| //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements induction variable simplification. It does |
| // not define any actual pass or policy, but provides a single function to |
| // simplify a loop's induction variables based on ScalarEvolution. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "indvars" |
| |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/IVUsers.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| |
| using namespace llvm; |
| |
| STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); |
| STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); |
| STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); |
| STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); |
| |
| namespace { |
| /// SimplifyIndvar - This is a utility for simplifying induction variables |
| /// based on ScalarEvolution. It is the primary instrument of the |
| /// IndvarSimplify pass, but it may also be directly invoked to cleanup after |
| /// other loop passes that preserve SCEV. |
| class SimplifyIndvar { |
| Loop *L; |
| LoopInfo *LI; |
| DominatorTree *DT; |
| ScalarEvolution *SE; |
| IVUsers *IU; // NULL for DisableIVRewrite |
| const TargetData *TD; // May be NULL |
| |
| SmallVectorImpl<WeakVH> &DeadInsts; |
| |
| bool Changed; |
| |
| public: |
| SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, LPPassManager *LPM, |
| SmallVectorImpl<WeakVH> &Dead, IVUsers *IVU = NULL) : |
| L(Loop), |
| LI(LPM->getAnalysisIfAvailable<LoopInfo>()), |
| SE(SE), |
| IU(IVU), |
| TD(LPM->getAnalysisIfAvailable<TargetData>()), |
| DeadInsts(Dead), |
| Changed(false) { |
| assert(LI && "IV simplification requires LoopInfo"); |
| } |
| |
| bool hasChanged() const { return Changed; } |
| |
| /// Iteratively perform simplification on a worklist of users of the |
| /// specified induction variable. This is the top-level driver that applies |
| /// all simplicitions to users of an IV. |
| void simplifyUsers(PHINode *CurrIV, IVVisitor *V = NULL); |
| |
| Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); |
| |
| bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); |
| void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); |
| void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand, |
| bool IsSigned); |
| }; |
| } |
| |
| /// foldIVUser - Fold an IV operand into its use. This removes increments of an |
| /// aligned IV when used by a instruction that ignores the low bits. |
| /// |
| /// IVOperand is guaranteed SCEVable, but UseInst may not be. |
| /// |
| /// Return the operand of IVOperand for this induction variable if IVOperand can |
| /// be folded (in case more folding opportunities have been exposed). |
| /// Otherwise return null. |
| Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { |
| Value *IVSrc = 0; |
| unsigned OperIdx = 0; |
| const SCEV *FoldedExpr = 0; |
| switch (UseInst->getOpcode()) { |
| default: |
| return 0; |
| case Instruction::UDiv: |
| case Instruction::LShr: |
| // We're only interested in the case where we know something about |
| // the numerator and have a constant denominator. |
| if (IVOperand != UseInst->getOperand(OperIdx) || |
| !isa<ConstantInt>(UseInst->getOperand(1))) |
| return 0; |
| |
| // Attempt to fold a binary operator with constant operand. |
| // e.g. ((I + 1) >> 2) => I >> 2 |
| if (IVOperand->getNumOperands() != 2 || |
| !isa<ConstantInt>(IVOperand->getOperand(1))) |
| return 0; |
| |
| IVSrc = IVOperand->getOperand(0); |
| // IVSrc must be the (SCEVable) IV, since the other operand is const. |
| assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); |
| |
| ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); |
| if (UseInst->getOpcode() == Instruction::LShr) { |
| // Get a constant for the divisor. See createSCEV. |
| uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); |
| if (D->getValue().uge(BitWidth)) |
| return 0; |
| |
| D = ConstantInt::get(UseInst->getContext(), |
| APInt(BitWidth, 1).shl(D->getZExtValue())); |
| } |
| FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); |
| } |
| // We have something that might fold it's operand. Compare SCEVs. |
| if (!SE->isSCEVable(UseInst->getType())) |
| return 0; |
| |
| // Bypass the operand if SCEV can prove it has no effect. |
| if (SE->getSCEV(UseInst) != FoldedExpr) |
| return 0; |
| |
| DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand |
| << " -> " << *UseInst << '\n'); |
| |
| UseInst->setOperand(OperIdx, IVSrc); |
| assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); |
| |
| ++NumElimOperand; |
| Changed = true; |
| if (IVOperand->use_empty()) |
| DeadInsts.push_back(IVOperand); |
| return IVSrc; |
| } |
| |
| /// eliminateIVComparison - SimplifyIVUsers helper for eliminating useless |
| /// comparisons against an induction variable. |
| void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { |
| unsigned IVOperIdx = 0; |
| ICmpInst::Predicate Pred = ICmp->getPredicate(); |
| if (IVOperand != ICmp->getOperand(0)) { |
| // Swapped |
| assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); |
| IVOperIdx = 1; |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // Get the SCEVs for the ICmp operands. |
| const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); |
| const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); |
| |
| // Simplify unnecessary loops away. |
| const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); |
| S = SE->getSCEVAtScope(S, ICmpLoop); |
| X = SE->getSCEVAtScope(X, ICmpLoop); |
| |
| // If the condition is always true or always false, replace it with |
| // a constant value. |
| if (SE->isKnownPredicate(Pred, S, X)) |
| ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); |
| else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) |
| ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); |
| else |
| return; |
| |
| DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); |
| ++NumElimCmp; |
| Changed = true; |
| DeadInsts.push_back(ICmp); |
| } |
| |
| /// eliminateIVRemainder - SimplifyIVUsers helper for eliminating useless |
| /// remainder operations operating on an induction variable. |
| void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem, |
| Value *IVOperand, |
| bool IsSigned) { |
| // We're only interested in the case where we know something about |
| // the numerator. |
| if (IVOperand != Rem->getOperand(0)) |
| return; |
| |
| // Get the SCEVs for the ICmp operands. |
| const SCEV *S = SE->getSCEV(Rem->getOperand(0)); |
| const SCEV *X = SE->getSCEV(Rem->getOperand(1)); |
| |
| // Simplify unnecessary loops away. |
| const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); |
| S = SE->getSCEVAtScope(S, ICmpLoop); |
| X = SE->getSCEVAtScope(X, ICmpLoop); |
| |
| // i % n --> i if i is in [0,n). |
| if ((!IsSigned || SE->isKnownNonNegative(S)) && |
| SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, |
| S, X)) |
| Rem->replaceAllUsesWith(Rem->getOperand(0)); |
| else { |
| // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). |
| const SCEV *LessOne = |
| SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); |
| if (IsSigned && !SE->isKnownNonNegative(LessOne)) |
| return; |
| |
| if (!SE->isKnownPredicate(IsSigned ? |
| ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, |
| LessOne, X)) |
| return; |
| |
| ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, |
| Rem->getOperand(0), Rem->getOperand(1)); |
| SelectInst *Sel = |
| SelectInst::Create(ICmp, |
| ConstantInt::get(Rem->getType(), 0), |
| Rem->getOperand(0), "tmp", Rem); |
| Rem->replaceAllUsesWith(Sel); |
| } |
| |
| // Inform IVUsers about the new users. |
| if (IU) { |
| if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0))) |
| IU->AddUsersIfInteresting(I); |
| } |
| DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); |
| ++NumElimRem; |
| Changed = true; |
| DeadInsts.push_back(Rem); |
| } |
| |
| /// eliminateIVUser - Eliminate an operation that consumes a simple IV and has |
| /// no observable side-effect given the range of IV values. |
| /// IVOperand is guaranteed SCEVable, but UseInst may not be. |
| bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, |
| Instruction *IVOperand) { |
| if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { |
| eliminateIVComparison(ICmp, IVOperand); |
| return true; |
| } |
| if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { |
| bool IsSigned = Rem->getOpcode() == Instruction::SRem; |
| if (IsSigned || Rem->getOpcode() == Instruction::URem) { |
| eliminateIVRemainder(Rem, IVOperand, IsSigned); |
| return true; |
| } |
| } |
| |
| // Eliminate any operation that SCEV can prove is an identity function. |
| if (!SE->isSCEVable(UseInst->getType()) || |
| (UseInst->getType() != IVOperand->getType()) || |
| (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) |
| return false; |
| |
| DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); |
| |
| UseInst->replaceAllUsesWith(IVOperand); |
| ++NumElimIdentity; |
| Changed = true; |
| DeadInsts.push_back(UseInst); |
| return true; |
| } |
| |
| /// pushIVUsers - Add all uses of Def to the current IV's worklist. |
| /// |
| static void pushIVUsers( |
| Instruction *Def, |
| SmallPtrSet<Instruction*,16> &Simplified, |
| SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { |
| |
| for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end(); |
| UI != E; ++UI) { |
| Instruction *User = cast<Instruction>(*UI); |
| |
| // Avoid infinite or exponential worklist processing. |
| // Also ensure unique worklist users. |
| // If Def is a LoopPhi, it may not be in the Simplified set, so check for |
| // self edges first. |
| if (User != Def && Simplified.insert(User)) |
| SimpleIVUsers.push_back(std::make_pair(User, Def)); |
| } |
| } |
| |
| /// isSimpleIVUser - Return true if this instruction generates a simple SCEV |
| /// expression in terms of that IV. |
| /// |
| /// This is similar to IVUsers' isInteresting() but processes each instruction |
| /// non-recursively when the operand is already known to be a simpleIVUser. |
| /// |
| static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { |
| if (!SE->isSCEVable(I->getType())) |
| return false; |
| |
| // Get the symbolic expression for this instruction. |
| const SCEV *S = SE->getSCEV(I); |
| |
| // Only consider affine recurrences. |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); |
| if (AR && AR->getLoop() == L) |
| return true; |
| |
| return false; |
| } |
| |
| /// simplifyUsers - Iteratively perform simplification on a worklist of users |
| /// of the specified induction variable. Each successive simplification may push |
| /// more users which may themselves be candidates for simplification. |
| /// |
| /// This algorithm does not require IVUsers analysis. Instead, it simplifies |
| /// instructions in-place during analysis. Rather than rewriting induction |
| /// variables bottom-up from their users, it transforms a chain of IVUsers |
| /// top-down, updating the IR only when it encouters a clear optimization |
| /// opportunitiy. |
| /// |
| /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. |
| /// |
| void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { |
| if (!SE->isSCEVable(CurrIV->getType())) |
| return; |
| |
| // Instructions processed by SimplifyIndvar for CurrIV. |
| SmallPtrSet<Instruction*,16> Simplified; |
| |
| // Use-def pairs if IV users waiting to be processed for CurrIV. |
| SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; |
| |
| // Push users of the current LoopPhi. In rare cases, pushIVUsers may be |
| // called multiple times for the same LoopPhi. This is the proper thing to |
| // do for loop header phis that use each other. |
| pushIVUsers(CurrIV, Simplified, SimpleIVUsers); |
| |
| while (!SimpleIVUsers.empty()) { |
| std::pair<Instruction*, Instruction*> UseOper = |
| SimpleIVUsers.pop_back_val(); |
| // Bypass back edges to avoid extra work. |
| if (UseOper.first == CurrIV) continue; |
| |
| Instruction *IVOperand = UseOper.second; |
| for (unsigned N = 0; IVOperand; ++N) { |
| assert(N <= Simplified.size() && "runaway iteration"); |
| |
| Value *NewOper = foldIVUser(UseOper.first, IVOperand); |
| if (!NewOper) |
| break; // done folding |
| IVOperand = dyn_cast<Instruction>(NewOper); |
| } |
| if (!IVOperand) |
| continue; |
| |
| if (eliminateIVUser(UseOper.first, IVOperand)) { |
| pushIVUsers(IVOperand, Simplified, SimpleIVUsers); |
| continue; |
| } |
| CastInst *Cast = dyn_cast<CastInst>(UseOper.first); |
| if (V && Cast) { |
| V->visitCast(Cast); |
| continue; |
| } |
| if (isSimpleIVUser(UseOper.first, L, SE)) { |
| pushIVUsers(UseOper.first, Simplified, SimpleIVUsers); |
| } |
| } |
| } |
| |
| namespace llvm { |
| |
| /// simplifyUsersOfIV - Simplify instructions that use this induction variable |
| /// by using ScalarEvolution to analyze the IV's recurrence. |
| bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, LPPassManager *LPM, |
| SmallVectorImpl<WeakVH> &Dead, IVVisitor *V) |
| { |
| LoopInfo *LI = &LPM->getAnalysis<LoopInfo>(); |
| SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, LPM, Dead); |
| SIV.simplifyUsers(CurrIV, V); |
| return SIV.hasChanged(); |
| } |
| |
| /// simplifyLoopIVs - Simplify users of induction variables within this |
| /// loop. This does not actually change or add IVs. |
| bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, LPPassManager *LPM, |
| SmallVectorImpl<WeakVH> &Dead) { |
| bool Changed = false; |
| for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { |
| Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, LPM, Dead); |
| } |
| return Changed; |
| } |
| |
| /// simplifyIVUsers - Perform simplification on instructions recorded by the |
| /// IVUsers pass. |
| /// |
| /// This is the old approach to IV simplification to be replaced by |
| /// SimplifyLoopIVs. |
| bool simplifyIVUsers(IVUsers *IU, ScalarEvolution *SE, LPPassManager *LPM, |
| SmallVectorImpl<WeakVH> &Dead) { |
| SimplifyIndvar SIV(IU->getLoop(), SE, LPM, Dead); |
| |
| // Each round of simplification involves a round of eliminating operations |
| // followed by a round of widening IVs. A single IVUsers worklist is used |
| // across all rounds. The inner loop advances the user. If widening exposes |
| // more uses, then another pass through the outer loop is triggered. |
| for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) { |
| Instruction *UseInst = I->getUser(); |
| Value *IVOperand = I->getOperandValToReplace(); |
| |
| if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { |
| SIV.eliminateIVComparison(ICmp, IVOperand); |
| continue; |
| } |
| if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { |
| bool IsSigned = Rem->getOpcode() == Instruction::SRem; |
| if (IsSigned || Rem->getOpcode() == Instruction::URem) { |
| SIV.eliminateIVRemainder(Rem, IVOperand, IsSigned); |
| continue; |
| } |
| } |
| } |
| return SIV.hasChanged(); |
| } |
| |
| } // namespace llvm |