rm_NOVLX: |
| case X86::VMOVAPDZ256rm: |
| case X86::VMOVUPDZ256rm: |
| case X86::VMOVDQU8Z256rm: |
| case X86::VMOVDQU16Z256rm: |
| case X86::VMOVDQA32Z256rm: |
| case X86::VMOVDQU32Z256rm: |
| case X86::VMOVDQA64Z256rm: |
| case X86::VMOVDQU64Z256rm: |
| MemBytes = 32; |
| return true; |
| case X86::VMOVAPSZrm: |
| case X86::VMOVUPSZrm: |
| case X86::VMOVAPDZrm: |
| case X86::VMOVUPDZrm: |
| case X86::VMOVDQU8Zrm: |
| case X86::VMOVDQU16Zrm: |
| case X86::VMOVDQA32Zrm: |
| case X86::VMOVDQU32Zrm: |
| case X86::VMOVDQA64Zrm: |
| case X86::VMOVDQU64Zrm: |
| MemBytes = 64; |
| return true; |
| } |
| } |
| |
| static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { |
| switch (Opcode) { |
| default: |
| return false; |
| case X86::MOV8mr: |
| case X86::KMOVBmk: |
| MemBytes = 1; |
| return true; |
| case X86::MOV16mr: |
| case X86::KMOVWmk: |
| MemBytes = 2; |
| return true; |
| case X86::MOV32mr: |
| case X86::MOVSSmr: |
| case X86::VMOVSSmr: |
| case X86::VMOVSSZmr: |
| case X86::KMOVDmk: |
| MemBytes = 4; |
| return true; |
| case X86::MOV64mr: |
| case X86::ST_FpP64m: |
| case X86::MOVSDmr: |
| case X86::VMOVSDmr: |
| case X86::VMOVSDZmr: |
| case X86::MMX_MOVD64mr: |
| case X86::MMX_MOVQ64mr: |
| case X86::MMX_MOVNTQmr: |
| case X86::KMOVQmk: |
| MemBytes = 8; |
| return true; |
| case X86::MOVAPSmr: |
| case X86::MOVUPSmr: |
| case X86::MOVAPDmr: |
| case X86::MOVUPDmr: |
| case X86::MOVDQAmr: |
| case X86::MOVDQUmr: |
| case X86::VMOVAPSmr: |
| case X86::VMOVUPSmr: |
| case X86::VMOVAPDmr: |
| case X86::VMOVUPDmr: |
| case X86::VMOVDQAmr: |
| case X86::VMOVDQUmr: |
| case X86::VMOVUPSZ128mr: |
| case X86::VMOVAPSZ128mr: |
| case X86::VMOVUPSZ128mr_NOVLX: |
| case X86::VMOVAPSZ128mr_NOVLX: |
| case X86::VMOVUPDZ128mr: |
| case X86::VMOVAPDZ128mr: |
| case X86::VMOVDQA32Z128mr: |
| case X86::VMOVDQU32Z128mr: |
| case X86::VMOVDQA64Z128mr: |
| case X86::VMOVDQU64Z128mr: |
| case X86::VMOVDQU8Z128mr: |
| case X86::VMOVDQU16Z128mr: |
| MemBytes = 16; |
| return true; |
| case X86::VMOVUPSYmr: |
| case X86::VMOVAPSYmr: |
| case X86::VMOVUPDYmr: |
| case X86::VMOVAPDYmr: |
| case X86::VMOVDQUYmr: |
| case X86::VMOVDQAYmr: |
| case X86::VMOVUPSZ256mr: |
| case X86::VMOVAPSZ256mr: |
| case X86::VMOVUPSZ256mr_NOVLX: |
| case X86::VMOVAPSZ256mr_NOVLX: |
| case X86::VMOVUPDZ256mr: |
| case X86::VMOVAPDZ256mr: |
| case X86::VMOVDQU8Z256mr: |
| case X86::VMOVDQU16Z256mr: |
| case X86::VMOVDQA32Z256mr: |
| case X86::VMOVDQU32Z256mr: |
| case X86::VMOVDQA64Z256mr: |
| case X86::VMOVDQU64Z256mr: |
| MemBytes = 32; |
| return true; |
| case X86::VMOVUPSZmr: |
| case X86::VMOVAPSZmr: |
| case X86::VMOVUPDZmr: |
| case X86::VMOVAPDZmr: |
| case X86::VMOVDQU8Zmr: |
| case X86::VMOVDQU16Zmr: |
| case X86::VMOVDQA32Zmr: |
| case X86::VMOVDQU32Zmr: |
| case X86::VMOVDQA64Zmr: |
| case X86::VMOVDQU64Zmr: |
| MemBytes = 64; |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| unsigned Dummy; |
| return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); |
| } |
| |
| unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, |
| int &FrameIndex, |
| unsigned &MemBytes) const { |
| if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) |
| if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) |
| return MI.getOperand(0).getReg(); |
| return 0; |
| } |
| |
| unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, |
| int &FrameIndex) const { |
| unsigned Dummy; |
| if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { |
| unsigned Reg; |
| if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) |
| return Reg; |
| // Check for post-frame index elimination operations |
| const MachineMemOperand *Dummy; |
| return hasLoadFromStackSlot(MI, Dummy, FrameIndex); |
| } |
| return 0; |
| } |
| |
| unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex) const { |
| unsigned Dummy; |
| return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); |
| } |
| |
| unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, |
| int &FrameIndex, |
| unsigned &MemBytes) const { |
| if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) |
| if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && |
| isFrameOperand(MI, 0, FrameIndex)) |
| return MI.getOperand(X86::AddrNumOperands).getReg(); |
| return 0; |
| } |
| |
| unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, |
| int &FrameIndex) const { |
| unsigned Dummy; |
| if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { |
| unsigned Reg; |
| if ((Reg = isStoreToStackSlot(MI, FrameIndex))) |
| return Reg; |
| // Check for post-frame index elimination operations |
| const MachineMemOperand *Dummy; |
| return hasStoreToStackSlot(MI, Dummy, FrameIndex); |
| } |
| return 0; |
| } |
| |
| /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. |
| static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) { |
| // Don't waste compile time scanning use-def chains of physregs. |
| if (!TargetRegisterInfo::isVirtualRegister(BaseReg)) |
| return false; |
| bool isPICBase = false; |
| for (MachineRegisterInfo::def_instr_iterator I = MRI.def_instr_begin(BaseReg), |
| E = MRI.def_instr_end(); I != E; ++I) { |
| MachineInstr *DefMI = &*I; |
| if (DefMI->getOpcode() != X86::MOVPC32r) |
| return false; |
| assert(!isPICBase && "More than one PIC base?"); |
| isPICBase = true; |
| } |
| return isPICBase; |
| } |
| |
| bool X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, |
| AliasAnalysis *AA) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case X86::MOV8rm: |
| case X86::MOV8rm_NOREX: |
| case X86::MOV16rm: |
| case X86::MOV32rm: |
| case X86::MOV64rm: |
| case X86::LD_Fp64m: |
| case X86::MOVSSrm: |
| case X86::MOVSDrm: |
| case X86::MOVAPSrm: |
| case X86::MOVUPSrm: |
| case X86::MOVAPDrm: |
| case X86::MOVUPDrm: |
| case X86::MOVDQArm: |
| case X86::MOVDQUrm: |
| case X86::VMOVSSrm: |
| case X86::VMOVSDrm: |
| case X86::VMOVAPSrm: |
| case X86::VMOVUPSrm: |
| case X86::VMOVAPDrm: |
| case X86::VMOVUPDrm: |
| case X86::VMOVDQArm: |
| case X86::VMOVDQUrm: |
| case X86::VMOVAPSYrm: |
| case X86::VMOVUPSYrm: |
| case X86::VMOVAPDYrm: |
| case X86::VMOVUPDYrm: |
| case X86::VMOVDQAYrm: |
| case X86::VMOVDQUYrm: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| // AVX-512 |
| case X86::VMOVSSZrm: |
| case X86::VMOVSDZrm: |
| case X86::VMOVAPDZ128rm: |
| case X86::VMOVAPDZ256rm: |
| case X86::VMOVAPDZrm: |
| case X86::VMOVAPSZ128rm: |
| case X86::VMOVAPSZ256rm: |
| case X86::VMOVAPSZ128rm_NOVLX: |
| case X86::VMOVAPSZ256rm_NOVLX: |
| case X86::VMOVAPSZrm: |
| case X86::VMOVDQA32Z128rm: |
| case X86::VMOVDQA32Z256rm: |
| case X86::VMOVDQA32Zrm: |
| case X86::VMOVDQA64Z128rm: |
| case X86::VMOVDQA64Z256rm: |
| case X86::VMOVDQA64Zrm: |
| case X86::VMOVDQU16Z128rm: |
| case X86::VMOVDQU16Z256rm: |
| case X86::VMOVDQU16Zrm: |
| case X86::VMOVDQU32Z128rm: |
| case X86::VMOVDQU32Z256rm: |
| case X86::VMOVDQU32Zrm: |
| case X86::VMOVDQU64Z128rm: |
| case X86::VMOVDQU64Z256rm: |
| case X86::VMOVDQU64Zrm: |
| case X86::VMOVDQU8Z128rm: |
| case X86::VMOVDQU8Z256rm: |
| case X86::VMOVDQU8Zrm: |
| case X86::VMOVUPDZ128rm: |
| case X86::VMOVUPDZ256rm: |
| case X86::VMOVUPDZrm: |
| case X86::VMOVUPSZ128rm: |
| case X86::VMOVUPSZ256rm: |
| case X86::VMOVUPSZ128rm_NOVLX: |
| case X86::VMOVUPSZ256rm_NOVLX: |
| case X86::VMOVUPSZrm: { |
| // Loads from constant pools are trivially rematerializable. |
| if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && |
| MI.getOperand(1 + X86::AddrScaleAmt).isImm() && |
| MI.getOperand(1 + X86::AddrIndexReg).isReg() && |
| MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && |
| MI.isDereferenceableInvariantLoad(AA)) { |
| unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); |
| if (BaseReg == 0 || BaseReg == X86::RIP) |
| return true; |
| // Allow re-materialization of PIC load. |
| if (!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal()) |
| return false; |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| return regIsPICBase(BaseReg, MRI); |
| } |
| return false; |
| } |
| |
| case X86::LEA32r: |
| case X86::LEA64r: { |
| if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && |
| MI.getOperand(1 + X86::AddrIndexReg).isReg() && |
| MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && |
| !MI.getOperand(1 + X86::AddrDisp).isReg()) { |
| // lea fi#, lea GV, etc. are all rematerializable. |
| if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) |
| return true; |
| unsigned BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); |
| if (BaseReg == 0) |
| return true; |
| // Allow re-materialization of lea PICBase + x. |
| const MachineFunction &MF = *MI.getParent()->getParent(); |
| const MachineRegisterInfo &MRI = MF.getRegInfo(); |
| return regIsPICBase(BaseReg, MRI); |
| } |
| return false; |
| } |
| } |
| |
| // All other instructions marked M_REMATERIALIZABLE are always trivially |
| // rematerializable. |
| return true; |
| } |
| |
| bool X86InstrInfo::isSafeToClobberEFLAGS(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I) const { |
| MachineBasicBlock::iterator E = MBB.end(); |
| |
| // For compile time consideration, if we are not able to determine the |
| // safety after visiting 4 instructions in each direction, we will assume |
| // it's not safe. |
| MachineBasicBlock::iterator Iter = I; |
| for (unsigned i = 0; Iter != E && i < 4; ++i) { |
| bool SeenDef = false; |
| for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { |
| MachineOperand &MO = Iter->getOperand(j); |
| if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) |
| SeenDef = true; |
| if (!MO.isReg()) |
| continue; |
| if (MO.getReg() == X86::EFLAGS) { |
| if (MO.isUse()) |
| return false; |
| SeenDef = true; |
| } |
| } |
| |
| if (SeenDef) |
| // This instruction defines EFLAGS, no need to look any further. |
| return true; |
| ++Iter; |
| // Skip over debug instructions. |
| while (Iter != E && Iter->isDebugInstr()) |
| ++Iter; |
| } |
| |
| // It is safe to clobber EFLAGS at the end of a block of no successor has it |
| // live in. |
| if (Iter == E) { |
| for (MachineBasicBlock *S : MBB.successors()) |
| if (S->isLiveIn(X86::EFLAGS)) |
| return false; |
| return true; |
| } |
| |
| MachineBasicBlock::iterator B = MBB.begin(); |
| Iter = I; |
| for (unsigned i = 0; i < 4; ++i) { |
| // If we make it to the beginning of the block, it's safe to clobber |
| // EFLAGS iff EFLAGS is not live-in. |
| if (Iter == B) |
| return !MBB.isLiveIn(X86::EFLAGS); |
| |
| --Iter; |
| // Skip over debug instructions. |
| while (Iter != B && Iter->isDebugInstr()) |
| --Iter; |
| |
| bool SawKill = false; |
| for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) { |
| MachineOperand &MO = Iter->getOperand(j); |
| // A register mask may clobber EFLAGS, but we should still look for a |
| // live EFLAGS def. |
| if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS)) |
| SawKill = true; |
| if (MO.isReg() && MO.getReg() == X86::EFLAGS) { |
| if (MO.isDef()) return MO.isDead(); |
| if (MO.isKill()) SawKill = true; |
| } |
| } |
| |
| if (SawKill) |
| // This instruction kills EFLAGS and doesn't redefine it, so |
| // there's no need to look further. |
| return true; |
| } |
| |
| // Conservative answer. |
| return false; |
| } |
| |
| void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| unsigned DestReg, unsigned SubIdx, |
| const MachineInstr &Orig, |
| const TargetRegisterInfo &TRI) const { |
| bool ClobbersEFLAGS = false; |
| for (const MachineOperand &MO : Orig.operands()) { |
| if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { |
| ClobbersEFLAGS = true; |
| break; |
| } |
| } |
| |
| if (ClobbersEFLAGS && !isSafeToClobberEFLAGS(MBB, I)) { |
| // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side |
| // effects. |
| int Value; |
| switch (Orig.getOpcode()) { |
| case X86::MOV32r0: Value = 0; break; |
| case X86::MOV32r1: Value = 1; break; |
| case X86::MOV32r_1: Value = -1; break; |
| default: |
| llvm_unreachable("Unexpected instruction!"); |
| } |
| |
| const DebugLoc &DL = Orig.getDebugLoc(); |
| BuildMI(MBB, I, DL, get(X86::MOV32ri)) |
| .add(Orig.getOperand(0)) |
| .addImm(Value); |
| } else { |
| MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); |
| MBB.insert(I, MI); |
| } |
| |
| MachineInstr &NewMI = *std::prev(I); |
| NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); |
| } |
| |
| /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. |
| bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (MO.isReg() && MO.isDef() && |
| MO.getReg() == X86::EFLAGS && !MO.isDead()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Check whether the shift count for a machine operand is non-zero. |
| inline static unsigned getTruncatedShiftCount(MachineInstr &MI, |
| unsigned ShiftAmtOperandIdx) { |
| // The shift count is six bits with the REX.W prefix and five bits without. |
| unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; |
| unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); |
| return Imm & ShiftCountMask; |
| } |
| |
| /// Check whether the given shift count is appropriate |
| /// can be represented by a LEA instruction. |
| inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { |
| // Left shift instructions can be transformed into load-effective-address |
| // instructions if we can encode them appropriately. |
| // A LEA instruction utilizes a SIB byte to encode its scale factor. |
| // The SIB.scale field is two bits wide which means that we can encode any |
| // shift amount less than 4. |
| return ShAmt < 4 && ShAmt > 0; |
| } |
| |
| bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, |
| unsigned Opc, bool AllowSP, unsigned &NewSrc, |
| bool &isKill, bool &isUndef, |
| MachineOperand &ImplicitOp, |
| LiveVariables *LV) const { |
| MachineFunction &MF = *MI.getParent()->getParent(); |
| const TargetRegisterClass *RC; |
| if (AllowSP) { |
| RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; |
| } else { |
| RC = Opc != X86::LEA32r ? |
| &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; |
| } |
| unsigned SrcReg = Src.getReg(); |
| |
| // For both LEA64 and LEA32 the register already has essentially the right |
| // type (32-bit or 64-bit) we may just need to forbid SP. |
| if (Opc != X86::LEA64_32r) { |
| NewSrc = SrcReg; |
| isKill = Src.isKill(); |
| isUndef = Src.isUndef(); |
| |
| if (TargetRegisterInfo::isVirtualRegister(NewSrc) && |
| !MF.getRegInfo().constrainRegClass(NewSrc, RC)) |
| return false; |
| |
| return true; |
| } |
| |
| // This is for an LEA64_32r and incoming registers are 32-bit. One way or |
| // another we need to add 64-bit registers to the final MI. |
| if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) { |
| ImplicitOp = Src; |
| ImplicitOp.setImplicit(); |
| |
| NewSrc = getX86SubSuperRegister(Src.getReg(), 64); |
| isKill = Src.isKill(); |
| isUndef = Src.isUndef(); |
| } else { |
| // Virtual register of the wrong class, we have to create a temporary 64-bit |
| // vreg to feed into the LEA. |
| NewSrc = MF.getRegInfo().createVirtualRegister(RC); |
| MachineInstr *Copy = |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) |
| .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) |
| .add(Src); |
| |
| // Which is obviously going to be dead after we're done with it. |
| isKill = true; |
| isUndef = false; |
| |
| if (LV) |
| LV->replaceKillInstruction(SrcReg, MI, *Copy); |
| } |
| |
| // We've set all the parameters without issue. |
| return true; |
| } |
| |
| /// Helper for convertToThreeAddress when 16-bit LEA is disabled, use 32-bit |
| /// LEA to form 3-address code by promoting to a 32-bit superregister and then |
| /// truncating back down to a 16-bit subregister. |
| MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA( |
| unsigned MIOpc, MachineFunction::iterator &MFI, MachineInstr &MI, |
| LiveVariables *LV) const { |
| MachineBasicBlock::iterator MBBI = MI.getIterator(); |
| unsigned Dest = MI.getOperand(0).getReg(); |
| unsigned Src = MI.getOperand(1).getReg(); |
| bool isDead = MI.getOperand(0).isDead(); |
| bool isKill = MI.getOperand(1).isKill(); |
| |
| MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo(); |
| unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass); |
| unsigned Opc, leaInReg; |
| if (Subtarget.is64Bit()) { |
| Opc = X86::LEA64_32r; |
| leaInReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); |
| } else { |
| Opc = X86::LEA32r; |
| leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); |
| } |
| |
| // Build and insert into an implicit UNDEF value. This is OK because |
| // well be shifting and then extracting the lower 16-bits. |
| // This has the potential to cause partial register stall. e.g. |
| // movw (%rbp,%rcx,2), %dx |
| // leal -65(%rdx), %esi |
| // But testing has shown this *does* help performance in 64-bit mode (at |
| // least on modern x86 machines). |
| BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg); |
| MachineInstr *InsMI = |
| BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) |
| .addReg(leaInReg, RegState::Define, X86::sub_16bit) |
| .addReg(Src, getKillRegState(isKill)); |
| |
| MachineInstrBuilder MIB = |
| BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(Opc), leaOutReg); |
| switch (MIOpc) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::SHL16ri: { |
| unsigned ShAmt = MI.getOperand(2).getImm(); |
| MIB.addReg(0).addImm(1ULL << ShAmt) |
| .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0); |
| break; |
| } |
| case X86::INC16r: |
| addRegOffset(MIB, leaInReg, true, 1); |
| break; |
| case X86::DEC16r: |
| addRegOffset(MIB, leaInReg, true, -1); |
| break; |
| case X86::ADD16ri: |
| case X86::ADD16ri8: |
| case X86::ADD16ri_DB: |
| case X86::ADD16ri8_DB: |
| addRegOffset(MIB, leaInReg, true, MI.getOperand(2).getImm()); |
| break; |
| case X86::ADD16rr: |
| case X86::ADD16rr_DB: { |
| unsigned Src2 = MI.getOperand(2).getReg(); |
| bool isKill2 = MI.getOperand(2).isKill(); |
| unsigned leaInReg2 = 0; |
| MachineInstr *InsMI2 = nullptr; |
| if (Src == Src2) { |
| // ADD16rr killed %reg1028, %reg1028 |
| // just a single insert_subreg. |
| addRegReg(MIB, leaInReg, true, leaInReg, false); |
| } else { |
| if (Subtarget.is64Bit()) |
| leaInReg2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); |
| else |
| leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); |
| // Build and insert into an implicit UNDEF value. This is OK because |
| // well be shifting and then extracting the lower 16-bits. |
| BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg2); |
| InsMI2 = BuildMI(*MFI, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) |
| .addReg(leaInReg2, RegState::Define, X86::sub_16bit) |
| .addReg(Src2, getKillRegState(isKill2)); |
| addRegReg(MIB, leaInReg, true, leaInReg2, true); |
| } |
| if (LV && isKill2 && InsMI2) |
| LV->replaceKillInstruction(Src2, MI, *InsMI2); |
| break; |
| } |
| } |
| |
| MachineInstr *NewMI = MIB; |
| MachineInstr *ExtMI = |
| BuildMI(*MFI, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) |
| .addReg(Dest, RegState::Define | getDeadRegState(isDead)) |
| .addReg(leaOutReg, RegState::Kill, X86::sub_16bit); |
| |
| if (LV) { |
| // Update live variables |
| LV->getVarInfo(leaInReg).Kills.push_back(NewMI); |
| LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI); |
| if (isKill) |
| LV->replaceKillInstruction(Src, MI, *InsMI); |
| if (isDead) |
| LV->replaceKillInstruction(Dest, MI, *ExtMI); |
| } |
| |
| return ExtMI; |
| } |
| |
| /// This method must be implemented by targets that |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target |
| /// may be able to convert a two-address instruction into a true |
| /// three-address instruction on demand. This allows the X86 target (for |
| /// example) to convert ADD and SHL instructions into LEA instructions if they |
| /// would require register copies due to two-addressness. |
| /// |
| /// This method returns a null pointer if the transformation cannot be |
| /// performed, otherwise it returns the new instruction. |
| /// |
| MachineInstr * |
| X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, |
| MachineInstr &MI, LiveVariables *LV) const { |
| // The following opcodes also sets the condition code register(s). Only |
| // convert them to equivalent lea if the condition code register def's |
| // are dead! |
| if (hasLiveCondCodeDef(MI)) |
| return nullptr; |
| |
| MachineFunction &MF = *MI.getParent()->getParent(); |
| // All instructions input are two-addr instructions. Get the known operands. |
| const MachineOperand &Dest = MI.getOperand(0); |
| const MachineOperand &Src = MI.getOperand(1); |
| |
| MachineInstr *NewMI = nullptr; |
| // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When |
| // we have better subtarget support, enable the 16-bit LEA generation here. |
| // 16-bit LEA is also slow on Core2. |
| bool DisableLEA16 = true; |
| bool is64Bit = Subtarget.is64Bit(); |
| |
| unsigned MIOpc = MI.getOpcode(); |
| switch (MIOpc) { |
| default: return nullptr; |
| case X86::SHL64ri: { |
| assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); |
| unsigned ShAmt = getTruncatedShiftCount(MI, 2); |
| if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; |
| |
| // LEA can't handle RSP. |
| if (TargetRegisterInfo::isVirtualRegister(Src.getReg()) && |
| !MF.getRegInfo().constrainRegClass(Src.getReg(), |
| &X86::GR64_NOSPRegClass)) |
| return nullptr; |
| |
| NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) |
| .add(Dest) |
| .addReg(0) |
| .addImm(1ULL << ShAmt) |
| .add(Src) |
| .addImm(0) |
| .addReg(0); |
| break; |
| } |
| case X86::SHL32ri: { |
| assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); |
| unsigned ShAmt = getTruncatedShiftCount(MI, 2); |
| if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; |
| |
| unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| |
| // LEA can't handle ESP. |
| bool isKill, isUndef; |
| unsigned SrcReg; |
| MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); |
| if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, |
| SrcReg, isKill, isUndef, ImplicitOp, LV)) |
| return nullptr; |
| |
| MachineInstrBuilder MIB = |
| BuildMI(MF, MI.getDebugLoc(), get(Opc)) |
| .add(Dest) |
| .addReg(0) |
| .addImm(1ULL << ShAmt) |
| .addReg(SrcReg, getKillRegState(isKill) | getUndefRegState(isUndef)) |
| .addImm(0) |
| .addReg(0); |
| if (ImplicitOp.getReg() != 0) |
| MIB.add(ImplicitOp); |
| NewMI = MIB; |
| |
| break; |
| } |
| case X86::SHL16ri: { |
| assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); |
| unsigned ShAmt = getTruncatedShiftCount(MI, 2); |
| if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; |
| |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) |
| : nullptr; |
| NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)) |
| .add(Dest) |
| .addReg(0) |
| .addImm(1ULL << ShAmt) |
| .add(Src) |
| .addImm(0) |
| .addReg(0); |
| break; |
| } |
| case X86::INC64r: |
| case X86::INC32r: { |
| assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); |
| unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r |
| : (is64Bit ? X86::LEA64_32r : X86::LEA32r); |
| bool isKill, isUndef; |
| unsigned SrcReg; |
| MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); |
| if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, |
| SrcReg, isKill, isUndef, ImplicitOp, LV)) |
| return nullptr; |
| |
| MachineInstrBuilder MIB = |
| BuildMI(MF, MI.getDebugLoc(), get(Opc)) |
| .add(Dest) |
| .addReg(SrcReg, |
| getKillRegState(isKill) | getUndefRegState(isUndef)); |
| if (ImplicitOp.getReg() != 0) |
| MIB.add(ImplicitOp); |
| |
| NewMI = addOffset(MIB, 1); |
| break; |
| } |
| case X86::INC16r: |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) |
| : nullptr; |
| assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); |
| NewMI = addOffset( |
| BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), 1); |
| break; |
| case X86::DEC64r: |
| case X86::DEC32r: { |
| assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); |
| unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r |
| : (is64Bit ? X86::LEA64_32r : X86::LEA32r); |
| |
| bool isKill, isUndef; |
| unsigned SrcReg; |
| MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); |
| if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ false, |
| SrcReg, isKill, isUndef, ImplicitOp, LV)) |
| return nullptr; |
| |
| MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) |
| .add(Dest) |
| .addReg(SrcReg, getUndefRegState(isUndef) | |
| getKillRegState(isKill)); |
| if (ImplicitOp.getReg() != 0) |
| MIB.add(ImplicitOp); |
| |
| NewMI = addOffset(MIB, -1); |
| |
| break; |
| } |
| case X86::DEC16r: |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) |
| : nullptr; |
| assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); |
| NewMI = addOffset( |
| BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), -1); |
| break; |
| case X86::ADD64rr: |
| case X86::ADD64rr_DB: |
| case X86::ADD32rr: |
| case X86::ADD32rr_DB: { |
| assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); |
| unsigned Opc; |
| if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) |
| Opc = X86::LEA64r; |
| else |
| Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| |
| bool isKill, isUndef; |
| unsigned SrcReg; |
| MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); |
| if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, |
| SrcReg, isKill, isUndef, ImplicitOp, LV)) |
| return nullptr; |
| |
| const MachineOperand &Src2 = MI.getOperand(2); |
| bool isKill2, isUndef2; |
| unsigned SrcReg2; |
| MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); |
| if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/ false, |
| SrcReg2, isKill2, isUndef2, ImplicitOp2, LV)) |
| return nullptr; |
| |
| MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); |
| if (ImplicitOp.getReg() != 0) |
| MIB.add(ImplicitOp); |
| if (ImplicitOp2.getReg() != 0) |
| MIB.add(ImplicitOp2); |
| |
| NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); |
| |
| // Preserve undefness of the operands. |
| NewMI->getOperand(1).setIsUndef(isUndef); |
| NewMI->getOperand(3).setIsUndef(isUndef2); |
| |
| if (LV && Src2.isKill()) |
| LV->replaceKillInstruction(SrcReg2, MI, *NewMI); |
| break; |
| } |
| case X86::ADD16rr: |
| case X86::ADD16rr_DB: { |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) |
| : nullptr; |
| assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); |
| unsigned Src2 = MI.getOperand(2).getReg(); |
| bool isKill2 = MI.getOperand(2).isKill(); |
| NewMI = addRegReg(BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest), |
| Src.getReg(), Src.isKill(), Src2, isKill2); |
| |
| // Preserve undefness of the operands. |
| bool isUndef = MI.getOperand(1).isUndef(); |
| bool isUndef2 = MI.getOperand(2).isUndef(); |
| NewMI->getOperand(1).setIsUndef(isUndef); |
| NewMI->getOperand(3).setIsUndef(isUndef2); |
| |
| if (LV && isKill2) |
| LV->replaceKillInstruction(Src2, MI, *NewMI); |
| break; |
| } |
| case X86::ADD64ri32: |
| case X86::ADD64ri8: |
| case X86::ADD64ri32_DB: |
| case X86::ADD64ri8_DB: |
| assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); |
| NewMI = addOffset( |
| BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), |
| MI.getOperand(2)); |
| break; |
| case X86::ADD32ri: |
| case X86::ADD32ri8: |
| case X86::ADD32ri_DB: |
| case X86::ADD32ri8_DB: { |
| assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); |
| unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r; |
| |
| bool isKill, isUndef; |
| unsigned SrcReg; |
| MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); |
| if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/ true, |
| SrcReg, isKill, isUndef, ImplicitOp, LV)) |
| return nullptr; |
| |
| MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) |
| .add(Dest) |
| .addReg(SrcReg, getUndefRegState(isUndef) | |
| getKillRegState(isKill)); |
| if (ImplicitOp.getReg() != 0) |
| MIB.add(ImplicitOp); |
| |
| NewMI = addOffset(MIB, MI.getOperand(2)); |
| break; |
| } |
| case X86::ADD16ri: |
| case X86::ADD16ri8: |
| case X86::ADD16ri_DB: |
| case X86::ADD16ri8_DB: |
| if (DisableLEA16) |
| return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MI, LV) |
| : nullptr; |
| assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); |
| NewMI = addOffset( |
| BuildMI(MF, MI.getDebugLoc(), get(X86::LEA16r)).add(Dest).add(Src), |
| MI.getOperand(2)); |
| break; |
| |
| case X86::VMOVDQU8Z128rmk: |
| case X86::VMOVDQU8Z256rmk: |
| case X86::VMOVDQU8Zrmk: |
| case X86::VMOVDQU16Z128rmk: |
| case X86::VMOVDQU16Z256rmk: |
| case X86::VMOVDQU16Zrmk: |
| case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: |
| case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: |
| case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: |
| case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: |
| case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: |
| case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: |
| case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: |
| case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: |
| case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: |
| case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: |
| case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: |
| case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: { |
| unsigned Opc; |
| switch (MIOpc) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; |
| case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; |
| case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; |
| case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; |
| case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; |
| case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; |
| case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; |
| case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; |
| case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; |
| case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; |
| case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; |
| case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; |
| case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; |
| case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; |
| case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; |
| case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; |
| case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; |
| case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; |
| case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; |
| case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; |
| case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; |
| case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; |
| case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; |
| case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; |
| case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; |
| case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; |
| case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; |
| case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; |
| case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; |
| case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; |
| } |
| |
| NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) |
| .add(Dest) |
| .add(MI.getOperand(2)) |
| .add(Src) |
| .add(MI.getOperand(3)) |
| .add(MI.getOperand(4)) |
| .add(MI.getOperand(5)) |
| .add(MI.getOperand(6)) |
| .add(MI.getOperand(7)); |
| break; |
| } |
| case X86::VMOVDQU8Z128rrk: |
| case X86::VMOVDQU8Z256rrk: |
| case X86::VMOVDQU8Zrrk: |
| case X86::VMOVDQU16Z128rrk: |
| case X86::VMOVDQU16Z256rrk: |
| case X86::VMOVDQU16Zrrk: |
| case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: |
| case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: |
| case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: |
| case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: |
| case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: |
| case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: |
| case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: |
| case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: |
| case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: |
| case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: |
| case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: |
| case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { |
| unsigned Opc; |
| switch (MIOpc) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; |
| case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; |
| case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; |
| case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; |
| case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; |
| case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; |
| case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; |
| case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; |
| case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; |
| case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; |
| case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; |
| case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; |
| case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; |
| case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; |
| case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; |
| case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; |
| case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; |
| case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; |
| case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; |
| case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; |
| case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; |
| case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; |
| case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; |
| case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; |
| case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; |
| case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; |
| case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; |
| case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; |
| case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; |
| case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; |
| } |
| |
| NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) |
| .add(Dest) |
| .add(MI.getOperand(2)) |
| .add(Src) |
| .add(MI.getOperand(3)); |
| break; |
| } |
| } |
| |
| if (!NewMI) return nullptr; |
| |
| if (LV) { // Update live variables |
| if (Src.isKill()) |
| LV->replaceKillInstruction(Src.getReg(), MI, *NewMI); |
| if (Dest.isDead()) |
| LV->replaceKillInstruction(Dest.getReg(), MI, *NewMI); |
| } |
| |
| MFI->insert(MI.getIterator(), NewMI); // Insert the new inst |
| return NewMI; |
| } |
| |
| /// This determines which of three possible cases of a three source commute |
| /// the source indexes correspond to taking into account any mask operands. |
| /// All prevents commuting a passthru operand. Returns -1 if the commute isn't |
| /// possible. |
| /// Case 0 - Possible to commute the first and second operands. |
| /// Case 1 - Possible to commute the first and third operands. |
| /// Case 2 - Possible to commute the second and third operands. |
| static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, |
| unsigned SrcOpIdx2) { |
| // Put the lowest index to SrcOpIdx1 to simplify the checks below. |
| if (SrcOpIdx1 > SrcOpIdx2) |
| std::swap(SrcOpIdx1, SrcOpIdx2); |
| |
| unsigned Op1 = 1, Op2 = 2, Op3 = 3; |
| if (X86II::isKMasked(TSFlags)) { |
| Op2++; |
| Op3++; |
| } |
| |
| if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) |
| return 0; |
| if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) |
| return 1; |
| if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) |
| return 2; |
| llvm_unreachable("Unknown three src commute case."); |
| } |
| |
| unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( |
| const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, |
| const X86InstrFMA3Group &FMA3Group) const { |
| |
| unsigned Opc = MI.getOpcode(); |
| |
| // TODO: Commuting the 1st operand of FMA*_Int requires some additional |
| // analysis. The commute optimization is legal only if all users of FMA*_Int |
| // use only the lowest element of the FMA*_Int instruction. Such analysis are |
| // not implemented yet. So, just return 0 in that case. |
| // When such analysis are available this place will be the right place for |
| // calling it. |
| assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && |
| "Intrinsic instructions can't commute operand 1"); |
| |
| // Determine which case this commute is or if it can't be done. |
| unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, |
| SrcOpIdx2); |
| assert(Case < 3 && "Unexpected case number!"); |
| |
| // Define the FMA forms mapping array that helps to map input FMA form |
| // to output FMA form to preserve the operation semantics after |
| // commuting the operands. |
| const unsigned Form132Index = 0; |
| const unsigned Form213Index = 1; |
| const unsigned Form231Index = 2; |
| static const unsigned FormMapping[][3] = { |
| // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; |
| // FMA132 A, C, b; ==> FMA231 C, A, b; |
| // FMA213 B, A, c; ==> FMA213 A, B, c; |
| // FMA231 C, A, b; ==> FMA132 A, C, b; |
| { Form231Index, Form213Index, Form132Index }, |
| // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; |
| // FMA132 A, c, B; ==> FMA132 B, c, A; |
| // FMA213 B, a, C; ==> FMA231 C, a, B; |
| // FMA231 C, a, B; ==> FMA213 B, a, C; |
| { Form132Index, Form231Index, Form213Index }, |
| // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; |
| // FMA132 a, C, B; ==> FMA213 a, B, C; |
| // FMA213 b, A, C; ==> FMA132 b, C, A; |
| // FMA231 c, A, B; ==> FMA231 c, B, A; |
| { Form213Index, Form132Index, Form231Index } |
| }; |
| |
| unsigned FMAForms[3]; |
| FMAForms[0] = FMA3Group.get132Opcode(); |
| FMAForms[1] = FMA3Group.get213Opcode(); |
| FMAForms[2] = FMA3Group.get231Opcode(); |
| unsigned FormIndex; |
| for (FormIndex = 0; FormIndex < 3; FormIndex++) |
| if (Opc == FMAForms[FormIndex]) |
| break; |
| |
| // Everything is ready, just adjust the FMA opcode and return it. |
| FormIndex = FormMapping[Case][FormIndex]; |
| return FMAForms[FormIndex]; |
| } |
| |
| static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, |
| unsigned SrcOpIdx2) { |
| // Determine which case this commute is or if it can't be done. |
| unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, |
| SrcOpIdx2); |
| assert(Case < 3 && "Unexpected case value!"); |
| |
| // For each case we need to swap two pairs of bits in the final immediate. |
| static const uint8_t SwapMasks[3][4] = { |
| { 0x04, 0x10, 0x08, 0x20 }, // Swap bits 2/4 and 3/5. |
| { 0x02, 0x10, 0x08, 0x40 }, // Swap bits 1/4 and 3/6. |
| { 0x02, 0x04, 0x20, 0x40 }, // Swap bits 1/2 and 5/6. |
| }; |
| |
| uint8_t Imm = MI.getOperand(MI.getNumOperands()-1).getImm(); |
| // Clear out the bits we are swapping. |
| uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | |
| SwapMasks[Case][2] | SwapMasks[Case][3]); |
| // If the immediate had a bit of the pair set, then set the opposite bit. |
| if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; |
| if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; |
| if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; |
| if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; |
| MI.getOperand(MI.getNumOperands()-1).setImm(NewImm); |
| } |
| |
| // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be |
| // commuted. |
| static bool isCommutableVPERMV3Instruction(unsigned Opcode) { |
| #define VPERM_CASES(Suffix) \ |
| case X86::VPERMI2##Suffix##128rr: case X86::VPERMT2##Suffix##128rr: \ |
| case X86::VPERMI2##Suffix##256rr: case X86::VPERMT2##Suffix##256rr: \ |
| case X86::VPERMI2##Suffix##rr: case X86::VPERMT2##Suffix##rr: \ |
| case X86::VPERMI2##Suffix##128rm: case X86::VPERMT2##Suffix##128rm: \ |
| case X86::VPERMI2##Suffix##256rm: case X86::VPERMT2##Suffix##256rm: \ |
| case X86::VPERMI2##Suffix##rm: case X86::VPERMT2##Suffix##rm: \ |
| case X86::VPERMI2##Suffix##128rrkz: case X86::VPERMT2##Suffix##128rrkz: \ |
| case X86::VPERMI2##Suffix##256rrkz: case X86::VPERMT2##Suffix##256rrkz: \ |
| case X86::VPERMI2##Suffix##rrkz: case X86::VPERMT2##Suffix##rrkz: \ |
| case X86::VPERMI2##Suffix##128rmkz: case X86::VPERMT2##Suffix##128rmkz: \ |
| case X86::VPERMI2##Suffix##256rmkz: case X86::VPERMT2##Suffix##256rmkz: \ |
| case X86::VPERMI2##Suffix##rmkz: case X86::VPERMT2##Suffix##rmkz: |
| |
| #define VPERM_CASES_BROADCAST(Suffix) \ |
| VPERM_CASES(Suffix) \ |
| case X86::VPERMI2##Suffix##128rmb: case X86::VPERMT2##Suffix##128rmb: \ |
| case X86::VPERMI2##Suffix##256rmb: case X86::VPERMT2##Suffix##256rmb: \ |
| case X86::VPERMI2##Suffix##rmb: case X86::VPERMT2##Suffix##rmb: \ |
| case X86::VPERMI2##Suffix##128rmbkz: case X86::VPERMT2##Suffix##128rmbkz: \ |
| case X86::VPERMI2##Suffix##256rmbkz: case X86::VPERMT2##Suffix##256rmbkz: \ |
| case X86::VPERMI2##Suffix##rmbkz: case X86::VPERMT2##Suffix##rmbkz: |
| |
| switch (Opcode) { |
| default: return false; |
| VPERM_CASES(B) |
| VPERM_CASES_BROADCAST(D) |
| VPERM_CASES_BROADCAST(PD) |
| VPERM_CASES_BROADCAST(PS) |
| VPERM_CASES_BROADCAST(Q) |
| VPERM_CASES(W) |
| return true; |
| } |
| #undef VPERM_CASES_BROADCAST |
| #undef VPERM_CASES |
| } |
| |
| // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching |
| // from the I opcode to the T opcode and vice versa. |
| static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { |
| #define VPERM_CASES(Orig, New) \ |
| case X86::Orig##128rr: return X86::New##128rr; \ |
| case X86::Orig##128rrkz: return X86::New##128rrkz; \ |
| case X86::Orig##128rm: return X86::New##128rm; \ |
| case X86::Orig##128rmkz: return X86::New##128rmkz; \ |
| case X86::Orig##256rr: return X86::New##256rr; \ |
| case X86::Orig##256rrkz: return X86::New##256rrkz; \ |
| case X86::Orig##256rm: return X86::New##256rm; \ |
| case X86::Orig##256rmkz: return X86::New##256rmkz; \ |
| case X86::Orig##rr: return X86::New##rr; \ |
| case X86::Orig##rrkz: return X86::New##rrkz; \ |
| case X86::Orig##rm: return X86::New##rm; \ |
| case X86::Orig##rmkz: return X86::New##rmkz; |
| |
| #define VPERM_CASES_BROADCAST(Orig, New) \ |
| VPERM_CASES(Orig, New) \ |
| case X86::Orig##128rmb: return X86::New##128rmb; \ |
| case X86::Orig##128rmbkz: return X86::New##128rmbkz; \ |
| case X86::Orig##256rmb: return X86::New##256rmb; \ |
| case X86::Orig##256rmbkz: return X86::New##256rmbkz; \ |
| case X86::Orig##rmb: return X86::New##rmb; \ |
| case X86::Orig##rmbkz: return X86::New##rmbkz; |
| |
| switch (Opcode) { |
| VPERM_CASES(VPERMI2B, VPERMT2B) |
| VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) |
| VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) |
| VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) |
| VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) |
| VPERM_CASES(VPERMI2W, VPERMT2W) |
| VPERM_CASES(VPERMT2B, VPERMI2B) |
| VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) |
| VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) |
| VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) |
| VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) |
| VPERM_CASES(VPERMT2W, VPERMI2W) |
| } |
| |
| llvm_unreachable("Unreachable!"); |
| #undef VPERM_CASES_BROADCAST |
| #undef VPERM_CASES |
| } |
| |
| MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, |
| unsigned OpIdx1, |
| unsigned OpIdx2) const { |
| auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { |
| if (NewMI) |
| return *MI.getParent()->getParent()->CloneMachineInstr(&MI); |
| return MI; |
| }; |
| |
| switch (MI.getOpcode()) { |
| case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I) |
| case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I) |
| case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I) |
| case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I) |
| case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I) |
| case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I) |
| unsigned Opc; |
| unsigned Size; |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break; |
| case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break; |
| case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break; |
| case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break; |
| case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break; |
| case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break; |
| } |
| unsigned Amt = MI.getOperand(3).getImm(); |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| WorkingMI.getOperand(3).setImm(Size - Amt); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::PFSUBrr: |
| case X86::PFSUBRrr: { |
| // PFSUB x, y: x = x - y |
| // PFSUBR x, y: x = y - x |
| unsigned Opc = |
| (X86::PFSUBRrr == MI.getOpcode() ? X86::PFSUBrr : X86::PFSUBRrr); |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::BLENDPDrri: |
| case X86::BLENDPSrri: |
| case X86::VBLENDPDrri: |
| case X86::VBLENDPSrri: |
| // If we're optimizing for size, try to use MOVSD/MOVSS. |
| if (MI.getParent()->getParent()->getFunction().optForSize()) { |
| unsigned Mask, Opc; |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::BLENDPDrri: Opc = X86::MOVSDrr; Mask = 0x03; break; |
| case X86::BLENDPSrri: Opc = X86::MOVSSrr; Mask = 0x0F; break; |
| case X86::VBLENDPDrri: Opc = X86::VMOVSDrr; Mask = 0x03; break; |
| case X86::VBLENDPSrri: Opc = X86::VMOVSSrr; Mask = 0x0F; break; |
| } |
| if ((MI.getOperand(3).getImm() ^ Mask) == 1) { |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| WorkingMI.RemoveOperand(3); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, |
| /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| } |
| LLVM_FALLTHROUGH; |
| case X86::PBLENDWrri: |
| case X86::VBLENDPDYrri: |
| case X86::VBLENDPSYrri: |
| case X86::VPBLENDDrri: |
| case X86::VPBLENDWrri: |
| case X86::VPBLENDDYrri: |
| case X86::VPBLENDWYrri:{ |
| unsigned Mask; |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::BLENDPDrri: Mask = 0x03; break; |
| case X86::BLENDPSrri: Mask = 0x0F; break; |
| case X86::PBLENDWrri: Mask = 0xFF; break; |
| case X86::VBLENDPDrri: Mask = 0x03; break; |
| case X86::VBLENDPSrri: Mask = 0x0F; break; |
| case X86::VBLENDPDYrri: Mask = 0x0F; break; |
| case X86::VBLENDPSYrri: Mask = 0xFF; break; |
| case X86::VPBLENDDrri: Mask = 0x0F; break; |
| case X86::VPBLENDWrri: Mask = 0xFF; break; |
| case X86::VPBLENDDYrri: Mask = 0xFF; break; |
| case X86::VPBLENDWYrri: Mask = 0xFF; break; |
| } |
| // Only the least significant bits of Imm are used. |
| unsigned Imm = MI.getOperand(3).getImm() & Mask; |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.getOperand(3).setImm(Mask ^ Imm); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::MOVSDrr: |
| case X86::MOVSSrr: |
| case X86::VMOVSDrr: |
| case X86::VMOVSSrr:{ |
| // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. |
| assert(Subtarget.hasSSE41() && "Commuting MOVSD/MOVSS requires SSE41!"); |
| |
| unsigned Mask, Opc; |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; |
| case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; |
| case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; |
| case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; |
| } |
| |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| WorkingMI.addOperand(MachineOperand::CreateImm(Mask)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::PCLMULQDQrr: |
| case X86::VPCLMULQDQrr: |
| case X86::VPCLMULQDQYrr: |
| case X86::VPCLMULQDQZrr: |
| case X86::VPCLMULQDQZ128rr: |
| case X86::VPCLMULQDQZ256rr: { |
| // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] |
| // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] |
| unsigned Imm = MI.getOperand(3).getImm(); |
| unsigned Src1Hi = Imm & 0x01; |
| unsigned Src2Hi = Imm & 0x10; |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: |
| case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: |
| case X86::VPCMPBZrri: case X86::VPCMPUBZrri: |
| case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: |
| case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: |
| case X86::VPCMPDZrri: case X86::VPCMPUDZrri: |
| case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: |
| case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: |
| case X86::VPCMPQZrri: case X86::VPCMPUQZrri: |
| case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: |
| case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: |
| case X86::VPCMPWZrri: case X86::VPCMPUWZrri: |
| case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: |
| case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: |
| case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik: |
| case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: |
| case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: |
| case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik: |
| case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: |
| case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: |
| case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik: |
| case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: |
| case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: |
| case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: { |
| // Flip comparison mode immediate (if necessary). |
| unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7; |
| Imm = X86::getSwappedVPCMPImm(Imm); |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.getOperand(MI.getNumOperands() - 1).setImm(Imm); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::VPCOMBri: case X86::VPCOMUBri: |
| case X86::VPCOMDri: case X86::VPCOMUDri: |
| case X86::VPCOMQri: case X86::VPCOMUQri: |
| case X86::VPCOMWri: case X86::VPCOMUWri: { |
| // Flip comparison mode immediate (if necessary). |
| unsigned Imm = MI.getOperand(3).getImm() & 0x7; |
| Imm = X86::getSwappedVPCOMImm(Imm); |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.getOperand(3).setImm(Imm); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::VPERM2F128rr: |
| case X86::VPERM2I128rr: { |
| // Flip permute source immediate. |
| // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. |
| // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. |
| unsigned Imm = MI.getOperand(3).getImm() & 0xFF; |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.getOperand(3).setImm(Imm ^ 0x22); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::MOVHLPSrr: |
| case X86::UNPCKHPDrr: |
| case X86::VMOVHLPSrr: |
| case X86::VUNPCKHPDrr: |
| case X86::VMOVHLPSZrr: |
| case X86::VUNPCKHPDZ128rr: { |
| assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); |
| |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; |
| case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; |
| case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break; |
| case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break; |
| case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break; |
| case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break; |
| } |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::CMOVB16rr: case X86::CMOVB32rr: case X86::CMOVB64rr: |
| case X86::CMOVAE16rr: case X86::CMOVAE32rr: case X86::CMOVAE64rr: |
| case X86::CMOVE16rr: case X86::CMOVE32rr: case X86::CMOVE64rr: |
| case X86::CMOVNE16rr: case X86::CMOVNE32rr: case X86::CMOVNE64rr: |
| case X86::CMOVBE16rr: case X86::CMOVBE32rr: case X86::CMOVBE64rr: |
| case X86::CMOVA16rr: case X86::CMOVA32rr: case X86::CMOVA64rr: |
| case X86::CMOVL16rr: case X86::CMOVL32rr: case X86::CMOVL64rr: |
| case X86::CMOVGE16rr: case X86::CMOVGE32rr: case X86::CMOVGE64rr: |
| case X86::CMOVLE16rr: case X86::CMOVLE32rr: case X86::CMOVLE64rr: |
| case X86::CMOVG16rr: case X86::CMOVG32rr: case X86::CMOVG64rr: |
| case X86::CMOVS16rr: case X86::CMOVS32rr: case X86::CMOVS64rr: |
| case X86::CMOVNS16rr: case X86::CMOVNS32rr: case X86::CMOVNS64rr: |
| case X86::CMOVP16rr: case X86::CMOVP32rr: case X86::CMOVP64rr: |
| case X86::CMOVNP16rr: case X86::CMOVNP32rr: case X86::CMOVNP64rr: |
| case X86::CMOVO16rr: case X86::CMOVO32rr: case X86::CMOVO64rr: |
| case X86::CMOVNO16rr: case X86::CMOVNO32rr: case X86::CMOVNO64rr: { |
| unsigned Opc; |
| switch (MI.getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break; |
| case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break; |
| case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break; |
| case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break; |
| case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break; |
| case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break; |
| case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break; |
| case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break; |
| case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break; |
| case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break; |
| case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break; |
| case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break; |
| case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break; |
| case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break; |
| case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break; |
| case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break; |
| case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break; |
| case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break; |
| case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break; |
| case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break; |
| case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break; |
| case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break; |
| case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break; |
| case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break; |
| case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break; |
| case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break; |
| case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break; |
| case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break; |
| case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break; |
| case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break; |
| case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break; |
| case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break; |
| case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break; |
| case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break; |
| case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break; |
| case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break; |
| case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break; |
| case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break; |
| case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break; |
| case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break; |
| case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break; |
| case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break; |
| case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break; |
| case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break; |
| case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break; |
| case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break; |
| case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break; |
| case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break; |
| } |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: |
| case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: |
| case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: |
| case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: |
| case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: |
| case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: |
| case X86::VPTERNLOGDZrrik: |
| case X86::VPTERNLOGDZ128rrik: |
| case X86::VPTERNLOGDZ256rrik: |
| case X86::VPTERNLOGQZrrik: |
| case X86::VPTERNLOGQZ128rrik: |
| case X86::VPTERNLOGQZ256rrik: |
| case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: |
| case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: |
| case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: |
| case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: |
| case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: |
| case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: |
| case X86::VPTERNLOGDZ128rmbi: |
| case X86::VPTERNLOGDZ256rmbi: |
| case X86::VPTERNLOGDZrmbi: |
| case X86::VPTERNLOGQZ128rmbi: |
| case X86::VPTERNLOGQZ256rmbi: |
| case X86::VPTERNLOGQZrmbi: |
| case X86::VPTERNLOGDZ128rmbikz: |
| case X86::VPTERNLOGDZ256rmbikz: |
| case X86::VPTERNLOGDZrmbikz: |
| case X86::VPTERNLOGQZ128rmbikz: |
| case X86::VPTERNLOGQZ256rmbikz: |
| case X86::VPTERNLOGQZrmbikz: { |
| auto &WorkingMI = cloneIfNew(MI); |
| commuteVPTERNLOG(WorkingMI, OpIdx1, OpIdx2); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| default: { |
| if (isCommutableVPERMV3Instruction(MI.getOpcode())) { |
| unsigned Opc = getCommutedVPERMV3Opcode(MI.getOpcode()); |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| |
| const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), |
| MI.getDesc().TSFlags); |
| if (FMA3Group) { |
| unsigned Opc = |
| getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group); |
| auto &WorkingMI = cloneIfNew(MI); |
| WorkingMI.setDesc(get(Opc)); |
| return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, |
| OpIdx1, OpIdx2); |
| } |
| |
| return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); |
| } |
| } |
| } |
| |
| bool |
| X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, |
| unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2, |
| bool IsIntrinsic) const { |
| uint64_t TSFlags = MI.getDesc().TSFlags; |
| |
| unsigned FirstCommutableVecOp = 1; |
| unsigned LastCommutableVecOp = 3; |
| unsigned KMaskOp = -1U; |
| if (X86II::isKMasked(TSFlags)) { |
| // For k-zero-masked operations it is Ok to commute the first vector |
| // operand. |
| // For regular k-masked operations a conservative choice is done as the |
| // elements of the first vector operand, for which the corresponding bit |
| // in the k-mask operand is set to 0, are copied to the result of the |
| // instruction. |
| // TODO/FIXME: The commute still may be legal if it is known that the |
| // k-mask operand is set to either all ones or all zeroes. |
| // It is also Ok to commute the 1st operand if all users of MI use only |
| // the elements enabled by the k-mask operand. For example, |
| // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] |
| // : v1[i]; |
| // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 -> |
| // // Ok, to commute v1 in FMADD213PSZrk. |
| |
| // The k-mask operand has index = 2 for masked and zero-masked operations. |
| KMaskOp = 2; |
| |
| // The operand with index = 1 is used as a source for those elements for |
| // which the corresponding bit in the k-mask is set to 0. |
| if (X86II::isKMergeMasked(TSFlags)) |
| FirstCommutableVecOp = 3; |
| |
| LastCommutableVecOp++; |
| } else if (IsIntrinsic) { |
| // Commuting the first operand of an intrinsic instruction isn't possible |
| // unless we can prove that only the lowest element of the result is used. |
| FirstCommutableVecOp = 2; |
| } |
| |
| if (isMem(MI, LastCommutableVecOp)) |
| LastCommutableVecOp--; |
| |
| // Only the first RegOpsNum operands are commutable. |
| // Also, the value 'CommuteAnyOperandIndex' is valid here as it means |
| // that the operand is not specified/fixed. |
| if (SrcOpIdx1 != CommuteAnyOperandIndex && |
| (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || |
| SrcOpIdx1 == KMaskOp)) |
| return false; |
| if (SrcOpIdx2 != CommuteAnyOperandIndex && |
| (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || |
| SrcOpIdx2 == KMaskOp)) |
| return false; |
| |
| // Look for two different register operands assumed to be commutable |
| // regardless of the FMA opcode. The FMA opcode is adjusted later. |
| if (SrcOpIdx1 == CommuteAnyOperandIndex || |
| SrcOpIdx2 == CommuteAnyOperandIndex) { |
| unsigned CommutableOpIdx1 = SrcOpIdx1; |
| unsigned CommutableOpIdx2 = SrcOpIdx2; |
| |
| // At least one of operands to be commuted is not specified and |
| // this method is free to choose appropriate commutable operands. |
| if (SrcOpIdx1 == SrcOpIdx2) |
| // Both of operands are not fixed. By default set one of commutable |
| // operands to the last register operand of the instruction. |
| CommutableOpIdx2 = LastCommutableVecOp; |
| else if (SrcOpIdx2 == CommuteAnyOperandIndex) |
| // Only one of operands is not fixed. |
| CommutableOpIdx2 = SrcOpIdx1; |
| |
| // CommutableOpIdx2 is well defined now. Let's choose another commutable |
| // operand and assign its index to CommutableOpIdx1. |
| unsigned Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); |
| for (CommutableOpIdx1 = LastCommutableVecOp; |
| CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { |
| // Just ignore and skip the k-mask operand. |
| if (CommutableOpIdx1 == KMaskOp) |
| continue; |
| |
| // The commuted operands must have different registers. |
| // Otherwise, the commute transformation does not change anything and |
| // is useless then. |
| if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) |
| break; |
| } |
| |
| // No appropriate commutable operands were found. |
| if (CommutableOpIdx1 < FirstCommutableVecOp) |
| return false; |
| |
| // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 |
| // to return those values. |
| if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, |
| CommutableOpIdx1, CommutableOpIdx2)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool X86InstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx1, |
| unsigned &SrcOpIdx2) const { |
| const MCInstrDesc &Desc = MI.getDesc(); |
| if (!Desc.isCommutable()) |
| return false; |
| |
| switch (MI.getOpcode()) { |
| case X86::CMPSDrr: |
| case X86::CMPSSrr: |
| case X86::CMPPDrri: |
| case X86::CMPPSrri: |
| case X86::VCMPSDrr: |
| case X86::VCMPSSrr: |
| case X86::VCMPPDrri: |
| case X86::VCMPPSrri: |
| case X86::VCMPPDYrri: |
| case X86::VCMPPSYrri: |
| case X86::VCMPSDZrr: |
| case X86::VCMPSSZrr: |
| case X86::VCMPPDZrri: |
| case X86::VCMPPSZrri: |
| case X86::VCMPPDZ128rri: |
| case X86::VCMPPSZ128rri: |
| case X86::VCMPPDZ256rri: |
| case X86::VCMPPSZ256rri: { |
| // Float comparison can be safely commuted for |
| // Ordered/Unordered/Equal/NotEqual tests |
| unsigned Imm = MI.getOperand(3).getImm() & 0x7; |
| switch (Imm) { |
| case 0x00: // EQUAL |
| case 0x03: // UNORDERED |
| case 0x04: // NOT EQUAL |
| case 0x07: // ORDERED |
| // The indices of the commutable operands are 1 and 2. |
| // Assign them to the returned operand indices here. |
| return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2); |
| } |
| return false; |
| } |
| case X86::MOVSDrr: |
| case X86::MOVSSrr: |
| case X86::VMOVSDrr: |
| case X86::VMOVSSrr: |
| if (Subtarget.hasSSE41()) |
| return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| return false; |
| case X86::MOVHLPSrr: |
| case X86::UNPCKHPDrr: |
| case X86::VMOVHLPSrr: |
| case X86::VUNPCKHPDrr: |
| case X86::VMOVHLPSZrr: |
| case X86::VUNPCKHPDZ128rr: |
| if (Subtarget.hasSSE2()) |
| return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| return false; |
| case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: |
| case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: |
| case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: |
| case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: |
| case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: |
| case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: |
| case X86::VPTERNLOGDZrrik: |
| case X86::VPTERNLOGDZ128rrik: |
| case X86::VPTERNLOGDZ256rrik: |
| case X86::VPTERNLOGQZrrik: |
| case X86::VPTERNLOGQZ128rrik: |
| case X86::VPTERNLOGQZ256rrik: |
| case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: |
| case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: |
| case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: |
| case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: |
| case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: |
| case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: |
| case X86::VPTERNLOGDZ128rmbi: |
| case X86::VPTERNLOGDZ256rmbi: |
| case X86::VPTERNLOGDZrmbi: |
| case X86::VPTERNLOGQZ128rmbi: |
| case X86::VPTERNLOGQZ256rmbi: |
| case X86::VPTERNLOGQZrmbi: |
| case X86::VPTERNLOGDZ128rmbikz: |
| case X86::VPTERNLOGDZ256rmbikz: |
| case X86::VPTERNLOGDZrmbikz: |
| case X86::VPTERNLOGQZ128rmbikz: |
| case X86::VPTERNLOGQZ256rmbikz: |
| case X86::VPTERNLOGQZrmbikz: |
| return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| case X86::VPMADD52HUQZ128r: |
| case X86::VPMADD52HUQZ128rk: |
| case X86::VPMADD52HUQZ128rkz: |
| case X86::VPMADD52HUQZ256r: |
| case X86::VPMADD52HUQZ256rk: |
| case X86::VPMADD52HUQZ256rkz: |
| case X86::VPMADD52HUQZr: |
| case X86::VPMADD52HUQZrk: |
| case X86::VPMADD52HUQZrkz: |
| case X86::VPMADD52LUQZ128r: |
| case X86::VPMADD52LUQZ128rk: |
| case X86::VPMADD52LUQZ128rkz: |
| case X86::VPMADD52LUQZ256r: |
| case X86::VPMADD52LUQZ256rk: |
| case X86::VPMADD52LUQZ256rkz: |
| case X86::VPMADD52LUQZr: |
| case X86::VPMADD52LUQZrk: |
| case X86::VPMADD52LUQZrkz: { |
| unsigned CommutableOpIdx1 = 2; |
| unsigned CommutableOpIdx2 = 3; |
| if (X86II::isKMasked(Desc.TSFlags)) { |
| // Skip the mask register. |
| ++CommutableOpIdx1; |
| ++CommutableOpIdx2; |
| } |
| if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, |
| CommutableOpIdx1, CommutableOpIdx2)) |
| return false; |
| if (!MI.getOperand(SrcOpIdx1).isReg() || |
| !MI.getOperand(SrcOpIdx2).isReg()) |
| // No idea. |
| return false; |
| return true; |
| } |
| |
| default: |
| const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), |
| MI.getDesc().TSFlags); |
| if (FMA3Group) |
| return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, |
| FMA3Group->isIntrinsic()); |
| |
| // Handled masked instructions since we need to skip over the mask input |
| // and the preserved input. |
| if (X86II::isKMasked(Desc.TSFlags)) { |
| // First assume that the first input is the mask operand and skip past it. |
| unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; |
| unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; |
| // Check if the first input is tied. If there isn't one then we only |
| // need to skip the mask operand which we did above. |
| if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), |
| MCOI::TIED_TO) != -1)) { |
| // If this is zero masking instruction with a tied operand, we need to |
| // move the first index back to the first input since this must |
| // be a 3 input instruction and we want the first two non-mask inputs. |
| // Otherwise this is a 2 input instruction with a preserved input and |
| // mask, so we need to move the indices to skip one more input. |
| if (X86II::isKMergeMasked(Desc.TSFlags)) { |
| ++CommutableOpIdx1; |
| ++CommutableOpIdx2; |
| } else { |
| --CommutableOpIdx1; |
| } |
| } |
| |
| if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, |
| CommutableOpIdx1, CommutableOpIdx2)) |
| return false; |
| |
| if (!MI.getOperand(SrcOpIdx1).isReg() || |
| !MI.getOperand(SrcOpIdx2).isReg()) |
| // No idea. |
| return false; |
| return true; |
| } |
| |
| return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); |
| } |
| return false; |
| } |
| |
| X86::CondCode X86::getCondFromBranchOpc(unsigned BrOpc) { |
| switch (BrOpc) { |
| default: return X86::COND_INVALID; |
| case X86::JE_1: return X86::COND_E; |
| case X86::JNE_1: return X86::COND_NE; |
| case X86::JL_1: return X86::COND_L; |
| case X86::JLE_1: return X86::COND_LE; |
| case X86::JG_1: return X86::COND_G; |
| case X86::JGE_1: return X86::COND_GE; |
| case X86::JB_1: return X86::COND_B; |
| case X86::JBE_1: return X86::COND_BE; |
| case X86::JA_1: return X86::COND_A; |
| case X86::JAE_1: return X86::COND_AE; |
| case X86::JS_1: return X86::COND_S; |
| case X86::JNS_1: return X86::COND_NS; |
| case X86::JP_1: return X86::COND_P; |
| case X86::JNP_1: return X86::COND_NP; |
| case X86::JO_1: return X86::COND_O; |
| case X86::JNO_1: return X86::COND_NO; |
| } |
| } |
| |
| /// Return condition code of a SET opcode. |
| X86::CondCode X86::getCondFromSETOpc(unsigned Opc) { |
| switch (Opc) { |
| default: return X86::COND_INVALID; |
| case X86::SETAr: case X86::SETAm: return X86::COND_A; |
| case X86::SETAEr: case X86::SETAEm: return X86::COND_AE; |
| case X86::SETBr: case X86::SETBm: return X86::COND_B; |
| case X86::SETBEr: case X86::SETBEm: return X86::COND_BE; |
| case X86::SETEr: case X86::SETEm: return X86::COND_E; |
| case X86::SETGr: case X86::SETGm: return X86::COND_G; |
| case X86::SETGEr: case X86::SETGEm: return X86::COND_GE; |
| case X86::SETLr: case X86::SETLm: return X86::COND_L; |
| case X86::SETLEr: case X86::SETLEm: return X86::COND_LE; |
| case X86::SETNEr: case X86::SETNEm: return X86::COND_NE; |
| case X86::SETNOr: case X86::SETNOm: return X86::COND_NO; |
| case X86::SETNPr: case X86::SETNPm: return X86::COND_NP; |
| case X86::SETNSr: case X86::SETNSm: return X86::COND_NS; |
| case X86::SETOr: case X86::SETOm: return X86::COND_O; |
| case X86::SETPr: case X86::SETPm: return X86::COND_P; |
| case X86::SETSr: case X86::SETSm: return X86::COND_S; |
| } |
| } |
| |
| /// Return condition code of a CMov opcode. |
| X86::CondCode X86::getCondFromCMovOpc(unsigned Opc) { |
| switch (Opc) { |
| default: return X86::COND_INVALID; |
| case X86::CMOVA16rm: case X86::CMOVA16rr: case X86::CMOVA32rm: |
| case X86::CMOVA32rr: case X86::CMOVA64rm: case X86::CMOVA64rr: |
| return X86::COND_A; |
| case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm: |
| case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr: |
| return X86::COND_AE; |
| case X86::CMOVB16rm: case X86::CMOVB16rr: case X86::CMOVB32rm: |
| case X86::CMOVB32rr: case X86::CMOVB64rm: case X86::CMOVB64rr: |
| return X86::COND_B; |
| case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm: |
| case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr: |
| return X86::COND_BE; |
| case X86::CMOVE16rm: case X86::CMOVE16rr: case X86::CMOVE32rm: |
| case X86::CMOVE32rr: case X86::CMOVE64rm: case X86::CMOVE64rr: |
| return X86::COND_E; |
| case X86::CMOVG16rm: case X86::CMOVG16rr: case X86::CMOVG32rm: |
| case X86::CMOVG32rr: case X86::CMOVG64rm: case X86::CMOVG64rr: |
| return X86::COND_G; |
| case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm: |
| case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr: |
| return X86::COND_GE; |
| case X86::CMOVL16rm: case X86::CMOVL16rr: case X86::CMOVL32rm: |
| case X86::CMOVL32rr: case X86::CMOVL64rm: case X86::CMOVL64rr: |
| return X86::COND_L; |
| case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm: |
| case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr: |
| return X86::COND_LE; |
| case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm: |
| case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr: |
| return X86::COND_NE; |
| case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm: |
| case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr: |
| return X86::COND_NO; |
| case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm: |
| case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr: |
| return X86::COND_NP; |
| case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm: |
| case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr: |
| return X86::COND_NS; |
| case X86::CMOVO16rm: case X86::CMOVO16rr: case X86::CMOVO32rm: |
| case X86::CMOVO32rr: case X86::CMOVO64rm: case X86::CMOVO64rr: |
| return X86::COND_O; |
| case X86::CMOVP16rm: case X86::CMOVP16rr: case X86::CMOVP32rm: |
| case X86::CMOVP32rr: case X86::CMOVP64rm: case X86::CMOVP64rr: |
| return X86::COND_P; |
| case X86::CMOVS16rm: case X86::CMOVS16rr: case X86::CMOVS32rm: |
| case X86::CMOVS32rr: case X86::CMOVS64rm: case X86::CMOVS64rr: |
| return X86::COND_S; |
| } |
| } |
| |
| unsigned X86::GetCondBranchFromCond(X86::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Illegal condition code!"); |
| case X86::COND_E: return X86::JE_1; |
| case X86::COND_NE: return X86::JNE_1; |
| case X86::COND_L: return X86::JL_1; |
| case X86::COND_LE: return X86::JLE_1; |
| case X86::COND_G: return X86::JG_1; |
| case X86::COND_GE: return X86::JGE_1; |
| case X86::COND_B: return X86::JB_1; |
| case X86::COND_BE: return X86::JBE_1; |
| case X86::COND_A: return X86::JA_1; |
| case X86::COND_AE: return X86::JAE_1; |
| case X86::COND_S: return X86::JS_1; |
| case X86::COND_NS: return X86::JNS_1; |
| case X86::COND_P: return X86::JP_1; |
| case X86::COND_NP: return X86::JNP_1; |
| case X86::COND_O: return X86::JO_1; |
| case X86::COND_NO: return X86::JNO_1; |
| } |
| } |
| |
| /// Return the inverse of the specified condition, |
| /// e.g. turning COND_E to COND_NE. |
| X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Illegal condition code!"); |
| case X86::COND_E: return X86::COND_NE; |
| case X86::COND_NE: return X86::COND_E; |
| case X86::COND_L: return X86::COND_GE; |
| case X86::COND_LE: return X86::COND_G; |
| case X86::COND_G: return X86::COND_LE; |
| case X86::COND_GE: return X86::COND_L; |
| case X86::COND_B: return X86::COND_AE; |
| case X86::COND_BE: return X86::COND_A; |
| case X86::COND_A: return X86::COND_BE; |
| case X86::COND_AE: return X86::COND_B; |
| case X86::COND_S: return X86::COND_NS; |
| case X86::COND_NS: return X86::COND_S; |
| case X86::COND_P: return X86::COND_NP; |
| case X86::COND_NP: return X86::COND_P; |
| case X86::COND_O: return X86::COND_NO; |
| case X86::COND_NO: return X86::COND_O; |
| case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; |
| case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; |
| } |
| } |
| |
| /// Assuming the flags are set by MI(a,b), return the condition code if we |
| /// modify the instructions such that flags are set by MI(b,a). |
| static X86::CondCode getSwappedCondition(X86::CondCode CC) { |
| switch (CC) { |
| default: return X86::COND_INVALID; |
| case X86::COND_E: return X86::COND_E; |
| case X86::COND_NE: return X86::COND_NE; |
| case X86::COND_L: return X86::COND_G; |
| case X86::COND_LE: return X86::COND_GE; |
| case X86::COND_G: return X86::COND_L; |
| case X86::COND_GE: return X86::COND_LE; |
| case X86::COND_B: return X86::COND_A; |
| case X86::COND_BE: return X86::COND_AE; |
| case X86::COND_A: return X86::COND_B; |
| case X86::COND_AE: return X86::COND_BE; |
| } |
| } |
| |
| std::pair<X86::CondCode, bool> |
| X86::getX86ConditionCode(CmpInst::Predicate Predicate) { |
| X86::CondCode CC = X86::COND_INVALID; |
| bool NeedSwap = false; |
| switch (Predicate) { |
| default: break; |
| // Floating-point Predicates |
| case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; |
| case CmpInst::FCMP_OLT: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_OGT: CC = X86::COND_A; break; |
| case CmpInst::FCMP_OLE: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; |
| case CmpInst::FCMP_UGT: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_ULT: CC = X86::COND_B; break; |
| case CmpInst::FCMP_UGE: NeedSwap = true; LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; |
| case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; |
| case CmpInst::FCMP_UNO: CC = X86::COND_P; break; |
| case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; |
| case CmpInst::FCMP_OEQ: LLVM_FALLTHROUGH; |
| case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; |
| |
| // Integer Predicates |
| case CmpInst::ICMP_EQ: CC = X86::COND_E; break; |
| case CmpInst::ICMP_NE: CC = X86::COND_NE; break; |
| case CmpInst::ICMP_UGT: CC = X86::COND_A; break; |
| case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; |
| case CmpInst::ICMP_ULT: CC = X86::COND_B; break; |
| case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; |
| case CmpInst::ICMP_SGT: CC = X86::COND_G; break; |
| case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; |
| case CmpInst::ICMP_SLT: CC = X86::COND_L; break; |
| case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; |
| } |
| |
| return std::make_pair(CC, NeedSwap); |
| } |
| |
| /// Return a set opcode for the given condition and |
| /// whether it has memory operand. |
| unsigned X86::getSETFromCond(CondCode CC, bool HasMemoryOperand) { |
| static const uint16_t Opc[16][2] = { |
| { X86::SETAr, X86::SETAm }, |
| { X86::SETAEr, X86::SETAEm }, |
| { X86::SETBr, X86::SETBm }, |
| { X86::SETBEr, X86::SETBEm }, |
| { X86::SETEr, X86::SETEm }, |
| { X86::SETGr, X86::SETGm }, |
| { X86::SETGEr, X86::SETGEm }, |
| { X86::SETLr, X86::SETLm }, |
| { X86::SETLEr, X86::SETLEm }, |
| { X86::SETNEr, X86::SETNEm }, |
| { X86::SETNOr, X86::SETNOm }, |
| { X86::SETNPr, X86::SETNPm }, |
| { X86::SETNSr, X86::SETNSm }, |
| { X86::SETOr, X86::SETOm }, |
| { X86::SETPr, X86::SETPm }, |
| { X86::SETSr, X86::SETSm } |
| }; |
| |
| assert(CC <= LAST_VALID_COND && "Can only handle standard cond codes"); |
| return Opc[CC][HasMemoryOperand ? 1 : 0]; |
| } |
| |
| /// Return a cmov opcode for the given condition, |
| /// register size in bytes, and operand type. |
| unsigned X86::getCMovFromCond(CondCode CC, unsigned RegBytes, |
| bool HasMemoryOperand) { |
| static const uint16_t Opc[32][3] = { |
| { X86::CMOVA16rr, X86::CMOVA32rr, X86::CMOVA64rr }, |
| { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr }, |
| { X86::CMOVB16rr, X86::CMOVB32rr, X86::CMOVB64rr }, |
| { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr }, |
| { X86::CMOVE16rr, X86::CMOVE32rr, X86::CMOVE64rr }, |
| { X86::CMOVG16rr, X86::CMOVG32rr, X86::CMOVG64rr }, |
| { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr }, |
| { X86::CMOVL16rr, X86::CMOVL32rr, X86::CMOVL64rr }, |
| { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr }, |
| { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr }, |
| { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr }, |
| { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr }, |
| { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr }, |
| { X86::CMOVO16rr, X86::CMOVO32rr, X86::CMOVO64rr }, |
| { X86::CMOVP16rr, X86::CMOVP32rr, X86::CMOVP64rr }, |
| { X86::CMOVS16rr, X86::CMOVS32rr, X86::CMOVS64rr }, |
| { X86::CMOVA16rm, X86::CMOVA32rm, X86::CMOVA64rm }, |
| { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm }, |
| { X86::CMOVB16rm, X86::CMOVB32rm, X86::CMOVB64rm }, |
| { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm }, |
| { X86::CMOVE16rm, X86::CMOVE32rm, X86::CMOVE64rm }, |
| { X86::CMOVG16rm, X86::CMOVG32rm, X86::CMOVG64rm }, |
| { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm }, |
| { X86::CMOVL16rm, X86::CMOVL32rm, X86::CMOVL64rm }, |
| { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm }, |
| { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm }, |
| { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm }, |
| { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm }, |
| { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm }, |
| { X86::CMOVO16rm, X86::CMOVO32rm, X86::CMOVO64rm }, |
| { X86::CMOVP16rm, X86::CMOVP32rm, X86::CMOVP64rm }, |
| { X86::CMOVS16rm, X86::CMOVS32rm, X86::CMOVS64rm } |
| }; |
| |
| assert(CC < 16 && "Can only handle standard cond codes"); |
| unsigned Idx = HasMemoryOperand ? 16+CC : CC; |
| switch(RegBytes) { |
| default: llvm_unreachable("Illegal register size!"); |
| case 2: return Opc[Idx][0]; |
| case 4: return Opc[Idx][1]; |
| case 8: return Opc[Idx][2]; |
| } |
| } |
| |
| /// Get the VPCMP immediate for the given condition. |
| unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Unexpected SETCC condition"); |
| case ISD::SETNE: return 4; |
| case ISD::SETEQ: return 0; |
| case ISD::SETULT: |
| case ISD::SETLT: return 1; |
| case ISD::SETUGT: |
| case ISD::SETGT: return 6; |
| case ISD::SETUGE: |
| case ISD::SETGE: return 5; |
| case ISD::SETULE: |
| case ISD::SETLE: return 2; |
| } |
| } |
| |
| /// Get the VPCMP immediate if the opcodes are swapped. |
| unsigned X86::getSwappedVPCMPImm(unsigned Imm) { |
| switch (Imm) { |
| default: llvm_unreachable("Unreachable!"); |
| case 0x01: Imm = 0x06; break; // LT -> NLE |
| case 0x02: Imm = 0x05; break; // LE -> NLT |
| case 0x05: Imm = 0x02; break; // NLT -> LE |
| case 0x06: Imm = 0x01; break; // NLE -> LT |
| case 0x00: // EQ |
| case 0x03: // FALSE |
| case 0x04: // NE |
| case 0x07: // TRUE |
| break; |
| } |
| |
| return Imm; |
| } |
| |
| /// Get the VPCOM immediate if the opcodes are swapped. |
| unsigned X86::getSwappedVPCOMImm(unsigned Imm) { |
| switch (Imm) { |
| default: llvm_unreachable("Unreachable!"); |
| case 0x00: Imm = 0x02; break; // LT -> GT |
| case 0x01: Imm = 0x03; break; // LE -> GE |
| case 0x02: Imm = 0x00; break; // GT -> LT |
| case 0x03: Imm = 0x01; break; // GE -> LE |
| case 0x04: // EQ |
| case 0x05: // NE |
| case 0x06: // FALSE |
| case 0x07: // TRUE |
| break; |
| } |
| |
| return Imm; |
| } |
| |
| bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const { |
| if (!MI.isTerminator()) return false; |
| |
| // Conditional branch is a special case. |
| if (MI.isBranch() && !MI.isBarrier()) |
| return true; |
| if (!MI.isPredicable()) |
| return true; |
| return !isPredicated(MI); |
| } |
| |
| bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { |
| switch (MI.getOpcode()) { |
| case X86::TCRETURNdi: |
| case X86::TCRETURNri: |
| case X86::TCRETURNmi: |
| case X86::TCRETURNdi64: |
| case X86::TCRETURNri64: |
| case X86::TCRETURNmi64: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool X86InstrInfo::canMakeTailCallConditional( |
| SmallVectorImpl<MachineOperand> &BranchCond, |
| const MachineInstr &TailCall) const { |
| if (TailCall.getOpcode() != X86::TCRETURNdi && |
| TailCall.getOpcode() != X86::TCRETURNdi64) { |
| // Only direct calls can be done with a conditional branch. |
| return false; |
| } |
| |
| const MachineFunction *MF = TailCall.getParent()->getParent(); |
| if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { |
| // Conditional tail calls confuse the Win64 unwinder. |
| return false; |
| } |
| |
| assert(BranchCond.size() == 1); |
| if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { |
| // Can't make a conditional tail call with this condition. |
| return false; |
| } |
| |
| const X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); |
| if (X86FI->getTCReturnAddrDelta() != 0 || |
| TailCall.getOperand(1).getImm() != 0) { |
| // A conditional tail call cannot do any stack adjustment. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void X86InstrInfo::replaceBranchWithTailCall( |
| MachineBasicBlock &MBB, SmallVectorImpl<MachineOperand> &BranchCond, |
| const MachineInstr &TailCall) const { |
| assert(canMakeTailCallConditional(BranchCond, TailCall)); |
| |
| MachineBasicBlock::iterator I = MBB.end(); |
| while (I != MBB.begin()) { |
| --I; |
| if (I->isDebugInstr()) |
| continue; |
| if (!I->isBranch()) |
| assert(0 && "Can't find the branch to replace!"); |
| |
| X86::CondCode CC = X86::getCondFromBranchOpc(I->getOpcode()); |
| assert(BranchCond.size() == 1); |
| if (CC != BranchCond[0].getImm()) |
| continue; |
| |
| break; |
| } |
| |
| unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc |
| : X86::TCRETURNdi64cc; |
| |
| auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); |
| MIB->addOperand(TailCall.getOperand(0)); // Destination. |
| MIB.addImm(0); // Stack offset (not used). |
| MIB->addOperand(BranchCond[0]); // Condition. |
| MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. |
| |
| // Add implicit uses and defs of all live regs potentially clobbered by the |
| // call. This way they still appear live across the call. |
| LivePhysRegs LiveRegs(getRegisterInfo()); |
| LiveRegs.addLiveOuts(MBB); |
| SmallVector<std::pair<unsigned, const MachineOperand *>, 8> Clobbers; |
| LiveRegs.stepForward(*MIB, Clobbers); |
| for (const auto &C : Clobbers) { |
| MIB.addReg(C.first, RegState::Implicit); |
| MIB.addReg(C.first, RegState::Implicit | RegState::Define); |
| } |
| |
| I->eraseFromParent(); |
| } |
| |
| // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may |
| // not be a fallthrough MBB now due to layout changes). Return nullptr if the |
| // fallthrough MBB cannot be identified. |
| static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, |
| MachineBasicBlock *TBB) { |
| // Look for non-EHPad successors other than TBB. If we find exactly one, it |
| // is the fallthrough MBB. If we find zero, then TBB is both the target MBB |
| // and fallthrough MBB. If we find more than one, we cannot identify the |
| // fallthrough MBB and should return nullptr. |
| MachineBasicBlock *FallthroughBB = nullptr; |
| for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) { |
| if ((*SI)->isEHPad() || (*SI == TBB && FallthroughBB)) |
| continue; |
| // Return a nullptr if we found more than one fallthrough successor. |
| if (FallthroughBB && FallthroughBB != TBB) |
| return nullptr; |
| FallthroughBB = *SI; |
| } |
| return FallthroughBB; |
| } |
| |
| bool X86InstrInfo::AnalyzeBranchImpl( |
| MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| SmallVectorImpl<MachineInstr *> &CondBranches, bool AllowModify) const { |
| |
| // Start from the bottom of the block and work up, examining the |
| // terminator instructions. |
| MachineBasicBlock::iterator I = MBB.end(); |
| MachineBasicBlock::iterator UnCondBrIter = MBB.end(); |
| while (I != MBB.begin()) { |
| --I; |
| if (I->isDebugInstr()) |
| continue; |
| |
| // Working from the bottom, when we see a non-terminator instruction, we're |
| // done. |
| if (!isUnpredicatedTerminator(*I)) |
| break; |
| |
| // A terminator that isn't a branch can't easily be handled by this |
| // analysis. |
| if (!I->isBranch()) |
| return true; |
| |
| // Handle unconditional branches. |
| if (I->getOpcode() == X86::JMP_1) { |
| UnCondBrIter = I; |
| |
| if (!AllowModify) { |
| TBB = I->getOperand(0).getMBB(); |
| continue; |
| } |
| |
| // If the block has any instructions after a JMP, delete them. |
| while (std::next(I) != MBB.end()) |
| std::next(I)->eraseFromParent(); |
| |
| Cond.clear(); |
| FBB = nullptr; |
| |
| // Delete the JMP if it's equivalent to a fall-through. |
| if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { |
| TBB = nullptr; |
| I->eraseFromParent(); |
| I = MBB.end(); |
| UnCondBrIter = MBB.end(); |
| continue; |
| } |
| |
| // TBB is used to indicate the unconditional destination. |
| TBB = I->getOperand(0).getMBB(); |
| continue; |
| } |
| |
| // Handle conditional branches. |
| X86::CondCode BranchCode = X86::getCondFromBranchOpc(I->getOpcode()); |
| if (BranchCode == X86::COND_INVALID) |
| return true; // Can't handle indirect branch. |
| |
| // Working from the bottom, handle the first conditional branch. |
| if (Cond.empty()) { |
| MachineBasicBlock *TargetBB = I->getOperand(0).getMBB(); |
| if (AllowModify && UnCondBrIter != MBB.end() && |
| MBB.isLayoutSuccessor(TargetBB)) { |
| // If we can modify the code and it ends in something like: |
| // |
| // jCC L1 |
| // jmp L2 |
| // L1: |
| // ... |
| // L2: |
| // |
| // Then we can change this to: |
| // |
| // jnCC L2 |
| // L1: |
| // ... |
| // L2: |
| // |
| // Which is a bit more efficient. |
| // We conditionally jump to the fall-through block. |
| BranchCode = GetOppositeBranchCondition(BranchCode); |
| unsigned JNCC = GetCondBranchFromCond(BranchCode); |
| MachineBasicBlock::iterator OldInst = I; |
| |
| BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC)) |
| .addMBB(UnCondBrIter->getOperand(0).getMBB()); |
| BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_1)) |
| .addMBB(TargetBB); |
| |
| OldInst->eraseFromParent(); |
| UnCondBrIter->eraseFromParent(); |
| |
| // Restart the analysis. |
| UnCondBrIter = MBB.end(); |
| I = MBB.end(); |
| continue; |
| } |
| |
| FBB = TBB; |
| TBB = I->getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(BranchCode)); |
| CondBranches.push_back(&*I); |
| continue; |
| } |
| |
| // Handle subsequent conditional branches. Only handle the case where all |
| // conditional branches branch to the same destination and their condition |
| // opcodes fit one of the special multi-branch idioms. |
| assert(Cond.size() == 1); |
| assert(TBB); |
| |
| // If the conditions are the same, we can leave them alone. |
| X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); |
| auto NewTBB = I->getOperand(0).getMBB(); |
| if (OldBranchCode == BranchCode && TBB == NewTBB) |
| continue; |
| |
| // If they differ, see if they fit one of the known patterns. Theoretically, |
| // we could handle more patterns here, but we shouldn't expect to see them |
| // if instruction selection has done a reasonable job. |
| if (TBB == NewTBB && |
| ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || |
| (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { |
| BranchCode = X86::COND_NE_OR_P; |
| } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || |
| (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { |
| if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) |
| return true; |
| |
| // X86::COND_E_AND_NP usually has two different branch destinations. |
| // |
| // JP B1 |
| // JE B2 |
| // JMP B1 |
| // B1: |
| // B2: |
| // |
| // Here this condition branches to B2 only if NP && E. It has another |
| // equivalent form: |
| // |
| // JNE B1 |
| // JNP B2 |
| // JMP B1 |
| // B1: |
| // B2: |
| // |
| // Similarly it branches to B2 only if E && NP. That is why this condition |
| // is named with COND_E_AND_NP. |
| BranchCode = X86::COND_E_AND_NP; |
| } else |
| return true; |
| |
| // Update the MachineOperand. |
| Cond[0].setImm(BranchCode); |
| CondBranches.push_back(&*I); |
| } |
| |
| return false; |
| } |
| |
| bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| SmallVector<MachineInstr *, 4> CondBranches; |
| return AnalyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); |
| } |
| |
| bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, |
| MachineBranchPredicate &MBP, |
| bool AllowModify) const { |
| using namespace std::placeholders; |
| |
| SmallVector<MachineOperand, 4> Cond; |
| SmallVector<MachineInstr *, 4> CondBranches; |
| if (AnalyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, |
| AllowModify)) |
| return true; |
| |
| if (Cond.size() != 1) |
| return true; |
| |
| assert(MBP.TrueDest && "expected!"); |
| |
| if (!MBP.FalseDest) |
| MBP.FalseDest = MBB.getNextNode(); |
| |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| |
| MachineInstr *ConditionDef = nullptr; |
| bool SingleUseCondition = true; |
| |
| for (auto I = std::next(MBB.rbegin()), E = MBB.rend(); I != E; ++I) { |
| if (I->modifiesRegister(X86::EFLAGS, TRI)) { |
| ConditionDef = &*I; |
| break; |
| } |
| |
| if (I->readsRegister(X86::EFLAGS, TRI)) |
| SingleUseCondition = false; |
| } |
| |
| if (!ConditionDef) |
| return true; |
| |
| if (SingleUseCondition) { |
| for (auto *Succ : MBB.successors()) |
| if (Succ->isLiveIn(X86::EFLAGS)) |
| SingleUseCondition = false; |
| } |
| |
| MBP.ConditionDef = ConditionDef; |
| MBP.SingleUseCondition = SingleUseCondition; |
| |
| // Currently we only recognize the simple pattern: |
| // |
| // test %reg, %reg |
| // je %label |
| // |
| const unsigned TestOpcode = |
| Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; |
| |
| if (ConditionDef->getOpcode() == TestOpcode && |
| ConditionDef->getNumOperands() == 3 && |
| ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && |
| (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { |
| MBP.LHS = ConditionDef->getOperand(0); |
| MBP.RHS = MachineOperand::CreateImm(0); |
| MBP.Predicate = Cond[0].getImm() == X86::COND_NE |
| ? MachineBranchPredicate::PRED_NE |
| : MachineBranchPredicate::PRED_EQ; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, |
| int *BytesRemoved) const { |
| assert(!BytesRemoved && "code size not handled"); |
| |
| MachineBasicBlock::iterator I = MBB.end(); |
| unsigned Count = 0; |
| |
| while (I != MBB.begin()) { |
| --I; |
| if (I->isDebugInstr()) |
| continue; |
| if (I->getOpcode() != X86::JMP_1 && |
| X86::getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID) |
| break; |
| // Remove the branch. |
| I->eraseFromParent(); |
| I = MBB.end(); |
| ++Count; |
| } |
| |
| return Count; |
| } |
| |
| unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| ArrayRef<MachineOperand> Cond, |
| const DebugLoc &DL, |
| int *BytesAdded) const { |
| // Shouldn't be a fall through. |
| assert(TBB && "insertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 1 || Cond.size() == 0) && |
| "X86 branch conditions have one component!"); |
| assert(!BytesAdded && "code size not handled"); |
| |
| if (Cond.empty()) { |
| // Unconditional branch? |
| assert(!FBB && "Unconditional branch with multiple successors!"); |
| BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); |
| return 1; |
| } |
| |
| // If FBB is null, it is implied to be a fall-through block. |
| bool FallThru = FBB == nullptr; |
| |
| // Conditional branch. |
| unsigned Count = 0; |
| X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); |
| switch (CC) { |
| case X86::COND_NE_OR_P: |
| // Synthesize NE_OR_P with two branches. |
| BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(TBB); |
| ++Count; |
| BuildMI(&MBB, DL, get(X86::JP_1)).addMBB(TBB); |
| ++Count; |
| break; |
| case X86::COND_E_AND_NP: |
| // Use the next block of MBB as FBB if it is null. |
| if (FBB == nullptr) { |
| FBB = getFallThroughMBB(&MBB, TBB); |
| assert(FBB && "MBB cannot be the last block in function when the false " |
| "body is a fall-through."); |
| } |
| // Synthesize COND_E_AND_NP with two branches. |
| BuildMI(&MBB, DL, get(X86::JNE_1)).addMBB(FBB); |
| ++Count; |
| BuildMI(&MBB, DL, get(X86::JNP_1)).addMBB(TBB); |
| ++Count; |
| break; |
| default: { |
| unsigned Opc = GetCondBranchFromCond(CC); |
| BuildMI(&MBB, DL, get(Opc)).addMBB(TBB); |
| ++Count; |
| } |
| } |
| if (!FallThru) { |
| // Two-way Conditional branch. Insert the second branch. |
| BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); |
| ++Count; |
| } |
| return Count; |
| } |
| |
| bool X86InstrInfo:: |
| canInsertSelect(const MachineBasicBlock &MBB, |
| ArrayRef<MachineOperand> Cond, |
| unsigned TrueReg, unsigned FalseReg, |
| int &CondCycles, int &TrueCycles, int &FalseCycles) const { |
| // Not all subtargets have cmov instructions. |
| if (!Subtarget.hasCMov()) |
| return false; |
| if (Cond.size() != 1) |
| return false; |
| // We cannot do the composite conditions, at least not in SSA form. |
| if ((X86::CondCode)Cond[0].getImm() > X86::COND_S) |
| return false; |
| |
| // Check register classes. |
| const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| const TargetRegisterClass *RC = |
| RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); |
| if (!RC) |
| return false; |
| |
| // We have cmov instructions for 16, 32, and 64 bit general purpose registers. |
| if (X86::GR16RegClass.hasSubClassEq(RC) || |
| X86::GR32RegClass.hasSubClassEq(RC) || |
| X86::GR64RegClass.hasSubClassEq(RC)) { |
| // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy |
| // Bridge. Probably Ivy Bridge as well. |
| CondCycles = 2; |
| TrueCycles = 2; |
| FalseCycles = 2; |
| return true; |
| } |
| |
| // Can't do vectors. |
| return false; |
| } |
| |
| void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, |
| const DebugLoc &DL, unsigned DstReg, |
| ArrayRef<MachineOperand> Cond, unsigned TrueReg, |
| unsigned FalseReg) const { |
| MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); |
| const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); |
| assert(Cond.size() == 1 && "Invalid Cond array"); |
| unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(), |
| TRI.getRegSizeInBits(RC) / 8, |
| false /*HasMemoryOperand*/); |
| BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg); |
| } |
| |
| /// Test if the given register is a physical h register. |
| static bool isHReg(unsigned Reg) { |
| return X86::GR8_ABCD_HRegClass.contains(Reg); |
| } |
| |
| // Try and copy between VR128/VR64 and GR64 registers. |
| static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, |
| const X86Subtarget &Subtarget) { |
| bool HasAVX = Subtarget.hasAVX(); |
| bool HasAVX512 = Subtarget.hasAVX512(); |
| |
| // SrcReg(MaskReg) -> DestReg(GR64) |
| // SrcReg(MaskReg) -> DestReg(GR32) |
| |
| // All KMASK RegClasses hold the same k registers, can be tested against anyone. |
| if (X86::VK16RegClass.contains(SrcReg)) { |
| if (X86::GR64RegClass.contains(DestReg)) { |
| assert(Subtarget.hasBWI()); |
| return X86::KMOVQrk; |
| } |
| if (X86::GR32RegClass.contains(DestReg)) |
| return Subtarget.hasBWI() ? X86::KMOVDrk : X86::KMOVWrk; |
| } |
| |
| // SrcReg(GR64) -> DestReg(MaskReg) |
| // SrcReg(GR32) -> DestReg(MaskReg) |
| |
| // All KMASK RegClasses hold the same k registers, can be tested against anyone. |
| if (X86::VK16RegClass.contains(DestReg)) { |
| if (X86::GR64RegClass.contains(SrcReg)) { |
| assert(Subtarget.hasBWI()); |
| return X86::KMOVQkr; |
| } |
| if (X86::GR32RegClass.contains(SrcReg)) |
| return Subtarget.hasBWI() ? X86::KMOVDkr : X86::KMOVWkr; |
| } |
| |
| |
| // SrcReg(VR128) -> DestReg(GR64) |
| // SrcReg(VR64) -> DestReg(GR64) |
| // SrcReg(GR64) -> DestReg(VR128) |
| // SrcReg(GR64) -> DestReg(VR64) |
| |
| if (X86::GR64RegClass.contains(DestReg)) { |
| if (X86::VR128XRegClass.contains(SrcReg)) |
| // Copy from a VR128 register to a GR64 register. |
| return HasAVX512 ? X86::VMOVPQIto64Zrr : |
| HasAVX ? X86::VMOVPQIto64rr : |
| X86::MOVPQIto64rr; |
| if (X86::VR64RegClass.contains(SrcReg)) |
| // Copy from a VR64 register to a GR64 register. |
| return X86::MMX_MOVD64from64rr; |
| } else if (X86::GR64RegClass.contains(SrcReg)) { |
| // Copy from a GR64 register to a VR128 register. |
| if (X86::VR128XRegClass.contains(DestReg)) |
| return HasAVX512 ? X86::VMOV64toPQIZrr : |
| HasAVX ? X86::VMOV64toPQIrr : |
| X86::MOV64toPQIrr; |
| // Copy from a GR64 register to a VR64 register. |
| if (X86::VR64RegClass.contains(DestReg)) |
| return X86::MMX_MOVD64to64rr; |
| } |
| |
| // SrcReg(FR32) -> DestReg(GR32) |
| // SrcReg(GR32) -> DestReg(FR32) |
| |
| if (X86::GR32RegClass.contains(DestReg) && |
| X86::FR32XRegClass.contains(SrcReg)) |
| // Copy from a FR32 register to a GR32 register. |
| return HasAVX512 ? X86::VMOVSS2DIZrr : |
| HasAVX ? X86::VMOVSS2DIrr : |
| X86::MOVSS2DIrr; |
| |
| if (X86::FR32XRegClass.contains(DestReg) && |
| X86::GR32RegClass.contains(SrcReg)) |
| // Copy from a GR32 register to a FR32 register. |
| return HasAVX512 ? X86::VMOVDI2SSZrr : |
| HasAVX ? X86::VMOVDI2SSrr : |
| X86::MOVDI2SSrr; |
| return 0; |
| } |
| |
| void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| const DebugLoc &DL, unsigned DestReg, |
| unsigned SrcReg, bool KillSrc) const { |
| // First deal with the normal symmetric copies. |
| bool HasAVX = Subtarget.hasAVX(); |
| bool HasVLX = Subtarget.hasVLX(); |
| unsigned Opc = 0; |
| if (X86::GR64RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MOV64rr; |
| else if (X86::GR32RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MOV32rr; |
| else if (X86::GR16RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MOV16rr; |
| else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { |
| // Copying to or from a physical H register on x86-64 requires a NOREX |
| // move. Otherwise use a normal move. |
| if ((isHReg(DestReg) || isHReg(SrcReg)) && |
| Subtarget.is64Bit()) { |
| Opc = X86::MOV8rr_NOREX; |
| // Both operands must be encodable without an REX prefix. |
| assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && |
| "8-bit H register can not be copied outside GR8_NOREX"); |
| } else |
| Opc = X86::MOV8rr; |
| } |
| else if (X86::VR64RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::MMX_MOVQ64rr; |
| else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { |
| if (HasVLX) |
| Opc = X86::VMOVAPSZ128rr; |
| else if (X86::VR128RegClass.contains(DestReg, SrcReg)) |
| Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; |
| else { |
| // If this an extended register and we don't have VLX we need to use a |
| // 512-bit move. |
| Opc = X86::VMOVAPSZrr; |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, |
| &X86::VR512RegClass); |
| SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, |
| &X86::VR512RegClass); |
| } |
| } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { |
| if (HasVLX) |
| Opc = X86::VMOVAPSZ256rr; |
| else if (X86::VR256RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::VMOVAPSYrr; |
| else { |
| // If this an extended register and we don't have VLX we need to use a |
| // 512-bit move. |
| Opc = X86::VMOVAPSZrr; |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, |
| &X86::VR512RegClass); |
| SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, |
| &X86::VR512RegClass); |
| } |
| } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) |
| Opc = X86::VMOVAPSZrr; |
| // All KMASK RegClasses hold the same k registers, can be tested against anyone. |
| else if (X86::VK16RegClass.contains(DestReg, SrcReg)) |
| Opc = Subtarget.hasBWI() ? X86::KMOVQkk : X86::KMOVWkk; |
| if (!Opc) |
| Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); |
| |
| if (Opc) { |
| BuildMI(MBB, MI, DL, get(Opc), DestReg) |
| .addReg(SrcReg, getKillRegState(KillSrc)); |
| return; |
| } |
| |
| if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { |
| // FIXME: We use a fatal error here because historically LLVM has tried |
| // lower some of these physreg copies and we want to ensure we get |
| // reasonable bug reports if someone encounters a case no other testing |
| // found. This path should be removed after the LLVM 7 release. |
| report_fatal_error("Unable to copy EFLAGS physical register!"); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " |
| << RI.getName(DestReg) << '\n'); |
| report_fatal_error("Cannot emit physreg copy instruction"); |
| } |
| |
| bool X86InstrInfo::isCopyInstr(const MachineInstr &MI, |
| const MachineOperand *&Src, |
| const MachineOperand *&Dest) const { |
| if (MI.isMoveReg()) { |
| Dest = &MI.getOperand(0); |
| Src = &MI.getOperand(1); |
| return true; |
| } |
| return false; |
| } |
| |
| static unsigned getLoadStoreRegOpcode(unsigned Reg, |
| const TargetRegisterClass *RC, |
| bool isStackAligned, |
| const X86Subtarget &STI, |
| bool load) { |
| bool HasAVX = STI.hasAVX(); |
| bool HasAVX512 = STI.hasAVX512(); |
| bool HasVLX = STI.hasVLX(); |
| |
| switch (STI.getRegisterInfo()->getSpillSize(*RC)) { |
| default: |
| llvm_unreachable("Unknown spill size"); |
| case 1: |
| assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); |
| if (STI.is64Bit()) |
| // Copying to or from a physical H register on x86-64 requires a NOREX |
| // move. Otherwise use a normal move. |
| if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) |
| return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; |
| return load ? X86::MOV8rm : X86::MOV8mr; |
| case 2: |
| if (X86::VK16RegClass.hasSubClassEq(RC)) |
| return load ? X86::KMOVWkm : X86::KMOVWmk; |
| assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); |
| return load ? X86::MOV16rm : X86::MOV16mr; |
| case 4: |
| if (X86::GR32RegClass.hasSubClassEq(RC)) |
| return load ? X86::MOV32rm : X86::MOV32mr; |
| if (X86::FR32XRegClass.hasSubClassEq(RC)) |
| return load ? |
| (HasAVX512 ? X86::VMOVSSZrm : HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) : |
| (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); |
| if (X86::RFP32RegClass.hasSubClassEq(RC)) |
| return load ? X86::LD_Fp32m : X86::ST_Fp32m; |
| if (X86::VK32RegClass.hasSubClassEq(RC)) { |
| assert(STI.hasBWI() && "KMOVD requires BWI"); |
| return load ? X86::KMOVDkm : X86::KMOVDmk; |
| } |
| llvm_unreachable("Unknown 4-byte regclass"); |
| case 8: |
| if (X86::GR64RegClass.hasSubClassEq(RC)) |
| return load ? X86::MOV64rm : X86::MOV64mr; |
| if (X86::FR64XRegClass.hasSubClassEq(RC)) |
| return load ? |
| (HasAVX512 ? X86::VMOVSDZrm : HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) : |
| (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); |
| if (X86::VR64RegClass.hasSubClassEq(RC)) |
| return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; |
| if (X86::RFP64RegClass.hasSubClassEq(RC)) |
| return load ? X86::LD_Fp64m : X86::ST_Fp64m; |
| if (X86::VK64RegClass.hasSubClassEq(RC)) { |
| assert(STI.hasBWI() && "KMOVQ requires BWI"); |
| return load ? X86::KMOVQkm : X86::KMOVQmk; |
| } |
| llvm_unreachable("Unknown 8-byte regclass"); |
| case 10: |
| assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); |
| return load ? X86::LD_Fp80m : X86::ST_FpP80m; |
| case 16: { |
| if (X86::VR128XRegClass.hasSubClassEq(RC)) { |
| // If stack is realigned we can use aligned stores. |
| if (isStackAligned) |
| return load ? |
| (HasVLX ? X86::VMOVAPSZ128rm : |
| HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : |
| HasAVX ? X86::VMOVAPSrm : |
| X86::MOVAPSrm): |
| (HasVLX ? X86::VMOVAPSZ128mr : |
| HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : |
| HasAVX ? X86::VMOVAPSmr : |
| X86::MOVAPSmr); |
| else |
| return load ? |
| (HasVLX ? X86::VMOVUPSZ128rm : |
| HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : |
| HasAVX ? X86::VMOVUPSrm : |
| X86::MOVUPSrm): |
| (HasVLX ? X86::VMOVUPSZ128mr : |
| HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : |
| HasAVX ? X86::VMOVUPSmr : |
| X86::MOVUPSmr); |
| } |
| if (X86::BNDRRegClass.hasSubClassEq(RC)) { |
| if (STI.is64Bit()) |
| return load ? X86::BNDMOV64rm : X86::BNDMOV64mr; |
| else |
| return load ? X86::BNDMOV32rm : X86::BNDMOV32mr; |
| } |
| llvm_unreachable("Unknown 16-byte regclass"); |
| } |
| case 32: |
| assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); |
| // If stack is realigned we can use aligned stores. |
| if (isStackAligned) |
| return load ? |
| (HasVLX ? X86::VMOVAPSZ256rm : |
| HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : |
| X86::VMOVAPSYrm) : |
| (HasVLX ? X86::VMOVAPSZ256mr : |
| HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : |
| X86::VMOVAPSYmr); |
| else |
| return load ? |
| (HasVLX ? X86::VMOVUPSZ256rm : |
| HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : |
| X86::VMOVUPSYrm) : |
| (HasVLX ? X86::VMOVUPSZ256mr : |
| HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : |
| X86::VMOVUPSYmr); |
| case 64: |
| assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); |
| assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); |
| if (isStackAligned) |
| return load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; |
| else |
| return load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; |
| } |
| } |
| |
| bool X86InstrInfo::getMemOpBaseRegImmOfs(MachineInstr &MemOp, unsigned &BaseReg, |
| int64_t &Offset, |
| const TargetRegisterInfo *TRI) const { |
| const MCInstrDesc &Desc = MemOp.getDesc(); |
| int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); |
| if (MemRefBegin < 0) |
| return false; |
| |
| MemRefBegin += X86II::getOperandBias(Desc); |
| |
| MachineOperand &BaseMO = MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); |
| if (!BaseMO.isReg()) // Can be an MO_FrameIndex |
| return false; |
| |
| BaseReg = BaseMO.getReg(); |
| if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) |
| return false; |
| |
| if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != |
| X86::NoRegister) |
| return false; |
| |
| const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); |
| |
| // Displacement can be symbolic |
| if (!DispMO.isImm()) |
| return false; |
| |
| Offset = DispMO.getImm(); |
| |
| return true; |
| } |
| |
| static unsigned getStoreRegOpcode(unsigned SrcReg, |
| const TargetRegisterClass *RC, |
| bool isStackAligned, |
| const X86Subtarget &STI) { |
| return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, STI, false); |
| } |
| |
| |
| static unsigned getLoadRegOpcode(unsigned DestReg, |
| const TargetRegisterClass *RC, |
| bool isStackAligned, |
| const X86Subtarget &STI) { |
| return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, STI, true); |
| } |
| |
| void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned SrcReg, bool isKill, int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| const MachineFunction &MF = *MBB.getParent(); |
| assert(MF.getFrameInfo().getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && |
| "Stack slot too small for store"); |
| unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); |
| bool isAligned = |
| (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || |
| RI.canRealignStack(MF); |
| unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); |
| DebugLoc DL = MBB.findDebugLoc(MI); |
| addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx) |
| .addReg(SrcReg, getKillRegState(isKill)); |
| } |
| |
| void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg, |
| bool isKill, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| MachineInstr::mmo_iterator MMOBegin, |
| MachineInstr::mmo_iterator MMOEnd, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const { |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); |
| bool isAligned = MMOBegin != MMOEnd && |
| (*MMOBegin)->getAlignment() >= Alignment; |
| unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); |
| DebugLoc DL; |
| MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); |
| for (unsigned i = 0, e = Addr.size(); i != e; ++i) |
| MIB.add(Addr[i]); |
| MIB.addReg(SrcReg, getKillRegState(isKill)); |
| (*MIB).setMemRefs(MMOBegin, MMOEnd); |
| NewMIs.push_back(MIB); |
| } |
| |
| |
| void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| const MachineFunction &MF = *MBB.getParent(); |
| unsigned Alignment = std::max<uint32_t>(TRI->getSpillSize(*RC), 16); |
| bool isAligned = |
| (Subtarget.getFrameLowering()->getStackAlignment() >= Alignment) || |
| RI.canRealignStack(MF); |
| unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); |
| DebugLoc DL = MBB.findDebugLoc(MI); |
| addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx); |
| } |
| |
| void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, |
| SmallVectorImpl<MachineOperand> &Addr, |
| const TargetRegisterClass *RC, |
| MachineInstr::mmo_iterator MMOBegin, |
| MachineInstr::mmo_iterator MMOEnd, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const { |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); |
| bool isAligned = MMOBegin != MMOEnd && |
| (*MMOBegin)->getAlignment() >= Alignment; |
| unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); |
| DebugLoc DL; |
| MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg); |
| for (unsigned i = 0, e = Addr.size(); i != e; ++i) |
| MIB.add(Addr[i]); |
| (*MIB).setMemRefs(MMOBegin, MMOEnd); |
| NewMIs.push_back(MIB); |
| } |
| |
| bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, |
| unsigned &SrcReg2, int &CmpMask, |
| int &CmpValue) const { |
| switch (MI.getOpcode()) { |
| default: break; |
| case X86::CMP64ri32: |
| case X86::CMP64ri8: |
| case X86::CMP32ri: |
| case X86::CMP32ri8: |
| case X86::CMP16ri: |
| case X86::CMP16ri8: |
| case X86::CMP8ri: |
| SrcReg = MI.getOperand(0).getReg(); |
| SrcReg2 = 0; |
| if (MI.getOperand(1).isImm()) { |
| CmpMask = ~0; |
| CmpValue = MI.getOperand(1).getImm(); |
| } else { |
| CmpMask = CmpValue = 0; |
| } |
| return true; |
| // A SUB can be used to perform comparison. |
| case X86::SUB64rm: |
| case X86::SUB32rm: |
| case X86::SUB16rm: |
| case X86::SUB8rm: |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = 0; |
| CmpMask = 0; |
| CmpValue = 0; |
| return true; |
| case X86::SUB64rr: |
| case X86::SUB32rr: |
| case X86::SUB16rr: |
| case X86::SUB8rr: |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = MI.getOperand(2).getReg(); |
| CmpMask = 0; |
| CmpValue = 0; |
| return true; |
| case X86::SUB64ri32: |
| case X86::SUB64ri8: |
| case X86::SUB32ri: |
| case X86::SUB32ri8: |
| case X86::SUB16ri: |
| case X86::SUB16ri8: |
| case X86::SUB8ri: |
| SrcReg = MI.getOperand(1).getReg(); |
| SrcReg2 = 0; |
| if (MI.getOperand(2).isImm()) { |
| CmpMask = ~0; |
| CmpValue = MI.getOperand(2).getImm(); |
| } else { |
| CmpMask = CmpValue = 0; |
| } |
| return true; |
| case X86::CMP64rr: |
| case X86::CMP32rr: |
| case X86::CMP16rr: |
| case X86::CMP8rr: |
| SrcReg = MI.getOperand(0).getReg(); |
| SrcReg2 = MI.getOperand(1).getReg(); |
| CmpMask = 0; |
| CmpValue = 0; |
| return true; |
| case X86::TEST8rr: |
| case X86::TEST16rr: |
| case X86::TEST32rr: |
| case X86::TEST64rr: |
| SrcReg = MI.getOperand(0).getReg(); |
| if (MI.getOperand(1).getReg() != SrcReg) |
| return false; |
| // Compare against zero. |
| SrcReg2 = 0; |
| CmpMask = ~0; |
| CmpValue = 0; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check whether the first instruction, whose only |
| /// purpose is to update flags, can be made redundant. |
| /// CMPrr can be made redundant by SUBrr if the operands are the same. |
| /// This function can be extended later on. |
| /// SrcReg, SrcRegs: register operands for FlagI. |
| /// ImmValue: immediate for FlagI if it takes an immediate. |
| inline static bool isRedundantFlagInstr(MachineInstr &FlagI, unsigned SrcReg, |
| unsigned SrcReg2, int ImmMask, |
| int ImmValue, MachineInstr &OI) { |
| if (((FlagI.getOpcode() == X86::CMP64rr && OI.getOpcode() == X86::SUB64rr) || |
| (FlagI.getOpcode() == X86::CMP32rr && OI.getOpcode() == X86::SUB32rr) || |
| (FlagI.getOpcode() == X86::CMP16rr && OI.getOpcode() == X86::SUB16rr) || |
| (FlagI.getOpcode() == X86::CMP8rr && OI.getOpcode() == X86::SUB8rr)) && |
| ((OI.getOperand(1).getReg() == SrcReg && |
| OI.getOperand(2).getReg() == SrcReg2) || |
| (OI.getOperand(1).getReg() == SrcReg2 && |
| OI.getOperand(2).getReg() == SrcReg))) |
| return true; |
| |
| if (ImmMask != 0 && |
| ((FlagI.getOpcode() == X86::CMP64ri32 && |
| OI.getOpcode() == X86::SUB64ri32) || |
| (FlagI.getOpcode() == X86::CMP64ri8 && |
| OI.getOpcode() == X86::SUB64ri8) || |
| (FlagI.getOpcode() == X86::CMP32ri && OI.getOpcode() == X86::SUB32ri) || |
| (FlagI.getOpcode() == X86::CMP32ri8 && |
| OI.getOpcode() == X86::SUB32ri8) || |
| (FlagI.getOpcode() == X86::CMP16ri && OI.getOpcode() == X86::SUB16ri) || |
| (FlagI.getOpcode() == X86::CMP16ri8 && |
| OI.getOpcode() == X86::SUB16ri8) || |
| (FlagI.getOpcode() == X86::CMP8ri && OI.getOpcode() == X86::SUB8ri)) && |
| OI.getOperand(1).getReg() == SrcReg && |
| OI.getOperand(2).getImm() == ImmValue) |
| return true; |
| return false; |
| } |
| |
| /// Check whether the definition can be converted |
| /// to remove a comparison against zero. |
| inline static bool isDefConvertible(MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: return false; |
| |
| // The shift instructions only modify ZF if their shift count is non-zero. |
| // N.B.: The processor truncates the shift count depending on the encoding. |
| case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri:case X86::SAR64ri: |
| case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri:case X86::SHR64ri: |
| return getTruncatedShiftCount(MI, 2) != 0; |
| |
| // Some left shift instructions can be turned into LEA instructions but only |
| // if their flags aren't used. Avoid transforming such instructions. |
| case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri:case X86::SHL64ri:{ |
| unsigned ShAmt = getTruncatedShiftCount(MI, 2); |
| if (isTruncatedShiftCountForLEA(ShAmt)) return false; |
| return ShAmt != 0; |
| } |
| |
| case X86::SHRD16rri8:case X86::SHRD32rri8:case X86::SHRD64rri8: |
| case X86::SHLD16rri8:case X86::SHLD32rri8:case X86::SHLD64rri8: |
| return getTruncatedShiftCount(MI, 3) != 0; |
| |
| case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri: |
| case X86::SUB32ri8: case X86::SUB16ri: case X86::SUB16ri8: |
| case X86::SUB8ri: case X86::SUB64rr: case X86::SUB32rr: |
| case X86::SUB16rr: case X86::SUB8rr: case X86::SUB64rm: |
| case X86::SUB32rm: case X86::SUB16rm: case X86::SUB8rm: |
| case X86::DEC64r: case X86::DEC32r: case X86::DEC16r: case X86::DEC8r: |
| case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri: |
| case X86::ADD32ri8: case X86::ADD16ri: case X86::ADD16ri8: |
| case X86::ADD8ri: case X86::ADD64rr: case X86::ADD32rr: |
| case X86::ADD16rr: case X86::ADD8rr: case X86::ADD64rm: |
| case X86::ADD32rm: case X86::ADD16rm: case X86::ADD8rm: |
| case X86::INC64r: case X86::INC32r: case X86::INC16r: case X86::INC8r: |
| case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri: |
| case X86::AND32ri8: case X86::AND16ri: case X86::AND16ri8: |
| case X86::AND8ri: case X86::AND64rr: case X86::AND32rr: |
| case X86::AND16rr: case X86::AND8rr: case X86::AND64rm: |
| case X86::AND32rm: case X86::AND16rm: case X86::AND8rm: |
| case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri: |
| case X86::XOR32ri8: case X86::XOR16ri: case X86::XOR16ri8: |
| case X86::XOR8ri: case X86::XOR64rr: case X86::XOR32rr: |
| case X86::XOR16rr: case X86::XOR8rr: case X86::XOR64rm: |
| case X86::XOR32rm: case X86::XOR16rm: case X86::XOR8rm: |
| case X86::OR64ri32: case X86::OR64ri8: case X86::OR32ri: |
| case X86::OR32ri8: case X86::OR16ri: case X86::OR16ri8: |
| case X86::OR8ri: case X86::OR64rr: case X86::OR32rr: |
| case X86::OR16rr: case X86::OR8rr: case X86::OR64rm: |
| case X86::OR32rm: case X86::OR16rm: case X86::OR8rm: |
| case X86::ADC64ri32: case X86::ADC64ri8: case X86::ADC32ri: |
| case X86::ADC32ri8: case X86::ADC16ri: case X86::ADC16ri8: |
| case X86::ADC8ri: case X86::ADC64rr: case X86::ADC32rr: |
| case X86::ADC16rr: case X86::ADC8rr: case X86::ADC64rm: |
| case X86::ADC32rm: case X86::ADC16rm: case X86::ADC8rm: |
| case X86::SBB64ri32: case X86::SBB64ri8: case X86::SBB32ri: |
| case X86::SBB32ri8: case X86::SBB16ri: case X86::SBB16ri8: |
| case X86::SBB8ri: case X86::SBB64rr: case X86::SBB32rr: |
| case X86::SBB16rr: case X86::SBB8rr: case X86::SBB64rm: |
| case X86::SBB32rm: case X86::SBB16rm: case X86::SBB8rm: |
| case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: |
| case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1:case X86::SAR64r1: |
| case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1:case X86::SHR64r1: |
| case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1:case X86::SHL64r1: |
| case X86::ANDN32rr: case X86::ANDN32rm: |
| case X86::ANDN64rr: case X86::ANDN64rm: |
| case X86::BEXTR32rr: case X86::BEXTR64rr: |
| case X86::BEXTR32rm: case X86::BEXTR64rm: |
| case X86::BLSI32rr: case X86::BLSI32rm: |
| case X86::BLSI64rr: case X86::BLSI64rm: |
| case X86::BLSMSK32rr:case X86::BLSMSK32rm: |
| case X86::BLSMSK64rr:case X86::BLSMSK64rm: |
| case X86::BLSR32rr: case X86::BLSR32rm: |
| case X86::BLSR64rr: case X86::BLSR64rm: |
| case X86::BZHI32rr: case X86::BZHI32rm: |
| case X86::BZHI64rr: case X86::BZHI64rm: |
| case X86::LZCNT16rr: case X86::LZCNT16rm: |
| case X86::LZCNT32rr: case X86::LZCNT32rm: |
| case X86::LZCNT64rr: case X86::LZCNT64rm: |
| case X86::POPCNT16rr:case X86::POPCNT16rm: |
| case X86::POPCNT32rr:case X86::POPCNT32rm: |
| case X86::POPCNT64rr:case X86::POPCNT64rm: |
| case X86::TZCNT16rr: case X86::TZCNT16rm: |
| case X86::TZCNT32rr: case X86::TZCNT32rm: |
| case X86::TZCNT64rr: case X86::TZCNT64rm: |
| case X86::BEXTRI32ri: case X86::BEXTRI32mi: |
| case X86::BEXTRI64ri: case X86::BEXTRI64mi: |
| case X86::BLCFILL32rr: case X86::BLCFILL32rm: |
| case X86::BLCFILL64rr: case X86::BLCFILL64rm: |
| case X86::BLCI32rr: case X86::BLCI32rm: |
| case X86::BLCI64rr: case X86::BLCI64rm: |
| case X86::BLCIC32rr: case X86::BLCIC32rm: |
| case X86::BLCIC64rr: case X86::BLCIC64rm: |
| case X86::BLCMSK32rr: case X86::BLCMSK32rm: |
| case X86::BLCMSK64rr: case X86::BLCMSK64rm: |
| case X86::BLCS32rr: case X86::BLCS32rm: |
| case X86::BLCS64rr: case X86::BLCS64rm: |
| case X86::BLSFILL32rr: case X86::BLSFILL32rm: |
| case X86::BLSFILL64rr: case X86::BLSFILL64rm: |
| case X86::BLSIC32rr: case X86::BLSIC32rm: |
| case X86::BLSIC64rr: case X86::BLSIC64rm: |
| return true; |
| } |
| } |
| |
| /// Check whether the use can be converted to remove a comparison against zero. |
| static X86::CondCode isUseDefConvertible(MachineInstr &MI) { |
| switch (MI.getOpcode()) { |
| default: return X86::COND_INVALID; |
| case X86::LZCNT16rr: case X86::LZCNT16rm: |
| case X86::LZCNT32rr: case X86::LZCNT32rm: |
| case X86::LZCNT64rr: case X86::LZCNT64rm: |
| return X86::COND_B; |
| case X86::POPCNT16rr:case X86::POPCNT16rm: |
| case X86::POPCNT32rr:case X86::POPCNT32rm: |
| case X86::POPCNT64rr:case X86::POPCNT64rm: |
| return X86::COND_E; |
| case X86::TZCNT16rr: case X86::TZCNT16rm: |
| case X86::TZCNT32rr: case X86::TZCNT32rm: |
| case X86::TZCNT64rr: case X86::TZCNT64rm: |
| return X86::COND_B; |
| case X86::BSF16rr: |
| case X86::BSF16rm: |
| case X86::BSF32rr: |
| case X86::BSF32rm: |
| case X86::BSF64rr: |
| case X86::BSF64rm: |
| return X86::COND_E; |
| } |
| } |
| |
| /// Check if there exists an earlier instruction that |
| /// operates on the same source operands and sets flags in the same way as |
| /// Compare; remove Compare if possible. |
| bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, unsigned SrcReg, |
| unsigned SrcReg2, int CmpMask, |
| int CmpValue, |
| const MachineRegisterInfo *MRI) const { |
| // Check whether we can replace SUB with CMP. |
| unsigned NewOpcode = 0; |
| switch (CmpInstr.getOpcode()) { |
| default: break; |
| case X86::SUB64ri32: |
| case X86::SUB64ri8: |
| case X86::SUB32ri: |
| case X86::SUB32ri8: |
| case X86::SUB16ri: |
| case X86::SUB16ri8: |
| case X86::SUB8ri: |
| case X86::SUB64rm: |
| case X86::SUB32rm: |
| case X86::SUB16rm: |
| case X86::SUB8rm: |
| case X86::SUB64rr: |
| case X86::SUB32rr: |
| case X86::SUB16rr: |
| case X86::SUB8rr: { |
| if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) |
| return false; |
| // There is no use of the destination register, we can replace SUB with CMP. |
| switch (CmpInstr.getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::SUB64rm: NewOpcode = X86::CMP64rm; break; |
| case X86::SUB32rm: NewOpcode = X86::CMP32rm; break; |
| case X86::SUB16rm: NewOpcode = X86::CMP16rm; break; |
| case X86::SUB8rm: NewOpcode = X86::CMP8rm; break; |
| case X86::SUB64rr: NewOpcode = X86::CMP64rr; break; |
| case X86::SUB32rr: NewOpcode = X86::CMP32rr; break; |
| case X86::SUB16rr: NewOpcode = X86::CMP16rr; break; |
| case X86::SUB8rr: NewOpcode = X86::CMP8rr; break; |
| case X86::SUB64ri32: NewOpcode = X86::CMP64ri32; break; |
| case X86::SUB64ri8: NewOpcode = X86::CMP64ri8; break; |
| case X86::SUB32ri: NewOpcode = X86::CMP32ri; break; |
| case X86::SUB32ri8: NewOpcode = X86::CMP32ri8; break; |
| case X86::SUB16ri: NewOpcode = X86::CMP16ri; break; |
| case X86::SUB16ri8: NewOpcode = X86::CMP16ri8; break; |
| case X86::SUB8ri: NewOpcode = X86::CMP8ri; break; |
| } |
| CmpInstr.setDesc(get(NewOpcode)); |
| CmpInstr.RemoveOperand(0); |
| // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. |
| if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || |
| NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) |
| return false; |
| } |
| } |
| |
| // Get the unique definition of SrcReg. |
| MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); |
| if (!MI) return false; |
| |
| // CmpInstr is the first instruction of the BB. |
| MachineBasicBlock::iterator I = CmpInstr, Def = MI; |
| |
| // If we are comparing against zero, check whether we can use MI to update |
| // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize. |
| bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); |
| if (IsCmpZero && MI->getParent() != CmpInstr.getParent()) |
| return false; |
| |
| // If we have a use of the source register between the def and our compare |
| // instruction we can eliminate the compare iff the use sets EFLAGS in the |
| // right way. |
| bool ShouldUpdateCC = false; |
| X86::CondCode NewCC = X86::COND_INVALID; |
| if (IsCmpZero && !isDefConvertible(*MI)) { |
| // Scan forward from the use until we hit the use we're looking for or the |
| // compare instruction. |
| for (MachineBasicBlock::iterator J = MI;; ++J) { |
| // Do we have a convertible instruction? |
| NewCC = isUseDefConvertible(*J); |
| if (NewCC != X86::COND_INVALID && J->getOperand(1).isReg() && |
| J->getOperand(1).getReg() == SrcReg) { |
| assert(J->definesRegister(X86::EFLAGS) && "Must be an EFLAGS def!"); |
| ShouldUpdateCC = true; // Update CC later on. |
| // This is not a def of SrcReg, but still a def of EFLAGS. Keep going |
| // with the new def. |
| Def = J; |
| MI = &*Def; |
| break; |
| } |
| |
| if (J == I) |
| return false; |
| } |
| } |
| |
| // We are searching for an earlier instruction that can make CmpInstr |
| // redundant and that instruction will be saved in Sub. |
| MachineInstr *Sub = nullptr; |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| |
| // We iterate backward, starting from the instruction before CmpInstr and |
| // stop when reaching the definition of a source register or done with the BB. |
| // RI points to the instruction before CmpInstr. |
| // If the definition is in this basic block, RE points to the definition; |
| // otherwise, RE is the rend of the basic block. |
| MachineBasicBlock::reverse_iterator |
| RI = ++I.getReverse(), |
| RE = CmpInstr.getParent() == MI->getParent() |
| ? Def.getReverse() /* points to MI */ |
| : CmpInstr.getParent()->rend(); |
| MachineInstr *Movr0Inst = nullptr; |
| for (; RI != RE; ++RI) { |
| MachineInstr &Instr = *RI; |
| // Check whether CmpInstr can be made redundant by the current instruction. |
| if (!IsCmpZero && isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, |
| CmpValue, Instr)) { |
| Sub = &Instr; |
| break; |
| } |
| |
| if (Instr.modifiesRegister(X86::EFLAGS, TRI) || |
| Instr.readsRegister(X86::EFLAGS, TRI)) { |
| // This instruction modifies or uses EFLAGS. |
| |
| // MOV32r0 etc. are implemented with xor which clobbers condition code. |
| // They are safe to move up, if the definition to EFLAGS is dead and |
| // earlier instructions do not read or write EFLAGS. |
| if (!Movr0Inst && Instr.getOpcode() == X86::MOV32r0 && |
| Instr.registerDefIsDead(X86::EFLAGS, TRI)) { |
| Movr0Inst = &Instr; |
| continue; |
| } |
| |
| // We can't remove CmpInstr. |
| return false; |
| } |
| } |
| |
| // Return false if no candidates exist. |
| if (!IsCmpZero && !Sub) |
| return false; |
| |
| bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 && |
| Sub->getOperand(2).getReg() == SrcReg); |
| |
| // Scan forward from the instruction after CmpInstr for uses of EFLAGS. |
| // It is safe to remove CmpInstr if EFLAGS is redefined or killed. |
| // If we are done with the basic block, we need to check whether EFLAGS is |
| // live-out. |
| bool IsSafe = false; |
| SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate; |
| MachineBasicBlock::iterator E = CmpInstr.getParent()->end(); |
| for (++I; I != E; ++I) { |
| const MachineInstr &Instr = *I; |
| bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); |
| bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); |
| // We should check the usage if this instruction uses and updates EFLAGS. |
| if (!UseEFLAGS && ModifyEFLAGS) { |
| // It is safe to remove CmpInstr if EFLAGS is updated again. |
| IsSafe = true; |
| break; |
| } |
| if (!UseEFLAGS && !ModifyEFLAGS) |
| continue; |
| |
| // EFLAGS is used by this instruction. |
| X86::CondCode OldCC = X86::COND_INVALID; |
| bool OpcIsSET = false; |
| if (IsCmpZero || IsSwapped) { |
| // We decode the condition code from opcode. |
| if (Instr.isBranch()) |
| OldCC = X86::getCondFromBranchOpc(Instr.getOpcode()); |
| else { |
| OldCC = X86::getCondFromSETOpc(Instr.getOpcode()); |
| if (OldCC != X86::COND_INVALID) |
| OpcIsSET = true; |
| else |
| OldCC = X86::getCondFromCMovOpc(Instr.getOpcode()); |
| } |
| if (OldCC == X86::COND_INVALID) return false; |
| } |
| X86::CondCode ReplacementCC = X86::COND_INVALID; |
| if (IsCmpZero) { |
| switch (OldCC) { |
| default: break; |
| case X86::COND_A: case X86::COND_AE: |
| case X86::COND_B: case X86::COND_BE: |
| case X86::COND_G: case X86::COND_GE: |
| case X86::COND_L: case X86::COND_LE: |
| case X86::COND_O: case X86::COND_NO: |
| // CF and OF are used, we can't perform this optimization. |
| return false; |
| } |
| |
| // If we're updating the condition code check if we have to reverse the |
| // condition. |
| if (ShouldUpdateCC) |
| switch (OldCC) { |
| default: |
| return false; |
| case X86::COND_E: |
| ReplacementCC = NewCC; |
| break; |
| case X86::COND_NE: |
| ReplacementCC = GetOppositeBranchCondition(NewCC); |
| break; |
| } |
| } else if (IsSwapped) { |
| // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs |
| // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. |
| // We swap the condition code and synthesize the new opcode. |
| ReplacementCC = getSwappedCondition(OldCC); |
| if (ReplacementCC == X86::COND_INVALID) return false; |
| } |
| |
| if ((ShouldUpdateCC || IsSwapped) && ReplacementCC != OldCC) { |
| // Synthesize the new opcode. |
| bool HasMemoryOperand = Instr.hasOneMemOperand(); |
| unsigned NewOpc; |
| if (Instr.isBranch()) |
| NewOpc = GetCondBranchFromCond(ReplacementCC); |
| else if(OpcIsSET) |
| NewOpc = getSETFromCond(ReplacementCC, HasMemoryOperand); |
| else { |
| unsigned DstReg = Instr.getOperand(0).getReg(); |
| const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); |
| NewOpc = getCMovFromCond(ReplacementCC, TRI->getRegSizeInBits(*DstRC)/8, |
| HasMemoryOperand); |
| } |
| |
| // Push the MachineInstr to OpsToUpdate. |
| // If it is safe to remove CmpInstr, the condition code of these |
| // instructions will be modified. |
| OpsToUpdate.push_back(std::make_pair(&*I, NewOpc)); |
| } |
| if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) { |
| // It is safe to remove CmpInstr if EFLAGS is updated again or killed. |
| IsSafe = true; |
| break; |
| } |
| } |
| |
| // If EFLAGS is not killed nor re-defined, we should check whether it is |
| // live-out. If it is live-out, do not optimize. |
| if ((IsCmpZero || IsSwapped) && !IsSafe) { |
| MachineBasicBlock *MBB = CmpInstr.getParent(); |
| for (MachineBasicBlock *Successor : MBB->successors()) |
| if (Successor->isLiveIn(X86::EFLAGS)) |
| return false; |
| } |
| |
| // The instruction to be updated is either Sub or MI. |
| Sub = IsCmpZero ? MI : Sub; |
| // Move Movr0Inst to the appropriate place before Sub. |
| if (Movr0Inst) { |
| // Look backwards until we find a def that doesn't use the current EFLAGS. |
| Def = Sub; |
| MachineBasicBlock::reverse_iterator InsertI = Def.getReverse(), |
| InsertE = Sub->getParent()->rend(); |
| for (; InsertI != InsertE; ++InsertI) { |
| MachineInstr *Instr = &*InsertI; |
| if (!Instr->readsRegister(X86::EFLAGS, TRI) && |
| Instr->modifiesRegister(X86::EFLAGS, TRI)) { |
| Sub->getParent()->remove(Movr0Inst); |
| Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), |
| Movr0Inst); |
| break; |
| } |
| } |
| if (InsertI == InsertE) |
| return false; |
| } |
| |
| // Make sure Sub instruction defines EFLAGS and mark the def live. |
| unsigned i = 0, e = Sub->getNumOperands(); |
| for (; i != e; ++i) { |
| MachineOperand &MO = Sub->getOperand(i); |
| if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS) { |
| MO.setIsDead(false); |
| break; |
| } |
| } |
| assert(i != e && "Unable to locate a def EFLAGS operand"); |
| |
| CmpInstr.eraseFromParent(); |
| |
| // Modify the condition code of instructions in OpsToUpdate. |
| for (auto &Op : OpsToUpdate) |
| Op.first->setDesc(get(Op.second)); |
| return true; |
| } |
| |
| /// Try to remove the load by folding it to a register |
| /// operand at the use. We fold the load instructions if load defines a virtual |
| /// register, the virtual register is used once in the same BB, and the |
| /// instructions in-between do not load or store, and have no side effects. |
| MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, |
| const MachineRegisterInfo *MRI, |
| unsigned &FoldAsLoadDefReg, |
| MachineInstr *&DefMI) const { |
| // Check whether we can move DefMI here. |
| DefMI = MRI->getVRegDef(FoldAsLoadDefReg); |
| assert(DefMI); |
| bool SawStore = false; |
| if (!DefMI->isSafeToMove(nullptr, SawStore)) |
| return nullptr; |
| |
| // Collect information about virtual register operands of MI. |
| SmallVector<unsigned, 1> SrcOperandIds; |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (Reg != FoldAsLoadDefReg) |
| continue; |
| // Do not fold if we have a subreg use or a def. |
| if (MO.getSubReg() || MO.isDef()) |
| return nullptr; |
| SrcOperandIds.push_back(i); |
| } |
| if (SrcOperandIds.empty()) |
| return nullptr; |
| |
| // Check whether we can fold the def into SrcOperandId. |
| if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { |
| FoldAsLoadDefReg = 0; |
| return FoldMI; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Expand a single-def pseudo instruction to a two-addr |
| /// instruction with two undef reads of the register being defined. |
| /// This is used for mapping: |
| /// %xmm4 = V_SET0 |
| /// to: |
| /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 |
| /// |
| static bool Expand2AddrUndef(MachineInstrBuilder &MIB, |
| const MCInstrDesc &Desc) { |
| assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); |
| unsigned Reg = MIB->getOperand(0).getReg(); |
| MIB->setDesc(Desc); |
| |
| // MachineInstr::addOperand() will insert explicit operands before any |
| // implicit operands. |
| MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); |
| // But we don't trust that. |
| assert(MIB->getOperand(1).getReg() == Reg && |
| MIB->getOperand(2).getReg() == Reg && "Misplaced operand"); |
| return true; |
| } |
| |
| /// Expand a single-def pseudo instruction to a two-addr |
| /// instruction with two %k0 reads. |
| /// This is used for mapping: |
| /// %k4 = K_SET1 |
| /// to: |
| /// %k4 = KXNORrr %k0, %k0 |
| static bool Expand2AddrKreg(MachineInstrBuilder &MIB, |
| const MCInstrDesc &Desc, unsigned Reg) { |
| assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); |
| MIB->setDesc(Desc); |
| MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); |
| return true; |
| } |
| |
| static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, |
| bool MinusOne) { |
| MachineBasicBlock &MBB = *MIB->getParent(); |
| DebugLoc DL = MIB->getDebugLoc(); |
| unsigned Reg = MIB->getOperand(0).getReg(); |
| |
| // Insert the XOR. |
| BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) |
| .addReg(Reg, RegState::Undef) |
| .addReg(Reg, RegState::Undef); |
| |
| // Turn the pseudo into an INC or DEC. |
| MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); |
| MIB.addReg(Reg); |
| |
| return true; |
| } |
| |
| static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, |
| const TargetInstrInfo &TII, |
| const X86Subtarget &Subtarget) { |
| MachineBasicBlock &MBB = *MIB->getParent(); |
| DebugLoc DL = MIB->getDebugLoc(); |
| int64_t Imm = MIB->getOperand(1).getImm(); |
| assert(Imm != 0 && "Using push/pop for 0 is not efficient."); |
| MachineBasicBlock::iterator I = MIB.getInstr(); |
| |
| int StackAdjustment; |
| |
| if (Subtarget.is64Bit()) { |
| assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || |
| MIB->getOpcode() == X86::MOV32ImmSExti8); |
| |
| // Can't use push/pop lowering if the function might write to the red zone. |
| X86MachineFunctionInfo *X86FI = |
| MBB.getParent()->getInfo<X86MachineFunctionInfo>(); |
| if (X86FI->getUsesRedZone()) { |
| MIB->setDesc(TII.get(MIB->getOpcode() == |
| X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); |
| return true; |
| } |
| |
| // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and |
| // widen the register if necessary. |
| StackAdjustment = 8; |
| BuildMI(MBB, I, DL, TII.get(X86::PUSH64i8)).addImm(Imm); |
| MIB->setDesc(TII.get(X86::POP64r)); |
| MIB->getOperand(0) |
| .setReg(getX86SubSuperRegister(MIB->getOperand(0).getReg(), 64)); |
| } else { |
| assert(MIB->getOpcode() == X86::MOV32ImmSExti8); |
| StackAdjustment = 4; |
| BuildMI(MBB, I, DL, TII.get(X86::PUSH32i8)).addImm(Imm); |
| MIB->setDesc(TII.get(X86::POP32r)); |
| } |
| |
| // Build CFI if necessary. |
| MachineFunction &MF = *MBB.getParent(); |
| const X86FrameLowering *TFL = Subtarget.getFrameLowering(); |
| bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); |
| bool NeedsDwarfCFI = |
| !IsWin64Prologue && |
| (MF.getMMI().hasDebugInfo() || MF.getFunction().needsUnwindTableEntry()); |
| bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; |
| if (EmitCFI) { |
| TFL->BuildCFI(MBB, I, DL, |
| MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); |
| TFL->BuildCFI(MBB, std::next(I), DL, |
| MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); |
| } |
| |
| return true; |
| } |
| |
| // LoadStackGuard has so far only been implemented for 64-bit MachO. Different |
| // code sequence is needed for other targets. |
| static void expandLoadStackGuard(MachineInstrBuilder &MIB, |
| const TargetInstrInfo &TII) { |
| MachineBasicBlock &MBB = *MIB->getParent(); |
| DebugLoc DL = MIB->getDebugLoc(); |
| unsigned Reg = MIB->getOperand(0).getReg(); |
| const GlobalValue *GV = |
| cast<GlobalValue>((*MIB->memoperands_begin())->getValue()); |
| auto Flags = MachineMemOperand::MOLoad | |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant; |
| MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( |
| MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, 8); |
| MachineBasicBlock::iterator I = MIB.getInstr(); |
| |
| BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg).addReg(X86::RIP).addImm(1) |
| .addReg(0).addGlobalAddress(GV, 0, X86II::MO_GOTPCREL).addReg(0) |
| .addMemOperand(MMO); |
| MIB->setDebugLoc(DL); |
| MIB->setDesc(TII.get(X86::MOV64rm)); |
| MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); |
| } |
| |
| static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { |
| MachineBasicBlock &MBB = *MIB->getParent(); |
| MachineFunction &MF = *MBB.getParent(); |
| const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>(); |
| const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); |
| unsigned XorOp = |
| MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; |
| MIB->setDesc(TII.get(XorOp)); |
| MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); |
| return true; |
| } |
| |
| // This is used to handle spills for 128/256-bit registers when we have AVX512, |
| // but not VLX. If it uses an extended register we need to use an instruction |
| // that loads the lower 128/256-bit, but is available with only AVX512F. |
| static bool expandNOVLXLoad(MachineInstrBuilder &MIB, |
| const TargetRegisterInfo *TRI, |
| const MCInstrDesc &LoadDesc, |
| const MCInstrDesc &BroadcastDesc, |
| unsigned SubIdx) { |
| unsigned DestReg = MIB->getOperand(0).getReg(); |
| // Check if DestReg is XMM16-31 or YMM16-31. |
| if (TRI->getEncodingValue(DestReg) < 16) { |
| // We can use a normal VEX encoded load. |
| MIB->setDesc(LoadDesc); |
| } else { |
| // Use a 128/256-bit VBROADCAST instruction. |
| MIB->setDesc(BroadcastDesc); |
| // Change the destination to a 512-bit register. |
| DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); |
| MIB->getOperand(0).setReg(DestReg); |
| } |
| return true; |
| } |
| |
| // This is used to handle spills for 128/256-bit registers when we have AVX512, |
| // but not VLX. If it uses an extended register we need to use an instruction |
| // that stores the lower 128/256-bit, but is available with only AVX512F. |
| static bool expandNOVLXStore(MachineInstrBuilder &MIB, |
| const TargetRegisterInfo *TRI, |
| const MCInstrDesc &StoreDesc, |
| const MCInstrDesc &ExtractDesc, |
| unsigned SubIdx) { |
| unsigned SrcReg = MIB->getOperand(X86::AddrNumOperands).getReg(); |
| // Check if DestReg is XMM16-31 or YMM16-31. |
| if (TRI->getEncodingValue(SrcReg) < 16) { |
| // We can use a normal VEX encoded store. |
| MIB->setDesc(StoreDesc); |
| } else { |
| // Use a VEXTRACTF instruction. |
| MIB->setDesc(ExtractDesc); |
| // Change the destination to a 512-bit register. |
| SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); |
| MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); |
| MIB.addImm(0x0); // Append immediate to extract from the lower bits. |
| } |
| |
| return true; |
| } |
| bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { |
| bool HasAVX = Subtarget.hasAVX(); |
| MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); |
| switch (MI.getOpcode()) { |
| case X86::MOV32r0: |
| return Expand2AddrUndef(MIB, get(X86::XOR32rr)); |
| case X86::MOV32r1: |
| return expandMOV32r1(MIB, *this, /*MinusOne=*/ false); |
| case X86::MOV32r_1: |
| return expandMOV32r1(MIB, *this, /*MinusOne=*/ true); |
| case X86::MOV32ImmSExti8: |
| case X86::MOV64ImmSExti8: |
| return ExpandMOVImmSExti8(MIB, *this, Subtarget); |
| case X86::SETB_C8r: |
| return Expand2AddrUndef(MIB, get(X86::SBB8rr)); |
| case X86::SETB_C16r: |
| return Expand2AddrUndef(MIB, get(X86::SBB16rr)); |
| case X86::SETB_C32r: |
| return Expand2AddrUndef(MIB, get(X86::SBB32rr)); |
| case X86::SETB_C64r: |
| return Expand2AddrUndef(MIB, get(X86::SBB64rr)); |
| case X86::MMX_SET0: |
| return Expand2AddrUndef(MIB, get(X86::MMX_PXORirr)); |
| case X86::V_SET0: |
| case X86::FsFLD0SS: |
| case X86::FsFLD0SD: |
| return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); |
| case X86::AVX_SET0: { |
| assert(HasAVX && "AVX not supported"); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| unsigned SrcReg = MIB->getOperand(0).getReg(); |
| unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); |
| MIB->getOperand(0).setReg(XReg); |
| Expand2AddrUndef(MIB, get(X86::VXORPSrr)); |
| MIB.addReg(SrcReg, RegState::ImplicitDefine); |
| return true; |
| } |
| case X86::AVX512_128_SET0: |
| case X86::AVX512_FsFLD0SS: |
| case X86::AVX512_FsFLD0SD: { |
| bool HasVLX = Subtarget.hasVLX(); |
| unsigned SrcReg = MIB->getOperand(0).getReg(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) |
| return Expand2AddrUndef(MIB, |
| get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); |
| // Extended register without VLX. Use a larger XOR. |
| SrcReg = |
| TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); |
| MIB->getOperand(0).setReg(SrcReg); |
| return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); |
| } |
| case X86::AVX512_256_SET0: |
| case X86::AVX512_512_SET0: { |
| bool HasVLX = Subtarget.hasVLX(); |
| unsigned SrcReg = MIB->getOperand(0).getReg(); |
| const TargetRegisterInfo *TRI = &getRegisterInfo(); |
| if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { |
| unsigned XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); |
| MIB->getOperand(0).setReg(XReg); |
| Expand2AddrUndef(MIB, |
| get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); |
| MIB.addReg(SrcReg, RegState::ImplicitDefine); |
| return true; |
| } |
| return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); |
| } |
| case X86::V_SETALLONES: |
| return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); |
| case X86::AVX2_SETALLONES: |
| return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); |
| case X86::AVX1_SETALLONES: { |
| unsigned Reg = MIB->getOperand(0).getReg(); |
| // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. |
| MIB->setDesc(get(X86::VCMPPSYrri)); |
| MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); |
| return true; |
| } |
| case X86::AVX512_512_SETALLONES: { |
| unsigned Reg = MIB->getOperand(0).getReg(); |
| MIB->setDesc(get(X86::VPTERNLOGDZrri)); |
| // VPTERNLOGD needs 3 register inputs and an immediate. |
| // 0xff will return 1s for any input. |
| MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef) |
| .addReg(Reg, RegState::Undef).addImm(0xff); |
| return true; |
| } |
| case X86::AVX512_512_SEXT_MASK_32: |
| case X86::AVX512_512_SEXT_MASK_64: { |
| unsigned Reg = MIB->getOperand(0).getReg(); |
| unsigned MaskReg = MIB->getOperand(1).getReg(); |
| unsigned MaskState = getRegState(MIB->getOperand(1)); |
| unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? |
| X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; |
| MI.RemoveOperand(1); |
| MIB->setDesc(get(Opc)); |
| // VPTERNLOG needs 3 register inputs and an immediate. |
| // 0xff will return 1s for any input. |
| MIB.addReg(Reg, RegState::Undef).addReg(MaskReg, MaskState) |
| .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xff); |
| return true; |
| } |
| case X86::VMOVAPSZ128rm_NOVLX: |
| return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), |
| get(X86::VBROADCASTF32X4rm), X86::sub_xmm); |
| case X86::VMOVUPSZ128rm_NOVLX: |
| return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), |
| get(X86::VBROADCASTF32X4rm), X86::sub_xmm); |
| case X86::VMOVAPSZ256rm_NOVLX: |
| return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), |
| get(X86::VBROADCASTF64X4rm), X86::sub_ymm); |
| case X86::VMOVUPSZ256rm_NOVLX: |
| return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), |
| get(X86::VBROADCASTF64X4rm), X86::sub_ymm); |
| case X86::VMOVAPSZ128mr_NOVLX: |
| return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), |
| get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); |
| case X86::VMOVUPSZ128mr_NOVLX: |
| return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), |
| get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); |
| case X86::VMOVAPSZ256mr_NOVLX: |
| return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), |
| get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); |
| case X86::VMOVUPSZ256mr_NOVLX: |
| return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), |
| get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); |
| case X86::MOV32ri64: |
| MI.setDesc(get(X86::MOV32ri)); |
| return true; |
| |
| // KNL does not recognize dependency-breaking idioms for mask registers, |
| // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. |
| // Using %k0 as the undef input register is a performance heuristic based |
| // on the assumption that %k0 is used less frequently than the other mask |
| // registers, since it is not usable as a write mask. |
| // FIXME: A more advanced approach would be to choose the best input mask |
| // register based on context. |
| case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); |
| case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); |
| case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); |
| case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); |
| case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); |
| case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); |
| case TargetOpcode::LOAD_STACK_GUARD: |
| expandLoadStackGuard(MIB, *this); |
| return true; |
| case X86::XOR64_FP: |
| case X86::XOR32_FP: |
| return expandXorFP(MIB, *this); |
| } |
| return false; |
| } |
| |
| /// Return true for all instructions that only update |
| /// the first 32 or 64-bits of the destination register and leave the rest |
| /// unmodified. This can be used to avoid folding loads if the instructions |
| /// only update part of the destination register, and the non-updated part is |
| /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these |
| /// instructions breaks the partial register dependency and it can improve |
| /// performance. e.g.: |
| /// |
| /// movss (%rdi), %xmm0 |
| /// cvtss2sd %xmm0, %xmm0 |
| /// |
| /// Instead of |
| /// cvtss2sd (%rdi), %xmm0 |
| /// |
| /// FIXME: This should be turned into a TSFlags. |
| /// |
| static bool hasPartialRegUpdate(unsigned Opcode, |
| const X86Subtarget &Subtarget) { |
| switch (Opcode) { |
| case X86::CVTSI2SSrr: |
| case X86::CVTSI2SSrm: |
| case X86::CVTSI642SSrr: |
| case X86::CVTSI642SSrm: |
| case X86::CVTSI2SDrr: |
| case X86::CVTSI2SDrm: |
| case X86::CVTSI642SDrr: |
| case X86::CVTSI642SDrm: |
| case X86::CVTSD2SSrr: |
| case X86::CVTSD2SSrm: |
| case X86::CVTSS2SDrr: |
| case X86::CVTSS2SDrm: |
| case X86::MOVHPDrm: |
| case X86::MOVHPSrm: |
| case X86::MOVLPDrm: |
| case X86::MOVLPSrm: |
| case X86::RCPSSr: |
| case X86::RCPSSm: |
| case X86::RCPSSr_Int: |
| case X86::RCPSSm_Int: |
| case X86::ROUNDSDr: |
| case X86::ROUNDSDm: |
| case X86::ROUNDSSr: |
| case X86::ROUNDSSm: |
| case X86::RSQRTSSr: |
| case X86::RSQRTSSm: |
| case X86::RSQRTSSr_Int: |
| case X86::RSQRTSSm_Int: |
| case X86::SQRTSSr: |
| case X86::SQRTSSm: |
| case X86::SQRTSSr_Int: |
| case X86::SQRTSSm_Int: |
| case X86::SQRTSDr: |
| case X86::SQRTSDm: |
| case X86::SQRTSDr_Int: |
| case X86::SQRTSDm_Int: |
| return true; |
| // GPR |
| case X86::POPCNT32rm: |
| case X86::POPCNT32rr: |
| case X86::POPCNT64rm: |
| case X86::POPCNT64rr: |
| return Subtarget.hasPOPCNTFalseDeps(); |
| case X86::LZCNT32rm: |
| case X86::LZCNT32rr: |
| case X86::LZCNT64rm: |
| case X86::LZCNT64rr: |
| case X86::TZCNT32rm: |
| case X86::TZCNT32rr: |
| case X86::TZCNT64rm: |
| case X86::TZCNT64rr: |
| return Subtarget.hasLZCNTFalseDeps(); |
| } |
| |
| return false; |
| } |
| |
| /// Inform the BreakFalseDeps pass how many idle |
| /// instructions we would like before a partial register update. |
| unsigned X86InstrInfo::getPartialRegUpdateClearance( |
| const MachineInstr &MI, unsigned OpNum, |
| const TargetRegisterInfo *TRI) const { |
| if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) |
| return 0; |
| |
| // If MI is marked as reading Reg, the partial register update is wanted. |
| const MachineOperand &MO = MI.getOperand(0); |
| unsigned Reg = MO.getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) { |
| if (MO.readsReg() || MI.readsVirtualRegister(Reg)) |
| return 0; |
| } else { |
| if (MI.readsRegister(Reg, TRI)) |
| return 0; |
| } |
| |
| // If any instructions in the clearance range are reading Reg, insert a |
| // dependency breaking instruction, which is inexpensive and is likely to |
| // be hidden in other instruction's cycles. |
| return PartialRegUpdateClearance; |
| } |
| |
| // Return true for any instruction the copies the high bits of the first source |
| // operand into the unused high bits of the destination operand. |
| static bool hasUndefRegUpdate(unsigned Opcode) { |
| switch (Opcode) { |
| case X86::VCVTSI2SSrr: |
| case X86::VCVTSI2SSrm: |
| case X86::VCVTSI2SSrr_Int: |
| case X86::VCVTSI2SSrm_Int: |
| case X86::VCVTSI642SSrr: |
| case X86::VCVTSI642SSrm: |
| case X86::VCVTSI642SSrr_Int: |
| case X86::VCVTSI642SSrm_Int: |
| case X86::VCVTSI2SDrr: |
| case X86::VCVTSI2SDrm: |
| case X86::VCVTSI2SDrr_Int: |
| case X86::VCVTSI2SDrm_Int: |
| case X86::VCVTSI642SDrr: |
| case X86::VCVTSI642SDrm: |
| case X86::VCVTSI642SDrr_Int: |
| case X86::VCVTSI642SDrm_Int: |
| case X86::VCVTSD2SSrr: |
| case X86::VCVTSD2SSrm: |
| case X86::VCVTSD2SSrr_Int: |
| case X86::VCVTSD2SSrm_Int: |
| case X86::VCVTSS2SDrr: |
| case X86::VCVTSS2SDrm: |
| case X86::VCVTSS2SDrr_Int: |
| case X86::VCVTSS2SDrm_Int: |
| case X86::VRCPSSr: |
| case X86::VRCPSSr_Int: |
| case X86::VRCPSSm: |
| case X86::VRCPSSm_Int: |
| case X86::VROUNDSDr: |
| case X86::VROUNDSDm: |
| case X86::VROUNDSDr_Int: |
| case X86::VROUNDSDm_Int: |
| case X86::VROUNDSSr: |
| case X86::VROUNDSSm: |
| case X86::VROUNDSSr_Int: |
| case X86::VROUNDSSm_Int: |
| case X86::VRSQRTSSr: |
| case X86::VRSQRTSSr_Int: |
| case X86::VRSQRTSSm: |
| case X86::VRSQRTSSm_Int: |
| case X86::VSQRTSSr: |
| case X86::VSQRTSSr_Int: |
| case X86::VSQRTSSm: |
| case X86::VSQRTSSm_Int: |
| case X86::VSQRTSDr: |
| case X86::VSQRTSDr_Int: |
| case X86::VSQRTSDm: |
| case X86::VSQRTSDm_Int: |
| // AVX-512 |
| case X86::VCVTSI2SSZrr: |
| case X86::VCVTSI2SSZrm: |
| case X86::VCVTSI2SSZrr_Int: |
| case X86::VCVTSI2SSZrrb_Int: |
| case X86::VCVTSI2SSZrm_Int: |
| case X86::VCVTSI642SSZrr: |
| case X86::VCVTSI642SSZrm: |
| case X86::VCVTSI642SSZrr_Int: |
| case X86::VCVTSI642SSZrrb_Int: |
| case X86::VCVTSI642SSZrm_Int: |
| case X86::VCVTSI2SDZrr: |
| case X86::VCVTSI2SDZrm: |
| case X86::VCVTSI2SDZrr_Int: |
| case X86::VCVTSI2SDZrrb_Int: |
| case X86::VCVTSI2SDZrm_Int: |
| case X86::VCVTSI642SDZrr: |
| case X86::VCVTSI642SDZrm: |
| case X86::VCVTSI642SDZrr_Int: |
| case X86::VCVTSI642SDZrrb_Int: |
| case X86::VCVTSI642SDZrm_Int: |
| case X86::VCVTUSI2SSZrr: |
| case X86::VCVTUSI2SSZrm: |
| case X86::VCVTUSI2SSZrr_Int: |
| case X86::VCVTUSI2SSZrrb_Int: |
| case X86::VCVTUSI2SSZrm_Int: |
| case X86::VCVTUSI642SSZrr: |
| case X86::VCVTUSI642SSZrm: |
| case X86::VCVTUSI642SSZrr_Int: |
| case X86::VCVTUSI642SSZrrb_Int: |
| case X86::VCVTUSI642SSZrm_Int: |
| case X86::VCVTUSI2SDZrr: |
| case X86::VCVTUSI2SDZrm: |
| case X86::VCVTUSI2SDZrr_Int: |
| case X86::VCVTUSI2SDZrm_Int: |
| case X86::VCVTUSI642SDZrr: |
| case X86::VCVTUSI642SDZrm: |
| case X86::VCVTUSI642SDZrr_Int: |
| case X86::VCVTUSI642SDZrrb_Int: |
| case X86::VCVTUSI642SDZrm_Int: |
| case X86::VCVTSD2SSZrr: |
| case X86::VCVTSD2SSZrr_Int: |
| case X86::VCVTSD2SSZrrb_Int: |
| case X86::VCVTSD2SSZrm: |
| case X86::VCVTSD2SSZrm_Int: |
| case X86::VCVTSS2SDZrr: |
| case X86::VCVTSS2SDZrr_Int: |
| case X86::VCVTSS2SDZrrb_Int: |
| case X86::VCVTSS2SDZrm: |
| case X86::VCVTSS2SDZrm_Int: |
| case X86::VGETEXPSDZr: |
| case X86::VGETEXPSDZrb: |
| case X86::VGETEXPSDZm: |
| case X86::VGETEXPSSZr: |
| case X86::VGETEXPSSZrb: |
| case X86::VGETEXPSSZm: |
| case X86::VGETMANTSDZrri: |
| case X86::VGETMANTSDZrrib: |
| case X86::VGETMANTSDZrmi: |
| case X86::VGETMANTSSZrri: |
| case X86::VGETMANTSSZrrib: |
| case X86::VGETMANTSSZrmi: |
| case X86::VRNDSCALESDZr: |
| case X86::VRNDSCALESDZr_Int: |
| case X86::VRNDSCALESDZrb_Int: |
| case X86::VRNDSCALESDZm: |
| case X86::VRNDSCALESDZm_Int: |
| case X86::VRNDSCALESSZr: |
| case X86::VRNDSCALESSZr_Int: |
| case X86::VRNDSCALESSZrb_Int: |
| case X86::VRNDSCALESSZm: |
| case X86::VRNDSCALESSZm_Int: |
| case X86::VRCP14SDZrr: |
| case X86::VRCP14SDZrm: |
| case X86::VRCP14SSZrr: |
| case X86::VRCP14SSZrm: |
| case X86::VRCP28SDZr: |
| case X86::VRCP28SDZrb: |
| case X86::VRCP28SDZm: |
| case X86::VRCP28SSZr: |
| case X86::VRCP28SSZrb: |
| case X86::VRCP28SSZm: |
| case X86::VREDUCESSZrmi: |
| case X86::VREDUCESSZrri: |
| case X86::VREDUCESSZrrib: |
| case X86::VRSQRT14SDZrr: |
| case X86::VRSQRT14SDZrm: |
| case X86::VRSQRT14SSZrr: |
| case X86::VRSQRT14SSZrm: |
| case X86::VRSQRT28SDZr: |
| case X86::VRSQRT28SDZrb: |
| case X86::VRSQRT28SDZm: |
| case X86::VRSQRT28SSZr: |
| case X86::VRSQRT28SSZrb: |
| case X86::VRSQRT28SSZm: |
| case X86::VSQRTSSZr: |
| case X86::VSQRTSSZr_Int: |
| case X86::VSQRTSSZrb_Int: |
| case X86::VSQRTSSZm: |
| case X86::VSQRTSSZm_Int: |
| case X86::VSQRTSDZr: |
| case X86::VSQRTSDZr_Int: |
| case X86::VSQRTSDZrb_Int: |
| case X86::VSQRTSDZm: |
| case X86::VSQRTSDZm_Int: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Inform the BreakFalseDeps pass how many idle instructions we would like |
| /// before certain undef register reads. |
| /// |
| /// This catches the VCVTSI2SD family of instructions: |
| /// |
| /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 |
| /// |
| /// We should to be careful *not* to catch VXOR idioms which are presumably |
| /// handled specially in the pipeline: |
| /// |
| /// vxorps undef %xmm1, undef %xmm1, %xmm1 |
| /// |
| /// Like getPartialRegUpdateClearance, this makes a strong assumption that the |
| /// high bits that are passed-through are not live. |
| unsigned |
| X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned &OpNum, |
| const TargetRegisterInfo *TRI) const { |
| if (!hasUndefRegUpdate(MI.getOpcode())) |
| return 0; |
| |
| // Set the OpNum parameter to the first source operand. |
| OpNum = 1; |
| |
| const MachineOperand &MO = MI.getOperand(OpNum); |
| if (MO.isUndef() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { |
| return UndefRegClearance; |
| } |
| return 0; |
| } |
| |
| void X86InstrInfo::breakPartialRegDependency( |
| MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { |
| unsigned Reg = MI.getOperand(OpNum).getReg(); |
| // If MI kills this register, the false dependence is already broken. |
| if (MI.killsRegister(Reg, TRI)) |
| return; |
| |
| if (X86::VR128RegClass.contains(Reg)) { |
| // These instructions are all floating point domain, so xorps is the best |
| // choice. |
| unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) |
| .addReg(Reg, RegState::Undef) |
| .addReg(Reg, RegState::Undef); |
| MI.addRegisterKilled(Reg, TRI, true); |
| } else if (X86::VR256RegClass.contains(Reg)) { |
| // Use vxorps to clear the full ymm register. |
| // It wants to read and write the xmm sub-register. |
| unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm); |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) |
| .addReg(XReg, RegState::Undef) |
| .addReg(XReg, RegState::Undef) |
| .addReg(Reg, RegState::ImplicitDefine); |
| MI.addRegisterKilled(Reg, TRI, true); |
| } else if (X86::GR64RegClass.contains(Reg)) { |
| // Using XOR32rr because it has shorter encoding and zeros up the upper bits |
| // as well. |
| unsigned XReg = TRI->getSubReg(Reg, X86::sub_32bit); |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) |
| .addReg(XReg, RegState::Undef) |
| .addReg(XReg, RegState::Undef) |
| .addReg(Reg, RegState::ImplicitDefine); |
| MI.addRegisterKilled(Reg, TRI, true); |
| } else if (X86::GR32RegClass.contains(Reg)) { |
| BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) |
| .addReg(Reg, RegState::Undef) |
| .addReg(Reg, RegState::Undef); |
| MI.addRegisterKilled(Reg, TRI, true); |
| } |
| } |
| |
| static void addOperands(MachineInstrBuilder &MIB, ArrayRef<MachineOperand> MOs, |
| int PtrOffset = 0) { |
| unsigned NumAddrOps = MOs.size(); |
| |
| if (NumAddrOps < 4) { |
| // FrameIndex only - add an immediate offset (whether its zero or not). |
| for (unsigned i = 0; i != NumAddrOps; ++i) |
| MIB.add(MOs[i]); |
| addOffset(MIB, PtrOffset); |
| } else { |
| // General Memory Addressing - we need to add any offset to an existing |
| // offset. |
| assert(MOs.size() == 5 && "Unexpected memory operand list length"); |
| for (unsigned i = 0; i != NumAddrOps; ++i) { |
| const MachineOperand &MO = MOs[i]; |
| if (i == 3 && PtrOffset != 0) { |
| MIB.addDisp(MO, PtrOffset); |
| } else { |
| MIB.add(MO); |
| } |
| } |
| } |
| } |
| |
| static void updateOperandRegConstraints(MachineFunction &MF, |
| MachineInstr &NewMI, |
| const TargetInstrInfo &TII) { |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| |
| for (int Idx : llvm::seq<int>(0, NewMI.getNumOperands())) { |
| MachineOperand &MO = NewMI.getOperand(Idx); |
| // We only need to update constraints on virtual register operands. |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!TRI.isVirtualRegister(Reg)) |
| continue; |
| |
| auto *NewRC = MRI.constrainRegClass( |
| Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); |
| if (!NewRC) { |
| LLVM_DEBUG( |
| dbgs() << "WARNING: Unable to update register constraint for operand " |
| << Idx << " of instruction:\n"; |
| NewMI.dump(); dbgs() << "\n"); |
| } |
| } |
| } |
| |
| static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, |
| ArrayRef<MachineOperand> MOs, |
| MachineBasicBlock::iterator InsertPt, |
| MachineInstr &MI, |
| const TargetInstrInfo &TII) { |
| // Create the base instruction with the memory operand as the first part. |
| // Omit the implicit operands, something BuildMI can't do. |
| MachineInstr *NewMI = |
| MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); |
| MachineInstrBuilder MIB(MF, NewMI); |
| addOperands(MIB, MOs); |
| |
| // Loop over the rest of the ri operands, converting them over. |
| unsigned NumOps = MI.getDesc().getNumOperands() - 2; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| MachineOperand &MO = MI.getOperand(i + 2); |
| MIB.add(MO); |
| } |
| for (unsigned i = NumOps + 2, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| MIB.add(MO); |
| } |
| |
| updateOperandRegConstraints(MF, *NewMI, TII); |
| |
| MachineBasicBlock *MBB = InsertPt->getParent(); |
| MBB->insert(InsertPt, NewMI); |
| |
| return MIB; |
| } |
| |
| static MachineInstr *FuseInst(MachineFunction &MF, unsigned Opcode, |
| unsigned OpNo, ArrayRef<MachineOperand> MOs, |
| MachineBasicBlock::iterator InsertPt, |
| MachineInstr &MI, const TargetInstrInfo &TII, |
| int PtrOffset = 0) { |
| // Omit the implicit operands, something BuildMI can't do. |
| MachineInstr *NewMI = |
| MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); |
| MachineInstrBuilder MIB(MF, NewMI); |
| |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI.getOperand(i); |
| if (i == OpNo) { |
| assert(MO.isReg() && "Expected to fold into reg operand!"); |
| addOperands(MIB, MOs, PtrOffset); |
| } else { |
| MIB.add(MO); |
| } |
| } |
| |
| updateOperandRegConstraints(MF, *NewMI, TII); |
| |
| MachineBasicBlock *MBB = InsertPt->getParent(); |
| MBB->insert(InsertPt, NewMI); |
| |
| return MIB; |
| } |
| |
| static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, |
| ArrayRef<MachineOperand> MOs, |
| MachineBasicBlock::iterator InsertPt, |
| MachineInstr &MI) { |
| MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, |
| MI.getDebugLoc(), TII.get(Opcode)); |
| addOperands(MIB, MOs); |
| return MIB.addImm(0); |
| } |
| |
| MachineInstr *X86InstrInfo::foldMemoryOperandCustom( |
| MachineFunction &MF, MachineInstr &MI, unsigned OpNum, |
| ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, |
| unsigned Size, unsigned Align) const { |
| switch (MI.getOpcode()) { |
| case X86::INSERTPSrr: |
| case X86::VINSERTPSrr: |
| case X86::VINSERTPSZrr: |
| // Attempt to convert the load of inserted vector into a fold load |
| // of a single float. |
| if (OpNum == 2) { |
| unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); |
| unsigned ZMask = Imm & 15; |
| unsigned DstIdx = (Imm >> 4) & 3; |
| unsigned SrcIdx = (Imm >> 6) & 3; |
| |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); |
| unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; |
| if (Size <= RCSize && 4 <= Align) { |
| int PtrOffset = SrcIdx * 4; |
| unsigned NewImm = (DstIdx << 4) | ZMask; |
| unsigned NewOpCode = |
| (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : |
| (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : |
| X86::INSERTPSrm; |
| MachineInstr *NewMI = |
| FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); |
| NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); |
| return NewMI; |
| } |
| } |
| break; |
| case X86::MOVHLPSrr: |
| case X86::VMOVHLPSrr: |
| case X86::VMOVHLPSZrr: |
| // Move the upper 64-bits of the second operand to the lower 64-bits. |
| // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. |
| // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. |
| if (OpNum == 2) { |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); |
| unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; |
| if (Size <= RCSize && 8 <= Align) { |
| unsigned NewOpCode = |
| (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : |
| (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : |
| X86::MOVLPSrm; |
| MachineInstr *NewMI = |
| FuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); |
| return NewMI; |
| } |
| } |
| break; |
| }; |
| |
| return nullptr; |
| } |
| |
| static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI) { |
| if (MF.getFunction().optForSize() || !hasUndefRegUpdate(MI.getOpcode()) || |
| !MI.getOperand(1).isReg()) |
| return false; |
| |
| // The are two cases we need to handle depending on where in the pipeline |
| // the folding attempt is being made. |
| // -Register has the undef flag set. |
| // -Register is produced by the IMPLICIT_DEF instruction. |
| |
| if (MI.getOperand(1).isUndef()) |
| return true; |
| |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); |
| return VRegDef && VRegDef->isImplicitDef(); |
| } |
| |
| |
| MachineInstr *X86InstrInfo::foldMemoryOperandImpl( |
| MachineFunction &MF, MachineInstr &MI, unsigned OpNum, |
| ArrayRef<MachineOperand> MOs, MachineBasicBlock::iterator InsertPt, |
| unsigned Size, unsigned Align, bool AllowCommute) const { |
| bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); |
| bool isTwoAddrFold = false; |
| |
| // For CPUs that favor the register form of a call or push, |
| // do not fold loads into calls or pushes, unless optimizing for size |
| // aggressively. |
| if (isSlowTwoMemOps && !MF.getFunction().optForMinSize() && |
| (MI.getOpcode() == X86::CALL32r || MI.getOpcode() == X86::CALL64r || |
| MI.getOpcode() == X86::PUSH16r || MI.getOpcode() == X86::PUSH32r || |
| MI.getOpcode() == X86::PUSH64r)) |
| return nullptr; |
| |
| // Avoid partial and undef register update stalls unless optimizing for size. |
| if (!MF.getFunction().optForSize() && |
| (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || |
| shouldPreventUndefRegUpdateMemFold(MF, MI))) |
| return nullptr; |
| |
| unsigned NumOps = MI.getDesc().getNumOperands(); |
| bool isTwoAddr = |
| NumOps > 1 && MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1; |
| |
| // FIXME: AsmPrinter doesn't know how to handle |
| // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. |
| if (MI.getOpcode() == X86::ADD32ri && |
| MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) |
| return nullptr; |
| |
| // GOTTPOFF relocation loads can only be folded into add instructions. |
| // FIXME: Need to exclude other relocations that only support specific |
| // instructions. |
| if (MOs.size() == X86::AddrNumOperands && |
| MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && |
| MI.getOpcode() != X86::ADD64rr) |
| return nullptr; |
| |
| MachineInstr *NewMI = nullptr; |
| |
| // Attempt to fold any custom cases we have. |
| if (MachineInstr *CustomMI = |
| foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Align)) |
| return CustomMI; |
| |
| const X86MemoryFoldTableEntry *I = nullptr; |
| |
| // Folding a memory location into the two-address part of a two-address |
| // instruction is different than folding it other places. It requires |
| // replacing the *two* registers with the memory location. |
| if (isTwoAddr && NumOps >= 2 && OpNum < 2 && MI.getOperand(0).isReg() && |
| MI.getOperand(1).isReg() && |
| MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) { |
| I = lookupTwoAddrFoldTable(MI.getOpcode()); |
| isTwoAddrFold = true; |
| } else { |
| if (OpNum == 0) { |
| if (MI.getOpcode() == X86::MOV32r0) { |
| NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, InsertPt, MI); |
| if (NewMI) |
| return NewMI; |
| } |
| } |
| |
| I = lookupFoldTable(MI.getOpcode(), OpNum); |
| } |
| |
| if (I != nullptr) { |
| unsigned Opcode = I->DstOp; |
| unsigned MinAlign = (I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT; |
| if (Align < MinAlign) |
| return nullptr; |
| bool NarrowToMOV32rm = false; |
| if (Size) { |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, |
| &RI, MF); |
| unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; |
| if (Size < RCSize) { |
| // Check if it's safe to fold the load. If the size of the object is |
| // narrower than the load width, then it's not. |
| if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) |
| return nullptr; |
| // If this is a 64-bit load, but the spill slot is 32, then we can do |
| // a 32-bit load which is implicitly zero-extended. This likely is |
| // due to live interval analysis remat'ing a load from stack slot. |
| if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) |
| return nullptr; |
| Opcode = X86::MOV32rm; |
| NarrowToMOV32rm = true; |
| } |
| } |
| |
| if (isTwoAddrFold) |
| NewMI = FuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this); |
| else |
| NewMI = FuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); |
| |
| if (NarrowToMOV32rm) { |
| // If this is the special case where we use a MOV32rm to load a 32-bit |
| // value and zero-extend the top bits. Change the destination register |
| // to a 32-bit one. |
| unsigned DstReg = NewMI->getOperand(0).getReg(); |
| if (TargetRegisterInfo::isPhysicalRegister(DstReg)) |
| NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); |
| else |
| NewMI->getOperand(0).setSubReg(X86::sub_32bit); |
| } |
| return NewMI; |
| } |
| |
| // If the instruction and target operand are commutable, commute the |
| // instruction and try again. |
| if (AllowCommute) { |
| unsigned CommuteOpIdx1 = OpNum, CommuteOpIdx2 = CommuteAnyOperandIndex; |
| if (findCommutedOpIndices(MI, CommuteOpIdx1, CommuteOpIdx2)) { |
| bool HasDef = MI.getDesc().getNumDefs(); |
| unsigned Reg0 = HasDef ? MI.getOperand(0).getReg() : 0; |
| unsigned Reg1 = MI.getOperand(CommuteOpIdx1).getReg(); |
| unsigned Reg2 = MI.getOperand(CommuteOpIdx2).getReg(); |
| bool Tied1 = |
| 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx1, MCOI::TIED_TO); |
| bool Tied2 = |
| 0 == MI.getDesc().getOperandConstraint(CommuteOpIdx2, MCOI::TIED_TO); |
| |
| // If either of the commutable operands are tied to the destination |
| // then we can not commute + fold. |
| if ((HasDef && Reg0 == Reg1 && Tied1) || |
| (HasDef && Reg0 == Reg2 && Tied2)) |
| return nullptr; |
| |
| MachineInstr *CommutedMI = |
| commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); |
| if (!CommutedMI) { |
| // Unable to commute. |
| return nullptr; |
| } |
| if (CommutedMI != &MI) { |
| // New instruction. We can't fold from this. |
| CommutedMI->eraseFromParent(); |
| return nullptr; |
| } |
| |
| // Attempt to fold with the commuted version of the instruction. |
| NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, |
| Size, Align, /*AllowCommute=*/false); |
| if (NewMI) |
| return NewMI; |
| |
| // Folding failed again - undo the commute before returning. |
| MachineInstr *UncommutedMI = |
| commuteInstruction(MI, false, CommuteOpIdx1, CommuteOpIdx2); |
| if (!UncommutedMI) { |
| // Unable to commute. |
| return nullptr; |
| } |
| if (UncommutedMI != &MI) { |
| // New instruction. It doesn't need to be kept. |
| UncommutedMI->eraseFromParent(); |
| return nullptr; |
| } |
| |
| // Return here to prevent duplicate fuse failure report. |
| return nullptr; |
| } |
| } |
| |
| // No fusion |
| if (PrintFailedFusing && !MI.isCopy()) |
| dbgs() << "We failed to fuse operand " << OpNum << " in " << MI; |
| return nullptr; |
| } |
| |
| MachineInstr * |
| X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, |
| ArrayRef<unsigned> Ops, |
| MachineBasicBlock::iterator InsertPt, |
| int FrameIndex, LiveIntervals *LIS) const { |
| // Check switch flag |
| if (NoFusing) |
| return nullptr; |
| |
| // Avoid partial and undef register update stalls unless optimizing for size. |
| if (!MF.getFunction().optForSize() && |
| (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || |
| shouldPreventUndefRegUpdateMemFold(MF, MI))) |
| return nullptr; |
| |
| // Don't fold subreg spills, or reloads that use a high subreg. |
| for (auto Op : Ops) { |
| MachineOperand &MO = MI.getOperand(Op); |
| auto SubReg = MO.getSubReg(); |
| if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) |
| return nullptr; |
| } |
| |
| const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| unsigned Size = MFI.getObjectSize(FrameIndex); |
| unsigned Alignment = MFI.getObjectAlignment(FrameIndex); |
| // If the function stack isn't realigned we don't want to fold instructions |
| // that need increased alignment. |
| if (!RI.needsStackRealignment(MF)) |
| Alignment = |
| std::min(Alignment, Subtarget.getFrameLowering()->getStackAlignment()); |
| if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { |
| unsigned NewOpc = 0; |
| unsigned RCSize = 0; |
| switch (MI.getOpcode()) { |
| default: return nullptr; |
| case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; |
| case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break; |
| case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break; |
| case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break; |
| } |
| // Check if it's safe to fold the load. If the size of the object is |
| // narrower than the load width, then it's not. |
| if (Size < RCSize) |
| return nullptr; |
| // Change to CMPXXri r, 0 first. |
| MI.setDesc(get(NewOpc)); |
| MI.getOperand(1).ChangeToImmediate(0); |
| } else if (Ops.size() != 1) |
| return nullptr; |
| |
| return foldMemoryOperandImpl(MF, MI, Ops[0], |
| MachineOperand::CreateFI(FrameIndex), InsertPt, |
| Size, Alignment, /*AllowCommute=*/true); |
| } |
| |
| /// Check if \p LoadMI is a partial register load that we can't fold into \p MI |
| /// because the latter uses contents that wouldn't be defined in the folded |
| /// version. For instance, this transformation isn't legal: |
| /// movss (%rdi), %xmm0 |
| /// addps %xmm0, %xmm0 |
| /// -> |
| /// addps (%rdi), %xmm0 |
| /// |
| /// But this one is: |
| /// movss (%rdi), %xmm0 |
| /// addss %xmm0, %xmm0 |
| /// -> |
| /// addss (%rdi), %xmm0 |
| /// |
| static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, |
| const MachineInstr &UserMI, |
| const MachineFunction &MF) { |
| unsigned Opc = LoadMI.getOpcode(); |
| unsigned UserOpc = UserMI.getOpcode(); |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| const TargetRegisterClass *RC = |
| MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); |
| unsigned RegSize = TRI.getRegSizeInBits(*RC); |
| |
| if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm) && |
| RegSize > 32) { |
| // These instructions only load 32 bits, we can't fold them if the |
| // destination register is wider than 32 bits (4 bytes), and its user |
| // instruction isn't scalar (SS). |
| switch (UserOpc) { |
| case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: |
| case X86::CMPSSrr_Int: case X86::VCMPSSrr_Int: case X86::VCMPSSZrr_Int: |
| case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: |
| case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: |
| case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: |
| case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: |
| case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: |
| case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: |
| case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: |
| case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: |
| case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: |
| case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: |
| case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: |
| case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: |
| case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: |
| case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: |
| case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: |
| case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: |
| case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: |
| case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: |
| case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: |
| case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: |
| case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: |
| case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: |
| case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: |
| case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: |
| case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: |
| case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: |
| case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: |
| case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: |
| case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: |
| case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: |
| case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: |
| case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: |
| case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: |
| case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: |
| case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: |
| case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: |
| case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm) && |
| RegSize > 64) { |
| // These instructions only load 64 bits, we can't fold them if the |
| // destination register is wider than 64 bits (8 bytes), and its user |
| // instruction isn't scalar (SD). |
| switch (UserOpc) { |
| case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: |
| case X86::CMPSDrr_Int: case X86::VCMPSDrr_Int: case X86::VCMPSDZrr_Int: |
| case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: |
| case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: |
| case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: |
| case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: |
| case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: |
| case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: |
| case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: |
| case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: |
| case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: |
| case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: |
| case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: |
| case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: |
| case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: |
| case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: |
| case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: |
| case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: |
| case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: |
| case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: |
| case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: |
| case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: |
| case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: |
| case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: |
| case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: |
| case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: |
| case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: |
| case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: |
| case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: |
| case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: |
| case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: |
| case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: |
| case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: |
| case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: |
| case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: |
| case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: |
| case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: |
| case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: |
| case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| MachineInstr *X86InstrInfo::foldMemoryOperandImpl( |
| MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, |
| MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, |
| LiveIntervals *LIS) const { |
| |
| // TODO: Support the case where LoadMI loads a wide register, but MI |
| // only uses a subreg. |
| for (auto Op : Ops) { |
| if (MI.getOperand(Op).getSubReg()) |
| return nullptr; |
| } |
| |
| // If loading from a FrameIndex, fold directly from the FrameIndex. |
| unsigned NumOps = LoadMI.getDesc().getNumOperands(); |
| int FrameIndex; |
| if (isLoadFromStackSlot(LoadMI, FrameIndex)) { |
| if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) |
| return nullptr; |
| return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); |
| } |
| |
| // Check switch flag |
| if (NoFusing) return nullptr; |
| |
| // Avoid partial and undef register update stalls unless optimizing for size. |
| if (!MF.getFunction().optForSize() && |
| (hasPartialRegUpdate(MI.getOpcode(), Subtarget) || |
| shouldPreventUndefRegUpdateMemFold(MF, MI))) |
| return nullptr; |
| |
| // Determine the alignment of the load. |
| unsigned Alignment = 0; |
| if (LoadMI.hasOneMemOperand()) |
| Alignment = (*LoadMI.memoperands_begin())->getAlignment(); |
| else |
| switch (LoadMI.getOpcode()) { |
| case X86::AVX512_512_SET0: |
| case X86::AVX512_512_SETALLONES: |
| Alignment = 64; |
| break; |
| case X86::AVX2_SETALLONES: |
| case X86::AVX1_SETALLONES: |
| case X86::AVX_SET0: |
| case X86::AVX512_256_SET0: |
| Alignment = 32; |
| break; |
| case X86::V_SET0: |
| case X86::V_SETALLONES: |
| case X86::AVX512_128_SET0: |
| Alignment = 16; |
| break; |
| case X86::MMX_SET0: |
| case X86::FsFLD0SD: |
| case X86::AVX512_FsFLD0SD: |
| Alignment = 8; |
| break; |
| case X86::FsFLD0SS: |
| case X86::AVX512_FsFLD0SS: |
| Alignment = 4; |
| break; |
| default: |
| return nullptr; |
| } |
| if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { |
| unsigned NewOpc = 0; |
| switch (MI.getOpcode()) { |
| default: return nullptr; |
| case X86::TEST8rr: NewOpc = X86::CMP8ri; break; |
| case X86::TEST16rr: NewOpc = X86::CMP16ri8; break; |
| case X86::TEST32rr: NewOpc = X86::CMP32ri8; break; |
| case X86::TEST64rr: NewOpc = X86::CMP64ri8; break; |
| } |
| // Change to CMPXXri r, 0 first. |
| MI.setDesc(get(NewOpc)); |
| MI.getOperand(1).ChangeToImmediate(0); |
| } else if (Ops.size() != 1) |
| return nullptr; |
| |
| // Make sure the subregisters match. |
| // Otherwise we risk changing the size of the load. |
| if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) |
| return nullptr; |
| |
| SmallVector<MachineOperand,X86::AddrNumOperands> MOs; |
| switch (LoadMI.getOpcode()) { |
| case X86::MMX_SET0: |
| case X86::V_SET0: |
| case X86::V_SETALLONES: |
| case X86::AVX2_SETALLONES: |
| case X86::AVX1_SETALLONES: |
| case X86::AVX_SET0: |
| case X86::AVX512_128_SET0: |
| case X86::AVX512_256_SET0: |
| case X86::AVX512_512_SET0: |
| case X86::AVX512_512_SETALLONES: |
| case X86::FsFLD0SD: |
| case X86::AVX512_FsFLD0SD: |
| case X86::FsFLD0SS: |
| case X86::AVX512_FsFLD0SS: { |
| // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. |
| // Create a constant-pool entry and operands to load from it. |
| |
| // Medium and large mode can't fold loads this way. |
| if (MF.getTarget().getCodeModel() != CodeModel::Small && |
| MF.getTarget().getCodeModel() != CodeModel::Kernel) |
| return nullptr; |
| |
| // x86-32 PIC requires a PIC base register for constant pools. |
| unsigned PICBase = 0; |
| if (MF.getTarget().isPositionIndependent()) { |
| if (Subtarget.is64Bit()) |
| PICBase = X86::RIP; |
| else |
| // FIXME: PICBase = getGlobalBaseReg(&MF); |
| // This doesn't work for several reasons. |
| // 1. GlobalBaseReg may have been spilled. |
| // 2. It may not be live at MI. |
| return nullptr; |
| } |
| |
| // Create a constant-pool entry. |
| MachineConstantPool &MCP = *MF.getConstantPool(); |
| Type *Ty; |
| unsigned Opc = LoadMI.getOpcode(); |
| if (Opc == X86::FsFLD0SS || Opc == X86::AVX512_FsFLD0SS) |
| Ty = Type::getFloatTy(MF.getFunction().getContext()); |
| else if (Opc == X86::FsFLD0SD || Opc == X86::AVX512_FsFLD0SD) |
| Ty = Type::getDoubleTy(MF.getFunction().getContext()); |
| else if (Opc == X86::AVX512_512_SET0 || Opc == X86::AVX512_512_SETALLONES) |
| Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()),16); |
| else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX_SET0 || |
| Opc == X86::AVX512_256_SET0 || Opc == X86::AVX1_SETALLONES) |
| Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8); |
| else if (Opc == X86::MMX_SET0) |
| Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2); |
| else |
| Ty = VectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4); |
| |
| bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX2_SETALLONES || |
| Opc == X86::AVX512_512_SETALLONES || |
| Opc == X86::AVX1_SETALLONES); |
| const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : |
| Constant::getNullValue(Ty); |
| unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); |
| |
| // Create operands to load from the constant pool entry. |
| MOs.push_back(MachineOperand::CreateReg(PICBase, false)); |
| MOs.push_back(MachineOperand::CreateImm(1)); |
| MOs.push_back(MachineOperand::CreateReg(0, false)); |
| MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); |
| MOs.push_back(MachineOperand::CreateReg(0, false)); |
| break; |
| } |
| default: { |
| if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) |
| return nullptr; |
| |
| // Folding a normal load. Just copy the load's address operands. |
| MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, |
| LoadMI.operands_begin() + NumOps); |
| break; |
| } |
| } |
| return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, |
| /*Size=*/0, Alignment, /*AllowCommute=*/true); |
| } |
| |
| bool X86InstrInfo::unfoldMemoryOperand( |
| MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, |
| bool UnfoldStore, SmallVectorImpl<MachineInstr *> &NewMIs) const { |
| const X86MemoryFoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); |
| if (I == nullptr) |
| return false; |
| unsigned Opc = I->DstOp; |
| unsigned Index = I->Flags & TB_INDEX_MASK; |
| bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; |
| bool FoldedStore = I->Flags & TB_FOLDED_STORE; |
| if (UnfoldLoad && !FoldedLoad) |
| return false; |
| UnfoldLoad &= FoldedLoad; |
| if (UnfoldStore && !FoldedStore) |
| return false; |
| UnfoldStore &= FoldedStore; |
| |
| const MCInstrDesc &MCID = get(Opc); |
| const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); |
| // TODO: Check if 32-byte or greater accesses are slow too? |
| if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && |
| Subtarget.isUnalignedMem16Slow()) |
| // Without memoperands, loadRegFromAddr and storeRegToStackSlot will |
| // conservatively assume the address is unaligned. That's bad for |
| // performance. |
| return false; |
| SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps; |
| SmallVector<MachineOperand,2> BeforeOps; |
| SmallVector<MachineOperand,2> AfterOps; |
| SmallVector<MachineOperand,4> ImpOps; |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| MachineOperand &Op = MI.getOperand(i); |
| if (i >= Index && i < Index + X86::AddrNumOperands) |
| AddrOps.push_back(Op); |
| else if (Op.isReg() && Op.isImplicit()) |
| ImpOps.push_back(Op); |
| else if (i < Index) |
| BeforeOps.push_back(Op); |
| else if (i > Index) |
| AfterOps.push_back(Op); |
| } |
| |
| // Emit the load instruction. |
| if (UnfoldLoad) { |
| std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs = |
| MF.extractLoadMemRefs(MI.memoperands_begin(), MI.memoperands_end()); |
| loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs); |
| if (UnfoldStore) { |
| // Address operands cannot be marked isKill. |
| for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { |
| MachineOperand &MO = NewMIs[0]->getOperand(i); |
| if (MO.isReg()) |
| MO.setIsKill(false); |
| } |
| } |
| } |
| |
| // Emit the data processing instruction. |
| MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); |
| MachineInstrBuilder MIB(MF, DataMI); |
| |
| if (FoldedStore) |
| MIB.addReg(Reg, RegState::Define); |
| for (MachineOperand &BeforeOp : BeforeOps) |
| MIB.add(BeforeOp); |
| if (FoldedLoad) |
| MIB.addReg(Reg); |
| for (MachineOperand &AfterOp : AfterOps) |
| MIB.add(AfterOp); |
| for (MachineOperand &ImpOp : ImpOps) { |
| MIB.addReg(ImpOp.getReg(), |
| getDefRegState(ImpOp.isDef()) | |
| RegState::Implicit | |
| getKillRegState(ImpOp.isKill()) | |
| getDeadRegState(ImpOp.isDead()) | |
| getUndefRegState(ImpOp.isUndef())); |
| } |
| // Change CMP32ri r, 0 back to TEST32rr r, r, etc. |
| switch (DataMI->getOpcode()) { |
| default: break; |
| case X86::CMP64ri32: |
| case X86::CMP64ri8: |
| case X86::CMP32ri: |
| case X86::CMP32ri8: |
| case X86::CMP16ri: |
| case X86::CMP16ri8: |
| case X86::CMP8ri: { |
| MachineOperand &MO0 = DataMI->getOperand(0); |
| MachineOperand &MO1 = DataMI->getOperand(1); |
| if (MO1.getImm() == 0) { |
| unsigned NewOpc; |
| switch (DataMI->getOpcode()) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::CMP64ri8: |
| case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; |
| case X86::CMP32ri8: |
| case X86::CMP32ri: NewOpc = X86::TEST32rr; break; |
| case X86::CMP16ri8: |
| case X86::CMP16ri: NewOpc = X86::TEST16rr; break; |
| case X86::CMP8ri: NewOpc = X86::TEST8rr; break; |
| } |
| DataMI->setDesc(get(NewOpc)); |
| MO1.ChangeToRegister(MO0.getReg(), false); |
| } |
| } |
| } |
| NewMIs.push_back(DataMI); |
| |
| // Emit the store instruction. |
| if (UnfoldStore) { |
| const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); |
| std::pair<MachineInstr::mmo_iterator, MachineInstr::mmo_iterator> MMOs = |
| MF.extractStoreMemRefs(MI.memoperands_begin(), MI.memoperands_end()); |
| storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs); |
| } |
| |
| return true; |
| } |
| |
| bool |
| X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N, |
| SmallVectorImpl<SDNode*> &NewNodes) const { |
| if (!N->isMachineOpcode()) |
| return false; |
| |
| const X86MemoryFoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); |
| if (I == nullptr) |
| return false; |
| unsigned Opc = I->DstOp; |
| unsigned Index = I->Flags & TB_INDEX_MASK; |
| bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; |
| bool FoldedStore = I->Flags & TB_FOLDED_STORE; |
| const MCInstrDesc &MCID = get(Opc); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); |
| unsigned NumDefs = MCID.NumDefs; |
| std::vector<SDValue> AddrOps; |
| std::vector<SDValue> BeforeOps; |
| std::vector<SDValue> AfterOps; |
| SDLoc dl(N); |
| unsigned NumOps = N->getNumOperands(); |
| for (unsigned i = 0; i != NumOps-1; ++i) { |
| SDValue Op = N->getOperand(i); |
| if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands) |
| AddrOps.push_back(Op); |
| else if (i < Index-NumDefs) |
| BeforeOps.push_back(Op); |
| else if (i > Index-NumDefs) |
| AfterOps.push_back(Op); |
| } |
| SDValue Chain = N->getOperand(NumOps-1); |
| AddrOps.push_back(Chain); |
| |
| // Emit the load instruction. |
| SDNode *Load = nullptr; |
| if (FoldedLoad) { |
| EVT VT = *TRI.legalclasstypes_begin(*RC); |
| std::pair<MachineInstr::mmo_iterator, |
| MachineInstr::mmo_iterator> MMOs = |
| MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), |
| cast<MachineSDNode>(N)->memoperands_end()); |
| if (!(*MMOs.first) && |
| RC == &X86::VR128RegClass && |
| Subtarget.isUnalignedMem16Slow()) |
| // Do not introduce a slow unaligned load. |
| return false; |
| // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte |
| // memory access is slow above. |
| unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); |
| bool isAligned = (*MMOs.first) && |
| (*MMOs.first)->getAlignment() >= Alignment; |
| Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, Subtarget), dl, |
| VT, MVT::Other, AddrOps); |
| NewNodes.push_back(Load); |
| |
| // Preserve memory reference information. |
| cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second); |
| } |
| |
| // Emit the data processing instruction. |
| std::vector<EVT> VTs; |
| const TargetRegisterClass *DstRC = nullptr; |
| if (MCID.getNumDefs() > 0) { |
| DstRC = getRegClass(MCID, 0, &RI, MF); |
| VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); |
| } |
| for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { |
| EVT VT = N->getValueType(i); |
| if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) |
| VTs.push_back(VT); |
| } |
| if (Load) |
| BeforeOps.push_back(SDValue(Load, 0)); |
| BeforeOps.insert(BeforeOps.end(), AfterOps.begin(), AfterOps.end()); |
| // Change CMP32ri r, 0 back to TEST32rr r, r, etc. |
| switch (Opc) { |
| default: break; |
| case X86::CMP64ri32: |
| case X86::CMP64ri8: |
| case X86::CMP32ri: |
| case X86::CMP32ri8: |
| case X86::CMP16ri: |
| case X86::CMP16ri8: |
| case X86::CMP8ri: |
| if (isNullConstant(BeforeOps[1])) { |
| switch (Opc) { |
| default: llvm_unreachable("Unreachable!"); |
| case X86::CMP64ri8: |
| case X86::CMP64ri32: Opc = X86::TEST64rr; break; |
| case X86::CMP32ri8: |
| case X86::CMP32ri: Opc = X86::TEST32rr; break; |
| case X86::CMP16ri8: |
| case X86::CMP16ri: Opc = X86::TEST16rr; break; |
| case X86::CMP8ri: Opc = X86::TEST8rr; break; |
| } |
| BeforeOps[1] = BeforeOps[0]; |
| } |
| } |
| SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, BeforeOps); |
| NewNodes.push_back(NewNode); |
| |
| // Emit the store instruction. |
| if (FoldedStore) { |
| AddrOps.pop_back(); |
| AddrOps.push_back(SDValue(NewNode, 0)); |
| AddrOps.push_back(Chain); |
| std::pair<MachineInstr::mmo_iterator, |
| MachineInstr::mmo_iterator> MMOs = |
| MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(), |
| cast<MachineSDNode>(N)->memoperands_end()); |
| if (!(*MMOs.first) && |
| RC == &X86::VR128RegClass && |
| Subtarget.isUnalignedMem16Slow()) |
| // Do not introduce a slow unaligned store. |
| return false; |
| // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte |
| // memory access is slow above. |
| unsigned Alignment = std::max<uint32_t>(TRI.getSpillSize(*RC), 16); |
| bool isAligned = (*MMOs.first) && |
| (*MMOs.first)->getAlignment() >= Alignment; |
| SDNode *Store = |
| DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), |
| dl, MVT::Other, AddrOps); |
| NewNodes.push_back(Store); |
| |
| // Preserve memory reference information. |
| cast<MachineSDNode>(Store)->setMemRefs(MMOs.first, MMOs.second); |
| } |
| |
| return true; |
| } |
| |
| unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, |
| bool UnfoldLoad, bool UnfoldStore, |
| unsigned *LoadRegIndex) const { |
| const X86MemoryFoldTableEntry *I = lookupUnfoldTable(Opc); |
| if (I == nullptr) |
| return 0; |
| bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; |
| bool FoldedStore = I->Flags & TB_FOLDED_STORE; |
| if (UnfoldLoad && !FoldedLoad) |
| return 0; |
| if (UnfoldStore && !FoldedStore) |
| return 0; |
| if (LoadRegIndex) |
| *LoadRegIndex = I->Flags & TB_INDEX_MASK; |
| return I->DstOp; |
| } |
| |
| bool |
| X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, |
| int64_t &Offset1, int64_t &Offset2) const { |
| if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) |
| return false; |
| unsigned Opc1 = Load1->getMachineOpcode(); |
| unsigned Opc2 = Load2->getMachineOpcode(); |
| switch (Opc1) { |
| default: return false; |
| case X86::MOV8rm: |
| case X86::MOV16rm: |
| case X86::MOV32rm: |
| case X86::MOV64rm: |
| case X86::LD_Fp32m: |
| case X86::LD_Fp64m: |
| case X86::LD_Fp80m: |
| case X86::MOVSSrm: |
| case X86::MOVSDrm: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| case X86::MOVAPSrm: |
| case X86::MOVUPSrm: |
| case X86::MOVAPDrm: |
| case X86::MOVUPDrm: |
| case X86::MOVDQArm: |
| case X86::MOVDQUrm: |
| // AVX load instructions |
| case X86::VMOVSSrm: |
| case X86::VMOVSDrm: |
| case X86::VMOVAPSrm: |
| case X86::VMOVUPSrm: |
| case X86::VMOVAPDrm: |
| case X86::VMOVUPDrm: |
| case X86::VMOVDQArm: |
| case X86::VMOVDQUrm: |
| case X86::VMOVAPSYrm: |
| case X86::VMOVUPSYrm: |
| case X86::VMOVAPDYrm: |
| case X86::VMOVUPDYrm: |
| case X86::VMOVDQAYrm: |
| case X86::VMOVDQUYrm: |
| // AVX512 load instructions |
| case X86::VMOVSSZrm: |
| case X86::VMOVSDZrm: |
| case X86::VMOVAPSZ128rm: |
| case X86::VMOVUPSZ128rm: |
| case X86::VMOVAPSZ128rm_NOVLX: |
| case X86::VMOVUPSZ128rm_NOVLX: |
| case X86::VMOVAPDZ128rm: |
| case X86::VMOVUPDZ128rm: |
| case X86::VMOVDQU8Z128rm: |
| case X86::VMOVDQU16Z128rm: |
| case X86::VMOVDQA32Z128rm: |
| case X86::VMOVDQU32Z128rm: |
| case X86::VMOVDQA64Z128rm: |
| case X86::VMOVDQU64Z128rm: |
| case X86::VMOVAPSZ256rm: |
| case X86::VMOVUPSZ256rm: |
| case X86::VMOVAPSZ256rm_NOVLX: |
| case X86::VMOVUPSZ256rm_NOVLX: |
| case X86::VMOVAPDZ256rm: |
| case X86::VMOVUPDZ256rm: |
| case X86::VMOVDQU8Z256rm: |
| case X86::VMOVDQU16Z256rm: |
| case X86::VMOVDQA32Z256rm: |
| case X86::VMOVDQU32Z256rm: |
| case X86::VMOVDQA64Z256rm: |
| case X86::VMOVDQU64Z256rm: |
| case X86::VMOVAPSZrm: |
| case X86::VMOVUPSZrm: |
| case X86::VMOVAPDZrm: |
| case X86::VMOVUPDZrm: |
| case X86::VMOVDQU8Zrm: |
| case X86::VMOVDQU16Zrm: |
| case X86::VMOVDQA32Zrm: |
| case X86::VMOVDQU32Zrm: |
| case X86::VMOVDQA64Zrm: |
| case X86::VMOVDQU64Zrm: |
| case X86::KMOVBkm: |
| case X86::KMOVWkm: |
| case X86::KMOVDkm: |
| case X86::KMOVQkm: |
| break; |
| } |
| switch (Opc2) { |
| default: return false; |
| case X86::MOV8rm: |
| case X86::MOV16rm: |
| case X86::MOV32rm: |
| case X86::MOV64rm: |
| case X86::LD_Fp32m: |
| case X86::LD_Fp64m: |
| case X86::LD_Fp80m: |
| case X86::MOVSSrm: |
| case X86::MOVSDrm: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| case X86::MOVAPSrm: |
| case X86::MOVUPSrm: |
| case X86::MOVAPDrm: |
| case X86::MOVUPDrm: |
| case X86::MOVDQArm: |
| case X86::MOVDQUrm: |
| // AVX load instructions |
| case X86::VMOVSSrm: |
| case X86::VMOVSDrm: |
| case X86::VMOVAPSrm: |
| case X86::VMOVUPSrm: |
| case X86::VMOVAPDrm: |
| case X86::VMOVUPDrm: |
| case X86::VMOVDQArm: |
| case X86::VMOVDQUrm: |
| case X86::VMOVAPSYrm: |
| case X86::VMOVUPSYrm: |
| case X86::VMOVAPDYrm: |
| case X86::VMOVUPDYrm: |
| case X86::VMOVDQAYrm: |
| case X86::VMOVDQUYrm: |
| // AVX512 load instructions |
| case X86::VMOVSSZrm: |
| case X86::VMOVSDZrm: |
| case X86::VMOVAPSZ128rm: |
| case X86::VMOVUPSZ128rm: |
| case X86::VMOVAPSZ128rm_NOVLX: |
| case X86::VMOVUPSZ128rm_NOVLX: |
| case X86::VMOVAPDZ128rm: |
| case X86::VMOVUPDZ128rm: |
| case X86::VMOVDQU8Z128rm: |
| case X86::VMOVDQU16Z128rm: |
| case X86::VMOVDQA32Z128rm: |
| case X86::VMOVDQU32Z128rm: |
| case X86::VMOVDQA64Z128rm: |
| case X86::VMOVDQU64Z128rm: |
| case X86::VMOVAPSZ256rm: |
| case X86::VMOVUPSZ256rm: |
| case X86::VMOVAPSZ256rm_NOVLX: |
| case X86::VMOVUPSZ256rm_NOVLX: |
| case X86::VMOVAPDZ256rm: |
| case X86::VMOVUPDZ256rm: |
| case X86::VMOVDQU8Z256rm: |
| case X86::VMOVDQU16Z256rm: |
| case X86::VMOVDQA32Z256rm: |
| case X86::VMOVDQU32Z256rm: |
| case X86::VMOVDQA64Z256rm: |
| case X86::VMOVDQU64Z256rm: |
| case X86::VMOVAPSZrm: |
| case X86::VMOVUPSZrm: |
| case X86::VMOVAPDZrm: |
| case X86::VMOVUPDZrm: |
| case X86::VMOVDQU8Zrm: |
| case X86::VMOVDQU16Zrm: |
| case X86::VMOVDQA32Zrm: |
| case X86::VMOVDQU32Zrm: |
| case X86::VMOVDQA64Zrm: |
| case X86::VMOVDQU64Zrm: |
| case X86::KMOVBkm: |
| case X86::KMOVWkm: |
| case X86::KMOVDkm: |
| case X86::KMOVQkm: |
| break; |
| } |
| |
| // Lambda to check if both the loads have the same value for an operand index. |
| auto HasSameOp = [&](int I) { |
| return Load1->getOperand(I) == Load2->getOperand(I); |
| }; |
| |
| // All operands except the displacement should match. |
| if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || |
| !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) |
| return false; |
| |
| // Chain Operand must be the same. |
| if (!HasSameOp(5)) |
| return false; |
| |
| // Now let's examine if the displacements are constants. |
| auto Disp1 = dyn_cast<ConstantSDNode>(Load1->getOperand(X86::AddrDisp)); |
| auto Disp2 = dyn_cast<ConstantSDNode>(Load2->getOperand(X86::AddrDisp)); |
| if (!Disp1 || !Disp2) |
| return false; |
| |
| Offset1 = Disp1->getSExtValue(); |
| Offset2 = Disp2->getSExtValue(); |
| return true; |
| } |
| |
| bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, |
| int64_t Offset1, int64_t Offset2, |
| unsigned NumLoads) const { |
| assert(Offset2 > Offset1); |
| if ((Offset2 - Offset1) / 8 > 64) |
| return false; |
| |
| unsigned Opc1 = Load1->getMachineOpcode(); |
| unsigned Opc2 = Load2->getMachineOpcode(); |
| if (Opc1 != Opc2) |
| return false; // FIXME: overly conservative? |
| |
| switch (Opc1) { |
| default: break; |
| case X86::LD_Fp32m: |
| case X86::LD_Fp64m: |
| case X86::LD_Fp80m: |
| case X86::MMX_MOVD64rm: |
| case X86::MMX_MOVQ64rm: |
| return false; |
| } |
| |
| EVT VT = Load1->getValueType(0); |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| // XMM registers. In 64-bit mode we can be a bit more aggressive since we |
| // have 16 of them to play with. |
| if (Subtarget.is64Bit()) { |
| if (NumLoads >= 3) |
| return false; |
| } else if (NumLoads) { |
| return false; |
| } |
| break; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::i64: |
| case MVT::f32: |
| case MVT::f64: |
| if (NumLoads) |
| return false; |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool X86InstrInfo:: |
| reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| assert(Cond.size() == 1 && "Invalid X86 branch condition!"); |
| X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm()); |
| Cond[0].setImm(GetOppositeBranchCondition(CC)); |
| return false; |
| } |
| |
| bool X86InstrInfo:: |
| isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const { |
| // FIXME: Return false for x87 stack register classes for now. We can't |
| // allow any loads of these registers before FpGet_ST0_80. |
| return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || |
| RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || |
| RC == &X86::RFP80RegClass); |
| } |
| |
| /// Return a virtual register initialized with the |
| /// the global base register value. Output instructions required to |
| /// initialize the register in the function entry block, if necessary. |
| /// |
| /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. |
| /// |
| unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { |
| assert((!Subtarget.is64Bit() || |
| MF->getTarget().getCodeModel() == CodeModel::Medium || |
| MF->getTarget().getCodeModel() == CodeModel::Large) && |
| "X86-64 PIC uses RIP relative addressing"); |
| |
| X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>(); |
| unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); |
| if (GlobalBaseReg != 0) |
| return GlobalBaseReg; |
| |
| // Create the register. The code to initialize it is inserted |
| // later, by the CGBR pass (below). |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| GlobalBaseReg = RegInfo.createVirtualRegister( |
| Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); |
| X86FI->setGlobalBaseReg(GlobalBaseReg); |
| return GlobalBaseReg; |
| } |
| |
| // These are the replaceable SSE instructions. Some of these have Int variants |
| // that we don't include here. We don't want to replace instructions selected |
| // by intrinsics. |
| static const uint16_t ReplaceableInstrs[][3] = { |
| //PackedSingle PackedDouble PackedInt |
| { X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr }, |
| { X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm }, |
| { X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr }, |
| { X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr }, |
| { X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm }, |
| { X86::MOVLPSmr, X86::MOVLPDmr, X86::MOVPQI2QImr }, |
| { X86::MOVSDmr, X86::MOVSDmr, X86::MOVPQI2QImr }, |
| { X86::MOVSSmr, X86::MOVSSmr, X86::MOVPDI2DImr }, |
| { X86::MOVSDrm, X86::MOVSDrm, X86::MOVQI2PQIrm }, |
| { X86::MOVSSrm, X86::MOVSSrm, X86::MOVDI2PDIrm }, |
| { X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr }, |
| { X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm }, |
| { X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr }, |
| { X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm }, |
| { X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr }, |
| { X86::ORPSrm, X86::ORPDrm, X86::PORrm }, |
| { X86::ORPSrr, X86::ORPDrr, X86::PORrr }, |
| { X86::XORPSrm, X86::XORPDrm, X86::PXORrm }, |
| { X86::XORPSrr, X86::XORPDrr, X86::PXORrr }, |
| { X86::UNPCKLPDrm, X86::UNPCKLPDrm, X86::PUNPCKLQDQrm }, |
| { X86::MOVLHPSrr, X86::UNPCKLPDrr, X86::PUNPCKLQDQrr }, |
| { X86::UNPCKHPDrm, X86::UNPCKHPDrm, X86::PUNPCKHQDQrm }, |
| { X86::UNPCKHPDrr, X86::UNPCKHPDrr, X86::PUNPCKHQDQrr }, |
| { X86::UNPCKLPSrm, X86::UNPCKLPSrm, X86::PUNPCKLDQrm }, |
| { X86::UNPCKLPSrr, X86::UNPCKLPSrr, X86::PUNPCKLDQrr }, |
| { X86::UNPCKHPSrm, X86::UNPCKHPSrm, X86::PUNPCKHDQrm }, |
| { X86::UNPCKHPSrr, X86::UNPCKHPSrr, X86::PUNPCKHDQrr }, |
| { X86::EXTRACTPSmr, X86::EXTRACTPSmr, X86::PEXTRDmr }, |
| { X86::EXTRACTPSrr, X86::EXTRACTPSrr, X86::PEXTRDrr }, |
| // AVX 128-bit support |
| { X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr }, |
| { X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm }, |
| { X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr }, |
| { X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr }, |
| { X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm }, |
| { X86::VMOVLPSmr, X86::VMOVLPDmr, X86::VMOVPQI2QImr }, |
| { X86::VMOVSDmr, X86::VMOVSDmr, X86::VMOVPQI2QImr }, |
| { X86::VMOVSSmr, X86::VMOVSSmr, X86::VMOVPDI2DImr }, |
| { X86::VMOVSDrm, X86::VMOVSDrm, X86::VMOVQI2PQIrm }, |
| { X86::VMOVSSrm, X86::VMOVSSrm, X86::VMOVDI2PDIrm }, |
| { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr }, |
| { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm }, |
| { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr }, |
| { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm }, |
| { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr }, |
| { X86::VORPSrm, X86::VORPDrm, X86::VPORrm }, |
| { X86::VORPSrr, X86::VORPDrr, X86::VPORrr }, |
| { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm }, |
| { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr }, |
| { X86::VUNPCKLPDrm, X86::VUNPCKLPDrm, X86::VPUNPCKLQDQrm }, |
| { X86::VMOVLHPSrr, X86::VUNPCKLPDrr, X86::VPUNPCKLQDQrr }, |
| { X86::VUNPCKHPDrm, X86::VUNPCKHPDrm, X86::VPUNPCKHQDQrm }, |
| { X86::VUNPCKHPDrr, X86::VUNPCKHPDrr, X86::VPUNPCKHQDQrr }, |
| { X86::VUNPCKLPSrm, X86::VUNPCKLPSrm, X86::VPUNPCKLDQrm }, |
| { X86::VUNPCKLPSrr, X86::VUNPCKLPSrr, X86::VPUNPCKLDQrr }, |
| { X86::VUNPCKHPSrm, X86::VUNPCKHPSrm, X86::VPUNPCKHDQrm }, |
| { X86::VUNPCKHPSrr, X86::VUNPCKHPSrr, X86::VPUNPCKHDQrr }, |
| { X86::VEXTRACTPSmr, X86::VEXTRACTPSmr, X86::VPEXTRDmr }, |
| { X86::VEXTRACTPSrr, X86::VEXTRACTPSrr, X86::VPEXTRDrr }, |
| // AVX 256-bit support |
| { X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr }, |
| { X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm }, |
| { X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr }, |
| { X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr }, |
| { X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm }, |
| { X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }, |
| { X86::VPERMPSYrm, X86::VPERMPSYrm, X86::VPERMDYrm }, |
| { X86::VPERMPSYrr, X86::VPERMPSYrr, X86::VPERMDYrr }, |
| { X86::VPERMPDYmi, X86::VPERMPDYmi, X86::VPERMQYmi }, |
| { X86::VPERMPDYri, X86::VPERMPDYri, X86::VPERMQYri }, |
| // AVX512 support |
| { X86::VMOVLPSZ128mr, X86::VMOVLPDZ128mr, X86::VMOVPQI2QIZmr }, |
| { X86::VMOVNTPSZ128mr, X86::VMOVNTPDZ128mr, X86::VMOVNTDQZ128mr }, |
| { X86::VMOVNTPSZ256mr, X86::VMOVNTPDZ256mr, X86::VMOVNTDQZ256mr }, |
| { X86::VMOVNTPSZmr, X86::VMOVNTPDZmr, X86::VMOVNTDQZmr }, |
| { X86::VMOVSDZmr, X86::VMOVSDZmr, X86::VMOVPQI2QIZmr }, |
| { X86::VMOVSSZmr, X86::VMOVSSZmr, X86::VMOVPDI2DIZmr }, |
| { X86::VMOVSDZrm, X86::VMOVSDZrm, X86::VMOVQI2PQIZrm }, |
| { X86::VMOVSSZrm, X86::VMOVSSZrm, X86::VMOVDI2PDIZrm }, |
| { X86::VBROADCASTSSZ128r, X86::VBROADCASTSSZ128r, X86::VPBROADCASTDZ128r }, |
| { X86::VBROADCASTSSZ128m, X86::VBROADCASTSSZ128m, X86::VPBROADCASTDZ128m }, |
| { X86::VBROADCASTSSZ256r, X86::VBROADCASTSSZ256r, X86::VPBROADCASTDZ256r }, |
| { X86::VBROADCASTSSZ256m, X86::VBROADCASTSSZ256m, X86::VPBROADCASTDZ256m }, |
| { X86::VBROADCASTSSZr, X86::VBROADCASTSSZr, X86::VPBROADCASTDZr }, |
| { X86::VBROADCASTSSZm, X86::VBROADCASTSSZm, X86::VPBROADCASTDZm }, |
| { X86::VBROADCASTSDZ256r, X86::VBROADCASTSDZ256r, X86::VPBROADCASTQZ256r }, |
| { X86::VBROADCASTSDZ256m, X86::VBROADCASTSDZ256m, X86::VPBROADCASTQZ256m }, |
| { X86::VBROADCASTSDZr, X86::VBROADCASTSDZr, X86::VPBROADCASTQZr }, |
| { X86::VBROADCASTSDZm, X86::VBROADCASTSDZm, X86::VPBROADCASTQZm }, |
| { X86::VINSERTF32x4Zrr, X86::VINSERTF32x4Zrr, X86::VINSERTI32x4Zrr }, |
| { X86::VINSERTF32x4Zrm, X86::VINSERTF32x4Zrm, X86::VINSERTI32x4Zrm }, |
| { X86::VINSERTF32x8Zrr, X86::VINSERTF32x8Zrr, X86::VINSERTI32x8Zrr }, |
| { X86::VINSERTF32x8Zrm, X86::VINSERTF32x8Zrm, X86::VINSERTI32x8Zrm }, |
| { X86::VINSERTF64x2Zrr, X86::VINSERTF64x2Zrr, X86::VINSERTI64x2Zrr }, |
| { X86::VINSERTF64x2Zrm, X86::VINSERTF64x2Zrm, X86::VINSERTI64x2Zrm }, |
| { X86::VINSERTF64x4Zrr, X86::VINSERTF64x4Zrr, X86::VINSERTI64x4Zrr }, |
| { X86::VINSERTF64x4Zrm, X86::VINSERTF64x4Zrm, X86::VINSERTI64x4Zrm }, |
| { X86::VINSERTF32x4Z256rr,X86::VINSERTF32x4Z256rr,X86::VINSERTI32x4Z256rr }, |
| { X86::VINSERTF32x4Z256rm,X86::VINSERTF32x4Z256rm,X86::VINSERTI32x4Z256rm }, |
| { X86::VINSERTF64x2Z256rr,X86::VINSERTF64x2Z256rr,X86::VINSERTI64x2Z256rr }, |
| { X86::VINSERTF64x2Z256rm,X86::VINSERTF64x2Z256rm,X86::VINSERTI64x2Z256rm }, |
| { X86::VEXTRACTF32x4Zrr, X86::VEXTRACTF32x4Zrr, X86::VEXTRACTI32x4Zrr }, |
| { X86::VEXTRACTF32x4Zmr, X86::VEXTRACTF32x4Zmr, X86::VEXTRACTI32x4Zmr }, |
| { X86::VEXTRACTF32x8Zrr, X86::VEXTRACTF32x8Zrr, X86::VEXTRACTI32x8Zrr }, |
| { X86::VEXTRACTF32x8Zmr, X86::VEXTRACTF32x8Zmr, X86::VEXTRACTI32x8Zmr }, |
| { X86::VEXTRACTF64x2Zrr, X86::VEXTRACTF64x2Zrr, X86::VEXTRACTI64x2Zrr }, |
| { X86::VEXTRACTF64x2Zmr, X86::VEXTRACTF64x2Zmr, X86::VEXTRACTI64x2Zmr }, |
| { X86::VEXTRACTF64x4Zrr, X86::VEXTRACTF64x4Zrr, X86::VEXTRACTI64x4Zrr }, |
| { X86::VEXTRACTF64x4Zmr, X86::VEXTRACTF64x4Zmr, X86::VEXTRACTI64x4Zmr }, |
| { X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTF32x4Z256rr,X86::VEXTRACTI32x4Z256rr }, |
| { X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTF32x4Z256mr,X86::VEXTRACTI32x4Z256mr }, |
| { X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTF64x2Z256rr,X86::VEXTRACTI64x2Z256rr }, |
| { X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTF64x2Z256mr,X86::VEXTRACTI64x2Z256mr }, |
| { X86::VPERMILPSmi, X86::VPERMILPSmi, X86::VPSHUFDmi }, |
| { X86::VPERMILPSri, X86::VPERMILPSri, X86::VPSHUFDri }, |
| { X86::VPERMILPSZ128mi, X86::VPERMILPSZ128mi, X86::VPSHUFDZ128mi }, |
| { X86::VPERMILPSZ128ri, X86::VPERMILPSZ128ri, X86::VPSHUFDZ128ri }, |
| { X86::VPERMILPSZ256mi, X86::VPERMILPSZ256mi, X86::VPSHUFDZ256mi }, |
| { X86::VPERMILPSZ256ri, X86::VPERMILPSZ256ri, X86::VPSHUFDZ256ri }, |
| { X86::VPERMILPSZmi, X86::VPERMILPSZmi, X86::VPSHUFDZmi }, |
| { X86::VPERMILPSZri, X86::VPERMILPSZri, X86::VPSHUFDZri }, |
| { X86::VPERMPSZ256rm, X86::VPERMPSZ256rm, X86::VPERMDZ256rm }, |
| { X86::VPERMPSZ256rr, X86::VPERMPSZ256rr, X86::VPERMDZ256rr }, |
| { X86::VPERMPDZ256mi, X86::VPERMPDZ256mi, X86::VPERMQZ256mi }, |
| { X86::VPERMPDZ256ri, X86::VPERMPDZ256ri, X86::VPERMQZ256ri }, |
| { X86::VPERMPDZ256rm, X86::VPERMPDZ256rm, X86::VPERMQZ256rm }, |
| { X86::VPERMPDZ256rr, X86::VPERMPDZ256rr, X86::VPERMQZ256rr }, |
| { X86::VPERMPSZrm, X86::VPERMPSZrm, X86::VPERMDZrm }, |
| { X86::VPERMPSZrr, X86::VPERMPSZrr, X86::VPERMDZrr }, |
| { X86::VPERMPDZmi, X86::VPERMPDZmi, X86::VPERMQZmi }, |
| { X86::VPERMPDZri, X86::VPERMPDZri, X86::VPERMQZri }, |
| { X86::VPERMPDZrm, X86::VPERMPDZrm, X86::VPERMQZrm }, |
| { X86::VPERMPDZrr, X86::VPERMPDZrr, X86::VPERMQZrr }, |
| { X86::VUNPCKLPDZ256rm, X86::VUNPCKLPDZ256rm, X86::VPUNPCKLQDQZ256rm }, |
| { X86::VUNPCKLPDZ256rr, X86::VUNPCKLPDZ256rr, X86::VPUNPCKLQDQZ256rr }, |
| { X86::VUNPCKHPDZ256rm, X86::VUNPCKHPDZ256rm, X86::VPUNPCKHQDQZ256rm }, |
| { X86::VUNPCKHPDZ256rr, X86::VUNPCKHPDZ256rr, X86::VPUNPCKHQDQZ256rr }, |
| { X86::VUNPCKLPSZ256rm, X86::VUNPCKLPSZ256rm, X86::VPUNPCKLDQZ256rm }, |
| { X86::VUNPCKLPSZ256rr, X86::VUNPCKLPSZ256rr, X86::VPUNPCKLDQZ256rr }, |
| { X86::VUNPCKHPSZ256rm, X86::VUNPCKHPSZ256rm, X86::VPUNPCKHDQZ256rm }, |
| { X86::VUNPCKHPSZ256rr, X86::VUNPCKHPSZ256rr, X86::VPUNPCKHDQZ256rr }, |
| { X86::VUNPCKLPDZ128rm, X86::VUNPCKLPDZ128rm, X86::VPUNPCKLQDQZ128rm }, |
| { X86::VMOVLHPSZrr, X86::VUNPCKLPDZ128rr, X86::VPUNPCKLQDQZ128rr }, |
| { X86::VUNPCKHPDZ128rm, X86::VUNPCKHPDZ128rm, X86::VPUNPCKHQDQZ128rm }, |
| { X86::VUNPCKHPDZ128rr, X86::VUNPCKHPDZ128rr, X86::VPUNPCKHQDQZ128rr }, |
| { X86::VUNPCKLPSZ128rm, X86::VUNPCKLPSZ128rm, X86::VPUNPCKLDQZ128rm }, |
| { X86::VUNPCKLPSZ128rr, X86::VUNPCKLPSZ128rr, X86::VPUNPCKLDQZ128rr }, |
| { X86::VUNPCKHPSZ128rm, X86::VUNPCKHPSZ128rm, X86::VPUNPCKHDQZ128rm }, |
| { X86::VUNPCKHPSZ128rr, X86::VUNPCKHPSZ128rr, X86::VPUNPCKHDQZ128rr }, |
| { X86::VUNPCKLPDZrm, X86::VUNPCKLPDZrm, X86::VPUNPCKLQDQZrm }, |
| { X86::VUNPCKLPDZrr, X86::VUNPCKLPDZrr, X86::VPUNPCKLQDQZrr }, |
| { X86::VUNPCKHPDZrm, X86::VUNPCKHPDZrm, X86::VPUNPCKHQDQZrm }, |
| { X86::VUNPCKHPDZrr, X86::VUNPCKHPDZrr, X86::VPUNPCKHQDQZrr }, |
| { X86::VUNPCKLPSZrm, X86::VUNPCKLPSZrm, X86::VPUNPCKLDQZrm }, |
| { X86::VUNPCKLPSZrr, X86::VUNPCKLPSZrr, X86::VPUNPCKLDQZrr }, |
| { X86::VUNPCKHPSZrm, X86::VUNPCKHPSZrm, X86::VPUNPCKHDQZrm }, |
| { X86::VUNPCKHPSZrr, X86::VUNPCKHPSZrr, X86::VPUNPCKHDQZrr }, |
| { X86::VEXTRACTPSZmr, X86::VEXTRACTPSZmr, X86::VPEXTRDZmr }, |
| { X86::VEXTRACTPSZrr, X86::VEXTRACTPSZrr, X86::VPEXTRDZrr }, |
| }; |
| |
| static const uint16_t ReplaceableInstrsAVX2[][3] = { |
| //PackedSingle PackedDouble PackedInt |
| { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm }, |
| { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr }, |
| { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm }, |
| { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr }, |
| { X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm }, |
| { X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr }, |
| { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm }, |
| { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr }, |
| { X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm }, |
| { X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }, |
| { X86::VBROADCASTSSrm, X86::VBROADCASTSSrm, X86::VPBROADCASTDrm}, |
| { X86::VBROADCASTSSrr, X86::VBROADCASTSSrr, X86::VPBROADCASTDrr}, |
| { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrr, X86::VPBROADCASTDYrr}, |
| { X86::VBROADCASTSSYrm, X86::VBROADCASTSSYrm, X86::VPBROADCASTDYrm}, |
| { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrr, X86::VPBROADCASTQYrr}, |
| { X86::VBROADCASTSDYrm, X86::VBROADCASTSDYrm, X86::VPBROADCASTQYrm}, |
| { X86::VBROADCASTF128, X86::VBROADCASTF128, X86::VBROADCASTI128 }, |
| { X86::VBLENDPSYrri, X86::VBLENDPSYrri, X86::VPBLENDDYrri }, |
| { X86::VBLENDPSYrmi, X86::VBLENDPSYrmi, X86::VPBLENDDYrmi }, |
| { X86::VPERMILPSYmi, X86::VPERMILPSYmi, X86::VPSHUFDYmi }, |
| { X86::VPERMILPSYri, X86::VPERMILPSYri, X86::VPSHUFDYri }, |
| { X86::VUNPCKLPDYrm, X86::VUNPCKLPDYrm, X86::VPUNPCKLQDQYrm }, |
| { X86::VUNPCKLPDYrr, X86::VUNPCKLPDYrr, X86::VPUNPCKLQDQYrr }, |
| { X86::VUNPCKHPDYrm, X86::VUNPCKHPDYrm, X86::VPUNPCKHQDQYrm }, |
| { X86::VUNPCKHPDYrr, X86::VUNPCKHPDYrr, X86::VPUNPCKHQDQYrr }, |
| { X86::VUNPCKLPSYrm, X86::VUNPCKLPSYrm, X86::VPUNPCKLDQYrm }, |
| { X86::VUNPCKLPSYrr, X86::VUNPCKLPSYrr, X86::VPUNPCKLDQYrr }, |
| { X86::VUNPCKHPSYrm, X86::VUNPCKHPSYrm, X86::VPUNPCKHDQYrm }, |
| { X86::VUNPCKHPSYrr, X86::VUNPCKHPSYrr, X86::VPUNPCKHDQYrr }, |
| }; |
| |
| static const uint16_t ReplaceableInstrsAVX2InsertExtract[][3] = { |
| //PackedSingle PackedDouble PackedInt |
| { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr }, |
| { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr }, |
| { X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm }, |
| { X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr }, |
| }; |
| |
| static const uint16_t ReplaceableInstrsAVX512[][4] = { |
| // Two integer columns for 64-bit and 32-bit elements. |
| //PackedSingle PackedDouble PackedInt PackedInt |
| { X86::VMOVAPSZ128mr, X86::VMOVAPDZ128mr, X86::VMOVDQA64Z128mr, X86::VMOVDQA32Z128mr }, |
| { X86::VMOVAPSZ128rm, X86::VMOVAPDZ128rm, X86::VMOVDQA64Z128rm, X86::VMOVDQA32Z128rm }, |
| { X86::VMOVAPSZ128rr, X86::VMOVAPDZ128rr, X86::VMOVDQA64Z128rr, X86::VMOVDQA32Z128rr }, |
| { X86::VMOVUPSZ128mr, X86::VMOVUPDZ128mr, X86::VMOVDQU64Z128mr, X86::VMOVDQU32Z128mr }, |
| { X86::VMOVUPSZ128rm, X86::VMOVUPDZ128rm, X86::VMOVDQU64Z128rm, X86::VMOVDQU32Z128rm }, |
| { X86::VMOVAPSZ256mr, X86::VMOVAPDZ256mr, X86::VMOVDQA64Z256mr, X86::VMOVDQA32Z256mr }, |
| { X86::VMOVAPSZ256rm, X86::VMOVAPDZ256rm, X86::VMOVDQA64Z256rm, X86::VMOVDQA32Z256rm }, |
| { X86::VMOVAPSZ256rr, X86::VMOVAPDZ256rr, X86::VMOVDQA64Z256rr, X86::VMOVDQA32Z256rr }, |
| { X86::VMOVUPSZ256mr, X86::VMOVUPDZ256mr, X86::VMOVDQU64Z256mr, X86::VMOVDQU32Z256mr }, |
| { X86::VMOVUPSZ256rm, X86::VMOVUPDZ256rm, X86::VMOVDQU64Z256rm, X86::VMOVDQU32Z256rm }, |
| { X86::VMOVAPSZmr, X86::VMOVAPDZmr, X86::VMOVDQA64Zmr, X86::VMOVDQA32Zmr }, |
| { X86::VMOVAPSZrm, X86::VMOVAPDZrm, X86::VMOVDQA64Zrm, X86::VMOVDQA32Zrm }, |
| { X86::VMOVAPSZrr, X86::VMOVAPDZrr, X86::VMOVDQA64Zrr, X86::VMOVDQA32Zrr }, |
| { X86::VMOVUPSZmr, X86::VMOVUPDZmr, X86::VMOVDQU64Zmr, X86::VMOVDQU32Zmr }, |
| { X86::VMOVUPSZrm, X86::VMOVUPDZrm, X86::VMOVDQU64Zrm, X86::VMOVDQU32Zrm }, |
| }; |
| |
| static const uint16_t ReplaceableInstrsAVX512DQ[][4] = { |
| // Two integer columns for 64-bit and 32-bit elements. |
| //PackedSingle PackedDouble PackedInt PackedInt |
| { X86::VANDNPSZ128rm, X86::VANDNPDZ128rm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, |
| { X86::VANDNPSZ128rr, X86::VANDNPDZ128rr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, |
| { X86::VANDPSZ128rm, X86::VANDPDZ128rm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, |
| { X86::VANDPSZ128rr, X86::VANDPDZ128rr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, |
| { X86::VORPSZ128rm, X86::VORPDZ128rm, X86::VPORQZ128rm, X86::VPORDZ128rm }, |
| { X86::VORPSZ128rr, X86::VORPDZ128rr, X86::VPORQZ128rr, X86::VPORDZ128rr }, |
| { X86::VXORPSZ128rm, X86::VXORPDZ128rm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, |
| { X86::VXORPSZ128rr, X86::VXORPDZ128rr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, |
| { X86::VANDNPSZ256rm, X86::VANDNPDZ256rm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, |
| { X86::VANDNPSZ256rr, X86::VANDNPDZ256rr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, |
| { X86::VANDPSZ256rm, X86::VANDPDZ256rm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, |
| { X86::VANDPSZ256rr, X86::VANDPDZ256rr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, |
| { X86::VORPSZ256rm, X86::VORPDZ256rm, X86::VPORQZ256rm, X86::VPORDZ256rm }, |
| { X86::VORPSZ256rr, X86::VORPDZ256rr, X86::VPORQZ256rr, X86::VPORDZ256rr }, |
| { X86::VXORPSZ256rm, X86::VXORPDZ256rm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, |
| { X86::VXORPSZ256rr, X86::VXORPDZ256rr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, |
| { X86::VANDNPSZrm, X86::VANDNPDZrm, X86::VPANDNQZrm, X86::VPANDNDZrm }, |
| { X86::VANDNPSZrr, X86::VANDNPDZrr, X86::VPANDNQZrr, X86::VPANDNDZrr }, |
| { X86::VANDPSZrm, X86::VANDPDZrm, X86::VPANDQZrm, X86::VPANDDZrm }, |
| { X86::VANDPSZrr, X86::VANDPDZrr, X86::VPANDQZrr, X86::VPANDDZrr }, |
| { X86::VORPSZrm, X86::VORPDZrm, X86::VPORQZrm, X86::VPORDZrm }, |
| { X86::VORPSZrr, X86::VORPDZrr, X86::VPORQZrr, X86::VPORDZrr }, |
| { X86::VXORPSZrm, X86::VXORPDZrm, X86::VPXORQZrm, X86::VPXORDZrm }, |
| { X86::VXORPSZrr, X86::VXORPDZrr, X86::VPXORQZrr, X86::VPXORDZrr }, |
| }; |
| |
| static const uint16_t ReplaceableInstrsAVX512DQMasked[][4] = { |
| // Two integer columns for 64-bit and 32-bit elements. |
| //PackedSingle PackedDouble |
| //PackedInt PackedInt |
| { X86::VANDNPSZ128rmk, X86::VANDNPDZ128rmk, |
| X86::VPANDNQZ128rmk, X86::VPANDNDZ128rmk }, |
| { X86::VANDNPSZ128rmkz, X86::VANDNPDZ128rmkz, |
| X86::VPANDNQZ128rmkz, X86::VPANDNDZ128rmkz }, |
| { X86::VANDNPSZ128rrk, X86::VANDNPDZ128rrk, |
| X86::VPANDNQZ128rrk, X86::VPANDNDZ128rrk }, |
| { X86::VANDNPSZ128rrkz, X86::VANDNPDZ128rrkz, |
| X86::VPANDNQZ128rrkz, X86::VPANDNDZ128rrkz }, |
| { X86::VANDPSZ128rmk, X86::VANDPDZ128rmk, |
| X86::VPANDQZ128rmk, X86::VPANDDZ128rmk }, |
| { X86::VANDPSZ128rmkz, X86::VANDPDZ128rmkz, |
| X86::VPANDQZ128rmkz, X86::VPANDDZ128rmkz }, |
| { X86::VANDPSZ128rrk, X86::VANDPDZ128rrk, |
| X86::VPANDQZ128rrk, X86::VPANDDZ128rrk }, |
| { X86::VANDPSZ128rrkz, X86::VANDPDZ128rrkz, |
| X86::VPANDQZ128rrkz, X86::VPANDDZ128rrkz }, |
| { X86::VORPSZ128rmk, X86::VORPDZ128rmk, |
| X86::VPORQZ128rmk, X86::VPORDZ128rmk }, |
| { X86::VORPSZ128rmkz, X86::VORPDZ128rmkz, |
| X86::VPORQZ128rmkz, X86::VPORDZ128rmkz }, |
| { X86::VORPSZ128rrk, X86::VORPDZ128rrk, |
| X86::VPORQZ128rrk, X86::VPORDZ128rrk }, |
| { X86::VORPSZ128rrkz, X86::VORPDZ128rrkz, |
| X86::VPORQZ128rrkz, X86::VPORDZ128rrkz }, |
| { X86::VXORPSZ128rmk, X86::VXORPDZ128rmk, |
| X86::VPXORQZ128rmk, X86::VPXORDZ128rmk }, |
| { X86::VXORPSZ128rmkz, X86::VXORPDZ128rmkz, |
| X86::VPXORQZ128rmkz, X86::VPXORDZ128rmkz }, |
| { X86::VXORPSZ128rrk, X86::VXORPDZ128rrk, |
| X86::VPXORQZ128rrk, X86::VPXORDZ128rrk }, |
| { X86::VXORPSZ128rrkz, X86::VXORPDZ128rrkz, |
| X86::VPXORQZ128rrkz, X86::VPXORDZ128rrkz }, |
| { X86::VANDNPSZ256rmk, X86::VANDNPDZ256rmk, |
| X86::VPANDNQZ256rmk, X86::VPANDNDZ256rmk }, |
| { X86::VANDNPSZ256rmkz, X86::VANDNPDZ256rmkz, |
| X86::VPANDNQZ256rmkz, X86::VPANDNDZ256rmkz }, |
| { X86::VANDNPSZ256rrk, X86::VANDNPDZ256rrk, |
| X86::VPANDNQZ256rrk, X86::VPANDNDZ256rrk }, |
| { X86::VANDNPSZ256rrkz, X86::VANDNPDZ256rrkz, |
| X86::VPANDNQZ256rrkz, X86::VPANDNDZ256rrkz }, |
| { X86::VANDPSZ256rmk, X86::VANDPDZ256rmk, |
| X86::VPANDQZ256rmk, X86::VPANDDZ256rmk }, |
| { X86::VANDPSZ256rmkz, X86::VANDPDZ256rmkz, |
| X86::VPANDQZ256rmkz, X86::VPANDDZ256rmkz }, |
| { X86::VANDPSZ256rrk, X86::VANDPDZ256rrk, |
| X86::VPANDQZ256rrk, X86::VPANDDZ256rrk }, |
| { X86::VANDPSZ256rrkz, X86::VANDPDZ256rrkz, |
| X86::VPANDQZ256rrkz, X86::VPANDDZ256rrkz }, |
| { X86::VORPSZ256rmk, X86::VORPDZ256rmk, |
| X86::VPORQZ256rmk, X86::VPORDZ256rmk }, |
| { X86::VORPSZ256rmkz, X86::VORPDZ256rmkz, |
| X86::VPORQZ256rmkz, X86::VPORDZ256rmkz }, |
| { X86::VORPSZ256rrk, X86::VORPDZ256rrk, |
| X86::VPORQZ256rrk, X86::VPORDZ256rrk }, |
| { X86::VORPSZ256rrkz, X86::VORPDZ256rrkz, |
| X86::VPORQZ256rrkz, X86::VPORDZ256rrkz }, |
| { X86::VXORPSZ256rmk, X86::VXORPDZ256rmk, |
| X86::VPXORQZ256rmk, X86::VPXORDZ256rmk }, |
| { X86::VXORPSZ256rmkz, X86::VXORPDZ256rmkz, |
| X86::VPXORQZ256rmkz, X86::VPXORDZ256rmkz }, |
| { X86::VXORPSZ256rrk, X86::VXORPDZ256rrk, |
| X86::VPXORQZ256rrk, X86::VPXORDZ256rrk }, |
| { X86::VXORPSZ256rrkz, X86::VXORPDZ256rrkz, |
| X86::VPXORQZ256rrkz, X86::VPXORDZ256rrkz }, |
| { X86::VANDNPSZrmk, X86::VANDNPDZrmk, |
| X86::VPANDNQZrmk, X86::VPANDNDZrmk }, |
| { X86::VANDNPSZrmkz, X86::VANDNPDZrmkz, |
| X86::VPANDNQZrmkz, X86::VPANDNDZrmkz }, |
| { X86::VANDNPSZrrk, X86::VANDNPDZrrk, |
| X86::VPANDNQZrrk, X86::VPANDNDZrrk }, |
| { X86::VANDNPSZrrkz, X86::VANDNPDZrrkz, |
| X86::VPANDNQZrrkz, X86::VPANDNDZrrkz }, |
| { X86::VANDPSZrmk, X86::VANDPDZrmk, |
| X86::VPANDQZrmk, X86::VPANDDZrmk }, |
| { X86::VANDPSZrmkz, X86::VANDPDZrmkz, |
| X86::VPANDQZrmkz, X86::VPANDDZrmkz }, |
| { X86::VANDPSZrrk, X86::VANDPDZrrk, |
| X86::VPANDQZrrk, X86::VPANDDZrrk }, |
| { X86::VANDPSZrrkz, X86::VANDPDZrrkz, |
| X86::VPANDQZrrkz, X86::VPANDDZrrkz }, |
| { X86::VORPSZrmk, X86::VORPDZrmk, |
| X86::VPORQZrmk, X86::VPORDZrmk }, |
| { X86::VORPSZrmkz, X86::VORPDZrmkz, |
| X86::VPORQZrmkz, X86::VPORDZrmkz }, |
| { X86::VORPSZrrk, X86::VORPDZrrk, |
| X86::VPORQZrrk, X86::VPORDZrrk }, |
| { X86::VORPSZrrkz, X86::VORPDZrrkz, |
| X86::VPORQZrrkz, X86::VPORDZrrkz }, |
| { X86::VXORPSZrmk, X86::VXORPDZrmk, |
| X86::VPXORQZrmk, X86::VPXORDZrmk }, |
| { X86::VXORPSZrmkz, X86::VXORPDZrmkz, |
| X86::VPXORQZrmkz, X86::VPXORDZrmkz }, |
| { X86::VXORPSZrrk, X86::VXORPDZrrk, |
| X86::VPXORQZrrk, X86::VPXORDZrrk }, |
| { X86::VXORPSZrrkz, X86::VXORPDZrrkz, |
| X86::VPXORQZrrkz, X86::VPXORDZrrkz }, |
| // Broadcast loads can be handled the same as masked operations to avoid |
| // changing element size. |
| { X86::VANDNPSZ128rmb, X86::VANDNPDZ128rmb, |
| X86::VPANDNQZ128rmb, X86::VPANDNDZ128rmb }, |
| { X86::VANDPSZ128rmb, X86::VANDPDZ128rmb, |
| X86::VPANDQZ128rmb, X86::VPANDDZ128rmb }, |
| { X86::VORPSZ128rmb, X86::VORPDZ128rmb, |
| X86::VPORQZ128rmb, X86::VPORDZ128rmb }, |
| { X86::VXORPSZ128rmb, X86::VXORPDZ128rmb, |
| X86::VPXORQZ128rmb, X86::VPXORDZ128rmb }, |
| { X86::VANDNPSZ256rmb, X86::VANDNPDZ256rmb, |
| X86::VPANDNQZ256rmb, X86::VPANDNDZ256rmb }, |
| { X86::VANDPSZ256rmb, X86::VANDPDZ256rmb, |
| X86::VPANDQZ256rmb, X86::VPANDDZ256rmb }, |
| { X86::VORPSZ256rmb, X86::VORPDZ256rmb, |
| X86::VPORQZ256rmb, X86::VPORDZ256rmb }, |
| { X86::VXORPSZ256rmb, X86::VXORPDZ256rmb, |
| X86::VPXORQZ256rmb, X86::VPXORDZ256rmb }, |
| { X86::VANDNPSZrmb, X86::VANDNPDZrmb, |
| X86::VPANDNQZrmb, X86::VPANDNDZrmb }, |
| { X86::VANDPSZrmb, X86::VANDPDZrmb, |
| X86::VPANDQZrmb, X86::VPANDDZrmb }, |
| { X86::VANDPSZrmb, X86::VANDPDZrmb, |
| X86::VPANDQZrmb, X86::VPANDDZrmb }, |
| { X86::VORPSZrmb, X86::VORPDZrmb, |
| X86::VPORQZrmb, X86::VPORDZrmb }, |
| { X86::VXORPSZrmb, X86::VXORPDZrmb, |
| X86::VPXORQZrmb, X86::VPXORDZrmb }, |
| { X86::VANDNPSZ128rmbk, X86::VANDNPDZ128rmbk, |
| X86::VPANDNQZ128rmbk, X86::VPANDNDZ128rmbk }, |
| { X86::VANDPSZ128rmbk, X86::VANDPDZ128rmbk, |
| X86::VPANDQZ128rmbk, X86::VPANDDZ128rmbk }, |
| { X86::VORPSZ128rmbk, X86::VORPDZ128rmbk, |
| X86::VPORQZ128rmbk, X86::VPORDZ128rmbk }, |
| { X86::VXORPSZ128rmbk, X86::VXORPDZ128rmbk, |
| X86::VPXORQZ128rmbk, X86::VPXORDZ128rmbk }, |
| { X86::VANDNPSZ256rmbk, X86::VANDNPDZ256rmbk, |
| X86::VPANDNQZ256rmbk, X86::VPANDNDZ256rmbk }, |
| { X86::VANDPSZ256rmbk, X86::VANDPDZ256rmbk, |
| X86::VPANDQZ256rmbk, X86::VPANDDZ256rmbk }, |
| { X86::VORPSZ256rmbk, X86::VORPDZ256rmbk, |
| X86::VPORQZ256rmbk, X86::VPORDZ256rmbk }, |
| { X86::VXORPSZ256rmbk, X86::VXORPDZ256rmbk, |
| X86::VPXORQZ256rmbk, X86::VPXORDZ256rmbk }, |
| { X86::VANDNPSZrmbk, X86::VANDNPDZrmbk, |
| X86::VPANDNQZrmbk, X86::VPANDNDZrmbk }, |
| { X86::VANDPSZrmbk, X86::VANDPDZrmbk, |
| X86::VPANDQZrmbk, X86::VPANDDZrmbk }, |
| { X86::VANDPSZrmbk, X86::VANDPDZrmbk, |
| X86::VPANDQZrmbk, X86::VPANDDZrmbk }, |
| { X86::VORPSZrmbk, X86::VORPDZrmbk, |
| X86::VPORQZrmbk, X86::VPORDZrmbk }, |
| { X86::VXORPSZrmbk, X86::VXORPDZrmbk, |
| X86::VPXORQZrmbk, X86::VPXORDZrmbk }, |
| { X86::VANDNPSZ128rmbkz,X86::VANDNPDZ128rmbkz, |
| X86::VPANDNQZ128rmbkz,X86::VPANDNDZ128rmbkz}, |
| { X86::VANDPSZ128rmbkz, X86::VANDPDZ128rmbkz, |
| X86::VPANDQZ128rmbkz, X86::VPANDDZ128rmbkz }, |
| { X86::VORPSZ128rmbkz, X86::VORPDZ128rmbkz, |
| X86::VPORQZ128rmbkz, X86::VPORDZ128rmbkz }, |
| { X86::VXORPSZ128rmbkz, X86::VXORPDZ128rmbkz, |
| X86::VPXORQZ128rmbkz, X86::VPXORDZ128rmbkz }, |
| { X86::VANDNPSZ256rmbkz,X86::VANDNPDZ256rmbkz, |
| X86::VPANDNQZ256rmbkz,X86::VPANDNDZ256rmbkz}, |
| { X86::VANDPSZ256rmbkz, X86::VANDPDZ256rmbkz, |
| X86::VPANDQZ256rmbkz, X86::VPANDDZ256rmbkz }, |
| { X86::VORPSZ256rmbkz, X86::VORPDZ256rmbkz, |
| X86::VPORQZ256rmbkz, X86::VPORDZ256rmbkz }, |
| { X86::VXORPSZ256rmbkz, X86::VXORPDZ256rmbkz, |
| X86::VPXORQZ256rmbkz, X86::VPXORDZ256rmbkz }, |
| { X86::VANDNPSZrmbkz, X86::VANDNPDZrmbkz, |
| X86::VPANDNQZrmbkz, X86::VPANDNDZrmbkz }, |
| { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, |
| X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, |
| { X86::VANDPSZrmbkz, X86::VANDPDZrmbkz, |
| X86::VPANDQZrmbkz, X86::VPANDDZrmbkz }, |
| { X86::VORPSZrmbkz, X86::VORPDZrmbkz, |
| X86::VPORQZrmbkz, X86::VPORDZrmbkz }, |
| { X86::VXORPSZrmbkz, X86::VXORPDZrmbkz, |
| X86::VPXORQZrmbkz, X86::VPXORDZrmbkz }, |
| }; |
| |
| // NOTE: These should only be used by the custom domain methods. |
| static const uint16_t ReplaceableCustomInstrs[][3] = { |
| //PackedSingle PackedDouble PackedInt |
| { X86::BLENDPSrmi, X86::BLENDPDrmi, X86::PBLENDWrmi }, |
| { X86::BLENDPSrri, X86::BLENDPDrri, X86::PBLENDWrri }, |
| { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDWrmi }, |
| { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDWrri }, |
| { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDWYrmi }, |
| { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDWYrri }, |
| }; |
| static const uint16_t ReplaceableCustomAVX2Instrs[][3] = { |
| //PackedSingle PackedDouble PackedInt |
| { X86::VBLENDPSrmi, X86::VBLENDPDrmi, X86::VPBLENDDrmi }, |
| { X86::VBLENDPSrri, X86::VBLENDPDrri, X86::VPBLENDDrri }, |
| { X86::VBLENDPSYrmi, X86::VBLENDPDYrmi, X86::VPBLENDDYrmi }, |
| { X86::VBLENDPSYrri, X86::VBLENDPDYrri, X86::VPBLENDDYrri }, |
| }; |
| |
| // Special table for changing EVEX logic instructions to VEX. |
| // TODO: Should we run EVEX->VEX earlier? |
| static const uint16_t ReplaceableCustomAVX512LogicInstrs[][4] = { |
| // Two integer columns for 64-bit and 32-bit elements. |
| //PackedSingle PackedDouble PackedInt PackedInt |
| { X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNQZ128rm, X86::VPANDNDZ128rm }, |
| { X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNQZ128rr, X86::VPANDNDZ128rr }, |
| { X86::VANDPSrm, X86::VANDPDrm, X86::VPANDQZ128rm, X86::VPANDDZ128rm }, |
| { X86::VANDPSrr, X86::VANDPDrr, X86::VPANDQZ128rr, X86::VPANDDZ128rr }, |
| { X86::VORPSrm, X86::VORPDrm, X86::VPORQZ128rm, X86::VPORDZ128rm }, |
| { X86::VORPSrr, X86::VORPDrr, X86::VPORQZ128rr, X86::VPORDZ128rr }, |
| { X86::VXORPSrm, X86::VXORPDrm, X86::VPXORQZ128rm, X86::VPXORDZ128rm }, |
| { X86::VXORPSrr, X86::VXORPDrr, X86::VPXORQZ128rr, X86::VPXORDZ128rr }, |
| { X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNQZ256rm, X86::VPANDNDZ256rm }, |
| { X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNQZ256rr, X86::VPANDNDZ256rr }, |
| { X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDQZ256rm, X86::VPANDDZ256rm }, |
| { X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDQZ256rr, X86::VPANDDZ256rr }, |
| { X86::VORPSYrm, X86::VORPDYrm, X86::VPORQZ256rm, X86::VPORDZ256rm }, |
| { X86::VORPSYrr, X86::VORPDYrr, X86::VPORQZ256rr, X86::VPORDZ256rr }, |
| { X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORQZ256rm, X86::VPXORDZ256rm }, |
| { X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORQZ256rr, X86::VPXORDZ256rr }, |
| }; |
| |
| // FIXME: Some shuffle and unpack instructions have equivalents in different |
| // domains, but they require a bit more work than just switching opcodes. |
| |
| static const uint16_t *lookup(unsigned opcode, unsigned domain, |
| ArrayRef<uint16_t[3]> Table) { |
| for (const uint16_t (&Row)[3] : Table) |
| if (Row[domain-1] == opcode) |
| return Row; |
| return nullptr; |
| } |
| |
| static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, |
| ArrayRef<uint16_t[4]> Table) { |
| // If this is the integer domain make sure to check both integer columns. |
| for (const uint16_t (&Row)[4] : Table) |
| if (Row[domain-1] == opcode || (domain == 3 && Row[3] == opcode)) |
| return Row; |
| return nullptr; |
| } |
| |
| // Helper to attempt to widen/narrow blend masks. |
| static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, |
| unsigned NewWidth, unsigned *pNewMask = nullptr) { |
| assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && |
| "Illegal blend mask scale"); |
| unsigned NewMask = 0; |
| |
| if ((OldWidth % NewWidth) == 0) { |
| unsigned Scale = OldWidth / NewWidth; |
| unsigned SubMask = (1u << Scale) - 1; |
| for (unsigned i = 0; i != NewWidth; ++i) { |
| unsigned Sub = (OldMask >> (i * Scale)) & SubMask; |
| if (Sub == SubMask) |
| NewMask |= (1u << i); |
| else if (Sub != 0x0) |
| return false; |
| } |
| } else { |
| unsigned Scale = NewWidth / OldWidth; |
| unsigned SubMask = (1u << Scale) - 1; |
| for (unsigned i = 0; i != OldWidth; ++i) { |
| if (OldMask & (1 << i)) { |
| NewMask |= (SubMask << (i * Scale)); |
| } |
| } |
| } |
| |
| if (pNewMask) |
| *pNewMask = NewMask; |
| return true; |
| } |
| |
| uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { |
| unsigned Opcode = MI.getOpcode(); |
| unsigned NumOperands = MI.getDesc().getNumOperands(); |
| |
| auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { |
| uint16_t validDomains = 0; |
| if (MI.getOperand(NumOperands - 1).isImm()) { |
| unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); |
| if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) |
| validDomains |= 0x2; // PackedSingle |
| if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) |
| validDomains |= 0x4; // PackedDouble |
| if (!Is256 || Subtarget.hasAVX2()) |
| validDomains |= 0x8; // PackedInt |
| } |
| return validDomains; |
| }; |
| |
| switch (Opcode) { |
| case X86::BLENDPDrmi: |
| case X86::BLENDPDrri: |
| case X86::VBLENDPDrmi: |
| case X86::VBLENDPDrri: |
| return GetBlendDomains(2, false); |
| case X86::VBLENDPDYrmi: |
| case X86::VBLENDPDYrri: |
| return GetBlendDomains(4, true); |
| case X86::BLENDPSrmi: |
| case X86::BLENDPSrri: |
| case X86::VBLENDPSrmi: |
| case X86::VBLENDPSrri: |
| case X86::VPBLENDDrmi: |
| case X86::VPBLENDDrri: |
| return GetBlendDomains(4, false); |
| case X86::VBLENDPSYrmi: |
| case X86::VBLENDPSYrri: |
| case X86::VPBLENDDYrmi: |
| case X86::VPBLENDDYrri: |
| return GetBlendDomains(8, true); |
| case X86::PBLENDWrmi: |
| case X86::PBLENDWrri: |
| case X86::VPBLENDWrmi: |
| case X86::VPBLENDWrri: |
| // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. |
| case X86::VPBLENDWYrmi: |
| case X86::VPBLENDWYrri: |
| return GetBlendDomains(8, false); |
| case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: |
| case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: |
| case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: |
| case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: |
| case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: |
| case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: |
| case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: |
| case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: |
| case X86::VPORDZ128rr: case X86::VPORDZ128rm: |
| case X86::VPORDZ256rr: case X86::VPORDZ256rm: |
| case X86::VPORQZ128rr: case X86::VPORQZ128rm: |
| case X86::VPORQZ256rr: case X86::VPORQZ256rm: |
| case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: |
| case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: |
| case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: |
| case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: |
| // If we don't have DQI see if we can still switch from an EVEX integer |
| // instruction to a VEX floating point instruction. |
| if (Subtarget.hasDQI()) |
| return 0; |
| |
| if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) |
| return 0; |
| if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) |
| return 0; |
| // Register forms will have 3 operands. Memory form will have more. |
| if (NumOperands == 3 && |
| RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) |
| return 0; |
| |
| // All domains are valid. |
| return 0xe; |
| } |
| return 0; |
| } |
| |
| bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, |
| unsigned Domain) const { |
| assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); |
| uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; |
| assert(dom && "Not an SSE instruction"); |
| |
| unsigned Opcode = MI.getOpcode(); |
| unsigned NumOperands = MI.getDesc().getNumOperands(); |
| |
| auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { |
| if (MI.getOperand(NumOperands - 1).isImm()) { |
| unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; |
| Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); |
| unsigned NewImm = Imm; |
| |
| const uint16_t *table = lookup(Opcode, dom, ReplaceableCustomInstrs); |
| if (!table) |
| table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs); |
| |
| if (Domain == 1) { // PackedSingle |
| AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); |
| } else if (Domain == 2) { // PackedDouble |
| AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); |
| } else if (Domain == 3) { // PackedInt |
| if (Subtarget.hasAVX2()) { |
| // If we are already VPBLENDW use that, else use VPBLENDD. |
| if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { |
| table = lookup(Opcode, dom, ReplaceableCustomAVX2Instrs); |
| AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); |
| } |
| } else { |
| assert(!Is256 && "128-bit vector expected"); |
| AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); |
| } |
| } |
| |
| assert(table && table[Domain - 1] && "Unknown domain op"); |
| MI.setDesc(get(table[Domain - 1])); |
| MI.getOperand(NumOperands - 1).setImm(NewImm & 255); |
| } |
| return true; |
| }; |
| |
| switch (Opcode) { |
| case X86::BLENDPDrmi: |
| case X86::BLENDPDrri: |
| case X86::VBLENDPDrmi: |
| case X86::VBLENDPDrri: |
| return SetBlendDomain(2, false); |
| case X86::VBLENDPDYrmi: |
| case X86::VBLENDPDYrri: |
| return SetBlendDomain(4, true); |
| case X86::BLENDPSrmi: |
| case X86::BLENDPSrri: |
| case X86::VBLENDPSrmi: |
| case X86::VBLENDPSrri: |
| case X86::VPBLENDDrmi: |
| case X86::VPBLENDDrri: |
| return SetBlendDomain(4, false); |
| case X86::VBLENDPSYrmi: |
| case X86::VBLENDPSYrri: |
| case X86::VPBLENDDYrmi: |
| case X86::VPBLENDDYrri: |
| return SetBlendDomain(8, true); |
| case X86::PBLENDWrmi: |
| case X86::PBLENDWrri: |
| case X86::VPBLENDWrmi: |
| case X86::VPBLENDWrri: |
| return SetBlendDomain(8, false); |
| case X86::VPBLENDWYrmi: |
| case X86::VPBLENDWYrri: |
| return SetBlendDomain(16, true); |
| case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: |
| case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: |
| case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: |
| case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: |
| case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: |
| case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: |
| case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: |
| case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: |
| case X86::VPORDZ128rr: case X86::VPORDZ128rm: |
| case X86::VPORDZ256rr: case X86::VPORDZ256rm: |
| case X86::VPORQZ128rr: case X86::VPORQZ128rm: |
| case X86::VPORQZ256rr: case X86::VPORQZ256rm: |
| case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: |
| case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: |
| case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: |
| case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: { |
| // Without DQI, convert EVEX instructions to VEX instructions. |
| if (Subtarget.hasDQI()) |
| return false; |
| |
| const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, |
| ReplaceableCustomAVX512LogicInstrs); |
| assert(table && "Instruction not found in table?"); |
| // Don't change integer Q instructions to D instructions and |
| // use D intructions if we started with a PS instruction. |
| if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) |
| Domain = 4; |
| MI.setDesc(get(table[Domain - 1])); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| std::pair<uint16_t, uint16_t> |
| X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { |
| uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; |
| unsigned opcode = MI.getOpcode(); |
| uint16_t validDomains = 0; |
| if (domain) { |
| // Attempt to match for custom instructions. |
| validDomains = getExecutionDomainCustom(MI); |
| if (validDomains) |
| return std::make_pair(domain, validDomains); |
| |
| if (lookup(opcode, domain, ReplaceableInstrs)) { |
| validDomains = 0xe; |
| } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { |
| validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; |
| } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { |
| // Insert/extract instructions should only effect domain if AVX2 |
| // is enabled. |
| if (!Subtarget.hasAVX2()) |
| return std::make_pair(0, 0); |
| validDomains = 0xe; |
| } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { |
| validDomains = 0xe; |
| } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, |
| ReplaceableInstrsAVX512DQ)) { |
| validDomains = 0xe; |
| } else if (Subtarget.hasDQI()) { |
| if (const uint16_t *table = lookupAVX512(opcode, domain, |
| ReplaceableInstrsAVX512DQMasked)) { |
| if (domain == 1 || (domain == 3 && table[3] == opcode)) |
| validDomains = 0xa; |
| else |
| validDomains = 0xc; |
| } |
| } |
| } |
| return std::make_pair(domain, validDomains); |
| } |
| |
| void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { |
| assert(Domain>0 && Domain<4 && "Invalid execution domain"); |
| uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; |
| assert(dom && "Not an SSE instruction"); |
| |
| // Attempt to match for custom instructions. |
| if (setExecutionDomainCustom(MI, Domain)) |
| return; |
| |
| const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); |
| if (!table) { // try the other table |
| assert((Subtarget.hasAVX2() || Domain < 3) && |
| "256-bit vector operations only available in AVX2"); |
| table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); |
| } |
| if (!table) { // try the other table |
| assert(Subtarget.hasAVX2() && |
| "256-bit insert/extract only available in AVX2"); |
| table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); |
| } |
| if (!table) { // try the AVX512 table |
| assert(Subtarget.hasAVX512() && "Requires AVX-512"); |
| table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); |
| // Don't change integer Q instructions to D instructions. |
| if (table && Domain == 3 && table[3] == MI.getOpcode()) |
| Domain = 4; |
| } |
| if (!table) { // try the AVX512DQ table |
| assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); |
| table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); |
| // Don't change integer Q instructions to D instructions and |
| // use D intructions if we started with a PS instruction. |
| if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) |
| Domain = 4; |
| } |
| if (!table) { // try the AVX512DQMasked table |
| assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); |
| table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); |
| if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) |
| Domain = 4; |
| } |
| assert(table && "Cannot change domain"); |
| MI.setDesc(get(table[Domain - 1])); |
| } |
| |
| /// Return the noop instruction to use for a noop. |
| void X86InstrInfo::getNoop(MCInst &NopInst) const { |
| NopInst.setOpcode(X86::NOOP); |
| } |
| |
| bool X86InstrInfo::isHighLatencyDef(int opc) const { |
| switch (opc) { |
| default: return false; |
| case X86::DIVPDrm: |
| case X86::DIVPDrr: |
| case X86::DIVPSrm: |
| case X86::DIVPSrr: |
| case X86::DIVSDrm: |
| case X86::DIVSDrm_Int: |
| case X86::DIVSDrr: |
| case X86::DIVSDrr_Int: |
| case X86::DIVSSrm: |
| case X86::DIVSSrm_Int: |
| case X86::DIVSSrr: |
| case X86::DIVSSrr_Int: |
| case X86::SQRTPDm: |
| case X86::SQRTPDr: |
| case X86::SQRTPSm: |
| case X86::SQRTPSr: |
| case X86::SQRTSDm: |
| case X86::SQRTSDm_Int: |
| case X86::SQRTSDr: |
| case X86::SQRTSDr_Int: |
| case X86::SQRTSSm: |
| case X86::SQRTSSm_Int: |
| case X86::SQRTSSr: |
| case X86::SQRTSSr_Int: |
| // AVX instructions with high latency |
| case X86::VDIVPDrm: |
| case X86::VDIVPDrr: |
| case X86::VDIVPDYrm: |
| case X86::VDIVPDYrr: |
| case X86::VDIVPSrm: |
| case X86::VDIVPSrr: |
| case X86::VDIVPSYrm: |
| case X86::VDIVPSYrr: |
| case X86::VDIVSDrm: |
| case X86::VDIVSDrm_Int: |
| case X86::VDIVSDrr: |
| case X86::VDIVSDrr_Int: |
| case X86::VDIVSSrm: |
| case X86::VDIVSSrm_Int: |
| case X86::VDIVSSrr: |
| case X86::VDIVSSrr_Int: |
| case X86::VSQRTPDm: |
| case X86::VSQRTPDr: |
| case X86::VSQRTPDYm: |
| case X86::VSQRTPDYr: |
| case X86::VSQRTPSm: |
| case X86::VSQRTPSr: |
| case X86::VSQRTPSYm: |
| case X86::VSQRTPSYr: |
| case X86::VSQRTSDm: |
| case X86::VSQRTSDm_Int: |
| case X86::VSQRTSDr: |
| case X86::VSQRTSDr_Int: |
| case X86::VSQRTSSm: |
| case X86::VSQRTSSm_Int: |
| case X86::VSQRTSSr: |
| case X86::VSQRTSSr_Int: |
| // AVX512 instructions with high latency |
| case X86::VDIVPDZ128rm: |
| case X86::VDIVPDZ128rmb: |
| case X86::VDIVPDZ128rmbk: |
| case X86::VDIVPDZ128rmbkz: |
| case X86::VDIVPDZ128rmk: |
| case X86::VDIVPDZ128rmkz: |
| case X86::VDIVPDZ128rr: |
| case X86::VDIVPDZ128rrk: |
| case X86::VDIVPDZ128rrkz: |
| case X86::VDIVPDZ256rm: |
| case X86::VDIVPDZ256rmb: |
| case X86::VDIVPDZ256rmbk: |
| case X86::VDIVPDZ256rmbkz: |
| case X86::VDIVPDZ256rmk: |
| case X86::VDIVPDZ256rmkz: |
| case X86::VDIVPDZ256rr: |
| case X86::VDIVPDZ256rrk: |
| case X86::VDIVPDZ256rrkz: |
| case X86::VDIVPDZrrb: |
| case X86::VDIVPDZrrbk: |
| case X86::VDIVPDZrrbkz: |
| case X86::VDIVPDZrm: |
| case X86::VDIVPDZrmb: |
| case X86::VDIVPDZrmbk: |
| case X86::VDIVPDZrmbkz: |
| case X86::VDIVPDZrmk: |
| case X86::VDIVPDZrmkz: |
| case X86::VDIVPDZrr: |
| case X86::VDIVPDZrrk: |
| case X86::VDIVPDZrrkz: |
| case X86::VDIVPSZ128rm: |
| case X86::VDIVPSZ128rmb: |
| case X86::VDIVPSZ128rmbk: |
| case X86::VDIVPSZ128rmbkz: |
| case X86::VDIVPSZ128rmk: |
| case X86::VDIVPSZ128rmkz: |
| case X86::VDIVPSZ128rr: |
| case X86::VDIVPSZ128rrk: |
| case X86::VDIVPSZ128rrkz: |
| case X86::VDIVPSZ256rm: |
| case X86::VDIVPSZ256rmb: |
| case X86::VDIVPSZ256rmbk: |
| case X86::VDIVPSZ256rmbkz: |
| case X86::VDIVPSZ256rmk: |
| case X86::VDIVPSZ256rmkz: |
| case X86::VDIVPSZ256rr: |
| case X86::VDIVPSZ256rrk: |
| case X86::VDIVPSZ256rrkz: |
| case X86::VDIVPSZrrb: |
| case X86::VDIVPSZrrbk: |
| case X86::VDIVPSZrrbkz: |
| case X86::VDIVPSZrm: |
| case X86::VDIVPSZrmb: |
| case X86::VDIVPSZrmbk: |
| case X86::VDIVPSZrmbkz: |
| case X86::VDIVPSZrmk: |
| case X86::VDIVPSZrmkz: |
| case X86::VDIVPSZrr: |
| case X86::VDIVPSZrrk: |
| case X86::VDIVPSZrrkz: |
| case X86::VDIVSDZrm: |
| case X86::VDIVSDZrr: |
| case X86::VDIVSDZrm_Int: |
| case X86::VDIVSDZrm_Intk: |
| case X86::VDIVSDZrm_Intkz: |
| case X86::VDIVSDZrr_Int: |
| case X86::VDIVSDZrr_Intk: |
| case X86::VDIVSDZrr_Intkz: |
| case X86::VDIVSDZrrb_Int: |
| case X86::VDIVSDZrrb_Intk: |
| case X86::VDIVSDZrrb_Intkz: |
| case X86::VDIVSSZrm: |
| case X86::VDIVSSZrr: |
| case X86::VDIVSSZrm_Int: |
| case X86::VDIVSSZrm_Intk: |
| case X86::VDIVSSZrm_Intkz: |
| case X86::VDIVSSZrr_Int: |
| case X86::VDIVSSZrr_Intk: |
| case X86::VDIVSSZrr_Intkz: |
| case X86::VDIVSSZrrb_Int: |
| case X86::VDIVSSZrrb_Intk: |
| case X86::VDIVSSZrrb_Intkz: |
| case X86::VSQRTPDZ128m: |
| case X86::VSQRTPDZ128mb: |
| case X86::VSQRTPDZ128mbk: |
| case X86::VSQRTPDZ128mbkz: |
| case X86::VSQRTPDZ128mk: |
| case X86::VSQRTPDZ128mkz: |
| case X86::VSQRTPDZ128r: |
| case X86::VSQRTPDZ128rk: |
| case X86::VSQRTPDZ128rkz: |
| case X86::VSQRTPDZ256m: |
| case X86::VSQRTPDZ256mb: |
| case X86::VSQRTPDZ256mbk: |
| case X86::VSQRTPDZ256mbkz: |
| case X86::VSQRTPDZ256mk: |
| case X86::VSQRTPDZ256mkz: |
| case X86::VSQRTPDZ256r: |
| case X86::VSQRTPDZ256rk: |
| case X86::VSQRTPDZ256rkz: |
| case X86::VSQRTPDZm: |
| case X86::VSQRTPDZmb: |
| case X86::VSQRTPDZmbk: |
| case X86::VSQRTPDZmbkz: |
| case X86::VSQRTPDZmk: |
| case X86::VSQRTPDZmkz: |
| case X86::VSQRTPDZr: |
| case X86::VSQRTPDZrb: |
| case X86::VSQRTPDZrbk: |
| case X86::VSQRTPDZrbkz: |
| case X86::VSQRTPDZrk: |
| case X86::VSQRTPDZrkz: |
| case X86::VSQRTPSZ128m: |
| case X86::VSQRTPSZ128mb: |
| case X86::VSQRTPSZ128mbk: |
| case X86::VSQRTPSZ128mbkz: |
| case X86::VSQRTPSZ128mk: |
| case X86::VSQRTPSZ128mkz: |
| case X86::VSQRTPSZ128r: |
| case X86::VSQRTPSZ128rk: |
| case X86::VSQRTPSZ128rkz: |
| case X86::VSQRTPSZ256m: |
| case X86::VSQRTPSZ256mb: |
| case X86::VSQRTPSZ256mbk: |
| case X86::VSQRTPSZ256mbkz: |
| case X86::VSQRTPSZ256mk: |
| case X86::VSQRTPSZ256mkz: |
| case X86::VSQRTPSZ256r: |
| case X86::VSQRTPSZ256rk: |
| case X86::VSQRTPSZ256rkz: |
| case X86::VSQRTPSZm: |
| case X86::VSQRTPSZmb: |
| case X86::VSQRTPSZmbk: |
| case X86::VSQRTPSZmbkz: |
| case X86::VSQRTPSZmk: |
| case X86::VSQRTPSZmkz: |
| case X86::VSQRTPSZr: |
| case X86::VSQRTPSZrb: |
| case X86::VSQRTPSZrbk: |
| case X86::VSQRTPSZrbkz: |
| case X86::VSQRTPSZrk: |
| case X86::VSQRTPSZrkz: |
| case X86::VSQRTSDZm: |
| case X86::VSQRTSDZm_Int: |
| case X86::VSQRTSDZm_Intk: |
| case X86::VSQRTSDZm_Intkz: |
| case X86::VSQRTSDZr: |
| case X86::VSQRTSDZr_Int: |
| case X86::VSQRTSDZr_Intk: |
| case X86::VSQRTSDZr_Intkz: |
| case X86::VSQRTSDZrb_Int: |
| case X86::VSQRTSDZrb_Intk: |
| case X86::VSQRTSDZrb_Intkz: |
| case X86::VSQRTSSZm: |
| case X86::VSQRTSSZm_Int: |
| case X86::VSQRTSSZm_Intk: |
| case X86::VSQRTSSZm_Intkz: |
| case X86::VSQRTSSZr: |
| case X86::VSQRTSSZr_Int: |
| case X86::VSQRTSSZr_Intk: |
| case X86::VSQRTSSZr_Intkz: |
| case X86::VSQRTSSZrb_Int: |
| case X86::VSQRTSSZrb_Intk: |
| case X86::VSQRTSSZrb_Intkz: |
| |
| case X86::VGATHERDPDYrm: |
| case X86::VGATHERDPDZ128rm: |
| case X86::VGATHERDPDZ256rm: |
| case X86::VGATHERDPDZrm: |
| case X86::VGATHERDPDrm: |
| case X86::VGATHERDPSYrm: |
| case X86::VGATHERDPSZ128rm: |
| case X86::VGATHERDPSZ256rm: |
| case X86::VGATHERDPSZrm: |
| case X86::VGATHERDPSrm: |
| case X86::VGATHERPF0DPDm: |
| case X86::VGATHERPF0DPSm: |
| case X86::VGATHERPF0QPDm: |
| case X86::VGATHERPF0QPSm: |
| case X86::VGATHERPF1DPDm: |
| case X86::VGATHERPF1DPSm: |
| case X86::VGATHERPF1QPDm: |
| case X86::VGATHERPF1QPSm: |
| case X86::VGATHERQPDYrm: |
| case X86::VGATHERQPDZ128rm: |
| case X86::VGATHERQPDZ256rm: |
| case X86::VGATHERQPDZrm: |
| case X86::VGATHERQPDrm: |
| case X86::VGATHERQPSYrm: |
| case X86::VGATHERQPSZ128rm: |
| case X86::VGATHERQPSZ256rm: |
| case X86::VGATHERQPSZrm: |
| case X86::VGATHERQPSrm: |
| case X86::VPGATHERDDYrm: |
| case X86::VPGATHERDDZ128rm: |
| case X86::VPGATHERDDZ256rm: |
| case X86::VPGATHERDDZrm: |
| case X86::VPGATHERDDrm: |
| case X86::VPGATHERDQYrm: |
| case X86::VPGATHERDQZ128rm: |
| case X86::VPGATHERDQZ256rm: |
| case X86::VPGATHERDQZrm: |
| case X86::VPGATHERDQrm: |
| case X86::VPGATHERQDYrm: |
| case X86::VPGATHERQDZ128rm: |
| case X86::VPGATHERQDZ256rm: |
| case X86::VPGATHERQDZrm: |
| case X86::VPGATHERQDrm: |
| case X86::VPGATHERQQYrm: |
| case X86::VPGATHERQQZ128rm: |
| case X86::VPGATHERQQZ256rm: |
| case X86::VPGATHERQQZrm: |
| case X86::VPGATHERQQrm: |
| case X86::VSCATTERDPDZ128mr: |
| case X86::VSCATTERDPDZ256mr: |
| case X86::VSCATTERDPDZmr: |
| case X86::VSCATTERDPSZ128mr: |
| case X86::VSCATTERDPSZ256mr: |
| case X86::VSCATTERDPSZmr: |
| case X86::VSCATTERPF0DPDm: |
| case X86::VSCATTERPF0DPSm: |
| case X86::VSCATTERPF0QPDm: |
| case X86::VSCATTERPF0QPSm: |
| case X86::VSCATTERPF1DPDm: |
| case X86::VSCATTERPF1DPSm: |
| case X86::VSCATTERPF1QPDm: |
| case X86::VSCATTERPF1QPSm: |
| case X86::VSCATTERQPDZ128mr: |
| case X86::VSCATTERQPDZ256mr: |
| case X86::VSCATTERQPDZmr: |
| case X86::VSCATTERQPSZ128mr: |
| case X86::VSCATTERQPSZ256mr: |
| case X86::VSCATTERQPSZmr: |
| case X86::VPSCATTERDDZ128mr: |
| case X86::VPSCATTERDDZ256mr: |
| case X86::VPSCATTERDDZmr: |
| case X86::VPSCATTERDQZ128mr: |
| case X86::VPSCATTERDQZ256mr: |
| case X86::VPSCATTERDQZmr: |
| case X86::VPSCATTERQDZ128mr: |
| case X86::VPSCATTERQDZ256mr: |
| case X86::VPSCATTERQDZmr: |
| case X86::VPSCATTERQQZ128mr: |
| case X86::VPSCATTERQQZ256mr: |
| case X86::VPSCATTERQQZmr: |
| return true; |
| } |
| } |
| |
| bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, |
| const MachineRegisterInfo *MRI, |
| const MachineInstr &DefMI, |
| unsigned DefIdx, |
| const MachineInstr &UseMI, |
| unsigned UseIdx) const { |
| return isHighLatencyDef(DefMI.getOpcode()); |
| } |
| |
| bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, |
| const MachineBasicBlock *MBB) const { |
| assert((Inst.getNumOperands() == 3 || Inst.getNumOperands() == 4) && |
| "Reassociation needs binary operators"); |
| |
| // Integer binary math/logic instructions have a third source operand: |
| // the EFLAGS register. That operand must be both defined here and never |
| // used; ie, it must be dead. If the EFLAGS operand is live, then we can |
| // not change anything because rearranging the operands could affect other |
| // instructions that depend on the exact status flags (zero, sign, etc.) |
| // that are set by using these particular operands with this operation. |
| if (Inst.getNumOperands() == 4) { |
| assert(Inst.getOperand(3).isReg() && |
| Inst.getOperand(3).getReg() == X86::EFLAGS && |
| "Unexpected operand in reassociable instruction"); |
| if (!Inst.getOperand(3).isDead()) |
| return false; |
| } |
| |
| return TargetInstrInfo::hasReassociableOperands(Inst, MBB); |
| } |
| |
| // TODO: There are many more machine instruction opcodes to match: |
| // 1. Other data types (integer, vectors) |
| // 2. Other math / logic operations (xor, or) |
| // 3. Other forms of the same operation (intrinsics and other variants) |
| bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const { |
| switch (Inst.getOpcode()) { |
| case X86::AND8rr: |
| case X86::AND16rr: |
| case X86::AND32rr: |
| case X86::AND64rr: |
| case X86::OR8rr: |
| case X86::OR16rr: |
| case X86::OR32rr: |
| case X86::OR64rr: |
| case X86::XOR8rr: |
| case X86::XOR16rr: |
| case X86::XOR32rr: |
| case X86::XOR64rr: |
| case X86::IMUL16rr: |
| case X86::IMUL32rr: |
| case X86::IMUL64rr: |
| case X86::PANDrr: |
| case X86::PORrr: |
| case X86::PXORrr: |
| case X86::ANDPDrr: |
| case X86::ANDPSrr: |
| case X86::ORPDrr: |
| case X86::ORPSrr: |
| case X86::XORPDrr: |
| case X86::XORPSrr: |
| case X86::PADDBrr: |
| case X86::PADDWrr: |
| case X86::PADDDrr: |
| case X86::PADDQrr: |
| case X86::VPANDrr: |
| case X86::VPANDYrr: |
| case X86::VPANDDZ128rr: |
| case X86::VPANDDZ256rr: |
| case X86::VPANDDZrr: |
| case X86::VPANDQZ128rr: |
| case X86::VPANDQZ256rr: |
| case X86::VPANDQZrr: |
| case X86::VPORrr: |
| case X86::VPORYrr: |
| case X86::VPORDZ128rr: |
| case X86::VPORDZ256rr: |
| case X86::VPORDZrr: |
| case X86::VPORQZ128rr: |
| case X86::VPORQZ256rr: |
| case X86::VPORQZrr: |
| case X86::VPXORrr: |
| case X86::VPXORYrr: |
| case X86::VPXORDZ128rr: |
| case X86::VPXORDZ256rr: |
| case X86::VPXORDZrr: |
| case X86::VPXORQZ128rr: |
| case X86::VPXORQZ256rr: |
| case X86::VPXORQZrr: |
| case X86::VANDPDrr: |
| case X86::VANDPSrr: |
| case X86::VANDPDYrr: |
| case X86::VANDPSYrr: |
| case X86::VANDPDZ128rr: |
| case X86::VANDPSZ128rr: |
| case X86::VANDPDZ256rr: |
| case X86::VANDPSZ256rr: |
| case X86::VANDPDZrr: |
| case X86::VANDPSZrr: |
| case X86::VORPDrr: |
| case X86::VORPSrr: |
| case X86::VORPDYrr: |
| case X86::VORPSYrr: |
| case X86::VORPDZ128rr: |
| case X86::VORPSZ128rr: |
| case X86::VORPDZ256rr: |
| case X86::VORPSZ256rr: |
| case X86::VORPDZrr: |
| case X86::VORPSZrr: |
| case X86::VXORPDrr: |
| case X86::VXORPSrr: |
| case X86::VXORPDYrr: |
| case X86::VXORPSYrr: |
| case X86::VXORPDZ128rr: |
| case X86::VXORPSZ128rr: |
| case X86::VXORPDZ256rr: |
| case X86::VXORPSZ256rr: |
| case X86::VXORPDZrr: |
| case X86::VXORPSZrr: |
| case X86::KADDBrr: |
| case X86::KADDWrr: |
| case X86::KADDDrr: |
| case X86::KADDQrr: |
| case X86::KANDBrr: |
| case X86::KANDWrr: |
| case X86::KANDDrr: |
| case X86::KANDQrr: |
| case X86::KORBrr: |
| case X86::KORWrr: |
| case X86::KORDrr: |
| case X86::KORQrr: |
| case X86::KXORBrr: |
| case X86::KXORWrr: |
| case X86::KXORDrr: |
| case X86::KXORQrr: |
| case X86::VPADDBrr: |
| case X86::VPADDWrr: |
| case X86::VPADDDrr: |
| case X86::VPADDQrr: |
| case X86::VPADDBYrr: |
| case X86::VPADDWYrr: |
| case X86::VPADDDYrr: |
| case X86::VPADDQYrr: |
| case X86::VPADDBZ128rr: |
| case X86::VPADDWZ128rr: |
| case X86::VPADDDZ128rr: |
| case X86::VPADDQZ128rr: |
| case X86::VPADDBZ256rr: |
| case X86::VPADDWZ256rr: |
| case X86::VPADDDZ256rr: |
| case X86::VPADDQZ256rr: |
| case X86::VPADDBZrr: |
| case X86::VPADDWZrr: |
| case X86::VPADDDZrr: |
| case X86::VPADDQZrr: |
| case X86::VPMULLWrr: |
| case X86::VPMULLWYrr: |
| case X86::VPMULLWZ128rr: |
| case X86::VPMULLWZ256rr: |
| case X86::VPMULLWZrr: |
| case X86::VPMULLDrr: |
| case X86::VPMULLDYrr: |
| case X86::VPMULLDZ128rr: |
| case X86::VPMULLDZ256rr: |
| case X86::VPMULLDZrr: |
| case X86::VPMULLQZ128rr: |
| case X86::VPMULLQZ256rr: |
| case X86::VPMULLQZrr: |
| // Normal min/max instructions are not commutative because of NaN and signed |
| // zero semantics, but these are. Thus, there's no need to check for global |
| // relaxed math; the instructions themselves have the properties we need. |
| case X86::MAXCPDrr: |
| case X86::MAXCPSrr: |
| case X86::MAXCSDrr: |
| case X86::MAXCSSrr: |
| case X86::MINCPDrr: |
| case X86::MINCPSrr: |
| case X86::MINCSDrr: |
| case X86::MINCSSrr: |
| case X86::VMAXCPDrr: |
| case X86::VMAXCPSrr: |
| case X86::VMAXCPDYrr: |
| case X86::VMAXCPSYrr: |
| case X86::VMAXCPDZ128rr: |
| case X86::VMAXCPSZ128rr: |
| case X86::VMAXCPDZ256rr: |
| case X86::VMAXCPSZ256rr: |
| case X86::VMAXCPDZrr: |
| case X86::VMAXCPSZrr: |
| case X86::VMAXCSDrr: |
| case X86::VMAXCSSrr: |
| case X86::VMAXCSDZrr: |
| case X86::VMAXCSSZrr: |
| case X86::VMINCPDrr: |
| case X86::VMINCPSrr: |
| case X86::VMINCPDYrr: |
| case X86::VMINCPSYrr: |
| case X86::VMINCPDZ128rr: |
| case X86::VMINCPSZ128rr: |
| case X86::VMINCPDZ256rr: |
| case X86::VMINCPSZ256rr: |
| case X86::VMINCPDZrr: |
| case X86::VMINCPSZrr: |
| case X86::VMINCSDrr: |
| case X86::VMINCSSrr: |
| case X86::VMINCSDZrr: |
| case X86::VMINCSSZrr: |
| return true; |
| case X86::ADDPDrr: |
| case X86::ADDPSrr: |
| case X86::ADDSDrr: |
| case X86::ADDSSrr: |
| case X86::MULPDrr: |
| case X86::MULPSrr: |
| case X86::MULSDrr: |
| case X86::MULSSrr: |
| case X86::VADDPDrr: |
| case X86::VADDPSrr: |
| case X86::VADDPDYrr: |
| case X86::VADDPSYrr: |
| case X86::VADDPDZ128rr: |
| case X86::VADDPSZ128rr: |
| case X86::VADDPDZ256rr: |
| case X86::VADDPSZ256rr: |
| case X86::VADDPDZrr: |
| case X86::VADDPSZrr: |
| case X86::VADDSDrr: |
| case X86::VADDSSrr: |
| case X86::VADDSDZrr: |
| case X86::VADDSSZrr: |
| case X86::VMULPDrr: |
| case X86::VMULPSrr: |
| case X86::VMULPDYrr: |
| case X86::VMULPSYrr: |
| case X86::VMULPDZ128rr: |
| case X86::VMULPSZ128rr: |
| case X86::VMULPDZ256rr: |
| case X86::VMULPSZ256rr: |
| case X86::VMULPDZrr: |
| case X86::VMULPSZrr: |
| case X86::VMULSDrr: |
| case X86::VMULSSrr: |
| case X86::VMULSDZrr: |
| case X86::VMULSSZrr: |
| return Inst.getParent()->getParent()->getTarget().Options.UnsafeFPMath; |
| default: |
| return false; |
| } |
| } |
| |
| /// This is an architecture-specific helper function of reassociateOps. |
| /// Set special operand attributes for new instructions after reassociation. |
| void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, |
| MachineInstr &OldMI2, |
| MachineInstr &NewMI1, |
| MachineInstr &NewMI2) const { |
| // Integer instructions define an implicit EFLAGS source register operand as |
| // the third source (fourth total) operand. |
| if (OldMI1.getNumOperands() != 4 || OldMI2.getNumOperands() != 4) |
| return; |
| |
| assert(NewMI1.getNumOperands() == 4 && NewMI2.getNumOperands() == 4 && |
| "Unexpected instruction type for reassociation"); |
| |
| MachineOperand &OldOp1 = OldMI1.getOperand(3); |
| MachineOperand &OldOp2 = OldMI2.getOperand(3); |
| MachineOperand &NewOp1 = NewMI1.getOperand(3); |
| MachineOperand &NewOp2 = NewMI2.getOperand(3); |
| |
| assert(OldOp1.isReg() && OldOp1.getReg() == X86::EFLAGS && OldOp1.isDead() && |
| "Must have dead EFLAGS operand in reassociable instruction"); |
| assert(OldOp2.isReg() && OldOp2.getReg() == X86::EFLAGS && OldOp2.isDead() && |
| "Must have dead EFLAGS operand in reassociable instruction"); |
| |
| (void)OldOp1; |
| (void)OldOp2; |
| |
| assert(NewOp1.isReg() && NewOp1.getReg() == X86::EFLAGS && |
| "Unexpected operand in reassociable instruction"); |
| assert(NewOp2.isReg() && NewOp2.getReg() == X86::EFLAGS && |
| "Unexpected operand in reassociable instruction"); |
| |
| // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations |
| // of this pass or other passes. The EFLAGS operands must be dead in these new |
| // instructions because the EFLAGS operands in the original instructions must |
| // be dead in order for reassociation to occur. |
| NewOp1.setIsDead(); |
| NewOp2.setIsDead(); |
| } |
| |
| std::pair<unsigned, unsigned> |
| X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { |
| return std::make_pair(TF, 0u); |
| } |
| |
| ArrayRef<std::pair<unsigned, const char *>> |
| X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { |
| using namespace X86II; |
| static const std::pair<unsigned, const char *> TargetFlags[] = { |
| {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, |
| {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, |
| {MO_GOT, "x86-got"}, |
| {MO_GOTOFF, "x86-gotoff"}, |
| {MO_GOTPCREL, "x86-gotpcrel"}, |
| {MO_PLT, "x86-plt"}, |
| {MO_TLSGD, "x86-tlsgd"}, |
| {MO_TLSLD, "x86-tlsld"}, |
| {MO_TLSLDM, "x86-tlsldm"}, |
| {MO_GOTTPOFF, "x86-gottpoff"}, |
| {MO_INDNTPOFF, "x86-indntpoff"}, |
| {MO_TPOFF, "x86-tpoff"}, |
| {MO_DTPOFF, "x86-dtpoff"}, |
| {MO_NTPOFF, "x86-ntpoff"}, |
| {MO_GOTNTPOFF, "x86-gotntpoff"}, |
| {MO_DLLIMPORT, "x86-dllimport"}, |
| {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, |
| {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, |
| {MO_TLVP, "x86-tlvp"}, |
| {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, |
| {MO_SECREL, "x86-secrel"}}; |
| return makeArrayRef(TargetFlags); |
| } |
| |
| namespace { |
| /// Create Global Base Reg pass. This initializes the PIC |
| /// global base register for x86-32. |
| struct CGBR : public MachineFunctionPass { |
| static char ID; |
| CGBR() : MachineFunctionPass(ID) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| const X86TargetMachine *TM = |
| static_cast<const X86TargetMachine *>(&MF.getTarget()); |
| const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>(); |
| |
| // Don't do anything in the 64-bit small and kernel code models. They use |
| // RIP-relative addressing for everything. |
| if (STI.is64Bit() && (TM->getCodeModel() == CodeModel::Small || |
| TM->getCodeModel() == CodeModel::Kernel)) |
| return false; |
| |
| // Only emit a global base reg in PIC mode. |
| if (!TM->isPositionIndependent()) |
| return false; |
| |
| X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| unsigned GlobalBaseReg = X86FI->getGlobalBaseReg(); |
| |
| // If we didn't need a GlobalBaseReg, don't insert code. |
| if (GlobalBaseReg == 0) |
| return false; |
| |
| // Insert the set of GlobalBaseReg into the first MBB of the function |
| MachineBasicBlock &FirstMBB = MF.front(); |
| MachineBasicBlock::iterator MBBI = FirstMBB.begin(); |
| DebugLoc DL = FirstMBB.findDebugLoc(MBBI); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| const X86InstrInfo *TII = STI.getInstrInfo(); |
| |
| unsigned PC; |
| if (STI.isPICStyleGOT()) |
| PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); |
| else |
| PC = GlobalBaseReg; |
| |
| if (STI.is64Bit()) { |
| if (TM->getCodeModel() == CodeModel::Medium) { |
| // In the medium code model, use a RIP-relative LEA to materialize the |
| // GOT. |
| BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) |
| .addReg(X86::RIP) |
| .addImm(0) |
| .addReg(0) |
| .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") |
| .addReg(0); |
| } else if (TM->getCodeModel() == CodeModel::Large) { |
| // Loading the GOT in the large code model requires math with labels, |
| // so we use a pseudo instruction and expand it during MC emission. |
| unsigned Scratch = RegInfo.createVirtualRegister(&X86::GR64RegClass); |
| BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVGOT64r), PC) |
| .addReg(Scratch, RegState::Undef | RegState::Define) |
| .addExternalSymbol("_GLOBAL_OFFSET_TABLE_"); |
| } else { |
| llvm_unreachable("unexpected code model"); |
| } |
| } else { |
| // Operand of MovePCtoStack is completely ignored by asm printer. It's |
| // only used in JIT code emission as displacement to pc. |
| BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); |
| |
| // If we're using vanilla 'GOT' PIC style, we should use relative |
| // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. |
| if (STI.isPICStyleGOT()) { |
| // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], |
| // %some_register |
| BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) |
| .addReg(PC) |
| .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", |
| X86II::MO_GOT_ABSOLUTE_ADDRESS); |
| } |
| } |
| |
| return true; |
| } |
| |
| StringRef getPassName() const override { |
| return "X86 PIC Global Base Reg Initialization"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| } |
| |
| char CGBR::ID = 0; |
| FunctionPass* |
| llvm::createX86GlobalBaseRegPass() { return new CGBR(); } |
| |
| namespace { |
| struct LDTLSCleanup : public MachineFunctionPass { |
| static char ID; |
| LDTLSCleanup() : MachineFunctionPass(ID) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| |
| X86MachineFunctionInfo *MFI = MF.getInfo<X86MachineFunctionInfo>(); |
| if (MFI->getNumLocalDynamicTLSAccesses() < 2) { |
| // No point folding accesses if there isn't at least two. |
| return false; |
| } |
| |
| MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); |
| return VisitNode(DT->getRootNode(), 0); |
| } |
| |
| // Visit the dominator subtree rooted at Node in pre-order. |
| // If TLSBaseAddrReg is non-null, then use that to replace any |
| // TLS_base_addr instructions. Otherwise, create the register |
| // when the first such instruction is seen, and then use it |
| // as we encounter more instructions. |
| bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { |
| MachineBasicBlock *BB = Node->getBlock(); |
| bool Changed = false; |
| |
| // Traverse the current block. |
| for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; |
| ++I) { |
| switch (I->getOpcode()) { |
| case X86::TLS_base_addr32: |
| case X86::TLS_base_addr64: |
| if (TLSBaseAddrReg) |
| I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); |
| else |
| I = SetRegister(*I, &TLSBaseAddrReg); |
| Changed = true; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // Visit the children of this block in the dominator tree. |
| for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end(); |
| I != E; ++I) { |
| Changed |= VisitNode(*I, TLSBaseAddrReg); |
| } |
| |
| return Changed; |
| } |
| |
| // Replace the TLS_base_addr instruction I with a copy from |
| // TLSBaseAddrReg, returning the new instruction. |
| MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, |
| unsigned TLSBaseAddrReg) { |
| MachineFunction *MF = I.getParent()->getParent(); |
| const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); |
| const bool is64Bit = STI.is64Bit(); |
| const X86InstrInfo *TII = STI.getInstrInfo(); |
| |
| // Insert a Copy from TLSBaseAddrReg to RAX/EAX. |
| MachineInstr *Copy = |
| BuildMI(*I.getParent(), I, I.getDebugLoc(), |
| TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) |
| .addReg(TLSBaseAddrReg); |
| |
| // Erase the TLS_base_addr instruction. |
| I.eraseFromParent(); |
| |
| return Copy; |
| } |
| |
| // Create a virtual register in *TLSBaseAddrReg, and populate it by |
| // inserting a copy instruction after I. Returns the new instruction. |
| MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { |
| MachineFunction *MF = I.getParent()->getParent(); |
| const X86Subtarget &STI = MF->getSubtarget<X86Subtarget>(); |
| const bool is64Bit = STI.is64Bit(); |
| const X86InstrInfo *TII = STI.getInstrInfo(); |
| |
| // Create a virtual register for the TLS base address. |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit |
| ? &X86::GR64RegClass |
| : &X86::GR32RegClass); |
| |
| // Insert a copy from RAX/EAX to TLSBaseAddrReg. |
| MachineInstr *Next = I.getNextNode(); |
| MachineInstr *Copy = |
| BuildMI(*I.getParent(), Next, I.getDebugLoc(), |
| TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) |
| .addReg(is64Bit ? X86::RAX : X86::EAX); |
| |
| return Copy; |
| } |
| |
| StringRef getPassName() const override { |
| return "Local Dynamic TLS Access Clean-up"; |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addRequired<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| }; |
| } |
| |
| char LDTLSCleanup::ID = 0; |
| FunctionPass* |
| llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } |
| |
| /// Constants defining how certain sequences should be outlined. |
| /// |
| /// \p MachineOutlinerDefault implies that the function is called with a call |
| /// instruction, and a return must be emitted for the outlined function frame. |
| /// |
| /// That is, |
| /// |
| /// I1 OUTLINED_FUNCTION: |
| /// I2 --> call OUTLINED_FUNCTION I1 |
| /// I3 I2 |
| /// I3 |
| /// ret |
| /// |
| /// * Call construction overhead: 1 (call instruction) |
| /// * Frame construction overhead: 1 (return instruction) |
| /// |
| /// \p MachineOutlinerTailCall implies that the function is being tail called. |
| /// A jump is emitted instead of a call, and the return is already present in |
| /// the outlined sequence. That is, |
| /// |
| /// I1 OUTLINED_FUNCTION: |
| /// I2 --> jmp OUTLINED_FUNCTION I1 |
| /// ret I2 |
| /// ret |
| /// |
| /// * Call construction overhead: 1 (jump instruction) |
| /// * Frame construction overhead: 0 (don't need to return) |
| /// |
| enum MachineOutlinerClass { |
| MachineOutlinerDefault, |
| MachineOutlinerTailCall |
| }; |
| |
| outliner::OutlinedFunction X86InstrInfo::getOutliningCandidateInfo( |
| std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { |
| unsigned SequenceSize = |
| std::accumulate(RepeatedSequenceLocs[0].front(), |
| std::next(RepeatedSequenceLocs[0].back()), 0, |
| [](unsigned Sum, const MachineInstr &MI) { |
| // FIXME: x86 doesn't implement getInstSizeInBytes, so |
| // we can't tell the cost. Just assume each instruction |
| // is one byte. |
| if (MI.isDebugInstr() || MI.isKill()) |
| return Sum; |
| return Sum + 1; |
| }); |
| |
| // FIXME: Use real size in bytes for call and ret instructions. |
| if (RepeatedSequenceLocs[0].back()->isTerminator()) { |
| for (outliner::Candidate &C : RepeatedSequenceLocs) |
| C.setCallInfo(MachineOutlinerTailCall, 1); |
| |
| return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, |
| 0, // Number of bytes to emit frame. |
| MachineOutlinerTailCall // Type of frame. |
| ); |
| } |
| |
| for (outliner::Candidate &C : RepeatedSequenceLocs) |
| C.setCallInfo(MachineOutlinerDefault, 1); |
| |
| return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, |
| MachineOutlinerDefault); |
| } |
| |
| bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF, |
| bool OutlineFromLinkOnceODRs) const { |
| const Function &F = MF.getFunction(); |
| |
| // Does the function use a red zone? If it does, then we can't risk messing |
| // with the stack. |
| if (!F.hasFnAttribute(Attribute::NoRedZone)) { |
| // It could have a red zone. If it does, then we don't want to touch it. |
| const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>(); |
| if (!X86FI || X86FI->getUsesRedZone()) |
| return false; |
| } |
| |
| // If we *don't* want to outline from things that could potentially be deduped |
| // then return false. |
| if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) |
| return false; |
| |
| // This function is viable for outlining, so return true. |
| return true; |
| } |
| |
| outliner::InstrType |
| X86InstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const { |
| MachineInstr &MI = *MIT; |
| // Don't allow debug values to impact outlining type. |
| if (MI.isDebugInstr() || MI.isIndirectDebugValue()) |
| return outliner::InstrType::Invisible; |
| |
| // At this point, KILL instructions don't really tell us much so we can go |
| // ahead and skip over them. |
| if (MI.isKill()) |
| return outliner::InstrType::Invisible; |
| |
| // Is this a tail call? If yes, we can outline as a tail call. |
| if (isTailCall(MI)) |
| return outliner::InstrType::Legal; |
| |
| // Is this the terminator of a basic block? |
| if (MI.isTerminator() || MI.isReturn()) { |
| |
| // Does its parent have any successors in its MachineFunction? |
| if (MI.getParent()->succ_empty()) |
| return outliner::InstrType::Legal; |
| |
| // It does, so we can't tail call it. |
| return outliner::InstrType::Illegal; |
| } |
| |
| // Don't outline anything that modifies or reads from the stack pointer. |
| // |
| // FIXME: There are instructions which are being manually built without |
| // explicit uses/defs so we also have to check the MCInstrDesc. We should be |
| // able to remove the extra checks once those are fixed up. For example, |
| // sometimes we might get something like %rax = POP64r 1. This won't be |
| // caught by modifiesRegister or readsRegister even though the instruction |
| // really ought to be formed so that modifiesRegister/readsRegister would |
| // catch it. |
| if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || |
| MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || |
| MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) |
| return outliner::InstrType::Illegal; |
| |
| // Outlined calls change the instruction pointer, so don't read from it. |
| if (MI.readsRegister(X86::RIP, &RI) || |
| MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || |
| MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) |
| return outliner::InstrType::Illegal; |
| |
| // Positions can't safely be outlined. |
| if (MI.isPosition()) |
| return outliner::InstrType::Illegal; |
| |
| // Make sure none of the operands of this instruction do anything tricky. |
| for (const MachineOperand &MOP : MI.operands()) |
| if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || |
| MOP.isTargetIndex()) |
| return outliner::InstrType::Illegal; |
| |
| return outliner::InstrType::Legal; |
| } |
| |
| void X86InstrInfo::buildOutlinedFrame(MachineBasicBlock &MBB, |
| MachineFunction &MF, |
| const outliner::OutlinedFunction &OF) |
| const { |
| // If we're a tail call, we already have a return, so don't do anything. |
| if (OF.FrameConstructionID == MachineOutlinerTailCall) |
| return; |
| |
| // We're a normal call, so our sequence doesn't have a return instruction. |
| // Add it in. |
| MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ)); |
| MBB.insert(MBB.end(), retq); |
| } |
| |
| MachineBasicBlock::iterator |
| X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator &It, |
| MachineFunction &MF, |
| const outliner::Candidate &C) const { |
| // Is it a tail call? |
| if (C.CallConstructionID == MachineOutlinerTailCall) { |
| // Yes, just insert a JMP. |
| It = MBB.insert(It, |
| BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) |
| .addGlobalAddress(M.getNamedValue(MF.getName()))); |
| } else { |
| // No, insert a call. |
| It = MBB.insert(It, |
| BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) |
| .addGlobalAddress(M.getNamedValue(MF.getName()))); |
| } |
| |
| return It; |
| } |