| ; RUN: opt -S -basicaa -gvn < %s | FileCheck %s |
| target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128-n8:16:32" |
| target triple = "i386-apple-darwin11.0.0" |
| |
| @sortlist = external global [5001 x i32], align 4 |
| |
| define void @Bubble() nounwind noinline { |
| ; CHECK: entry: |
| ; CHECK-NEXT: %tmp7.pre = load i32 |
| entry: |
| br label %while.body5 |
| |
| ; CHECK: while.body5: |
| ; CHECK: %tmp7 = phi i32 |
| ; CHECK-NOT: %tmp7 = load i32 |
| while.body5: |
| %indvar = phi i32 [ 0, %entry ], [ %tmp6, %if.end ] |
| %tmp5 = add i32 %indvar, 2 |
| %arrayidx9 = getelementptr [5001 x i32], [5001 x i32]* @sortlist, i32 0, i32 %tmp5 |
| %tmp6 = add i32 %indvar, 1 |
| %arrayidx = getelementptr [5001 x i32], [5001 x i32]* @sortlist, i32 0, i32 %tmp6 |
| %tmp7 = load i32, i32* %arrayidx, align 4 |
| %tmp10 = load i32, i32* %arrayidx9, align 4 |
| %cmp11 = icmp sgt i32 %tmp7, %tmp10 |
| br i1 %cmp11, label %if.then, label %if.end |
| |
| ; CHECK: if.then: |
| if.then: |
| store i32 %tmp10, i32* %arrayidx, align 4 |
| store i32 %tmp7, i32* %arrayidx9, align 4 |
| br label %if.end |
| |
| if.end: |
| %exitcond = icmp eq i32 %tmp6, 100 |
| br i1 %exitcond, label %while.end.loopexit, label %while.body5 |
| |
| while.end.loopexit: |
| ret void |
| } |
| |
| declare void @hold(i32) readonly |
| declare void @clobber() |
| |
| ; This is a classic LICM case |
| define i32 @test1(i1 %cnd, i32* %p) { |
| ; CHECK-LABEL: @test1 |
| entry: |
| ; CHECK-LABEL: entry |
| ; CHECK-NEXT: %v1.pre = load i32, i32* %p |
| br label %header |
| |
| header: |
| ; CHECK-LABEL: header |
| %v1 = load i32, i32* %p |
| call void @hold(i32 %v1) |
| br label %header |
| } |
| |
| |
| ; Slightly more complicated case to highlight that MemoryDependenceAnalysis |
| ; can compute availability for internal control flow. In this case, because |
| ; the value is fully available across the backedge, we only need to establish |
| ; anticipation for the preheader block (which is trivial in this case.) |
| define i32 @test2(i1 %cnd, i32* %p) { |
| ; CHECK-LABEL: @test2 |
| entry: |
| ; CHECK-LABEL: entry |
| ; CHECK-NEXT: %v1.pre = load i32, i32* %p |
| br label %header |
| |
| header: |
| ; CHECK-LABEL: header |
| %v1 = load i32, i32* %p |
| call void @hold(i32 %v1) |
| br i1 %cnd, label %bb1, label %bb2 |
| |
| bb1: |
| br label %merge |
| |
| bb2: |
| br label %merge |
| |
| merge: |
| br label %header |
| } |
| |
| |
| ; TODO: at the moment, our anticipation check does not handle anything |
| ; other than straight-line unconditional fallthrough. This particular |
| ; case could be solved through either a backwards anticipation walk or |
| ; use of the "safe to speculate" status (if we annotate the param) |
| define i32 @test3(i1 %cnd, i32* %p) { |
| entry: |
| ; CHECK-LABEL: @test3 |
| ; CHECK-LABEL: entry |
| br label %header |
| |
| header: |
| br i1 %cnd, label %bb1, label %bb2 |
| |
| bb1: |
| br label %merge |
| |
| bb2: |
| br label %merge |
| |
| merge: |
| ; CHECK-LABEL: merge |
| ; CHECK: load i32, i32* %p |
| %v1 = load i32, i32* %p |
| call void @hold(i32 %v1) |
| br label %header |
| } |
| |
| ; Highlight that we can PRE into a latch block when there are multiple |
| ; latches only one of which clobbers an otherwise invariant value. |
| define i32 @test4(i1 %cnd, i32* %p) { |
| ; CHECK-LABEL: @test4 |
| entry: |
| ; CHECK-LABEL: entry |
| %v1 = load i32, i32* %p |
| call void @hold(i32 %v1) |
| br label %header |
| |
| header: |
| ; CHECK-LABEL: header |
| %v2 = load i32, i32* %p |
| call void @hold(i32 %v2) |
| br i1 %cnd, label %bb1, label %bb2 |
| |
| bb1: |
| br label %header |
| |
| bb2: |
| ; CHECK-LABEL: bb2 |
| ; CHECK: call void @clobber() |
| ; CHECK-NEXT: %v2.pre = load i32, i32* %p |
| ; CHECK-NEXT: br label %header |
| |
| call void @clobber() |
| br label %header |
| } |
| |
| ; Highlight the fact that we can PRE into a single clobbering latch block |
| ; even in loop simplify form (though multiple applications of the same |
| ; transformation). |
| define i32 @test5(i1 %cnd, i32* %p) { |
| ; CHECK-LABEL: @test5 |
| entry: |
| ; CHECK-LABEL: entry |
| %v1 = load i32, i32* %p |
| call void @hold(i32 %v1) |
| br label %header |
| |
| header: |
| ; CHECK-LABEL: header |
| %v2 = load i32, i32* %p |
| call void @hold(i32 %v2) |
| br i1 %cnd, label %bb1, label %bb2 |
| |
| bb1: |
| br label %merge |
| |
| bb2: |
| ; CHECK-LABEL: bb2 |
| ; CHECK: call void @clobber() |
| ; CHECK-NEXT: %v2.pre.pre = load i32, i32* %p |
| ; CHECK-NEXT: br label %merge |
| |
| call void @clobber() |
| br label %merge |
| |
| merge: |
| br label %header |
| } |
| |
| declare void @llvm.experimental.guard(i1 %cnd, ...) |
| |
| ; These two tests highlight speculation safety when we can not establish |
| ; anticipation (since the original load might actually not execcute) |
| define i32 @test6a(i1 %cnd, i32* %p) { |
| entry: |
| ; CHECK-LABEL: @test6a |
| br label %header |
| |
| header: |
| ; CHECK-LABEL: header |
| ; CHECK: load i32, i32* %p |
| call void (i1, ...) @llvm.experimental.guard(i1 %cnd) ["deopt"()] |
| %v1 = load i32, i32* %p |
| call void @hold(i32 %v1) |
| br label %header |
| } |
| |
| define i32 @test6b(i1 %cnd, i32* dereferenceable(8) %p) { |
| entry: |
| ; CHECK-LABEL: @test6b |
| ; CHECK: load i32, i32* %p |
| br label %header |
| |
| header: |
| ; CHECK-LABEL: header |
| call void (i1, ...) @llvm.experimental.guard(i1 %cnd) ["deopt"()] |
| %v1 = load i32, i32* %p |
| call void @hold(i32 %v1) |
| br label %header |
| } |