| //===- HexagonConstExtenders.cpp ------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "HexagonInstrInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Pass.h" |
| #include <map> |
| #include <set> |
| #include <utility> |
| #include <vector> |
| |
| #define DEBUG_TYPE "hexagon-cext-opt" |
| |
| using namespace llvm; |
| |
| static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold", |
| cl::init(3), cl::Hidden, cl::ZeroOrMore, |
| cl::desc("Minimum number of extenders to trigger replacement")); |
| |
| static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0), |
| cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements")); |
| |
| namespace llvm { |
| void initializeHexagonConstExtendersPass(PassRegistry&); |
| FunctionPass *createHexagonConstExtenders(); |
| } |
| |
| static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) { |
| assert(isPowerOf2_32(A)); |
| int32_t U = (V & -A) + O; |
| return U >= V ? U : U+A; |
| } |
| |
| static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) { |
| assert(isPowerOf2_32(A)); |
| int32_t U = (V & -A) + O; |
| return U <= V ? U : U-A; |
| } |
| |
| namespace { |
| struct OffsetRange { |
| // The range of values between Min and Max that are of form Align*N+Offset, |
| // for some integer N. Min and Max are required to be of that form as well, |
| // except in the case of an empty range. |
| int32_t Min = INT_MIN, Max = INT_MAX; |
| uint8_t Align = 1; |
| uint8_t Offset = 0; |
| |
| OffsetRange() = default; |
| OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0) |
| : Min(L), Max(H), Align(A), Offset(O) {} |
| OffsetRange &intersect(OffsetRange A) { |
| if (Align < A.Align) |
| std::swap(*this, A); |
| |
| // Align >= A.Align. |
| if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) { |
| Min = adjustUp(std::max(Min, A.Min), Align, Offset); |
| Max = adjustDown(std::min(Max, A.Max), Align, Offset); |
| } else { |
| // Make an empty range. |
| Min = 0; |
| Max = -1; |
| } |
| // Canonicalize empty ranges. |
| if (Min > Max) |
| std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1); |
| return *this; |
| } |
| OffsetRange &shift(int32_t S) { |
| Min += S; |
| Max += S; |
| Offset = (Offset+S) % Align; |
| return *this; |
| } |
| OffsetRange &extendBy(int32_t D) { |
| // If D < 0, extend Min, otherwise extend Max. |
| assert(D % Align == 0); |
| if (D < 0) |
| Min = (INT_MIN-D < Min) ? Min+D : INT_MIN; |
| else |
| Max = (INT_MAX-D > Max) ? Max+D : INT_MAX; |
| return *this; |
| } |
| bool empty() const { |
| return Min > Max; |
| } |
| bool contains(int32_t V) const { |
| return Min <= V && V <= Max && (V-Offset) % Align == 0; |
| } |
| bool operator==(const OffsetRange &R) const { |
| return Min == R.Min && Max == R.Max && Align == R.Align; |
| } |
| bool operator!=(const OffsetRange &R) const { |
| return !operator==(R); |
| } |
| bool operator<(const OffsetRange &R) const { |
| if (Min != R.Min) |
| return Min < R.Min; |
| if (Max != R.Max) |
| return Max < R.Max; |
| return Align < R.Align; |
| } |
| static OffsetRange zero() { return {0, 0, 1}; } |
| }; |
| |
| struct RangeTree { |
| struct Node { |
| Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {} |
| unsigned Height = 1; |
| unsigned Count = 1; |
| int32_t MaxEnd; |
| const OffsetRange &Range; |
| Node *Left = nullptr, *Right = nullptr; |
| }; |
| |
| Node *Root = nullptr; |
| |
| void add(const OffsetRange &R) { |
| Root = add(Root, R); |
| } |
| void erase(const Node *N) { |
| Root = remove(Root, N); |
| delete N; |
| } |
| void order(SmallVectorImpl<Node*> &Seq) const { |
| order(Root, Seq); |
| } |
| SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) { |
| SmallVector<Node*,8> Nodes; |
| nodesWith(Root, P, CheckAlign, Nodes); |
| return Nodes; |
| } |
| void dump() const; |
| ~RangeTree() { |
| SmallVector<Node*,8> Nodes; |
| order(Nodes); |
| for (Node *N : Nodes) |
| delete N; |
| } |
| |
| private: |
| void dump(const Node *N) const; |
| void order(Node *N, SmallVectorImpl<Node*> &Seq) const; |
| void nodesWith(Node *N, int32_t P, bool CheckA, |
| SmallVectorImpl<Node*> &Seq) const; |
| |
| Node *add(Node *N, const OffsetRange &R); |
| Node *remove(Node *N, const Node *D); |
| Node *rotateLeft(Node *Lower, Node *Higher); |
| Node *rotateRight(Node *Lower, Node *Higher); |
| unsigned height(Node *N) { |
| return N != nullptr ? N->Height : 0; |
| } |
| Node *update(Node *N) { |
| assert(N != nullptr); |
| N->Height = 1 + std::max(height(N->Left), height(N->Right)); |
| if (N->Left) |
| N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd); |
| if (N->Right) |
| N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd); |
| return N; |
| } |
| Node *rebalance(Node *N) { |
| assert(N != nullptr); |
| int32_t Balance = height(N->Right) - height(N->Left); |
| if (Balance < -1) |
| return rotateRight(N->Left, N); |
| if (Balance > 1) |
| return rotateLeft(N->Right, N); |
| return N; |
| } |
| }; |
| |
| struct Loc { |
| MachineBasicBlock *Block = nullptr; |
| MachineBasicBlock::iterator At; |
| |
| Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It) |
| : Block(B), At(It) { |
| if (B->end() == It) { |
| Pos = -1; |
| } else { |
| assert(It->getParent() == B); |
| Pos = std::distance(B->begin(), It); |
| } |
| } |
| bool operator<(Loc A) const { |
| if (Block != A.Block) |
| return Block->getNumber() < A.Block->getNumber(); |
| if (A.Pos == -1) |
| return Pos != A.Pos; |
| return Pos != -1 && Pos < A.Pos; |
| } |
| private: |
| int Pos = 0; |
| }; |
| |
| struct HexagonConstExtenders : public MachineFunctionPass { |
| static char ID; |
| HexagonConstExtenders() : MachineFunctionPass(ID) {} |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| StringRef getPassName() const override { |
| return "Hexagon constant-extender optimization"; |
| } |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| private: |
| struct Register { |
| Register() = default; |
| Register(unsigned R, unsigned S) : Reg(R), Sub(S) {} |
| Register(const MachineOperand &Op) |
| : Reg(Op.getReg()), Sub(Op.getSubReg()) {} |
| Register &operator=(const MachineOperand &Op) { |
| if (Op.isReg()) { |
| Reg = Op.getReg(); |
| Sub = Op.getSubReg(); |
| } else if (Op.isFI()) { |
| Reg = TargetRegisterInfo::index2StackSlot(Op.getIndex()); |
| } |
| return *this; |
| } |
| bool isVReg() const { |
| return Reg != 0 && !TargetRegisterInfo::isStackSlot(Reg) && |
| TargetRegisterInfo::isVirtualRegister(Reg); |
| } |
| bool isSlot() const { |
| return Reg != 0 && TargetRegisterInfo::isStackSlot(Reg); |
| } |
| operator MachineOperand() const { |
| if (isVReg()) |
| return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false, |
| /*Kill*/false, /*Dead*/false, /*Undef*/false, |
| /*EarlyClobber*/false, Sub); |
| if (TargetRegisterInfo::isStackSlot(Reg)) { |
| int FI = TargetRegisterInfo::stackSlot2Index(Reg); |
| return MachineOperand::CreateFI(FI); |
| } |
| llvm_unreachable("Cannot create MachineOperand"); |
| } |
| bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; } |
| bool operator!=(Register R) const { return !operator==(R); } |
| bool operator<(Register R) const { |
| // For std::map. |
| return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub); |
| } |
| unsigned Reg = 0, Sub = 0; |
| }; |
| |
| struct ExtExpr { |
| // A subexpression in which the extender is used. In general, this |
| // represents an expression where adding D to the extender will be |
| // equivalent to adding D to the expression as a whole. In other |
| // words, expr(add(##V,D) = add(expr(##V),D). |
| |
| // The original motivation for this are the io/ur addressing modes, |
| // where the offset is extended. Consider the io example: |
| // In memw(Rs+##V), the ##V could be replaced by a register Rt to |
| // form the rr mode: memw(Rt+Rs<<0). In such case, however, the |
| // register Rt must have exactly the value of ##V. If there was |
| // another instruction memw(Rs+##V+4), it would need a different Rt. |
| // Now, if Rt was initialized as "##V+Rs<<0", both of these |
| // instructions could use the same Rt, just with different offsets. |
| // Here it's clear that "initializer+4" should be the same as if |
| // the offset 4 was added to the ##V in the initializer. |
| |
| // The only kinds of expressions that support the requirement of |
| // commuting with addition are addition and subtraction from ##V. |
| // Include shifting the Rs to account for the ur addressing mode: |
| // ##Val + Rs << S |
| // ##Val - Rs |
| Register Rs; |
| unsigned S = 0; |
| bool Neg = false; |
| |
| ExtExpr() = default; |
| ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {} |
| // Expression is trivial if it does not modify the extender. |
| bool trivial() const { |
| return Rs.Reg == 0; |
| } |
| bool operator==(const ExtExpr &Ex) const { |
| return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg; |
| } |
| bool operator!=(const ExtExpr &Ex) const { |
| return !operator==(Ex); |
| } |
| bool operator<(const ExtExpr &Ex) const { |
| if (Rs != Ex.Rs) |
| return Rs < Ex.Rs; |
| if (S != Ex.S) |
| return S < Ex.S; |
| return !Neg && Ex.Neg; |
| } |
| }; |
| |
| struct ExtDesc { |
| MachineInstr *UseMI = nullptr; |
| unsigned OpNum = -1u; |
| // The subexpression in which the extender is used (e.g. address |
| // computation). |
| ExtExpr Expr; |
| // Optional register that is assigned the value of Expr. |
| Register Rd; |
| // Def means that the output of the instruction may differ from the |
| // original by a constant c, and that the difference can be corrected |
| // by adding/subtracting c in all users of the defined register. |
| bool IsDef = false; |
| |
| MachineOperand &getOp() { |
| return UseMI->getOperand(OpNum); |
| } |
| const MachineOperand &getOp() const { |
| return UseMI->getOperand(OpNum); |
| } |
| }; |
| |
| struct ExtRoot { |
| union { |
| const ConstantFP *CFP; // MO_FPImmediate |
| const char *SymbolName; // MO_ExternalSymbol |
| const GlobalValue *GV; // MO_GlobalAddress |
| const BlockAddress *BA; // MO_BlockAddress |
| int64_t ImmVal; // MO_Immediate, MO_TargetIndex, |
| // and MO_ConstantPoolIndex |
| } V; |
| unsigned Kind; // Same as in MachineOperand. |
| unsigned char TF; // TargetFlags. |
| |
| ExtRoot(const MachineOperand &Op); |
| bool operator==(const ExtRoot &ER) const { |
| return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal; |
| } |
| bool operator!=(const ExtRoot &ER) const { |
| return !operator==(ER); |
| } |
| bool operator<(const ExtRoot &ER) const; |
| }; |
| |
| struct ExtValue : public ExtRoot { |
| int32_t Offset; |
| |
| ExtValue(const MachineOperand &Op); |
| ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {} |
| ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {} |
| bool operator<(const ExtValue &EV) const; |
| bool operator==(const ExtValue &EV) const { |
| return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset; |
| } |
| bool operator!=(const ExtValue &EV) const { |
| return !operator==(EV); |
| } |
| explicit operator MachineOperand() const; |
| }; |
| |
| using IndexList = SetVector<unsigned>; |
| using ExtenderInit = std::pair<ExtValue, ExtExpr>; |
| using AssignmentMap = std::map<ExtenderInit, IndexList>; |
| using LocDefMap = std::map<Loc, IndexList>; |
| |
| const HexagonInstrInfo *HII = nullptr; |
| const HexagonRegisterInfo *HRI = nullptr; |
| MachineDominatorTree *MDT = nullptr; |
| MachineRegisterInfo *MRI = nullptr; |
| std::vector<ExtDesc> Extenders; |
| std::vector<unsigned> NewRegs; |
| |
| bool isStoreImmediate(unsigned Opc) const; |
| bool isRegOffOpcode(unsigned ExtOpc) const ; |
| unsigned getRegOffOpcode(unsigned ExtOpc) const; |
| unsigned getDirectRegReplacement(unsigned ExtOpc) const; |
| OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const; |
| OffsetRange getOffsetRange(const ExtDesc &ED) const; |
| OffsetRange getOffsetRange(Register Rd) const; |
| |
| void recordExtender(MachineInstr &MI, unsigned OpNum); |
| void collectInstr(MachineInstr &MI); |
| void collect(MachineFunction &MF); |
| void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, |
| AssignmentMap &IMap); |
| void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, |
| LocDefMap &Defs); |
| Register insertInitializer(Loc DefL, const ExtenderInit &ExtI); |
| bool replaceInstrExact(const ExtDesc &ED, Register ExtR); |
| bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, |
| Register ExtR, int32_t &Diff); |
| bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI); |
| bool replaceExtenders(const AssignmentMap &IMap); |
| |
| unsigned getOperandIndex(const MachineInstr &MI, |
| const MachineOperand &Op) const; |
| const MachineOperand &getPredicateOp(const MachineInstr &MI) const; |
| const MachineOperand &getLoadResultOp(const MachineInstr &MI) const; |
| const MachineOperand &getStoredValueOp(const MachineInstr &MI) const; |
| |
| friend struct PrintRegister; |
| friend struct PrintExpr; |
| friend struct PrintInit; |
| friend struct PrintIMap; |
| friend raw_ostream &operator<< (raw_ostream &OS, |
| const struct PrintRegister &P); |
| friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P); |
| friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P); |
| friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED); |
| friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER); |
| friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV); |
| friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR); |
| friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P); |
| }; |
| |
| using HCE = HexagonConstExtenders; |
| |
| LLVM_ATTRIBUTE_UNUSED |
| raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) { |
| if (OR.Min > OR.Max) |
| OS << '!'; |
| OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align) |
| << '+' << unsigned(OR.Offset); |
| return OS; |
| } |
| |
| struct PrintRegister { |
| PrintRegister(HCE::Register R, const HexagonRegisterInfo &I) |
| : Rs(R), HRI(I) {} |
| HCE::Register Rs; |
| const HexagonRegisterInfo &HRI; |
| }; |
| |
| LLVM_ATTRIBUTE_UNUSED |
| raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) { |
| if (P.Rs.Reg != 0) |
| OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub); |
| else |
| OS << "noreg"; |
| return OS; |
| } |
| |
| struct PrintExpr { |
| PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I) |
| : Ex(E), HRI(I) {} |
| const HCE::ExtExpr &Ex; |
| const HexagonRegisterInfo &HRI; |
| }; |
| |
| LLVM_ATTRIBUTE_UNUSED |
| raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) { |
| OS << "## " << (P.Ex.Neg ? "- " : "+ "); |
| if (P.Ex.Rs.Reg != 0) |
| OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub); |
| else |
| OS << "__"; |
| OS << " << " << P.Ex.S; |
| return OS; |
| } |
| |
| struct PrintInit { |
| PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I) |
| : ExtI(EI), HRI(I) {} |
| const HCE::ExtenderInit &ExtI; |
| const HexagonRegisterInfo &HRI; |
| }; |
| |
| LLVM_ATTRIBUTE_UNUSED |
| raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) { |
| OS << '[' << P.ExtI.first << ", " |
| << PrintExpr(P.ExtI.second, P.HRI) << ']'; |
| return OS; |
| } |
| |
| LLVM_ATTRIBUTE_UNUSED |
| raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) { |
| assert(ED.OpNum != -1u); |
| const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent(); |
| const MachineFunction &MF = *MBB.getParent(); |
| const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
| OS << "bb#" << MBB.getNumber() << ": "; |
| if (ED.Rd.Reg != 0) |
| OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub); |
| else |
| OS << "__"; |
| OS << " = " << PrintExpr(ED.Expr, HRI); |
| if (ED.IsDef) |
| OS << ", def"; |
| return OS; |
| } |
| |
| LLVM_ATTRIBUTE_UNUSED |
| raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) { |
| switch (ER.Kind) { |
| case MachineOperand::MO_Immediate: |
| OS << "imm:" << ER.V.ImmVal; |
| break; |
| case MachineOperand::MO_FPImmediate: |
| OS << "fpi:" << *ER.V.CFP; |
| break; |
| case MachineOperand::MO_ExternalSymbol: |
| OS << "sym:" << *ER.V.SymbolName; |
| break; |
| case MachineOperand::MO_GlobalAddress: |
| OS << "gad:" << ER.V.GV->getName(); |
| break; |
| case MachineOperand::MO_BlockAddress: |
| OS << "blk:" << *ER.V.BA; |
| break; |
| case MachineOperand::MO_TargetIndex: |
| OS << "tgi:" << ER.V.ImmVal; |
| break; |
| case MachineOperand::MO_ConstantPoolIndex: |
| OS << "cpi:" << ER.V.ImmVal; |
| break; |
| case MachineOperand::MO_JumpTableIndex: |
| OS << "jti:" << ER.V.ImmVal; |
| break; |
| default: |
| OS << "???:" << ER.V.ImmVal; |
| break; |
| } |
| return OS; |
| } |
| |
| LLVM_ATTRIBUTE_UNUSED |
| raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) { |
| OS << HCE::ExtRoot(EV) << " off:" << EV.Offset; |
| return OS; |
| } |
| |
| struct PrintIMap { |
| PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I) |
| : IMap(M), HRI(I) {} |
| const HCE::AssignmentMap &IMap; |
| const HexagonRegisterInfo &HRI; |
| }; |
| |
| LLVM_ATTRIBUTE_UNUSED |
| raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) { |
| OS << "{\n"; |
| for (const std::pair<HCE::ExtenderInit,HCE::IndexList> &Q : P.IMap) { |
| OS << " " << PrintInit(Q.first, P.HRI) << " -> {"; |
| for (unsigned I : Q.second) |
| OS << ' ' << I; |
| OS << " }\n"; |
| } |
| OS << "}\n"; |
| return OS; |
| } |
| } |
| |
| INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt", |
| "Hexagon constant-extender optimization", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt", |
| "Hexagon constant-extender optimization", false, false) |
| |
| static unsigned ReplaceCounter = 0; |
| |
| char HCE::ID = 0; |
| |
| #ifndef NDEBUG |
| LLVM_DUMP_METHOD void RangeTree::dump() const { |
| dbgs() << "Root: " << Root << '\n'; |
| if (Root) |
| dump(Root); |
| } |
| |
| LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const { |
| dbgs() << "Node: " << N << '\n'; |
| dbgs() << " Height: " << N->Height << '\n'; |
| dbgs() << " Count: " << N->Count << '\n'; |
| dbgs() << " MaxEnd: " << N->MaxEnd << '\n'; |
| dbgs() << " Range: " << N->Range << '\n'; |
| dbgs() << " Left: " << N->Left << '\n'; |
| dbgs() << " Right: " << N->Right << "\n\n"; |
| |
| if (N->Left) |
| dump(N->Left); |
| if (N->Right) |
| dump(N->Right); |
| } |
| #endif |
| |
| void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const { |
| if (N == nullptr) |
| return; |
| order(N->Left, Seq); |
| Seq.push_back(N); |
| order(N->Right, Seq); |
| } |
| |
| void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA, |
| SmallVectorImpl<Node*> &Seq) const { |
| if (N == nullptr || N->MaxEnd < P) |
| return; |
| nodesWith(N->Left, P, CheckA, Seq); |
| if (N->Range.Min <= P) { |
| if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max)) |
| Seq.push_back(N); |
| nodesWith(N->Right, P, CheckA, Seq); |
| } |
| } |
| |
| RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) { |
| if (N == nullptr) |
| return new Node(R); |
| |
| if (N->Range == R) { |
| N->Count++; |
| return N; |
| } |
| |
| if (R < N->Range) |
| N->Left = add(N->Left, R); |
| else |
| N->Right = add(N->Right, R); |
| return rebalance(update(N)); |
| } |
| |
| RangeTree::Node *RangeTree::remove(Node *N, const Node *D) { |
| assert(N != nullptr); |
| |
| if (N != D) { |
| assert(N->Range != D->Range && "N and D should not be equal"); |
| if (D->Range < N->Range) |
| N->Left = remove(N->Left, D); |
| else |
| N->Right = remove(N->Right, D); |
| return rebalance(update(N)); |
| } |
| |
| // We got to the node we need to remove. If any of its children are |
| // missing, simply replace it with the other child. |
| if (N->Left == nullptr || N->Right == nullptr) |
| return (N->Left == nullptr) ? N->Right : N->Left; |
| |
| // Find the rightmost child of N->Left, remove it and plug it in place |
| // of N. |
| Node *M = N->Left; |
| while (M->Right) |
| M = M->Right; |
| M->Left = remove(N->Left, M); |
| M->Right = N->Right; |
| return rebalance(update(M)); |
| } |
| |
| RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) { |
| assert(Higher->Right == Lower); |
| // The Lower node is on the right from Higher. Make sure that Lower's |
| // balance is greater to the right. Otherwise the rotation will create |
| // an unbalanced tree again. |
| if (height(Lower->Left) > height(Lower->Right)) |
| Lower = rotateRight(Lower->Left, Lower); |
| assert(height(Lower->Left) <= height(Lower->Right)); |
| Higher->Right = Lower->Left; |
| update(Higher); |
| Lower->Left = Higher; |
| update(Lower); |
| return Lower; |
| } |
| |
| RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) { |
| assert(Higher->Left == Lower); |
| // The Lower node is on the left from Higher. Make sure that Lower's |
| // balance is greater to the left. Otherwise the rotation will create |
| // an unbalanced tree again. |
| if (height(Lower->Left) < height(Lower->Right)) |
| Lower = rotateLeft(Lower->Right, Lower); |
| assert(height(Lower->Left) >= height(Lower->Right)); |
| Higher->Left = Lower->Right; |
| update(Higher); |
| Lower->Right = Higher; |
| update(Lower); |
| return Lower; |
| } |
| |
| |
| HCE::ExtRoot::ExtRoot(const MachineOperand &Op) { |
| // Always store ImmVal, since it's the field used for comparisons. |
| V.ImmVal = 0; |
| if (Op.isImm()) |
| ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root). |
| else if (Op.isFPImm()) |
| V.CFP = Op.getFPImm(); |
| else if (Op.isSymbol()) |
| V.SymbolName = Op.getSymbolName(); |
| else if (Op.isGlobal()) |
| V.GV = Op.getGlobal(); |
| else if (Op.isBlockAddress()) |
| V.BA = Op.getBlockAddress(); |
| else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI()) |
| V.ImmVal = Op.getIndex(); |
| else |
| llvm_unreachable("Unexpected operand type"); |
| |
| Kind = Op.getType(); |
| TF = Op.getTargetFlags(); |
| } |
| |
| bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const { |
| if (Kind != ER.Kind) |
| return Kind < ER.Kind; |
| switch (Kind) { |
| case MachineOperand::MO_Immediate: |
| case MachineOperand::MO_TargetIndex: |
| case MachineOperand::MO_ConstantPoolIndex: |
| case MachineOperand::MO_JumpTableIndex: |
| return V.ImmVal < ER.V.ImmVal; |
| case MachineOperand::MO_FPImmediate: { |
| const APFloat &ThisF = V.CFP->getValueAPF(); |
| const APFloat &OtherF = ER.V.CFP->getValueAPF(); |
| return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt()); |
| } |
| case MachineOperand::MO_ExternalSymbol: |
| return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName); |
| case MachineOperand::MO_GlobalAddress: { |
| // Global values may not have names, so compare their positions |
| // in the parent module. |
| const Module &M = *V.GV->getParent(); |
| auto FindPos = [&M] (const GlobalValue &V) { |
| unsigned P = 0; |
| for (const GlobalValue &T : M.global_values()) { |
| if (&T == &V) |
| return P; |
| P++; |
| } |
| llvm_unreachable("Global value not found in module"); |
| }; |
| return FindPos(*V.GV) < FindPos(*ER.V.GV); |
| } |
| case MachineOperand::MO_BlockAddress: { |
| const BasicBlock *ThisB = V.BA->getBasicBlock(); |
| const BasicBlock *OtherB = ER.V.BA->getBasicBlock(); |
| assert(ThisB->getParent() == OtherB->getParent()); |
| const Function &F = *ThisB->getParent(); |
| return std::distance(F.begin(), ThisB->getIterator()) < |
| std::distance(F.begin(), OtherB->getIterator()); |
| } |
| } |
| return V.ImmVal < ER.V.ImmVal; |
| } |
| |
| HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) { |
| if (Op.isImm()) |
| Offset = Op.getImm(); |
| else if (Op.isFPImm() || Op.isJTI()) |
| Offset = 0; |
| else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() || |
| Op.isCPI() || Op.isTargetIndex()) |
| Offset = Op.getOffset(); |
| else |
| llvm_unreachable("Unexpected operand type"); |
| } |
| |
| bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const { |
| const ExtRoot &ER = *this; |
| if (!(ER == ExtRoot(EV))) |
| return ER < EV; |
| return Offset < EV.Offset; |
| } |
| |
| HCE::ExtValue::operator MachineOperand() const { |
| switch (Kind) { |
| case MachineOperand::MO_Immediate: |
| return MachineOperand::CreateImm(V.ImmVal + Offset); |
| case MachineOperand::MO_FPImmediate: |
| assert(Offset == 0); |
| return MachineOperand::CreateFPImm(V.CFP); |
| case MachineOperand::MO_ExternalSymbol: |
| assert(Offset == 0); |
| return MachineOperand::CreateES(V.SymbolName, TF); |
| case MachineOperand::MO_GlobalAddress: |
| return MachineOperand::CreateGA(V.GV, Offset, TF); |
| case MachineOperand::MO_BlockAddress: |
| return MachineOperand::CreateBA(V.BA, Offset, TF); |
| case MachineOperand::MO_TargetIndex: |
| return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF); |
| case MachineOperand::MO_ConstantPoolIndex: |
| return MachineOperand::CreateCPI(V.ImmVal, Offset, TF); |
| case MachineOperand::MO_JumpTableIndex: |
| assert(Offset == 0); |
| default: |
| llvm_unreachable("Unhandled kind"); |
| } |
| } |
| |
| bool HCE::isStoreImmediate(unsigned Opc) const { |
| switch (Opc) { |
| case Hexagon::S4_storeirbt_io: |
| case Hexagon::S4_storeirbf_io: |
| case Hexagon::S4_storeirht_io: |
| case Hexagon::S4_storeirhf_io: |
| case Hexagon::S4_storeirit_io: |
| case Hexagon::S4_storeirif_io: |
| case Hexagon::S4_storeirb_io: |
| case Hexagon::S4_storeirh_io: |
| case Hexagon::S4_storeiri_io: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| bool HCE::isRegOffOpcode(unsigned Opc) const { |
| switch (Opc) { |
| case Hexagon::L2_loadrub_io: |
| case Hexagon::L2_loadrb_io: |
| case Hexagon::L2_loadruh_io: |
| case Hexagon::L2_loadrh_io: |
| case Hexagon::L2_loadri_io: |
| case Hexagon::L2_loadrd_io: |
| case Hexagon::L2_loadbzw2_io: |
| case Hexagon::L2_loadbzw4_io: |
| case Hexagon::L2_loadbsw2_io: |
| case Hexagon::L2_loadbsw4_io: |
| case Hexagon::L2_loadalignh_io: |
| case Hexagon::L2_loadalignb_io: |
| case Hexagon::L2_ploadrubt_io: |
| case Hexagon::L2_ploadrubf_io: |
| case Hexagon::L2_ploadrbt_io: |
| case Hexagon::L2_ploadrbf_io: |
| case Hexagon::L2_ploadruht_io: |
| case Hexagon::L2_ploadruhf_io: |
| case Hexagon::L2_ploadrht_io: |
| case Hexagon::L2_ploadrhf_io: |
| case Hexagon::L2_ploadrit_io: |
| case Hexagon::L2_ploadrif_io: |
| case Hexagon::L2_ploadrdt_io: |
| case Hexagon::L2_ploadrdf_io: |
| case Hexagon::S2_storerb_io: |
| case Hexagon::S2_storerh_io: |
| case Hexagon::S2_storerf_io: |
| case Hexagon::S2_storeri_io: |
| case Hexagon::S2_storerd_io: |
| case Hexagon::S2_pstorerbt_io: |
| case Hexagon::S2_pstorerbf_io: |
| case Hexagon::S2_pstorerht_io: |
| case Hexagon::S2_pstorerhf_io: |
| case Hexagon::S2_pstorerft_io: |
| case Hexagon::S2_pstorerff_io: |
| case Hexagon::S2_pstorerit_io: |
| case Hexagon::S2_pstorerif_io: |
| case Hexagon::S2_pstorerdt_io: |
| case Hexagon::S2_pstorerdf_io: |
| case Hexagon::A2_addi: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const { |
| // If there exists an instruction that takes a register and offset, |
| // that corresponds to the ExtOpc, return it, otherwise return 0. |
| using namespace Hexagon; |
| switch (ExtOpc) { |
| case A2_tfrsi: return A2_addi; |
| default: |
| break; |
| } |
| const MCInstrDesc &D = HII->get(ExtOpc); |
| if (D.mayLoad() || D.mayStore()) { |
| uint64_t F = D.TSFlags; |
| unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask; |
| switch (AM) { |
| case HexagonII::Absolute: |
| case HexagonII::AbsoluteSet: |
| case HexagonII::BaseLongOffset: |
| switch (ExtOpc) { |
| case PS_loadrubabs: |
| case L4_loadrub_ap: |
| case L4_loadrub_ur: return L2_loadrub_io; |
| case PS_loadrbabs: |
| case L4_loadrb_ap: |
| case L4_loadrb_ur: return L2_loadrb_io; |
| case PS_loadruhabs: |
| case L4_loadruh_ap: |
| case L4_loadruh_ur: return L2_loadruh_io; |
| case PS_loadrhabs: |
| case L4_loadrh_ap: |
| case L4_loadrh_ur: return L2_loadrh_io; |
| case PS_loadriabs: |
| case L4_loadri_ap: |
| case L4_loadri_ur: return L2_loadri_io; |
| case PS_loadrdabs: |
| case L4_loadrd_ap: |
| case L4_loadrd_ur: return L2_loadrd_io; |
| case L4_loadbzw2_ap: |
| case L4_loadbzw2_ur: return L2_loadbzw2_io; |
| case L4_loadbzw4_ap: |
| case L4_loadbzw4_ur: return L2_loadbzw4_io; |
| case L4_loadbsw2_ap: |
| case L4_loadbsw2_ur: return L2_loadbsw2_io; |
| case L4_loadbsw4_ap: |
| case L4_loadbsw4_ur: return L2_loadbsw4_io; |
| case L4_loadalignh_ap: |
| case L4_loadalignh_ur: return L2_loadalignh_io; |
| case L4_loadalignb_ap: |
| case L4_loadalignb_ur: return L2_loadalignb_io; |
| case L4_ploadrubt_abs: return L2_ploadrubt_io; |
| case L4_ploadrubf_abs: return L2_ploadrubf_io; |
| case L4_ploadrbt_abs: return L2_ploadrbt_io; |
| case L4_ploadrbf_abs: return L2_ploadrbf_io; |
| case L4_ploadruht_abs: return L2_ploadruht_io; |
| case L4_ploadruhf_abs: return L2_ploadruhf_io; |
| case L4_ploadrht_abs: return L2_ploadrht_io; |
| case L4_ploadrhf_abs: return L2_ploadrhf_io; |
| case L4_ploadrit_abs: return L2_ploadrit_io; |
| case L4_ploadrif_abs: return L2_ploadrif_io; |
| case L4_ploadrdt_abs: return L2_ploadrdt_io; |
| case L4_ploadrdf_abs: return L2_ploadrdf_io; |
| case PS_storerbabs: |
| case S4_storerb_ap: |
| case S4_storerb_ur: return S2_storerb_io; |
| case PS_storerhabs: |
| case S4_storerh_ap: |
| case S4_storerh_ur: return S2_storerh_io; |
| case PS_storerfabs: |
| case S4_storerf_ap: |
| case S4_storerf_ur: return S2_storerf_io; |
| case PS_storeriabs: |
| case S4_storeri_ap: |
| case S4_storeri_ur: return S2_storeri_io; |
| case PS_storerdabs: |
| case S4_storerd_ap: |
| case S4_storerd_ur: return S2_storerd_io; |
| case S4_pstorerbt_abs: return S2_pstorerbt_io; |
| case S4_pstorerbf_abs: return S2_pstorerbf_io; |
| case S4_pstorerht_abs: return S2_pstorerht_io; |
| case S4_pstorerhf_abs: return S2_pstorerhf_io; |
| case S4_pstorerft_abs: return S2_pstorerft_io; |
| case S4_pstorerff_abs: return S2_pstorerff_io; |
| case S4_pstorerit_abs: return S2_pstorerit_io; |
| case S4_pstorerif_abs: return S2_pstorerif_io; |
| case S4_pstorerdt_abs: return S2_pstorerdt_io; |
| case S4_pstorerdf_abs: return S2_pstorerdf_io; |
| default: |
| break; |
| } |
| break; |
| case HexagonII::BaseImmOffset: |
| if (!isStoreImmediate(ExtOpc)) |
| return ExtOpc; |
| break; |
| default: |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const { |
| switch (ExtOpc) { |
| case Hexagon::A2_addi: return Hexagon::A2_add; |
| case Hexagon::A2_andir: return Hexagon::A2_and; |
| case Hexagon::A2_combineii: return Hexagon::A4_combineri; |
| case Hexagon::A2_orir: return Hexagon::A2_or; |
| case Hexagon::A2_paddif: return Hexagon::A2_paddf; |
| case Hexagon::A2_paddit: return Hexagon::A2_paddt; |
| case Hexagon::A2_subri: return Hexagon::A2_sub; |
| case Hexagon::A2_tfrsi: return TargetOpcode::COPY; |
| case Hexagon::A4_cmpbeqi: return Hexagon::A4_cmpbeq; |
| case Hexagon::A4_cmpbgti: return Hexagon::A4_cmpbgt; |
| case Hexagon::A4_cmpbgtui: return Hexagon::A4_cmpbgtu; |
| case Hexagon::A4_cmpheqi: return Hexagon::A4_cmpheq; |
| case Hexagon::A4_cmphgti: return Hexagon::A4_cmphgt; |
| case Hexagon::A4_cmphgtui: return Hexagon::A4_cmphgtu; |
| case Hexagon::A4_combineii: return Hexagon::A4_combineir; |
| case Hexagon::A4_combineir: return TargetOpcode::REG_SEQUENCE; |
| case Hexagon::A4_combineri: return TargetOpcode::REG_SEQUENCE; |
| case Hexagon::A4_rcmpeqi: return Hexagon::A4_rcmpeq; |
| case Hexagon::A4_rcmpneqi: return Hexagon::A4_rcmpneq; |
| case Hexagon::C2_cmoveif: return Hexagon::A2_tfrpf; |
| case Hexagon::C2_cmoveit: return Hexagon::A2_tfrpt; |
| case Hexagon::C2_cmpeqi: return Hexagon::C2_cmpeq; |
| case Hexagon::C2_cmpgti: return Hexagon::C2_cmpgt; |
| case Hexagon::C2_cmpgtui: return Hexagon::C2_cmpgtu; |
| case Hexagon::C2_muxii: return Hexagon::C2_muxir; |
| case Hexagon::C2_muxir: return Hexagon::C2_mux; |
| case Hexagon::C2_muxri: return Hexagon::C2_mux; |
| case Hexagon::C4_cmpltei: return Hexagon::C4_cmplte; |
| case Hexagon::C4_cmplteui: return Hexagon::C4_cmplteu; |
| case Hexagon::C4_cmpneqi: return Hexagon::C4_cmpneq; |
| case Hexagon::M2_accii: return Hexagon::M2_acci; // T -> T |
| /* No M2_macsin */ |
| case Hexagon::M2_macsip: return Hexagon::M2_maci; // T -> T |
| case Hexagon::M2_mpysin: return Hexagon::M2_mpyi; |
| case Hexagon::M2_mpysip: return Hexagon::M2_mpyi; |
| case Hexagon::M2_mpysmi: return Hexagon::M2_mpyi; |
| case Hexagon::M2_naccii: return Hexagon::M2_nacci; // T -> T |
| case Hexagon::M4_mpyri_addi: return Hexagon::M4_mpyri_addr; |
| case Hexagon::M4_mpyri_addr: return Hexagon::M4_mpyrr_addr; // _ -> T |
| case Hexagon::M4_mpyrr_addi: return Hexagon::M4_mpyrr_addr; // _ -> T |
| case Hexagon::S4_addaddi: return Hexagon::M2_acci; // _ -> T |
| case Hexagon::S4_addi_asl_ri: return Hexagon::S2_asl_i_r_acc; // T -> T |
| case Hexagon::S4_addi_lsr_ri: return Hexagon::S2_lsr_i_r_acc; // T -> T |
| case Hexagon::S4_andi_asl_ri: return Hexagon::S2_asl_i_r_and; // T -> T |
| case Hexagon::S4_andi_lsr_ri: return Hexagon::S2_lsr_i_r_and; // T -> T |
| case Hexagon::S4_ori_asl_ri: return Hexagon::S2_asl_i_r_or; // T -> T |
| case Hexagon::S4_ori_lsr_ri: return Hexagon::S2_lsr_i_r_or; // T -> T |
| case Hexagon::S4_subaddi: return Hexagon::M2_subacc; // _ -> T |
| case Hexagon::S4_subi_asl_ri: return Hexagon::S2_asl_i_r_nac; // T -> T |
| case Hexagon::S4_subi_lsr_ri: return Hexagon::S2_lsr_i_r_nac; // T -> T |
| |
| // Store-immediates: |
| case Hexagon::S4_storeirbf_io: return Hexagon::S2_pstorerbf_io; |
| case Hexagon::S4_storeirb_io: return Hexagon::S2_storerb_io; |
| case Hexagon::S4_storeirbt_io: return Hexagon::S2_pstorerbt_io; |
| case Hexagon::S4_storeirhf_io: return Hexagon::S2_pstorerhf_io; |
| case Hexagon::S4_storeirh_io: return Hexagon::S2_storerh_io; |
| case Hexagon::S4_storeirht_io: return Hexagon::S2_pstorerht_io; |
| case Hexagon::S4_storeirif_io: return Hexagon::S2_pstorerif_io; |
| case Hexagon::S4_storeiri_io: return Hexagon::S2_storeri_io; |
| case Hexagon::S4_storeirit_io: return Hexagon::S2_pstorerit_io; |
| |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| // Return the allowable deviation from the current value of Rb (i.e. the |
| // range of values that can be added to the current value) which the |
| // instruction MI can accommodate. |
| // The instruction MI is a user of register Rb, which is defined via an |
| // extender. It may be possible for MI to be tweaked to work for a register |
| // defined with a slightly different value. For example |
| // ... = L2_loadrub_io Rb, 1 |
| // can be modifed to be |
| // ... = L2_loadrub_io Rb', 0 |
| // if Rb' = Rb+1. |
| // The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range |
| // for L2_loadrub with offset 0. That means that Rb could be replaced with |
| // Rc, where Rc-Rb belongs to [Min+1, Max+1]. |
| OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const { |
| unsigned Opc = MI.getOpcode(); |
| // Instructions that are constant-extended may be replaced with something |
| // else that no longer offers the same range as the original. |
| if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI)) |
| return OffsetRange::zero(); |
| |
| if (Opc == Hexagon::A2_addi) { |
| const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2); |
| if (Rb != Register(Op1) || !Op2.isImm()) |
| return OffsetRange::zero(); |
| OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 }; |
| return R.shift(Op2.getImm()); |
| } |
| |
| // HII::getBaseAndOffsetPosition returns the increment position as "offset". |
| if (HII->isPostIncrement(MI)) |
| return OffsetRange::zero(); |
| |
| const MCInstrDesc &D = HII->get(Opc); |
| assert(D.mayLoad() || D.mayStore()); |
| |
| unsigned BaseP, OffP; |
| if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) || |
| Rb != Register(MI.getOperand(BaseP)) || |
| !MI.getOperand(OffP).isImm()) |
| return OffsetRange::zero(); |
| |
| uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & |
| HexagonII::MemAccesSizeMask; |
| uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); |
| unsigned L = Log2_32(A); |
| unsigned S = 10+L; // sint11_L |
| int32_t Min = -alignDown((1<<S)-1, A); |
| |
| // The range will be shifted by Off. To prefer non-negative offsets, |
| // adjust Max accordingly. |
| int32_t Off = MI.getOperand(OffP).getImm(); |
| int32_t Max = Off >= 0 ? 0 : -Off; |
| |
| OffsetRange R = { Min, Max, A }; |
| return R.shift(Off); |
| } |
| |
| // Return the allowable deviation from the current value of the extender ED, |
| // for which the instruction corresponding to ED can be modified without |
| // using an extender. |
| // The instruction uses the extender directly. It will be replaced with |
| // another instruction, say MJ, where the extender will be replaced with a |
| // register. MJ can allow some variability with respect to the value of |
| // that register, as is the case with indexed memory instructions. |
| OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const { |
| // The only way that there can be a non-zero range available is if |
| // the instruction using ED will be converted to an indexed memory |
| // instruction. |
| unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode()); |
| switch (IdxOpc) { |
| case 0: |
| return OffsetRange::zero(); |
| case Hexagon::A2_addi: // s16 |
| return { -32767, 32767, 1 }; |
| case Hexagon::A2_subri: // s10 |
| return { -511, 511, 1 }; |
| } |
| |
| if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore()) |
| return OffsetRange::zero(); |
| const MCInstrDesc &D = HII->get(IdxOpc); |
| uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) & |
| HexagonII::MemAccesSizeMask; |
| uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F)); |
| unsigned L = Log2_32(A); |
| unsigned S = 10+L; // sint11_L |
| int32_t Min = -alignDown((1<<S)-1, A); |
| int32_t Max = 0; // Force non-negative offsets. |
| return { Min, Max, A }; |
| } |
| |
| // Get the allowable deviation from the current value of Rd by checking |
| // all uses of Rd. |
| OffsetRange HCE::getOffsetRange(Register Rd) const { |
| OffsetRange Range; |
| for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) { |
| // Make sure that the register being used by this operand is identical |
| // to the register that was defined: using a different subregister |
| // precludes any non-trivial range. |
| if (Rd != Register(Op)) |
| return OffsetRange::zero(); |
| Range.intersect(getOffsetRange(Rd, *Op.getParent())); |
| } |
| return Range; |
| } |
| |
| void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) { |
| unsigned Opc = MI.getOpcode(); |
| ExtDesc ED; |
| ED.OpNum = OpNum; |
| |
| bool IsLoad = MI.mayLoad(); |
| bool IsStore = MI.mayStore(); |
| |
| // Fixed stack slots have negative indexes, and they cannot be used |
| // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat |
| // unfortunate, but should not be a frequent thing. |
| for (MachineOperand &Op : MI.operands()) |
| if (Op.isFI() && Op.getIndex() < 0) |
| return; |
| |
| if (IsLoad || IsStore) { |
| unsigned AM = HII->getAddrMode(MI); |
| switch (AM) { |
| // (Re: ##Off + Rb<<S) = Rd: ##Val |
| case HexagonII::Absolute: // (__: ## + __<<_) |
| break; |
| case HexagonII::AbsoluteSet: // (Rd: ## + __<<_) |
| ED.Rd = MI.getOperand(OpNum-1); |
| ED.IsDef = true; |
| break; |
| case HexagonII::BaseImmOffset: // (__: ## + Rs<<0) |
| // Store-immediates are treated as non-memory operations, since |
| // it's the value being stored that is extended (as opposed to |
| // a part of the address). |
| if (!isStoreImmediate(Opc)) |
| ED.Expr.Rs = MI.getOperand(OpNum-1); |
| break; |
| case HexagonII::BaseLongOffset: // (__: ## + Rs<<S) |
| ED.Expr.Rs = MI.getOperand(OpNum-2); |
| ED.Expr.S = MI.getOperand(OpNum-1).getImm(); |
| break; |
| default: |
| llvm_unreachable("Unhandled memory instruction"); |
| } |
| } else { |
| switch (Opc) { |
| case Hexagon::A2_tfrsi: // (Rd: ## + __<<_) |
| ED.Rd = MI.getOperand(0); |
| ED.IsDef = true; |
| break; |
| case Hexagon::A2_combineii: // (Rd: ## + __<<_) |
| case Hexagon::A4_combineir: |
| ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi }; |
| ED.IsDef = true; |
| break; |
| case Hexagon::A4_combineri: // (Rd: ## + __<<_) |
| ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo }; |
| ED.IsDef = true; |
| break; |
| case Hexagon::A2_addi: // (Rd: ## + Rs<<0) |
| ED.Rd = MI.getOperand(0); |
| ED.Expr.Rs = MI.getOperand(OpNum-1); |
| break; |
| case Hexagon::M2_accii: // (__: ## + Rs<<0) |
| case Hexagon::M2_naccii: |
| case Hexagon::S4_addaddi: |
| ED.Expr.Rs = MI.getOperand(OpNum-1); |
| break; |
| case Hexagon::A2_subri: // (Rd: ## - Rs<<0) |
| ED.Rd = MI.getOperand(0); |
| ED.Expr.Rs = MI.getOperand(OpNum+1); |
| ED.Expr.Neg = true; |
| break; |
| case Hexagon::S4_subaddi: // (__: ## - Rs<<0) |
| ED.Expr.Rs = MI.getOperand(OpNum+1); |
| ED.Expr.Neg = true; |
| default: // (__: ## + __<<_) |
| break; |
| } |
| } |
| |
| ED.UseMI = &MI; |
| Extenders.push_back(ED); |
| } |
| |
| void HCE::collectInstr(MachineInstr &MI) { |
| if (!HII->isConstExtended(MI)) |
| return; |
| |
| // Skip some non-convertible instructions. |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| case Hexagon::M2_macsin: // There is no Rx -= mpyi(Rs,Rt). |
| case Hexagon::C4_addipc: |
| case Hexagon::S4_or_andi: |
| case Hexagon::S4_or_andix: |
| case Hexagon::S4_or_ori: |
| return; |
| } |
| recordExtender(MI, HII->getCExtOpNum(MI)); |
| } |
| |
| void HCE::collect(MachineFunction &MF) { |
| Extenders.clear(); |
| for (MachineBasicBlock &MBB : MF) |
| for (MachineInstr &MI : MBB) |
| collectInstr(MI); |
| } |
| |
| void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End, |
| AssignmentMap &IMap) { |
| // Sanity check: make sure that all extenders in the range [Begin..End) |
| // share the same root ER. |
| for (unsigned I = Begin; I != End; ++I) |
| assert(ER == ExtRoot(Extenders[I].getOp())); |
| |
| // Construct the list of ranges, such that for each P in Ranges[I], |
| // a register Reg = ER+P can be used in place of Extender[I]. If the |
| // instruction allows, uses in the form of Reg+Off are considered |
| // (here, Off = required_value - P). |
| std::vector<OffsetRange> Ranges(End-Begin); |
| |
| // For each extender that is a def, visit all uses of the defined register, |
| // and produce an offset range that works for all uses. The def doesn't |
| // have to be checked, because it can become dead if all uses can be updated |
| // to use a different reg/offset. |
| for (unsigned I = Begin; I != End; ++I) { |
| const ExtDesc &ED = Extenders[I]; |
| if (!ED.IsDef) |
| continue; |
| ExtValue EV(ED); |
| LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << " " << ED << '\n'); |
| assert(ED.Rd.Reg != 0); |
| Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset); |
| // A2_tfrsi is a special case: it will be replaced with A2_addi, which |
| // has a 16-bit signed offset. This means that A2_tfrsi not only has a |
| // range coming from its uses, but also from the fact that its replacement |
| // has a range as well. |
| if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) { |
| int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded |
| Ranges[I-Begin].extendBy(-D).extendBy(D); |
| } |
| } |
| |
| // Visit all non-def extenders. For each one, determine the offset range |
| // available for it. |
| for (unsigned I = Begin; I != End; ++I) { |
| const ExtDesc &ED = Extenders[I]; |
| if (ED.IsDef) |
| continue; |
| ExtValue EV(ED); |
| LLVM_DEBUG(dbgs() << " " << I << ". " << EV << " " << ED << '\n'); |
| OffsetRange Dev = getOffsetRange(ED); |
| Ranges[I-Begin].intersect(Dev.shift(EV.Offset)); |
| } |
| |
| // Here for each I there is a corresponding Range[I]. Construct the |
| // inverse map, that to each range will assign the set of indexes in |
| // [Begin..End) that this range corresponds to. |
| std::map<OffsetRange, IndexList> RangeMap; |
| for (unsigned I = Begin; I != End; ++I) |
| RangeMap[Ranges[I-Begin]].insert(I); |
| |
| LLVM_DEBUG({ |
| dbgs() << "Ranges\n"; |
| for (unsigned I = Begin; I != End; ++I) |
| dbgs() << " " << I << ". " << Ranges[I-Begin] << '\n'; |
| dbgs() << "RangeMap\n"; |
| for (auto &P : RangeMap) { |
| dbgs() << " " << P.first << " ->"; |
| for (unsigned I : P.second) |
| dbgs() << ' ' << I; |
| dbgs() << '\n'; |
| } |
| }); |
| |
| // Select the definition points, and generate the assignment between |
| // these points and the uses. |
| |
| // For each candidate offset, keep a pair CandData consisting of |
| // the total number of ranges containing that candidate, and the |
| // vector of corresponding RangeTree nodes. |
| using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>; |
| std::map<int32_t, CandData> CandMap; |
| |
| RangeTree Tree; |
| for (const OffsetRange &R : Ranges) |
| Tree.add(R); |
| SmallVector<RangeTree::Node*,8> Nodes; |
| Tree.order(Nodes); |
| |
| auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes, |
| uint8_t Align, uint8_t Offset) { |
| for (RangeTree::Node *N : Nodes) { |
| if (N->Range.Align <= Align || N->Range.Offset < Offset) |
| continue; |
| if ((N->Range.Offset - Offset) % Align != 0) |
| continue; |
| Align = N->Range.Align; |
| Offset = N->Range.Offset; |
| } |
| return std::make_pair(Align, Offset); |
| }; |
| |
| // Construct the set of all potential definition points from the endpoints |
| // of the ranges. If a given endpoint also belongs to a different range, |
| // but with a higher alignment, also consider the more-highly-aligned |
| // value of this endpoint. |
| std::set<int32_t> CandSet; |
| for (RangeTree::Node *N : Nodes) { |
| const OffsetRange &R = N->Range; |
| auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset); |
| CandSet.insert(R.Min); |
| if (R.Align < P0.first) |
| CandSet.insert(adjustUp(R.Min, P0.first, P0.second)); |
| auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset); |
| CandSet.insert(R.Max); |
| if (R.Align < P1.first) |
| CandSet.insert(adjustDown(R.Max, P1.first, P1.second)); |
| } |
| |
| // Build the assignment map: candidate C -> { list of extender indexes }. |
| // This has to be done iteratively: |
| // - pick the candidate that covers the maximum number of extenders, |
| // - add the candidate to the map, |
| // - remove the extenders from the pool. |
| while (true) { |
| using CMap = std::map<int32_t,unsigned>; |
| CMap Counts; |
| for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) { |
| auto &&V = Tree.nodesWith(*It); |
| unsigned N = std::accumulate(V.begin(), V.end(), 0u, |
| [](unsigned Acc, const RangeTree::Node *N) { |
| return Acc + N->Count; |
| }); |
| if (N != 0) |
| Counts.insert({*It, N}); |
| It = (N != 0) ? std::next(It) : CandSet.erase(It); |
| } |
| if (Counts.empty()) |
| break; |
| |
| // Find the best candidate with respect to the number of extenders covered. |
| auto BestIt = std::max_element(Counts.begin(), Counts.end(), |
| [](const CMap::value_type &A, const CMap::value_type &B) { |
| return A.second < B.second || |
| (A.second == B.second && A < B); |
| }); |
| int32_t Best = BestIt->first; |
| ExtValue BestV(ER, Best); |
| for (RangeTree::Node *N : Tree.nodesWith(Best)) { |
| for (unsigned I : RangeMap[N->Range]) |
| IMap[{BestV,Extenders[I].Expr}].insert(I); |
| Tree.erase(N); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI)); |
| |
| // There is some ambiguity in what initializer should be used, if the |
| // descriptor's subexpression is non-trivial: it can be the entire |
| // subexpression (which is what has been done so far), or it can be |
| // the extender's value itself, if all corresponding extenders have the |
| // exact value of the initializer (i.e. require offset of 0). |
| |
| // To reduce the number of initializers, merge such special cases. |
| for (std::pair<const ExtenderInit,IndexList> &P : IMap) { |
| // Skip trivial initializers. |
| if (P.first.second.trivial()) |
| continue; |
| // If the corresponding trivial initializer does not exist, skip this |
| // entry. |
| const ExtValue &EV = P.first.first; |
| AssignmentMap::iterator F = IMap.find({EV, ExtExpr()}); |
| if (F == IMap.end()) |
| continue; |
| |
| // Finally, check if all extenders have the same value as the initializer. |
| // Make sure that extenders that are a part of a stack address are not |
| // merged with those that aren't. Stack addresses need an offset field |
| // (to be used by frame index elimination), while non-stack expressions |
| // can be replaced with forms (such as rr) that do not have such a field. |
| // Example: |
| // |
| // Collected 3 extenders |
| // =2. imm:0 off:32968 bb#2: %7 = ## + __ << 0, def |
| // 0. imm:0 off:267 bb#0: __ = ## + SS#1 << 0 |
| // 1. imm:0 off:267 bb#1: __ = ## + SS#1 << 0 |
| // Ranges |
| // 0. [-756,267]a1+0 |
| // 1. [-756,267]a1+0 |
| // 2. [201,65735]a1+0 |
| // RangeMap |
| // [-756,267]a1+0 -> 0 1 |
| // [201,65735]a1+0 -> 2 |
| // IMap (before fixup) = { |
| // [imm:0 off:267, ## + __ << 0] -> { 2 } |
| // [imm:0 off:267, ## + SS#1 << 0] -> { 0 1 } |
| // } |
| // IMap (after fixup) = { |
| // [imm:0 off:267, ## + __ << 0] -> { 2 0 1 } |
| // [imm:0 off:267, ## + SS#1 << 0] -> { } |
| // } |
| // Inserted def in bb#0 for initializer: [imm:0 off:267, ## + __ << 0] |
| // %12:intregs = A2_tfrsi 267 |
| // |
| // The result was |
| // %12:intregs = A2_tfrsi 267 |
| // S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4 |
| // Which became |
| // r0 = #267 |
| // if (p0.new) memb(r0+r29<<#4) = r2 |
| |
| bool IsStack = any_of(F->second, [this](unsigned I) { |
| return Extenders[I].Expr.Rs.isSlot(); |
| }); |
| auto SameValue = [&EV,this,IsStack](unsigned I) { |
| const ExtDesc &ED = Extenders[I]; |
| return ED.Expr.Rs.isSlot() == IsStack && |
| ExtValue(ED).Offset == EV.Offset; |
| }; |
| if (all_of(P.second, SameValue)) { |
| F->second.insert(P.second.begin(), P.second.end()); |
| P.second.clear(); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI)); |
| } |
| |
| void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs, |
| LocDefMap &Defs) { |
| if (Refs.empty()) |
| return; |
| |
| // The placement calculation is somewhat simple right now: it finds a |
| // single location for the def that dominates all refs. Since this may |
| // place the def far from the uses, producing several locations for |
| // defs that collectively dominate all refs could be better. |
| // For now only do the single one. |
| DenseSet<MachineBasicBlock*> Blocks; |
| DenseSet<MachineInstr*> RefMIs; |
| const ExtDesc &ED0 = Extenders[Refs[0]]; |
| MachineBasicBlock *DomB = ED0.UseMI->getParent(); |
| RefMIs.insert(ED0.UseMI); |
| Blocks.insert(DomB); |
| for (unsigned i = 1, e = Refs.size(); i != e; ++i) { |
| const ExtDesc &ED = Extenders[Refs[i]]; |
| MachineBasicBlock *MBB = ED.UseMI->getParent(); |
| RefMIs.insert(ED.UseMI); |
| DomB = MDT->findNearestCommonDominator(DomB, MBB); |
| Blocks.insert(MBB); |
| } |
| |
| #ifndef NDEBUG |
| // The block DomB should be dominated by the def of each register used |
| // in the initializer. |
| Register Rs = ExtI.second.Rs; // Only one reg allowed now. |
| const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr; |
| |
| // This should be guaranteed given that the entire expression is used |
| // at each instruction in Refs. Add an assertion just in case. |
| assert(!DefI || MDT->dominates(DefI->getParent(), DomB)); |
| #endif |
| |
| MachineBasicBlock::iterator It; |
| if (Blocks.count(DomB)) { |
| // Try to find the latest possible location for the def. |
| MachineBasicBlock::iterator End = DomB->end(); |
| for (It = DomB->begin(); It != End; ++It) |
| if (RefMIs.count(&*It)) |
| break; |
| assert(It != End && "Should have found a ref in DomB"); |
| } else { |
| // DomB does not contain any refs. |
| It = DomB->getFirstTerminator(); |
| } |
| Loc DefLoc(DomB, It); |
| Defs.emplace(DefLoc, Refs); |
| } |
| |
| HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) { |
| unsigned DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); |
| MachineBasicBlock &MBB = *DefL.Block; |
| MachineBasicBlock::iterator At = DefL.At; |
| DebugLoc dl = DefL.Block->findDebugLoc(DefL.At); |
| const ExtValue &EV = ExtI.first; |
| MachineOperand ExtOp(EV); |
| |
| const ExtExpr &Ex = ExtI.second; |
| const MachineInstr *InitI = nullptr; |
| |
| if (Ex.Rs.isSlot()) { |
| assert(Ex.S == 0 && "Cannot have a shift of a stack slot"); |
| assert(!Ex.Neg && "Cannot subtract a stack slot"); |
| // DefR = PS_fi Rb,##EV |
| InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR) |
| .add(MachineOperand(Ex.Rs)) |
| .add(ExtOp); |
| } else { |
| assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register"); |
| if (Ex.trivial()) { |
| // DefR = ##EV |
| InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR) |
| .add(ExtOp); |
| } else if (Ex.S == 0) { |
| if (Ex.Neg) { |
| // DefR = sub(##EV,Rb) |
| InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR) |
| .add(ExtOp) |
| .add(MachineOperand(Ex.Rs)); |
| } else { |
| // DefR = add(Rb,##EV) |
| InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR) |
| .add(MachineOperand(Ex.Rs)) |
| .add(ExtOp); |
| } |
| } else { |
| unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri |
| : Hexagon::S4_addi_asl_ri; |
| // DefR = add(##EV,asl(Rb,S)) |
| InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR) |
| .add(ExtOp) |
| .add(MachineOperand(Ex.Rs)) |
| .addImm(Ex.S); |
| } |
| } |
| |
| assert(InitI); |
| (void)InitI; |
| LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber() |
| << " for initializer: " << PrintInit(ExtI, *HRI) << "\n " |
| << *InitI); |
| return { DefR, 0 }; |
| } |
| |
| // Replace the extender at index Idx with the register ExtR. |
| bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) { |
| MachineInstr &MI = *ED.UseMI; |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MachineBasicBlock::iterator At = MI.getIterator(); |
| DebugLoc dl = MI.getDebugLoc(); |
| unsigned ExtOpc = MI.getOpcode(); |
| |
| // With a few exceptions, direct replacement amounts to creating an |
| // instruction with a corresponding register opcode, with all operands |
| // the same, except for the register used in place of the extender. |
| unsigned RegOpc = getDirectRegReplacement(ExtOpc); |
| |
| if (RegOpc == TargetOpcode::REG_SEQUENCE) { |
| if (ExtOpc == Hexagon::A4_combineri) |
| BuildMI(MBB, At, dl, HII->get(RegOpc)) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)) |
| .addImm(Hexagon::isub_hi) |
| .add(MachineOperand(ExtR)) |
| .addImm(Hexagon::isub_lo); |
| else if (ExtOpc == Hexagon::A4_combineir) |
| BuildMI(MBB, At, dl, HII->get(RegOpc)) |
| .add(MI.getOperand(0)) |
| .add(MachineOperand(ExtR)) |
| .addImm(Hexagon::isub_hi) |
| .add(MI.getOperand(2)) |
| .addImm(Hexagon::isub_lo); |
| else |
| llvm_unreachable("Unexpected opcode became REG_SEQUENCE"); |
| MBB.erase(MI); |
| return true; |
| } |
| if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) { |
| unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt |
| : Hexagon::C2_cmpltu; |
| BuildMI(MBB, At, dl, HII->get(NewOpc)) |
| .add(MI.getOperand(0)) |
| .add(MachineOperand(ExtR)) |
| .add(MI.getOperand(1)); |
| MBB.erase(MI); |
| return true; |
| } |
| |
| if (RegOpc != 0) { |
| MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); |
| unsigned RegN = ED.OpNum; |
| // Copy all operands except the one that has the extender. |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| if (i != RegN) |
| MIB.add(MI.getOperand(i)); |
| else |
| MIB.add(MachineOperand(ExtR)); |
| } |
| MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); |
| MBB.erase(MI); |
| return true; |
| } |
| |
| if ((MI.mayLoad() || MI.mayStore()) && !isStoreImmediate(ExtOpc)) { |
| // For memory instructions, there is an asymmetry in the addressing |
| // modes. Addressing modes allowing extenders can be replaced with |
| // addressing modes that use registers, but the order of operands |
| // (or even their number) may be different. |
| // Replacements: |
| // BaseImmOffset (io) -> BaseRegOffset (rr) |
| // BaseLongOffset (ur) -> BaseRegOffset (rr) |
| unsigned RegOpc, Shift; |
| unsigned AM = HII->getAddrMode(MI); |
| if (AM == HexagonII::BaseImmOffset) { |
| RegOpc = HII->changeAddrMode_io_rr(ExtOpc); |
| Shift = 0; |
| } else if (AM == HexagonII::BaseLongOffset) { |
| // Loads: Rd = L4_loadri_ur Rs, S, ## |
| // Stores: S4_storeri_ur Rs, S, ##, Rt |
| RegOpc = HII->changeAddrMode_ur_rr(ExtOpc); |
| Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm(); |
| } else { |
| llvm_unreachable("Unexpected addressing mode"); |
| } |
| #ifndef NDEBUG |
| if (RegOpc == -1u) { |
| dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n"; |
| llvm_unreachable("No corresponding rr instruction"); |
| } |
| #endif |
| |
| unsigned BaseP, OffP; |
| HII->getBaseAndOffsetPosition(MI, BaseP, OffP); |
| |
| // Build an rr instruction: (RegOff + RegBase<<0) |
| MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc)); |
| // First, add the def for loads. |
| if (MI.mayLoad()) |
| MIB.add(getLoadResultOp(MI)); |
| // Handle possible predication. |
| if (HII->isPredicated(MI)) |
| MIB.add(getPredicateOp(MI)); |
| // Build the address. |
| MIB.add(MachineOperand(ExtR)); // RegOff |
| MIB.add(MI.getOperand(BaseP)); // RegBase |
| MIB.addImm(Shift); // << Shift |
| // Add the stored value for stores. |
| if (MI.mayStore()) |
| MIB.add(getStoredValueOp(MI)); |
| MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); |
| MBB.erase(MI); |
| return true; |
| } |
| |
| #ifndef NDEBUG |
| dbgs() << '\n' << MI; |
| #endif |
| llvm_unreachable("Unhandled exact replacement"); |
| return false; |
| } |
| |
| // Replace the extender ED with a form corresponding to the initializer ExtI. |
| bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI, |
| Register ExtR, int32_t &Diff) { |
| MachineInstr &MI = *ED.UseMI; |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MachineBasicBlock::iterator At = MI.getIterator(); |
| DebugLoc dl = MI.getDebugLoc(); |
| unsigned ExtOpc = MI.getOpcode(); |
| |
| if (ExtOpc == Hexagon::A2_tfrsi) { |
| // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces |
| // another range. One range is the one that's common to all tfrsi's uses, |
| // this one is the range of immediates in A2_addi. When calculating ranges, |
| // the addi's 16-bit argument was included, so now we need to make it such |
| // that the produced value is in the range for the uses alone. |
| // Most of the time, simply adding Diff will make the addi produce exact |
| // result, but if Diff is outside of the 16-bit range, some adjustment |
| // will be needed. |
| unsigned IdxOpc = getRegOffOpcode(ExtOpc); |
| assert(IdxOpc == Hexagon::A2_addi); |
| |
| // Clamp Diff to the 16 bit range. |
| int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768); |
| BuildMI(MBB, At, dl, HII->get(IdxOpc)) |
| .add(MI.getOperand(0)) |
| .add(MachineOperand(ExtR)) |
| .addImm(D); |
| Diff -= D; |
| #ifndef NDEBUG |
| // Make sure the output is within allowable range for uses. |
| // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV, |
| // not DefV - Ext, as the getOffsetRange would calculate. |
| OffsetRange Uses = getOffsetRange(MI.getOperand(0)); |
| if (!Uses.contains(-Diff)) |
| dbgs() << "Diff: " << -Diff << " out of range " << Uses |
| << " for " << MI; |
| assert(Uses.contains(-Diff)); |
| #endif |
| MBB.erase(MI); |
| return true; |
| } |
| |
| const ExtValue &EV = ExtI.first; (void)EV; |
| const ExtExpr &Ex = ExtI.second; (void)Ex; |
| |
| if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) { |
| // If addi/subri are replaced with the exactly matching initializer, |
| // they amount to COPY. |
| // Check that the initializer is an exact match (for simplicity). |
| #ifndef NDEBUG |
| bool IsAddi = ExtOpc == Hexagon::A2_addi; |
| const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2); |
| const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1); |
| assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi && |
| "Initializer mismatch"); |
| #endif |
| BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY)) |
| .add(MI.getOperand(0)) |
| .add(MachineOperand(ExtR)); |
| Diff = 0; |
| MBB.erase(MI); |
| return true; |
| } |
| if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii || |
| ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) { |
| // M2_accii: add(Rt,add(Rs,V)) (tied) |
| // M2_naccii: sub(Rt,add(Rs,V)) |
| // S4_addaddi: add(Rt,add(Rs,V)) |
| // S4_subaddi: add(Rt,sub(V,Rs)) |
| // Check that Rs and V match the initializer expression. The Rs+V is the |
| // combination that is considered "subexpression" for V, although Rx+V |
| // would also be valid. |
| #ifndef NDEBUG |
| bool IsSub = ExtOpc == Hexagon::S4_subaddi; |
| Register Rs = MI.getOperand(IsSub ? 3 : 2); |
| ExtValue V = MI.getOperand(IsSub ? 2 : 3); |
| assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch"); |
| #endif |
| unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub |
| : Hexagon::A2_add; |
| BuildMI(MBB, At, dl, HII->get(NewOpc)) |
| .add(MI.getOperand(0)) |
| .add(MI.getOperand(1)) |
| .add(MachineOperand(ExtR)); |
| MBB.erase(MI); |
| return true; |
| } |
| |
| if (MI.mayLoad() || MI.mayStore()) { |
| unsigned IdxOpc = getRegOffOpcode(ExtOpc); |
| assert(IdxOpc && "Expecting indexed opcode"); |
| MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc)); |
| // Construct the new indexed instruction. |
| // First, add the def for loads. |
| if (MI.mayLoad()) |
| MIB.add(getLoadResultOp(MI)); |
| // Handle possible predication. |
| if (HII->isPredicated(MI)) |
| MIB.add(getPredicateOp(MI)); |
| // Build the address. |
| MIB.add(MachineOperand(ExtR)); |
| MIB.addImm(Diff); |
| // Add the stored value for stores. |
| if (MI.mayStore()) |
| MIB.add(getStoredValueOp(MI)); |
| MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); |
| MBB.erase(MI); |
| return true; |
| } |
| |
| #ifndef NDEBUG |
| dbgs() << '\n' << PrintInit(ExtI, *HRI) << " " << MI; |
| #endif |
| llvm_unreachable("Unhandled expr replacement"); |
| return false; |
| } |
| |
| bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) { |
| if (ReplaceLimit.getNumOccurrences()) { |
| if (ReplaceLimit <= ReplaceCounter) |
| return false; |
| ++ReplaceCounter; |
| } |
| const ExtDesc &ED = Extenders[Idx]; |
| assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def"); |
| const ExtValue &DefV = ExtI.first; |
| assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch"); |
| const ExtExpr &DefEx = ExtI.second; |
| |
| ExtValue EV(ED); |
| int32_t Diff = EV.Offset - DefV.Offset; |
| const MachineInstr &MI = *ED.UseMI; |
| LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:" |
| << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n'); |
| |
| // These two addressing modes must be converted into indexed forms |
| // regardless of what the initializer looks like. |
| bool IsAbs = false, IsAbsSet = false; |
| if (MI.mayLoad() || MI.mayStore()) { |
| unsigned AM = HII->getAddrMode(MI); |
| IsAbs = AM == HexagonII::Absolute; |
| IsAbsSet = AM == HexagonII::AbsoluteSet; |
| } |
| |
| // If it's a def, remember all operands that need to be updated. |
| // If ED is a def, and Diff is not 0, then all uses of the register Rd |
| // defined by ED must be in the form (Rd, imm), i.e. the immediate offset |
| // must follow the Rd in the operand list. |
| std::vector<std::pair<MachineInstr*,unsigned>> RegOps; |
| if (ED.IsDef && Diff != 0) { |
| for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) { |
| MachineInstr &UI = *Op.getParent(); |
| RegOps.push_back({&UI, getOperandIndex(UI, Op)}); |
| } |
| } |
| |
| // Replace the instruction. |
| bool Replaced = false; |
| if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet) |
| Replaced = replaceInstrExact(ED, ExtR); |
| else |
| Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff); |
| |
| if (Diff != 0 && Replaced && ED.IsDef) { |
| // Update offsets of the def's uses. |
| for (std::pair<MachineInstr*,unsigned> P : RegOps) { |
| unsigned J = P.second; |
| assert(P.first->getNumOperands() > J+1 && |
| P.first->getOperand(J+1).isImm()); |
| MachineOperand &ImmOp = P.first->getOperand(J+1); |
| ImmOp.setImm(ImmOp.getImm() + Diff); |
| } |
| // If it was an absolute-set instruction, the "set" part has been removed. |
| // ExtR will now be the register with the extended value, and since all |
| // users of Rd have been updated, all that needs to be done is to replace |
| // Rd with ExtR. |
| if (IsAbsSet) { |
| assert(ED.Rd.Sub == 0 && ExtR.Sub == 0); |
| MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg); |
| } |
| } |
| |
| return Replaced; |
| } |
| |
| bool HCE::replaceExtenders(const AssignmentMap &IMap) { |
| LocDefMap Defs; |
| bool Changed = false; |
| |
| for (const std::pair<ExtenderInit,IndexList> &P : IMap) { |
| const IndexList &Idxs = P.second; |
| if (Idxs.size() < CountThreshold) |
| continue; |
| |
| Defs.clear(); |
| calculatePlacement(P.first, Idxs, Defs); |
| for (const std::pair<Loc,IndexList> &Q : Defs) { |
| Register DefR = insertInitializer(Q.first, P.first); |
| NewRegs.push_back(DefR.Reg); |
| for (unsigned I : Q.second) |
| Changed |= replaceInstr(I, DefR, P.first); |
| } |
| } |
| return Changed; |
| } |
| |
| unsigned HCE::getOperandIndex(const MachineInstr &MI, |
| const MachineOperand &Op) const { |
| for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i) |
| if (&MI.getOperand(i) == &Op) |
| return i; |
| llvm_unreachable("Not an operand of MI"); |
| } |
| |
| const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const { |
| assert(HII->isPredicated(MI)); |
| for (const MachineOperand &Op : MI.operands()) { |
| if (!Op.isReg() || !Op.isUse() || |
| MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass) |
| continue; |
| assert(Op.getSubReg() == 0 && "Predicate register with a subregister"); |
| return Op; |
| } |
| llvm_unreachable("Predicate operand not found"); |
| } |
| |
| const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const { |
| assert(MI.mayLoad()); |
| return MI.getOperand(0); |
| } |
| |
| const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const { |
| assert(MI.mayStore()); |
| return MI.getOperand(MI.getNumExplicitOperands()-1); |
| } |
| |
| bool HCE::runOnMachineFunction(MachineFunction &MF) { |
| if (skipFunction(MF.getFunction())) |
| return false; |
| LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr)); |
| |
| HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); |
| HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| MRI = &MF.getRegInfo(); |
| AssignmentMap IMap; |
| |
| collect(MF); |
| llvm::sort(Extenders.begin(), Extenders.end(), |
| [](const ExtDesc &A, const ExtDesc &B) { |
| return ExtValue(A) < ExtValue(B); |
| }); |
| |
| bool Changed = false; |
| LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n"); |
| for (unsigned I = 0, E = Extenders.size(); I != E; ) { |
| unsigned B = I; |
| const ExtRoot &T = Extenders[B].getOp(); |
| while (I != E && ExtRoot(Extenders[I].getOp()) == T) |
| ++I; |
| |
| IMap.clear(); |
| assignInits(T, B, I, IMap); |
| Changed |= replaceExtenders(IMap); |
| } |
| |
| LLVM_DEBUG({ |
| if (Changed) |
| MF.print(dbgs() << "After " << getPassName() << '\n', nullptr); |
| else |
| dbgs() << "No changes\n"; |
| }); |
| return Changed; |
| } |
| |
| FunctionPass *llvm::createHexagonConstExtenders() { |
| return new HexagonConstExtenders(); |
| } |