| //===- JumpThreading.cpp - Thread control through conditional blocks ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Jump Threading pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jump-threading" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ValueHandle.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| STATISTIC(NumThreads, "Number of jumps threaded"); |
| STATISTIC(NumFolds, "Number of terminators folded"); |
| STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); |
| |
| static cl::opt<unsigned> |
| Threshold("jump-threading-threshold", |
| cl::desc("Max block size to duplicate for jump threading"), |
| cl::init(6), cl::Hidden); |
| |
| namespace { |
| // These are at global scope so static functions can use them too. |
| typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; |
| typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; |
| |
| // This is used to keep track of what kind of constant we're currently hoping |
| // to find. |
| enum ConstantPreference { |
| WantInteger, |
| WantBlockAddress |
| }; |
| |
| /// This pass performs 'jump threading', which looks at blocks that have |
| /// multiple predecessors and multiple successors. If one or more of the |
| /// predecessors of the block can be proven to always jump to one of the |
| /// successors, we forward the edge from the predecessor to the successor by |
| /// duplicating the contents of this block. |
| /// |
| /// An example of when this can occur is code like this: |
| /// |
| /// if () { ... |
| /// X = 4; |
| /// } |
| /// if (X < 3) { |
| /// |
| /// In this case, the unconditional branch at the end of the first if can be |
| /// revectored to the false side of the second if. |
| /// |
| class JumpThreading : public FunctionPass { |
| TargetData *TD; |
| LazyValueInfo *LVI; |
| #ifdef NDEBUG |
| SmallPtrSet<BasicBlock*, 16> LoopHeaders; |
| #else |
| SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; |
| #endif |
| DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; |
| |
| // RAII helper for updating the recursion stack. |
| struct RecursionSetRemover { |
| DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; |
| std::pair<Value*, BasicBlock*> ThePair; |
| |
| RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, |
| std::pair<Value*, BasicBlock*> P) |
| : TheSet(S), ThePair(P) { } |
| |
| ~RecursionSetRemover() { |
| TheSet.erase(ThePair); |
| } |
| }; |
| public: |
| static char ID; // Pass identification |
| JumpThreading() : FunctionPass(ID) { |
| initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LazyValueInfo>(); |
| AU.addPreserved<LazyValueInfo>(); |
| } |
| |
| void FindLoopHeaders(Function &F); |
| bool ProcessBlock(BasicBlock *BB); |
| bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, |
| BasicBlock *SuccBB); |
| bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, |
| const SmallVectorImpl<BasicBlock *> &PredBBs); |
| |
| bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, |
| PredValueInfo &Result, |
| ConstantPreference Preference); |
| bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, |
| ConstantPreference Preference); |
| |
| bool ProcessBranchOnPHI(PHINode *PN); |
| bool ProcessBranchOnXOR(BinaryOperator *BO); |
| |
| bool SimplifyPartiallyRedundantLoad(LoadInst *LI); |
| }; |
| } |
| |
| char JumpThreading::ID = 0; |
| INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", |
| "Jump Threading", false, false) |
| INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) |
| INITIALIZE_PASS_END(JumpThreading, "jump-threading", |
| "Jump Threading", false, false) |
| |
| // Public interface to the Jump Threading pass |
| FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); } |
| |
| /// runOnFunction - Top level algorithm. |
| /// |
| bool JumpThreading::runOnFunction(Function &F) { |
| DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); |
| TD = getAnalysisIfAvailable<TargetData>(); |
| LVI = &getAnalysis<LazyValueInfo>(); |
| |
| FindLoopHeaders(F); |
| |
| bool Changed, EverChanged = false; |
| do { |
| Changed = false; |
| for (Function::iterator I = F.begin(), E = F.end(); I != E;) { |
| BasicBlock *BB = I; |
| // Thread all of the branches we can over this block. |
| while (ProcessBlock(BB)) |
| Changed = true; |
| |
| ++I; |
| |
| // If the block is trivially dead, zap it. This eliminates the successor |
| // edges which simplifies the CFG. |
| if (pred_begin(BB) == pred_end(BB) && |
| BB != &BB->getParent()->getEntryBlock()) { |
| DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() |
| << "' with terminator: " << *BB->getTerminator() << '\n'); |
| LoopHeaders.erase(BB); |
| LVI->eraseBlock(BB); |
| DeleteDeadBlock(BB); |
| Changed = true; |
| continue; |
| } |
| |
| BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); |
| |
| // Can't thread an unconditional jump, but if the block is "almost |
| // empty", we can replace uses of it with uses of the successor and make |
| // this dead. |
| if (BI && BI->isUnconditional() && |
| BB != &BB->getParent()->getEntryBlock() && |
| // If the terminator is the only non-phi instruction, try to nuke it. |
| BB->getFirstNonPHIOrDbg()->isTerminator()) { |
| // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the |
| // block, we have to make sure it isn't in the LoopHeaders set. We |
| // reinsert afterward if needed. |
| bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); |
| BasicBlock *Succ = BI->getSuccessor(0); |
| |
| // FIXME: It is always conservatively correct to drop the info |
| // for a block even if it doesn't get erased. This isn't totally |
| // awesome, but it allows us to use AssertingVH to prevent nasty |
| // dangling pointer issues within LazyValueInfo. |
| LVI->eraseBlock(BB); |
| if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { |
| Changed = true; |
| // If we deleted BB and BB was the header of a loop, then the |
| // successor is now the header of the loop. |
| BB = Succ; |
| } |
| |
| if (ErasedFromLoopHeaders) |
| LoopHeaders.insert(BB); |
| } |
| } |
| EverChanged |= Changed; |
| } while (Changed); |
| |
| LoopHeaders.clear(); |
| return EverChanged; |
| } |
| |
| /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to |
| /// thread across it. |
| static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) { |
| /// Ignore PHI nodes, these will be flattened when duplication happens. |
| BasicBlock::const_iterator I = BB->getFirstNonPHI(); |
| |
| // FIXME: THREADING will delete values that are just used to compute the |
| // branch, so they shouldn't count against the duplication cost. |
| |
| |
| // Sum up the cost of each instruction until we get to the terminator. Don't |
| // include the terminator because the copy won't include it. |
| unsigned Size = 0; |
| for (; !isa<TerminatorInst>(I); ++I) { |
| // Debugger intrinsics don't incur code size. |
| if (isa<DbgInfoIntrinsic>(I)) continue; |
| |
| // If this is a pointer->pointer bitcast, it is free. |
| if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) |
| continue; |
| |
| // All other instructions count for at least one unit. |
| ++Size; |
| |
| // Calls are more expensive. If they are non-intrinsic calls, we model them |
| // as having cost of 4. If they are a non-vector intrinsic, we model them |
| // as having cost of 2 total, and if they are a vector intrinsic, we model |
| // them as having cost 1. |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) { |
| if (!isa<IntrinsicInst>(CI)) |
| Size += 3; |
| else if (!CI->getType()->isVectorTy()) |
| Size += 1; |
| } |
| } |
| |
| // Threading through a switch statement is particularly profitable. If this |
| // block ends in a switch, decrease its cost to make it more likely to happen. |
| if (isa<SwitchInst>(I)) |
| Size = Size > 6 ? Size-6 : 0; |
| |
| // The same holds for indirect branches, but slightly more so. |
| if (isa<IndirectBrInst>(I)) |
| Size = Size > 8 ? Size-8 : 0; |
| |
| return Size; |
| } |
| |
| /// FindLoopHeaders - We do not want jump threading to turn proper loop |
| /// structures into irreducible loops. Doing this breaks up the loop nesting |
| /// hierarchy and pessimizes later transformations. To prevent this from |
| /// happening, we first have to find the loop headers. Here we approximate this |
| /// by finding targets of backedges in the CFG. |
| /// |
| /// Note that there definitely are cases when we want to allow threading of |
| /// edges across a loop header. For example, threading a jump from outside the |
| /// loop (the preheader) to an exit block of the loop is definitely profitable. |
| /// It is also almost always profitable to thread backedges from within the loop |
| /// to exit blocks, and is often profitable to thread backedges to other blocks |
| /// within the loop (forming a nested loop). This simple analysis is not rich |
| /// enough to track all of these properties and keep it up-to-date as the CFG |
| /// mutates, so we don't allow any of these transformations. |
| /// |
| void JumpThreading::FindLoopHeaders(Function &F) { |
| SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; |
| FindFunctionBackedges(F, Edges); |
| |
| for (unsigned i = 0, e = Edges.size(); i != e; ++i) |
| LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); |
| } |
| |
| /// getKnownConstant - Helper method to determine if we can thread over a |
| /// terminator with the given value as its condition, and if so what value to |
| /// use for that. What kind of value this is depends on whether we want an |
| /// integer or a block address, but an undef is always accepted. |
| /// Returns null if Val is null or not an appropriate constant. |
| static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { |
| if (!Val) |
| return 0; |
| |
| // Undef is "known" enough. |
| if (UndefValue *U = dyn_cast<UndefValue>(Val)) |
| return U; |
| |
| if (Preference == WantBlockAddress) |
| return dyn_cast<BlockAddress>(Val->stripPointerCasts()); |
| |
| return dyn_cast<ConstantInt>(Val); |
| } |
| |
| /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see |
| /// if we can infer that the value is a known ConstantInt/BlockAddress or undef |
| /// in any of our predecessors. If so, return the known list of value and pred |
| /// BB in the result vector. |
| /// |
| /// This returns true if there were any known values. |
| /// |
| bool JumpThreading:: |
| ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, |
| ConstantPreference Preference) { |
| // This method walks up use-def chains recursively. Because of this, we could |
| // get into an infinite loop going around loops in the use-def chain. To |
| // prevent this, keep track of what (value, block) pairs we've already visited |
| // and terminate the search if we loop back to them |
| if (!RecursionSet.insert(std::make_pair(V, BB)).second) |
| return false; |
| |
| // An RAII help to remove this pair from the recursion set once the recursion |
| // stack pops back out again. |
| RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); |
| |
| // If V is a constant, then it is known in all predecessors. |
| if (Constant *KC = getKnownConstant(V, Preference)) { |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| Result.push_back(std::make_pair(KC, *PI)); |
| |
| return true; |
| } |
| |
| // If V is a non-instruction value, or an instruction in a different block, |
| // then it can't be derived from a PHI. |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (I == 0 || I->getParent() != BB) { |
| |
| // Okay, if this is a live-in value, see if it has a known value at the end |
| // of any of our predecessors. |
| // |
| // FIXME: This should be an edge property, not a block end property. |
| /// TODO: Per PR2563, we could infer value range information about a |
| /// predecessor based on its terminator. |
| // |
| // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if |
| // "I" is a non-local compare-with-a-constant instruction. This would be |
| // able to handle value inequalities better, for example if the compare is |
| // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. |
| // Perhaps getConstantOnEdge should be smart enough to do this? |
| |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| BasicBlock *P = *PI; |
| // If the value is known by LazyValueInfo to be a constant in a |
| // predecessor, use that information to try to thread this block. |
| Constant *PredCst = LVI->getConstantOnEdge(V, P, BB); |
| if (Constant *KC = getKnownConstant(PredCst, Preference)) |
| Result.push_back(std::make_pair(KC, P)); |
| } |
| |
| return !Result.empty(); |
| } |
| |
| /// If I is a PHI node, then we know the incoming values for any constants. |
| if (PHINode *PN = dyn_cast<PHINode>(I)) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *InVal = PN->getIncomingValue(i); |
| if (Constant *KC = getKnownConstant(InVal, Preference)) { |
| Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); |
| } else { |
| Constant *CI = LVI->getConstantOnEdge(InVal, |
| PN->getIncomingBlock(i), BB); |
| if (Constant *KC = getKnownConstant(CI, Preference)) |
| Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); |
| } |
| } |
| |
| return !Result.empty(); |
| } |
| |
| PredValueInfoTy LHSVals, RHSVals; |
| |
| // Handle some boolean conditions. |
| if (I->getType()->getPrimitiveSizeInBits() == 1) { |
| assert(Preference == WantInteger && "One-bit non-integer type?"); |
| // X | true -> true |
| // X & false -> false |
| if (I->getOpcode() == Instruction::Or || |
| I->getOpcode() == Instruction::And) { |
| ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, |
| WantInteger); |
| ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, |
| WantInteger); |
| |
| if (LHSVals.empty() && RHSVals.empty()) |
| return false; |
| |
| ConstantInt *InterestingVal; |
| if (I->getOpcode() == Instruction::Or) |
| InterestingVal = ConstantInt::getTrue(I->getContext()); |
| else |
| InterestingVal = ConstantInt::getFalse(I->getContext()); |
| |
| SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; |
| |
| // Scan for the sentinel. If we find an undef, force it to the |
| // interesting value: x|undef -> true and x&undef -> false. |
| for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) |
| if (LHSVals[i].first == InterestingVal || |
| isa<UndefValue>(LHSVals[i].first)) { |
| Result.push_back(LHSVals[i]); |
| Result.back().first = InterestingVal; |
| LHSKnownBBs.insert(LHSVals[i].second); |
| } |
| for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) |
| if (RHSVals[i].first == InterestingVal || |
| isa<UndefValue>(RHSVals[i].first)) { |
| // If we already inferred a value for this block on the LHS, don't |
| // re-add it. |
| if (!LHSKnownBBs.count(RHSVals[i].second)) { |
| Result.push_back(RHSVals[i]); |
| Result.back().first = InterestingVal; |
| } |
| } |
| |
| return !Result.empty(); |
| } |
| |
| // Handle the NOT form of XOR. |
| if (I->getOpcode() == Instruction::Xor && |
| isa<ConstantInt>(I->getOperand(1)) && |
| cast<ConstantInt>(I->getOperand(1))->isOne()) { |
| ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, |
| WantInteger); |
| if (Result.empty()) |
| return false; |
| |
| // Invert the known values. |
| for (unsigned i = 0, e = Result.size(); i != e; ++i) |
| Result[i].first = ConstantExpr::getNot(Result[i].first); |
| |
| return true; |
| } |
| |
| // Try to simplify some other binary operator values. |
| } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { |
| assert(Preference != WantBlockAddress |
| && "A binary operator creating a block address?"); |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { |
| PredValueInfoTy LHSVals; |
| ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, |
| WantInteger); |
| |
| // Try to use constant folding to simplify the binary operator. |
| for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { |
| Constant *V = LHSVals[i].first; |
| Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); |
| |
| if (Constant *KC = getKnownConstant(Folded, WantInteger)) |
| Result.push_back(std::make_pair(KC, LHSVals[i].second)); |
| } |
| } |
| |
| return !Result.empty(); |
| } |
| |
| // Handle compare with phi operand, where the PHI is defined in this block. |
| if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { |
| assert(Preference == WantInteger && "Compares only produce integers"); |
| PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); |
| if (PN && PN->getParent() == BB) { |
| // We can do this simplification if any comparisons fold to true or false. |
| // See if any do. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *PredBB = PN->getIncomingBlock(i); |
| Value *LHS = PN->getIncomingValue(i); |
| Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); |
| |
| Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD); |
| if (Res == 0) { |
| if (!isa<Constant>(RHS)) |
| continue; |
| |
| LazyValueInfo::Tristate |
| ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, |
| cast<Constant>(RHS), PredBB, BB); |
| if (ResT == LazyValueInfo::Unknown) |
| continue; |
| Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); |
| } |
| |
| if (Constant *KC = getKnownConstant(Res, WantInteger)) |
| Result.push_back(std::make_pair(KC, PredBB)); |
| } |
| |
| return !Result.empty(); |
| } |
| |
| |
| // If comparing a live-in value against a constant, see if we know the |
| // live-in value on any predecessors. |
| if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { |
| if (!isa<Instruction>(Cmp->getOperand(0)) || |
| cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { |
| Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); |
| |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ |
| BasicBlock *P = *PI; |
| // If the value is known by LazyValueInfo to be a constant in a |
| // predecessor, use that information to try to thread this block. |
| LazyValueInfo::Tristate Res = |
| LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), |
| RHSCst, P, BB); |
| if (Res == LazyValueInfo::Unknown) |
| continue; |
| |
| Constant *ResC = ConstantInt::get(Cmp->getType(), Res); |
| Result.push_back(std::make_pair(ResC, P)); |
| } |
| |
| return !Result.empty(); |
| } |
| |
| // Try to find a constant value for the LHS of a comparison, |
| // and evaluate it statically if we can. |
| if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { |
| PredValueInfoTy LHSVals; |
| ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, |
| WantInteger); |
| |
| for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { |
| Constant *V = LHSVals[i].first; |
| Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), |
| V, CmpConst); |
| if (Constant *KC = getKnownConstant(Folded, WantInteger)) |
| Result.push_back(std::make_pair(KC, LHSVals[i].second)); |
| } |
| |
| return !Result.empty(); |
| } |
| } |
| } |
| |
| if (SelectInst *SI = dyn_cast<SelectInst>(I)) { |
| // Handle select instructions where at least one operand is a known constant |
| // and we can figure out the condition value for any predecessor block. |
| Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); |
| Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); |
| PredValueInfoTy Conds; |
| if ((TrueVal || FalseVal) && |
| ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, |
| WantInteger)) { |
| for (unsigned i = 0, e = Conds.size(); i != e; ++i) { |
| Constant *Cond = Conds[i].first; |
| |
| // Figure out what value to use for the condition. |
| bool KnownCond; |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { |
| // A known boolean. |
| KnownCond = CI->isOne(); |
| } else { |
| assert(isa<UndefValue>(Cond) && "Unexpected condition value"); |
| // Either operand will do, so be sure to pick the one that's a known |
| // constant. |
| // FIXME: Do this more cleverly if both values are known constants? |
| KnownCond = (TrueVal != 0); |
| } |
| |
| // See if the select has a known constant value for this predecessor. |
| if (Constant *Val = KnownCond ? TrueVal : FalseVal) |
| Result.push_back(std::make_pair(Val, Conds[i].second)); |
| } |
| |
| return !Result.empty(); |
| } |
| } |
| |
| // If all else fails, see if LVI can figure out a constant value for us. |
| Constant *CI = LVI->getConstant(V, BB); |
| if (Constant *KC = getKnownConstant(CI, Preference)) { |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| Result.push_back(std::make_pair(KC, *PI)); |
| } |
| |
| return !Result.empty(); |
| } |
| |
| |
| |
| /// GetBestDestForBranchOnUndef - If we determine that the specified block ends |
| /// in an undefined jump, decide which block is best to revector to. |
| /// |
| /// Since we can pick an arbitrary destination, we pick the successor with the |
| /// fewest predecessors. This should reduce the in-degree of the others. |
| /// |
| static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { |
| TerminatorInst *BBTerm = BB->getTerminator(); |
| unsigned MinSucc = 0; |
| BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); |
| // Compute the successor with the minimum number of predecessors. |
| unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); |
| for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { |
| TestBB = BBTerm->getSuccessor(i); |
| unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); |
| if (NumPreds < MinNumPreds) { |
| MinSucc = i; |
| MinNumPreds = NumPreds; |
| } |
| } |
| |
| return MinSucc; |
| } |
| |
| static bool hasAddressTakenAndUsed(BasicBlock *BB) { |
| if (!BB->hasAddressTaken()) return false; |
| |
| // If the block has its address taken, it may be a tree of dead constants |
| // hanging off of it. These shouldn't keep the block alive. |
| BlockAddress *BA = BlockAddress::get(BB); |
| BA->removeDeadConstantUsers(); |
| return !BA->use_empty(); |
| } |
| |
| /// ProcessBlock - If there are any predecessors whose control can be threaded |
| /// through to a successor, transform them now. |
| bool JumpThreading::ProcessBlock(BasicBlock *BB) { |
| // If the block is trivially dead, just return and let the caller nuke it. |
| // This simplifies other transformations. |
| if (pred_begin(BB) == pred_end(BB) && |
| BB != &BB->getParent()->getEntryBlock()) |
| return false; |
| |
| // If this block has a single predecessor, and if that pred has a single |
| // successor, merge the blocks. This encourages recursive jump threading |
| // because now the condition in this block can be threaded through |
| // predecessors of our predecessor block. |
| if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { |
| if (SinglePred->getTerminator()->getNumSuccessors() == 1 && |
| SinglePred != BB && !hasAddressTakenAndUsed(BB)) { |
| // If SinglePred was a loop header, BB becomes one. |
| if (LoopHeaders.erase(SinglePred)) |
| LoopHeaders.insert(BB); |
| |
| // Remember if SinglePred was the entry block of the function. If so, we |
| // will need to move BB back to the entry position. |
| bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); |
| LVI->eraseBlock(SinglePred); |
| MergeBasicBlockIntoOnlyPred(BB); |
| |
| if (isEntry && BB != &BB->getParent()->getEntryBlock()) |
| BB->moveBefore(&BB->getParent()->getEntryBlock()); |
| return true; |
| } |
| } |
| |
| // What kind of constant we're looking for. |
| ConstantPreference Preference = WantInteger; |
| |
| // Look to see if the terminator is a conditional branch, switch or indirect |
| // branch, if not we can't thread it. |
| Value *Condition; |
| Instruction *Terminator = BB->getTerminator(); |
| if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { |
| // Can't thread an unconditional jump. |
| if (BI->isUnconditional()) return false; |
| Condition = BI->getCondition(); |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { |
| Condition = SI->getCondition(); |
| } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { |
| Condition = IB->getAddress()->stripPointerCasts(); |
| Preference = WantBlockAddress; |
| } else { |
| return false; // Must be an invoke. |
| } |
| |
| // Run constant folding to see if we can reduce the condition to a simple |
| // constant. |
| if (Instruction *I = dyn_cast<Instruction>(Condition)) { |
| Value *SimpleVal = ConstantFoldInstruction(I, TD); |
| if (SimpleVal) { |
| I->replaceAllUsesWith(SimpleVal); |
| I->eraseFromParent(); |
| Condition = SimpleVal; |
| } |
| } |
| |
| // If the terminator is branching on an undef, we can pick any of the |
| // successors to branch to. Let GetBestDestForJumpOnUndef decide. |
| if (isa<UndefValue>(Condition)) { |
| unsigned BestSucc = GetBestDestForJumpOnUndef(BB); |
| |
| // Fold the branch/switch. |
| TerminatorInst *BBTerm = BB->getTerminator(); |
| for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { |
| if (i == BestSucc) continue; |
| BBTerm->getSuccessor(i)->removePredecessor(BB, true); |
| } |
| |
| DEBUG(dbgs() << " In block '" << BB->getName() |
| << "' folding undef terminator: " << *BBTerm << '\n'); |
| BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); |
| BBTerm->eraseFromParent(); |
| return true; |
| } |
| |
| // If the terminator of this block is branching on a constant, simplify the |
| // terminator to an unconditional branch. This can occur due to threading in |
| // other blocks. |
| if (getKnownConstant(Condition, Preference)) { |
| DEBUG(dbgs() << " In block '" << BB->getName() |
| << "' folding terminator: " << *BB->getTerminator() << '\n'); |
| ++NumFolds; |
| ConstantFoldTerminator(BB, true); |
| return true; |
| } |
| |
| Instruction *CondInst = dyn_cast<Instruction>(Condition); |
| |
| // All the rest of our checks depend on the condition being an instruction. |
| if (CondInst == 0) { |
| // FIXME: Unify this with code below. |
| if (ProcessThreadableEdges(Condition, BB, Preference)) |
| return true; |
| return false; |
| } |
| |
| |
| if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { |
| // For a comparison where the LHS is outside this block, it's possible |
| // that we've branched on it before. Used LVI to see if we can simplify |
| // the branch based on that. |
| BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); |
| Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); |
| pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| if (CondBr && CondConst && CondBr->isConditional() && PI != PE && |
| (!isa<Instruction>(CondCmp->getOperand(0)) || |
| cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { |
| // For predecessor edge, determine if the comparison is true or false |
| // on that edge. If they're all true or all false, we can simplify the |
| // branch. |
| // FIXME: We could handle mixed true/false by duplicating code. |
| LazyValueInfo::Tristate Baseline = |
| LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), |
| CondConst, *PI, BB); |
| if (Baseline != LazyValueInfo::Unknown) { |
| // Check that all remaining incoming values match the first one. |
| while (++PI != PE) { |
| LazyValueInfo::Tristate Ret = |
| LVI->getPredicateOnEdge(CondCmp->getPredicate(), |
| CondCmp->getOperand(0), CondConst, *PI, BB); |
| if (Ret != Baseline) break; |
| } |
| |
| // If we terminated early, then one of the values didn't match. |
| if (PI == PE) { |
| unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; |
| unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; |
| CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); |
| BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); |
| CondBr->eraseFromParent(); |
| return true; |
| } |
| } |
| } |
| } |
| |
| // Check for some cases that are worth simplifying. Right now we want to look |
| // for loads that are used by a switch or by the condition for the branch. If |
| // we see one, check to see if it's partially redundant. If so, insert a PHI |
| // which can then be used to thread the values. |
| // |
| Value *SimplifyValue = CondInst; |
| if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) |
| if (isa<Constant>(CondCmp->getOperand(1))) |
| SimplifyValue = CondCmp->getOperand(0); |
| |
| // TODO: There are other places where load PRE would be profitable, such as |
| // more complex comparisons. |
| if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) |
| if (SimplifyPartiallyRedundantLoad(LI)) |
| return true; |
| |
| |
| // Handle a variety of cases where we are branching on something derived from |
| // a PHI node in the current block. If we can prove that any predecessors |
| // compute a predictable value based on a PHI node, thread those predecessors. |
| // |
| if (ProcessThreadableEdges(CondInst, BB, Preference)) |
| return true; |
| |
| // If this is an otherwise-unfoldable branch on a phi node in the current |
| // block, see if we can simplify. |
| if (PHINode *PN = dyn_cast<PHINode>(CondInst)) |
| if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) |
| return ProcessBranchOnPHI(PN); |
| |
| |
| // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. |
| if (CondInst->getOpcode() == Instruction::Xor && |
| CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) |
| return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); |
| |
| |
| // TODO: If we have: "br (X > 0)" and we have a predecessor where we know |
| // "(X == 4)", thread through this block. |
| |
| return false; |
| } |
| |
| |
| /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant |
| /// load instruction, eliminate it by replacing it with a PHI node. This is an |
| /// important optimization that encourages jump threading, and needs to be run |
| /// interlaced with other jump threading tasks. |
| bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { |
| // Don't hack volatile/atomic loads. |
| if (!LI->isSimple()) return false; |
| |
| // If the load is defined in a block with exactly one predecessor, it can't be |
| // partially redundant. |
| BasicBlock *LoadBB = LI->getParent(); |
| if (LoadBB->getSinglePredecessor()) |
| return false; |
| |
| Value *LoadedPtr = LI->getOperand(0); |
| |
| // If the loaded operand is defined in the LoadBB, it can't be available. |
| // TODO: Could do simple PHI translation, that would be fun :) |
| if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) |
| if (PtrOp->getParent() == LoadBB) |
| return false; |
| |
| // Scan a few instructions up from the load, to see if it is obviously live at |
| // the entry to its block. |
| BasicBlock::iterator BBIt = LI; |
| |
| if (Value *AvailableVal = |
| FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { |
| // If the value if the load is locally available within the block, just use |
| // it. This frequently occurs for reg2mem'd allocas. |
| //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; |
| |
| // If the returned value is the load itself, replace with an undef. This can |
| // only happen in dead loops. |
| if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); |
| LI->replaceAllUsesWith(AvailableVal); |
| LI->eraseFromParent(); |
| return true; |
| } |
| |
| // Otherwise, if we scanned the whole block and got to the top of the block, |
| // we know the block is locally transparent to the load. If not, something |
| // might clobber its value. |
| if (BBIt != LoadBB->begin()) |
| return false; |
| |
| |
| SmallPtrSet<BasicBlock*, 8> PredsScanned; |
| typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; |
| AvailablePredsTy AvailablePreds; |
| BasicBlock *OneUnavailablePred = 0; |
| |
| // If we got here, the loaded value is transparent through to the start of the |
| // block. Check to see if it is available in any of the predecessor blocks. |
| for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); |
| PI != PE; ++PI) { |
| BasicBlock *PredBB = *PI; |
| |
| // If we already scanned this predecessor, skip it. |
| if (!PredsScanned.insert(PredBB)) |
| continue; |
| |
| // Scan the predecessor to see if the value is available in the pred. |
| BBIt = PredBB->end(); |
| Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6); |
| if (!PredAvailable) { |
| OneUnavailablePred = PredBB; |
| continue; |
| } |
| |
| // If so, this load is partially redundant. Remember this info so that we |
| // can create a PHI node. |
| AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); |
| } |
| |
| // If the loaded value isn't available in any predecessor, it isn't partially |
| // redundant. |
| if (AvailablePreds.empty()) return false; |
| |
| // Okay, the loaded value is available in at least one (and maybe all!) |
| // predecessors. If the value is unavailable in more than one unique |
| // predecessor, we want to insert a merge block for those common predecessors. |
| // This ensures that we only have to insert one reload, thus not increasing |
| // code size. |
| BasicBlock *UnavailablePred = 0; |
| |
| // If there is exactly one predecessor where the value is unavailable, the |
| // already computed 'OneUnavailablePred' block is it. If it ends in an |
| // unconditional branch, we know that it isn't a critical edge. |
| if (PredsScanned.size() == AvailablePreds.size()+1 && |
| OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { |
| UnavailablePred = OneUnavailablePred; |
| } else if (PredsScanned.size() != AvailablePreds.size()) { |
| // Otherwise, we had multiple unavailable predecessors or we had a critical |
| // edge from the one. |
| SmallVector<BasicBlock*, 8> PredsToSplit; |
| SmallPtrSet<BasicBlock*, 8> AvailablePredSet; |
| |
| for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) |
| AvailablePredSet.insert(AvailablePreds[i].first); |
| |
| // Add all the unavailable predecessors to the PredsToSplit list. |
| for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); |
| PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| // If the predecessor is an indirect goto, we can't split the edge. |
| if (isa<IndirectBrInst>(P->getTerminator())) |
| return false; |
| |
| if (!AvailablePredSet.count(P)) |
| PredsToSplit.push_back(P); |
| } |
| |
| // Split them out to their own block. |
| UnavailablePred = |
| SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(), |
| "thread-pre-split", this); |
| } |
| |
| // If the value isn't available in all predecessors, then there will be |
| // exactly one where it isn't available. Insert a load on that edge and add |
| // it to the AvailablePreds list. |
| if (UnavailablePred) { |
| assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && |
| "Can't handle critical edge here!"); |
| LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, |
| LI->getAlignment(), |
| UnavailablePred->getTerminator()); |
| NewVal->setDebugLoc(LI->getDebugLoc()); |
| AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); |
| } |
| |
| // Now we know that each predecessor of this block has a value in |
| // AvailablePreds, sort them for efficient access as we're walking the preds. |
| array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); |
| |
| // Create a PHI node at the start of the block for the PRE'd load value. |
| pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); |
| PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", |
| LoadBB->begin()); |
| PN->takeName(LI); |
| PN->setDebugLoc(LI->getDebugLoc()); |
| |
| // Insert new entries into the PHI for each predecessor. A single block may |
| // have multiple entries here. |
| for (pred_iterator PI = PB; PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| AvailablePredsTy::iterator I = |
| std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), |
| std::make_pair(P, (Value*)0)); |
| |
| assert(I != AvailablePreds.end() && I->first == P && |
| "Didn't find entry for predecessor!"); |
| |
| PN->addIncoming(I->second, I->first); |
| } |
| |
| //cerr << "PRE: " << *LI << *PN << "\n"; |
| |
| LI->replaceAllUsesWith(PN); |
| LI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| /// FindMostPopularDest - The specified list contains multiple possible |
| /// threadable destinations. Pick the one that occurs the most frequently in |
| /// the list. |
| static BasicBlock * |
| FindMostPopularDest(BasicBlock *BB, |
| const SmallVectorImpl<std::pair<BasicBlock*, |
| BasicBlock*> > &PredToDestList) { |
| assert(!PredToDestList.empty()); |
| |
| // Determine popularity. If there are multiple possible destinations, we |
| // explicitly choose to ignore 'undef' destinations. We prefer to thread |
| // blocks with known and real destinations to threading undef. We'll handle |
| // them later if interesting. |
| DenseMap<BasicBlock*, unsigned> DestPopularity; |
| for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) |
| if (PredToDestList[i].second) |
| DestPopularity[PredToDestList[i].second]++; |
| |
| // Find the most popular dest. |
| DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); |
| BasicBlock *MostPopularDest = DPI->first; |
| unsigned Popularity = DPI->second; |
| SmallVector<BasicBlock*, 4> SamePopularity; |
| |
| for (++DPI; DPI != DestPopularity.end(); ++DPI) { |
| // If the popularity of this entry isn't higher than the popularity we've |
| // seen so far, ignore it. |
| if (DPI->second < Popularity) |
| ; // ignore. |
| else if (DPI->second == Popularity) { |
| // If it is the same as what we've seen so far, keep track of it. |
| SamePopularity.push_back(DPI->first); |
| } else { |
| // If it is more popular, remember it. |
| SamePopularity.clear(); |
| MostPopularDest = DPI->first; |
| Popularity = DPI->second; |
| } |
| } |
| |
| // Okay, now we know the most popular destination. If there is more than one |
| // destination, we need to determine one. This is arbitrary, but we need |
| // to make a deterministic decision. Pick the first one that appears in the |
| // successor list. |
| if (!SamePopularity.empty()) { |
| SamePopularity.push_back(MostPopularDest); |
| TerminatorInst *TI = BB->getTerminator(); |
| for (unsigned i = 0; ; ++i) { |
| assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); |
| |
| if (std::find(SamePopularity.begin(), SamePopularity.end(), |
| TI->getSuccessor(i)) == SamePopularity.end()) |
| continue; |
| |
| MostPopularDest = TI->getSuccessor(i); |
| break; |
| } |
| } |
| |
| // Okay, we have finally picked the most popular destination. |
| return MostPopularDest; |
| } |
| |
| bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, |
| ConstantPreference Preference) { |
| // If threading this would thread across a loop header, don't even try to |
| // thread the edge. |
| if (LoopHeaders.count(BB)) |
| return false; |
| |
| PredValueInfoTy PredValues; |
| if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference)) |
| return false; |
| |
| assert(!PredValues.empty() && |
| "ComputeValueKnownInPredecessors returned true with no values"); |
| |
| DEBUG(dbgs() << "IN BB: " << *BB; |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { |
| dbgs() << " BB '" << BB->getName() << "': FOUND condition = " |
| << *PredValues[i].first |
| << " for pred '" << PredValues[i].second->getName() << "'.\n"; |
| }); |
| |
| // Decide what we want to thread through. Convert our list of known values to |
| // a list of known destinations for each pred. This also discards duplicate |
| // predecessors and keeps track of the undefined inputs (which are represented |
| // as a null dest in the PredToDestList). |
| SmallPtrSet<BasicBlock*, 16> SeenPreds; |
| SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; |
| |
| BasicBlock *OnlyDest = 0; |
| BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; |
| |
| for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { |
| BasicBlock *Pred = PredValues[i].second; |
| if (!SeenPreds.insert(Pred)) |
| continue; // Duplicate predecessor entry. |
| |
| // If the predecessor ends with an indirect goto, we can't change its |
| // destination. |
| if (isa<IndirectBrInst>(Pred->getTerminator())) |
| continue; |
| |
| Constant *Val = PredValues[i].first; |
| |
| BasicBlock *DestBB; |
| if (isa<UndefValue>(Val)) |
| DestBB = 0; |
| else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) |
| DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); |
| else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) |
| DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val))); |
| else { |
| assert(isa<IndirectBrInst>(BB->getTerminator()) |
| && "Unexpected terminator"); |
| DestBB = cast<BlockAddress>(Val)->getBasicBlock(); |
| } |
| |
| // If we have exactly one destination, remember it for efficiency below. |
| if (PredToDestList.empty()) |
| OnlyDest = DestBB; |
| else if (OnlyDest != DestBB) |
| OnlyDest = MultipleDestSentinel; |
| |
| PredToDestList.push_back(std::make_pair(Pred, DestBB)); |
| } |
| |
| // If all edges were unthreadable, we fail. |
| if (PredToDestList.empty()) |
| return false; |
| |
| // Determine which is the most common successor. If we have many inputs and |
| // this block is a switch, we want to start by threading the batch that goes |
| // to the most popular destination first. If we only know about one |
| // threadable destination (the common case) we can avoid this. |
| BasicBlock *MostPopularDest = OnlyDest; |
| |
| if (MostPopularDest == MultipleDestSentinel) |
| MostPopularDest = FindMostPopularDest(BB, PredToDestList); |
| |
| // Now that we know what the most popular destination is, factor all |
| // predecessors that will jump to it into a single predecessor. |
| SmallVector<BasicBlock*, 16> PredsToFactor; |
| for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) |
| if (PredToDestList[i].second == MostPopularDest) { |
| BasicBlock *Pred = PredToDestList[i].first; |
| |
| // This predecessor may be a switch or something else that has multiple |
| // edges to the block. Factor each of these edges by listing them |
| // according to # occurrences in PredsToFactor. |
| TerminatorInst *PredTI = Pred->getTerminator(); |
| for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) |
| if (PredTI->getSuccessor(i) == BB) |
| PredsToFactor.push_back(Pred); |
| } |
| |
| // If the threadable edges are branching on an undefined value, we get to pick |
| // the destination that these predecessors should get to. |
| if (MostPopularDest == 0) |
| MostPopularDest = BB->getTerminator()-> |
| getSuccessor(GetBestDestForJumpOnUndef(BB)); |
| |
| // Ok, try to thread it! |
| return ThreadEdge(BB, PredsToFactor, MostPopularDest); |
| } |
| |
| /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on |
| /// a PHI node in the current block. See if there are any simplifications we |
| /// can do based on inputs to the phi node. |
| /// |
| bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { |
| BasicBlock *BB = PN->getParent(); |
| |
| // TODO: We could make use of this to do it once for blocks with common PHI |
| // values. |
| SmallVector<BasicBlock*, 1> PredBBs; |
| PredBBs.resize(1); |
| |
| // If any of the predecessor blocks end in an unconditional branch, we can |
| // *duplicate* the conditional branch into that block in order to further |
| // encourage jump threading and to eliminate cases where we have branch on a |
| // phi of an icmp (branch on icmp is much better). |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *PredBB = PN->getIncomingBlock(i); |
| if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) |
| if (PredBr->isUnconditional()) { |
| PredBBs[0] = PredBB; |
| // Try to duplicate BB into PredBB. |
| if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on |
| /// a xor instruction in the current block. See if there are any |
| /// simplifications we can do based on inputs to the xor. |
| /// |
| bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { |
| BasicBlock *BB = BO->getParent(); |
| |
| // If either the LHS or RHS of the xor is a constant, don't do this |
| // optimization. |
| if (isa<ConstantInt>(BO->getOperand(0)) || |
| isa<ConstantInt>(BO->getOperand(1))) |
| return false; |
| |
| // If the first instruction in BB isn't a phi, we won't be able to infer |
| // anything special about any particular predecessor. |
| if (!isa<PHINode>(BB->front())) |
| return false; |
| |
| // If we have a xor as the branch input to this block, and we know that the |
| // LHS or RHS of the xor in any predecessor is true/false, then we can clone |
| // the condition into the predecessor and fix that value to true, saving some |
| // logical ops on that path and encouraging other paths to simplify. |
| // |
| // This copies something like this: |
| // |
| // BB: |
| // %X = phi i1 [1], [%X'] |
| // %Y = icmp eq i32 %A, %B |
| // %Z = xor i1 %X, %Y |
| // br i1 %Z, ... |
| // |
| // Into: |
| // BB': |
| // %Y = icmp ne i32 %A, %B |
| // br i1 %Z, ... |
| |
| PredValueInfoTy XorOpValues; |
| bool isLHS = true; |
| if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, |
| WantInteger)) { |
| assert(XorOpValues.empty()); |
| if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, |
| WantInteger)) |
| return false; |
| isLHS = false; |
| } |
| |
| assert(!XorOpValues.empty() && |
| "ComputeValueKnownInPredecessors returned true with no values"); |
| |
| // Scan the information to see which is most popular: true or false. The |
| // predecessors can be of the set true, false, or undef. |
| unsigned NumTrue = 0, NumFalse = 0; |
| for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { |
| if (isa<UndefValue>(XorOpValues[i].first)) |
| // Ignore undefs for the count. |
| continue; |
| if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) |
| ++NumFalse; |
| else |
| ++NumTrue; |
| } |
| |
| // Determine which value to split on, true, false, or undef if neither. |
| ConstantInt *SplitVal = 0; |
| if (NumTrue > NumFalse) |
| SplitVal = ConstantInt::getTrue(BB->getContext()); |
| else if (NumTrue != 0 || NumFalse != 0) |
| SplitVal = ConstantInt::getFalse(BB->getContext()); |
| |
| // Collect all of the blocks that this can be folded into so that we can |
| // factor this once and clone it once. |
| SmallVector<BasicBlock*, 8> BlocksToFoldInto; |
| for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { |
| if (XorOpValues[i].first != SplitVal && |
| !isa<UndefValue>(XorOpValues[i].first)) |
| continue; |
| |
| BlocksToFoldInto.push_back(XorOpValues[i].second); |
| } |
| |
| // If we inferred a value for all of the predecessors, then duplication won't |
| // help us. However, we can just replace the LHS or RHS with the constant. |
| if (BlocksToFoldInto.size() == |
| cast<PHINode>(BB->front()).getNumIncomingValues()) { |
| if (SplitVal == 0) { |
| // If all preds provide undef, just nuke the xor, because it is undef too. |
| BO->replaceAllUsesWith(UndefValue::get(BO->getType())); |
| BO->eraseFromParent(); |
| } else if (SplitVal->isZero()) { |
| // If all preds provide 0, replace the xor with the other input. |
| BO->replaceAllUsesWith(BO->getOperand(isLHS)); |
| BO->eraseFromParent(); |
| } else { |
| // If all preds provide 1, set the computed value to 1. |
| BO->setOperand(!isLHS, SplitVal); |
| } |
| |
| return true; |
| } |
| |
| // Try to duplicate BB into PredBB. |
| return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); |
| } |
| |
| |
| /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new |
| /// predecessor to the PHIBB block. If it has PHI nodes, add entries for |
| /// NewPred using the entries from OldPred (suitably mapped). |
| static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, |
| BasicBlock *OldPred, |
| BasicBlock *NewPred, |
| DenseMap<Instruction*, Value*> &ValueMap) { |
| for (BasicBlock::iterator PNI = PHIBB->begin(); |
| PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { |
| // Ok, we have a PHI node. Figure out what the incoming value was for the |
| // DestBlock. |
| Value *IV = PN->getIncomingValueForBlock(OldPred); |
| |
| // Remap the value if necessary. |
| if (Instruction *Inst = dyn_cast<Instruction>(IV)) { |
| DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); |
| if (I != ValueMap.end()) |
| IV = I->second; |
| } |
| |
| PN->addIncoming(IV, NewPred); |
| } |
| } |
| |
| /// ThreadEdge - We have decided that it is safe and profitable to factor the |
| /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB |
| /// across BB. Transform the IR to reflect this change. |
| bool JumpThreading::ThreadEdge(BasicBlock *BB, |
| const SmallVectorImpl<BasicBlock*> &PredBBs, |
| BasicBlock *SuccBB) { |
| // If threading to the same block as we come from, we would infinite loop. |
| if (SuccBB == BB) { |
| DEBUG(dbgs() << " Not threading across BB '" << BB->getName() |
| << "' - would thread to self!\n"); |
| return false; |
| } |
| |
| // If threading this would thread across a loop header, don't thread the edge. |
| // See the comments above FindLoopHeaders for justifications and caveats. |
| if (LoopHeaders.count(BB)) { |
| DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() |
| << "' to dest BB '" << SuccBB->getName() |
| << "' - it might create an irreducible loop!\n"); |
| return false; |
| } |
| |
| unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB); |
| if (JumpThreadCost > Threshold) { |
| DEBUG(dbgs() << " Not threading BB '" << BB->getName() |
| << "' - Cost is too high: " << JumpThreadCost << "\n"); |
| return false; |
| } |
| |
| // And finally, do it! Start by factoring the predecessors is needed. |
| BasicBlock *PredBB; |
| if (PredBBs.size() == 1) |
| PredBB = PredBBs[0]; |
| else { |
| DEBUG(dbgs() << " Factoring out " << PredBBs.size() |
| << " common predecessors.\n"); |
| PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), |
| ".thr_comm", this); |
| } |
| |
| // And finally, do it! |
| DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" |
| << SuccBB->getName() << "' with cost: " << JumpThreadCost |
| << ", across block:\n " |
| << *BB << "\n"); |
| |
| LVI->threadEdge(PredBB, BB, SuccBB); |
| |
| // We are going to have to map operands from the original BB block to the new |
| // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to |
| // account for entry from PredBB. |
| DenseMap<Instruction*, Value*> ValueMapping; |
| |
| BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), |
| BB->getName()+".thread", |
| BB->getParent(), BB); |
| NewBB->moveAfter(PredBB); |
| |
| BasicBlock::iterator BI = BB->begin(); |
| for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) |
| ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); |
| |
| // Clone the non-phi instructions of BB into NewBB, keeping track of the |
| // mapping and using it to remap operands in the cloned instructions. |
| for (; !isa<TerminatorInst>(BI); ++BI) { |
| Instruction *New = BI->clone(); |
| New->setName(BI->getName()); |
| NewBB->getInstList().push_back(New); |
| ValueMapping[BI] = New; |
| |
| // Remap operands to patch up intra-block references. |
| for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) |
| if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { |
| DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); |
| if (I != ValueMapping.end()) |
| New->setOperand(i, I->second); |
| } |
| } |
| |
| // We didn't copy the terminator from BB over to NewBB, because there is now |
| // an unconditional jump to SuccBB. Insert the unconditional jump. |
| BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); |
| NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); |
| |
| // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the |
| // PHI nodes for NewBB now. |
| AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); |
| |
| // If there were values defined in BB that are used outside the block, then we |
| // now have to update all uses of the value to use either the original value, |
| // the cloned value, or some PHI derived value. This can require arbitrary |
| // PHI insertion, of which we are prepared to do, clean these up now. |
| SSAUpdater SSAUpdate; |
| SmallVector<Use*, 16> UsesToRename; |
| for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { |
| // Scan all uses of this instruction to see if it is used outside of its |
| // block, and if so, record them in UsesToRename. |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| ++UI) { |
| Instruction *User = cast<Instruction>(*UI); |
| if (PHINode *UserPN = dyn_cast<PHINode>(User)) { |
| if (UserPN->getIncomingBlock(UI) == BB) |
| continue; |
| } else if (User->getParent() == BB) |
| continue; |
| |
| UsesToRename.push_back(&UI.getUse()); |
| } |
| |
| // If there are no uses outside the block, we're done with this instruction. |
| if (UsesToRename.empty()) |
| continue; |
| |
| DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); |
| |
| // We found a use of I outside of BB. Rename all uses of I that are outside |
| // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks |
| // with the two values we know. |
| SSAUpdate.Initialize(I->getType(), I->getName()); |
| SSAUpdate.AddAvailableValue(BB, I); |
| SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); |
| |
| while (!UsesToRename.empty()) |
| SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); |
| DEBUG(dbgs() << "\n"); |
| } |
| |
| |
| // Ok, NewBB is good to go. Update the terminator of PredBB to jump to |
| // NewBB instead of BB. This eliminates predecessors from BB, which requires |
| // us to simplify any PHI nodes in BB. |
| TerminatorInst *PredTerm = PredBB->getTerminator(); |
| for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) |
| if (PredTerm->getSuccessor(i) == BB) { |
| BB->removePredecessor(PredBB, true); |
| PredTerm->setSuccessor(i, NewBB); |
| } |
| |
| // At this point, the IR is fully up to date and consistent. Do a quick scan |
| // over the new instructions and zap any that are constants or dead. This |
| // frequently happens because of phi translation. |
| SimplifyInstructionsInBlock(NewBB, TD); |
| |
| // Threaded an edge! |
| ++NumThreads; |
| return true; |
| } |
| |
| /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch |
| /// to BB which contains an i1 PHI node and a conditional branch on that PHI. |
| /// If we can duplicate the contents of BB up into PredBB do so now, this |
| /// improves the odds that the branch will be on an analyzable instruction like |
| /// a compare. |
| bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, |
| const SmallVectorImpl<BasicBlock *> &PredBBs) { |
| assert(!PredBBs.empty() && "Can't handle an empty set"); |
| |
| // If BB is a loop header, then duplicating this block outside the loop would |
| // cause us to transform this into an irreducible loop, don't do this. |
| // See the comments above FindLoopHeaders for justifications and caveats. |
| if (LoopHeaders.count(BB)) { |
| DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() |
| << "' into predecessor block '" << PredBBs[0]->getName() |
| << "' - it might create an irreducible loop!\n"); |
| return false; |
| } |
| |
| unsigned DuplicationCost = getJumpThreadDuplicationCost(BB); |
| if (DuplicationCost > Threshold) { |
| DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() |
| << "' - Cost is too high: " << DuplicationCost << "\n"); |
| return false; |
| } |
| |
| // And finally, do it! Start by factoring the predecessors is needed. |
| BasicBlock *PredBB; |
| if (PredBBs.size() == 1) |
| PredBB = PredBBs[0]; |
| else { |
| DEBUG(dbgs() << " Factoring out " << PredBBs.size() |
| << " common predecessors.\n"); |
| PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(), |
| ".thr_comm", this); |
| } |
| |
| // Okay, we decided to do this! Clone all the instructions in BB onto the end |
| // of PredBB. |
| DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" |
| << PredBB->getName() << "' to eliminate branch on phi. Cost: " |
| << DuplicationCost << " block is:" << *BB << "\n"); |
| |
| // Unless PredBB ends with an unconditional branch, split the edge so that we |
| // can just clone the bits from BB into the end of the new PredBB. |
| BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); |
| |
| if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) { |
| PredBB = SplitEdge(PredBB, BB, this); |
| OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); |
| } |
| |
| // We are going to have to map operands from the original BB block into the |
| // PredBB block. Evaluate PHI nodes in BB. |
| DenseMap<Instruction*, Value*> ValueMapping; |
| |
| BasicBlock::iterator BI = BB->begin(); |
| for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) |
| ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); |
| |
| // Clone the non-phi instructions of BB into PredBB, keeping track of the |
| // mapping and using it to remap operands in the cloned instructions. |
| for (; BI != BB->end(); ++BI) { |
| Instruction *New = BI->clone(); |
| |
| // Remap operands to patch up intra-block references. |
| for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) |
| if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { |
| DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); |
| if (I != ValueMapping.end()) |
| New->setOperand(i, I->second); |
| } |
| |
| // If this instruction can be simplified after the operands are updated, |
| // just use the simplified value instead. This frequently happens due to |
| // phi translation. |
| if (Value *IV = SimplifyInstruction(New, TD)) { |
| delete New; |
| ValueMapping[BI] = IV; |
| } else { |
| // Otherwise, insert the new instruction into the block. |
| New->setName(BI->getName()); |
| PredBB->getInstList().insert(OldPredBranch, New); |
| ValueMapping[BI] = New; |
| } |
| } |
| |
| // Check to see if the targets of the branch had PHI nodes. If so, we need to |
| // add entries to the PHI nodes for branch from PredBB now. |
| BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); |
| AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, |
| ValueMapping); |
| AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, |
| ValueMapping); |
| |
| // If there were values defined in BB that are used outside the block, then we |
| // now have to update all uses of the value to use either the original value, |
| // the cloned value, or some PHI derived value. This can require arbitrary |
| // PHI insertion, of which we are prepared to do, clean these up now. |
| SSAUpdater SSAUpdate; |
| SmallVector<Use*, 16> UsesToRename; |
| for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { |
| // Scan all uses of this instruction to see if it is used outside of its |
| // block, and if so, record them in UsesToRename. |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| ++UI) { |
| Instruction *User = cast<Instruction>(*UI); |
| if (PHINode *UserPN = dyn_cast<PHINode>(User)) { |
| if (UserPN->getIncomingBlock(UI) == BB) |
| continue; |
| } else if (User->getParent() == BB) |
| continue; |
| |
| UsesToRename.push_back(&UI.getUse()); |
| } |
| |
| // If there are no uses outside the block, we're done with this instruction. |
| if (UsesToRename.empty()) |
| continue; |
| |
| DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); |
| |
| // We found a use of I outside of BB. Rename all uses of I that are outside |
| // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks |
| // with the two values we know. |
| SSAUpdate.Initialize(I->getType(), I->getName()); |
| SSAUpdate.AddAvailableValue(BB, I); |
| SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); |
| |
| while (!UsesToRename.empty()) |
| SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); |
| DEBUG(dbgs() << "\n"); |
| } |
| |
| // PredBB no longer jumps to BB, remove entries in the PHI node for the edge |
| // that we nuked. |
| BB->removePredecessor(PredBB, true); |
| |
| // Remove the unconditional branch at the end of the PredBB block. |
| OldPredBranch->eraseFromParent(); |
| |
| ++NumDupes; |
| return true; |
| } |
| |
| |