| //===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===---------------------------------------------------------------------===// |
| // |
| // This pass performs peephole optimizations to clean up ugly code |
| // sequences at the MachineInstruction layer. It runs at the end of |
| // the SSA phases, following VSX swap removal. A pass of dead code |
| // elimination follows this one for quick clean-up of any dead |
| // instructions introduced here. Although we could do this as callbacks |
| // from the generic peephole pass, this would have a couple of bad |
| // effects: it might remove optimization opportunities for VSX swap |
| // removal, and it would miss cleanups made possible following VSX |
| // swap removal. |
| // |
| //===---------------------------------------------------------------------===// |
| |
| #include "MCTargetDesc/PPCMCTargetDesc.h" |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "PPC.h" |
| #include "PPCInstrBuilder.h" |
| #include "PPCInstrInfo.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachinePostDominators.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Support/Debug.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "ppc-mi-peepholes" |
| |
| STATISTIC(RemoveTOCSave, "Number of TOC saves removed"); |
| STATISTIC(MultiTOCSaves, |
| "Number of functions with multiple TOC saves that must be kept"); |
| STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue"); |
| STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions"); |
| STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions"); |
| STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI"); |
| STATISTIC(NumConvertedToImmediateForm, |
| "Number of instructions converted to their immediate form"); |
| STATISTIC(NumFunctionsEnteredInMIPeephole, |
| "Number of functions entered in PPC MI Peepholes"); |
| STATISTIC(NumFixedPointIterations, |
| "Number of fixed-point iterations converting reg-reg instructions " |
| "to reg-imm ones"); |
| STATISTIC(NumRotatesCollapsed, |
| "Number of pairs of rotate left, clear left/right collapsed"); |
| STATISTIC(NumEXTSWAndSLDICombined, |
| "Number of pairs of EXTSW and SLDI combined as EXTSWSLI"); |
| STATISTIC(NumLoadImmZeroFoldedAndRemoved, |
| "Number of LI(8) reg, 0 that are folded to r0 and removed"); |
| |
| static cl::opt<bool> |
| FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true), |
| cl::desc("Iterate to a fixed point when attempting to " |
| "convert reg-reg instructions to reg-imm")); |
| |
| static cl::opt<bool> |
| ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true), |
| cl::desc("Convert eligible reg+reg instructions to reg+imm")); |
| |
| static cl::opt<bool> |
| EnableSExtElimination("ppc-eliminate-signext", |
| cl::desc("enable elimination of sign-extensions"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnableZExtElimination("ppc-eliminate-zeroext", |
| cl::desc("enable elimination of zero-extensions"), |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<bool> |
| EnableTrapOptimization("ppc-opt-conditional-trap", |
| cl::desc("enable optimization of conditional traps"), |
| cl::init(false), cl::Hidden); |
| |
| namespace { |
| |
| struct PPCMIPeephole : public MachineFunctionPass { |
| |
| static char ID; |
| const PPCInstrInfo *TII; |
| MachineFunction *MF; |
| MachineRegisterInfo *MRI; |
| |
| PPCMIPeephole() : MachineFunctionPass(ID) { |
| initializePPCMIPeepholePass(*PassRegistry::getPassRegistry()); |
| } |
| |
| private: |
| MachineDominatorTree *MDT; |
| MachinePostDominatorTree *MPDT; |
| MachineBlockFrequencyInfo *MBFI; |
| uint64_t EntryFreq; |
| |
| // Initialize class variables. |
| void initialize(MachineFunction &MFParm); |
| |
| // Perform peepholes. |
| bool simplifyCode(); |
| |
| // Perform peepholes. |
| bool eliminateRedundantCompare(); |
| bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves); |
| bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase); |
| bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI); |
| void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves, |
| MachineInstr *MI); |
| |
| public: |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<MachinePostDominatorTree>(); |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| AU.addPreserved<MachinePostDominatorTree>(); |
| AU.addPreserved<MachineBlockFrequencyInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| // Main entry point for this pass. |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| initialize(MF); |
| // At this point, TOC pointer should not be used in a function that uses |
| // PC-Relative addressing. |
| assert((MF.getRegInfo().use_empty(PPC::X2) || |
| !MF.getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls()) && |
| "TOC pointer used in a function using PC-Relative addressing!"); |
| if (skipFunction(MF.getFunction())) |
| return false; |
| return simplifyCode(); |
| } |
| }; |
| |
| // Initialize class variables. |
| void PPCMIPeephole::initialize(MachineFunction &MFParm) { |
| MF = &MFParm; |
| MRI = &MF->getRegInfo(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| MPDT = &getAnalysis<MachinePostDominatorTree>(); |
| MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); |
| EntryFreq = MBFI->getEntryFreq(); |
| TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); |
| LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n"); |
| LLVM_DEBUG(MF->dump()); |
| } |
| |
| static MachineInstr *getVRegDefOrNull(MachineOperand *Op, |
| MachineRegisterInfo *MRI) { |
| assert(Op && "Invalid Operand!"); |
| if (!Op->isReg()) |
| return nullptr; |
| |
| Register Reg = Op->getReg(); |
| if (!Reg.isVirtual()) |
| return nullptr; |
| |
| return MRI->getVRegDef(Reg); |
| } |
| |
| // This function returns number of known zero bits in output of MI |
| // starting from the most significant bit. |
| static unsigned getKnownLeadingZeroCount(const unsigned Reg, |
| const PPCInstrInfo *TII, |
| const MachineRegisterInfo *MRI) { |
| MachineInstr *MI = MRI->getVRegDef(Reg); |
| unsigned Opcode = MI->getOpcode(); |
| if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec || |
| Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec) |
| return MI->getOperand(3).getImm(); |
| |
| if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) && |
| MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm()) |
| return MI->getOperand(3).getImm(); |
| |
| if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec || |
| Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec || |
| Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) && |
| MI->getOperand(3).getImm() <= MI->getOperand(4).getImm()) |
| return 32 + MI->getOperand(3).getImm(); |
| |
| if (Opcode == PPC::ANDI_rec) { |
| uint16_t Imm = MI->getOperand(2).getImm(); |
| return 48 + countLeadingZeros(Imm); |
| } |
| |
| if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec || |
| Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec || |
| Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8) |
| // The result ranges from 0 to 32. |
| return 58; |
| |
| if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec || |
| Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec) |
| // The result ranges from 0 to 64. |
| return 57; |
| |
| if (Opcode == PPC::LHZ || Opcode == PPC::LHZX || |
| Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || |
| Opcode == PPC::LHZU || Opcode == PPC::LHZUX || |
| Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8) |
| return 48; |
| |
| if (Opcode == PPC::LBZ || Opcode == PPC::LBZX || |
| Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || |
| Opcode == PPC::LBZU || Opcode == PPC::LBZUX || |
| Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8) |
| return 56; |
| |
| if (TII->isZeroExtended(Reg, MRI)) |
| return 32; |
| |
| return 0; |
| } |
| |
| // This function maintains a map for the pairs <TOC Save Instr, Keep> |
| // Each time a new TOC save is encountered, it checks if any of the existing |
| // ones are dominated by the new one. If so, it marks the existing one as |
| // redundant by setting it's entry in the map as false. It then adds the new |
| // instruction to the map with either true or false depending on if any |
| // existing instructions dominated the new one. |
| void PPCMIPeephole::UpdateTOCSaves( |
| std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) { |
| assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here"); |
| // FIXME: Saving TOC in prologue hasn't been implemented well in AIX ABI part, |
| // here only support it under ELFv2. |
| if (MF->getSubtarget<PPCSubtarget>().isELFv2ABI()) { |
| PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); |
| |
| MachineBasicBlock *Entry = &MF->front(); |
| uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency(); |
| |
| // If the block in which the TOC save resides is in a block that |
| // post-dominates Entry, or a block that is hotter than entry (keep in mind |
| // that early MachineLICM has already run so the TOC save won't be hoisted) |
| // we can just do the save in the prologue. |
| if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry)) |
| FI->setMustSaveTOC(true); |
| |
| // If we are saving the TOC in the prologue, all the TOC saves can be |
| // removed from the code. |
| if (FI->mustSaveTOC()) { |
| for (auto &TOCSave : TOCSaves) |
| TOCSave.second = false; |
| // Add new instruction to map. |
| TOCSaves[MI] = false; |
| return; |
| } |
| } |
| |
| bool Keep = true; |
| for (auto &I : TOCSaves) { |
| MachineInstr *CurrInst = I.first; |
| // If new instruction dominates an existing one, mark existing one as |
| // redundant. |
| if (I.second && MDT->dominates(MI, CurrInst)) |
| I.second = false; |
| // Check if the new instruction is redundant. |
| if (MDT->dominates(CurrInst, MI)) { |
| Keep = false; |
| break; |
| } |
| } |
| // Add new instruction to map. |
| TOCSaves[MI] = Keep; |
| } |
| |
| // This function returns a list of all PHI nodes in the tree starting from |
| // the RootPHI node. We perform a BFS traversal to get an ordered list of nodes. |
| // The list initially only contains the root PHI. When we visit a PHI node, we |
| // add it to the list. We continue to look for other PHI node operands while |
| // there are nodes to visit in the list. The function returns false if the |
| // optimization cannot be applied on this tree. |
| static bool collectUnprimedAccPHIs(MachineRegisterInfo *MRI, |
| MachineInstr *RootPHI, |
| SmallVectorImpl<MachineInstr *> &PHIs) { |
| PHIs.push_back(RootPHI); |
| unsigned VisitedIndex = 0; |
| while (VisitedIndex < PHIs.size()) { |
| MachineInstr *VisitedPHI = PHIs[VisitedIndex]; |
| for (unsigned PHIOp = 1, NumOps = VisitedPHI->getNumOperands(); |
| PHIOp != NumOps; PHIOp += 2) { |
| Register RegOp = VisitedPHI->getOperand(PHIOp).getReg(); |
| if (!RegOp.isVirtual()) |
| return false; |
| MachineInstr *Instr = MRI->getVRegDef(RegOp); |
| // While collecting the PHI nodes, we check if they can be converted (i.e. |
| // all the operands are either copies, implicit defs or PHI nodes). |
| unsigned Opcode = Instr->getOpcode(); |
| if (Opcode == PPC::COPY) { |
| Register Reg = Instr->getOperand(1).getReg(); |
| if (!Reg.isVirtual() || MRI->getRegClass(Reg) != &PPC::ACCRCRegClass) |
| return false; |
| } else if (Opcode != PPC::IMPLICIT_DEF && Opcode != PPC::PHI) |
| return false; |
| // If we detect a cycle in the PHI nodes, we exit. It would be |
| // possible to change cycles as well, but that would add a lot |
| // of complexity for a case that is unlikely to occur with MMA |
| // code. |
| if (Opcode != PPC::PHI) |
| continue; |
| if (llvm::is_contained(PHIs, Instr)) |
| return false; |
| PHIs.push_back(Instr); |
| } |
| VisitedIndex++; |
| } |
| return true; |
| } |
| |
| // This function changes the unprimed accumulator PHI nodes in the PHIs list to |
| // primed accumulator PHI nodes. The list is traversed in reverse order to |
| // change all the PHI operands of a PHI node before changing the node itself. |
| // We keep a map to associate each changed PHI node to its non-changed form. |
| static void convertUnprimedAccPHIs(const PPCInstrInfo *TII, |
| MachineRegisterInfo *MRI, |
| SmallVectorImpl<MachineInstr *> &PHIs, |
| Register Dst) { |
| DenseMap<MachineInstr *, MachineInstr *> ChangedPHIMap; |
| for (MachineInstr *PHI : llvm::reverse(PHIs)) { |
| SmallVector<std::pair<MachineOperand, MachineOperand>, 4> PHIOps; |
| // We check if the current PHI node can be changed by looking at its |
| // operands. If all the operands are either copies from primed |
| // accumulators, implicit definitions or other unprimed accumulator |
| // PHI nodes, we change it. |
| for (unsigned PHIOp = 1, NumOps = PHI->getNumOperands(); PHIOp != NumOps; |
| PHIOp += 2) { |
| Register RegOp = PHI->getOperand(PHIOp).getReg(); |
| MachineInstr *PHIInput = MRI->getVRegDef(RegOp); |
| unsigned Opcode = PHIInput->getOpcode(); |
| assert((Opcode == PPC::COPY || Opcode == PPC::IMPLICIT_DEF || |
| Opcode == PPC::PHI) && |
| "Unexpected instruction"); |
| if (Opcode == PPC::COPY) { |
| assert(MRI->getRegClass(PHIInput->getOperand(1).getReg()) == |
| &PPC::ACCRCRegClass && |
| "Unexpected register class"); |
| PHIOps.push_back({PHIInput->getOperand(1), PHI->getOperand(PHIOp + 1)}); |
| } else if (Opcode == PPC::IMPLICIT_DEF) { |
| Register AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass); |
| BuildMI(*PHIInput->getParent(), PHIInput, PHIInput->getDebugLoc(), |
| TII->get(PPC::IMPLICIT_DEF), AccReg); |
| PHIOps.push_back({MachineOperand::CreateReg(AccReg, false), |
| PHI->getOperand(PHIOp + 1)}); |
| } else if (Opcode == PPC::PHI) { |
| // We found a PHI operand. At this point we know this operand |
| // has already been changed so we get its associated changed form |
| // from the map. |
| assert(ChangedPHIMap.count(PHIInput) == 1 && |
| "This PHI node should have already been changed."); |
| MachineInstr *PrimedAccPHI = ChangedPHIMap.lookup(PHIInput); |
| PHIOps.push_back({MachineOperand::CreateReg( |
| PrimedAccPHI->getOperand(0).getReg(), false), |
| PHI->getOperand(PHIOp + 1)}); |
| } |
| } |
| Register AccReg = Dst; |
| // If the PHI node we are changing is the root node, the register it defines |
| // will be the destination register of the original copy (of the PHI def). |
| // For all other PHI's in the list, we need to create another primed |
| // accumulator virtual register as the PHI will no longer define the |
| // unprimed accumulator. |
| if (PHI != PHIs[0]) |
| AccReg = MRI->createVirtualRegister(&PPC::ACCRCRegClass); |
| MachineInstrBuilder NewPHI = BuildMI( |
| *PHI->getParent(), PHI, PHI->getDebugLoc(), TII->get(PPC::PHI), AccReg); |
| for (auto RegMBB : PHIOps) |
| NewPHI.add(RegMBB.first).add(RegMBB.second); |
| ChangedPHIMap[PHI] = NewPHI.getInstr(); |
| LLVM_DEBUG(dbgs() << "Converting PHI: "); |
| LLVM_DEBUG(PHI->dump()); |
| LLVM_DEBUG(dbgs() << "To: "); |
| LLVM_DEBUG(NewPHI.getInstr()->dump()); |
| } |
| } |
| |
| // Perform peephole optimizations. |
| bool PPCMIPeephole::simplifyCode() { |
| bool Simplified = false; |
| bool TrapOpt = false; |
| MachineInstr* ToErase = nullptr; |
| std::map<MachineInstr *, bool> TOCSaves; |
| const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); |
| NumFunctionsEnteredInMIPeephole++; |
| if (ConvertRegReg) { |
| // Fixed-point conversion of reg/reg instructions fed by load-immediate |
| // into reg/imm instructions. FIXME: This is expensive, control it with |
| // an option. |
| bool SomethingChanged = false; |
| do { |
| NumFixedPointIterations++; |
| SomethingChanged = false; |
| for (MachineBasicBlock &MBB : *MF) { |
| for (MachineInstr &MI : MBB) { |
| if (MI.isDebugInstr()) |
| continue; |
| |
| if (TII->convertToImmediateForm(MI)) { |
| // We don't erase anything in case the def has other uses. Let DCE |
| // remove it if it can be removed. |
| LLVM_DEBUG(dbgs() << "Converted instruction to imm form: "); |
| LLVM_DEBUG(MI.dump()); |
| NumConvertedToImmediateForm++; |
| SomethingChanged = true; |
| Simplified = true; |
| continue; |
| } |
| } |
| } |
| } while (SomethingChanged && FixedPointRegToImm); |
| } |
| |
| for (MachineBasicBlock &MBB : *MF) { |
| for (MachineInstr &MI : MBB) { |
| |
| // If the previous instruction was marked for elimination, |
| // remove it now. |
| if (ToErase) { |
| LLVM_DEBUG(dbgs() << "Deleting instruction: "); |
| LLVM_DEBUG(ToErase->dump()); |
| ToErase->eraseFromParent(); |
| ToErase = nullptr; |
| } |
| // If a conditional trap instruction got optimized to an |
| // unconditional trap, eliminate all the instructions after |
| // the trap. |
| if (EnableTrapOptimization && TrapOpt) { |
| ToErase = &MI; |
| continue; |
| } |
| |
| // Ignore debug instructions. |
| if (MI.isDebugInstr()) |
| continue; |
| |
| // Per-opcode peepholes. |
| switch (MI.getOpcode()) { |
| |
| default: |
| break; |
| case PPC::COPY: { |
| Register Src = MI.getOperand(1).getReg(); |
| Register Dst = MI.getOperand(0).getReg(); |
| if (!Src.isVirtual() || !Dst.isVirtual()) |
| break; |
| if (MRI->getRegClass(Src) != &PPC::UACCRCRegClass || |
| MRI->getRegClass(Dst) != &PPC::ACCRCRegClass) |
| break; |
| |
| // We are copying an unprimed accumulator to a primed accumulator. |
| // If the input to the copy is a PHI that is fed only by (i) copies in |
| // the other direction (ii) implicitly defined unprimed accumulators or |
| // (iii) other PHI nodes satisfying (i) and (ii), we can change |
| // the PHI to a PHI on primed accumulators (as long as we also change |
| // its operands). To detect and change such copies, we first get a list |
| // of all the PHI nodes starting from the root PHI node in BFS order. |
| // We then visit all these PHI nodes to check if they can be changed to |
| // primed accumulator PHI nodes and if so, we change them. |
| MachineInstr *RootPHI = MRI->getVRegDef(Src); |
| if (RootPHI->getOpcode() != PPC::PHI) |
| break; |
| |
| SmallVector<MachineInstr *, 4> PHIs; |
| if (!collectUnprimedAccPHIs(MRI, RootPHI, PHIs)) |
| break; |
| |
| convertUnprimedAccPHIs(TII, MRI, PHIs, Dst); |
| |
| ToErase = &MI; |
| break; |
| } |
| case PPC::LI: |
| case PPC::LI8: { |
| // If we are materializing a zero, look for any use operands for which |
| // zero means immediate zero. All such operands can be replaced with |
| // PPC::ZERO. |
| if (!MI.getOperand(1).isImm() || MI.getOperand(1).getImm() != 0) |
| break; |
| Register MIDestReg = MI.getOperand(0).getReg(); |
| for (MachineInstr& UseMI : MRI->use_instructions(MIDestReg)) |
| Simplified |= TII->onlyFoldImmediate(UseMI, MI, MIDestReg); |
| if (MRI->use_nodbg_empty(MIDestReg)) { |
| ++NumLoadImmZeroFoldedAndRemoved; |
| ToErase = &MI; |
| } |
| break; |
| } |
| case PPC::STW: |
| case PPC::STD: { |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| if (MFI.hasVarSizedObjects() || |
| (!MF->getSubtarget<PPCSubtarget>().isELFv2ABI() && |
| !MF->getSubtarget<PPCSubtarget>().isAIXABI())) |
| break; |
| // When encountering a TOC save instruction, call UpdateTOCSaves |
| // to add it to the TOCSaves map and mark any existing TOC saves |
| // it dominates as redundant. |
| if (TII->isTOCSaveMI(MI)) |
| UpdateTOCSaves(TOCSaves, &MI); |
| break; |
| } |
| case PPC::XXPERMDI: { |
| // Perform simplifications of 2x64 vector swaps and splats. |
| // A swap is identified by an immediate value of 2, and a splat |
| // is identified by an immediate value of 0 or 3. |
| int Immed = MI.getOperand(3).getImm(); |
| |
| if (Immed == 1) |
| break; |
| |
| // For each of these simplifications, we need the two source |
| // regs to match. Unfortunately, MachineCSE ignores COPY and |
| // SUBREG_TO_REG, so for example we can see |
| // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed. |
| // We have to look through chains of COPY and SUBREG_TO_REG |
| // to find the real source values for comparison. |
| Register TrueReg1 = |
| TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); |
| Register TrueReg2 = |
| TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI); |
| |
| if (!(TrueReg1 == TrueReg2 && TrueReg1.isVirtual())) |
| break; |
| |
| MachineInstr *DefMI = MRI->getVRegDef(TrueReg1); |
| |
| if (!DefMI) |
| break; |
| |
| unsigned DefOpc = DefMI->getOpcode(); |
| |
| // If this is a splat fed by a splatting load, the splat is |
| // redundant. Replace with a copy. This doesn't happen directly due |
| // to code in PPCDAGToDAGISel.cpp, but it can happen when converting |
| // a load of a double to a vector of 64-bit integers. |
| auto isConversionOfLoadAndSplat = [=]() -> bool { |
| if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS) |
| return false; |
| Register FeedReg1 = |
| TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); |
| if (FeedReg1.isVirtual()) { |
| MachineInstr *LoadMI = MRI->getVRegDef(FeedReg1); |
| if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX) |
| return true; |
| } |
| return false; |
| }; |
| if ((Immed == 0 || Immed == 3) && |
| (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat())) { |
| LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat " |
| "to load-and-splat/copy: "); |
| LLVM_DEBUG(MI.dump()); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), |
| MI.getOperand(0).getReg()) |
| .add(MI.getOperand(1)); |
| ToErase = &MI; |
| Simplified = true; |
| } |
| |
| // If this is a splat or a swap fed by another splat, we |
| // can replace it with a copy. |
| if (DefOpc == PPC::XXPERMDI) { |
| Register DefReg1 = DefMI->getOperand(1).getReg(); |
| Register DefReg2 = DefMI->getOperand(2).getReg(); |
| unsigned DefImmed = DefMI->getOperand(3).getImm(); |
| |
| // If the two inputs are not the same register, check to see if |
| // they originate from the same virtual register after only |
| // copy-like instructions. |
| if (DefReg1 != DefReg2) { |
| Register FeedReg1 = TRI->lookThruCopyLike(DefReg1, MRI); |
| Register FeedReg2 = TRI->lookThruCopyLike(DefReg2, MRI); |
| |
| if (!(FeedReg1 == FeedReg2 && FeedReg1.isVirtual())) |
| break; |
| } |
| |
| if (DefImmed == 0 || DefImmed == 3) { |
| LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat " |
| "to splat/copy: "); |
| LLVM_DEBUG(MI.dump()); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), |
| MI.getOperand(0).getReg()) |
| .add(MI.getOperand(1)); |
| ToErase = &MI; |
| Simplified = true; |
| } |
| |
| // If this is a splat fed by a swap, we can simplify modify |
| // the splat to splat the other value from the swap's input |
| // parameter. |
| else if ((Immed == 0 || Immed == 3) && DefImmed == 2) { |
| LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: "); |
| LLVM_DEBUG(MI.dump()); |
| MI.getOperand(1).setReg(DefReg1); |
| MI.getOperand(2).setReg(DefReg2); |
| MI.getOperand(3).setImm(3 - Immed); |
| Simplified = true; |
| } |
| |
| // If this is a swap fed by a swap, we can replace it |
| // with a copy from the first swap's input. |
| else if (Immed == 2 && DefImmed == 2) { |
| LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: "); |
| LLVM_DEBUG(MI.dump()); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), |
| MI.getOperand(0).getReg()) |
| .add(DefMI->getOperand(1)); |
| ToErase = &MI; |
| Simplified = true; |
| } |
| } else if ((Immed == 0 || Immed == 3 || Immed == 2) && |
| DefOpc == PPC::XXPERMDIs && |
| (DefMI->getOperand(2).getImm() == 0 || |
| DefMI->getOperand(2).getImm() == 3)) { |
| ToErase = &MI; |
| Simplified = true; |
| // Swap of a splat, convert to copy. |
| if (Immed == 2) { |
| LLVM_DEBUG(dbgs() << "Optimizing swap(splat) => copy(splat): "); |
| LLVM_DEBUG(MI.dump()); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), |
| MI.getOperand(0).getReg()) |
| .add(MI.getOperand(1)); |
| break; |
| } |
| // Splat fed by another splat - switch the output of the first |
| // and remove the second. |
| DefMI->getOperand(0).setReg(MI.getOperand(0).getReg()); |
| LLVM_DEBUG(dbgs() << "Removing redundant splat: "); |
| LLVM_DEBUG(MI.dump()); |
| } |
| break; |
| } |
| case PPC::VSPLTB: |
| case PPC::VSPLTH: |
| case PPC::XXSPLTW: { |
| unsigned MyOpcode = MI.getOpcode(); |
| unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2; |
| Register TrueReg = |
| TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI); |
| if (!TrueReg.isVirtual()) |
| break; |
| MachineInstr *DefMI = MRI->getVRegDef(TrueReg); |
| if (!DefMI) |
| break; |
| unsigned DefOpcode = DefMI->getOpcode(); |
| auto isConvertOfSplat = [=]() -> bool { |
| if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS) |
| return false; |
| Register ConvReg = DefMI->getOperand(1).getReg(); |
| if (!ConvReg.isVirtual()) |
| return false; |
| MachineInstr *Splt = MRI->getVRegDef(ConvReg); |
| return Splt && (Splt->getOpcode() == PPC::LXVWSX || |
| Splt->getOpcode() == PPC::XXSPLTW); |
| }; |
| bool AlreadySplat = (MyOpcode == DefOpcode) || |
| (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) || |
| (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) || |
| (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) || |
| (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) || |
| (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)|| |
| (MyOpcode == PPC::XXSPLTW && isConvertOfSplat()); |
| // If the instruction[s] that feed this splat have already splat |
| // the value, this splat is redundant. |
| if (AlreadySplat) { |
| LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: "); |
| LLVM_DEBUG(MI.dump()); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), |
| MI.getOperand(0).getReg()) |
| .add(MI.getOperand(OpNo)); |
| ToErase = &MI; |
| Simplified = true; |
| } |
| // Splat fed by a shift. Usually when we align value to splat into |
| // vector element zero. |
| if (DefOpcode == PPC::XXSLDWI) { |
| Register ShiftRes = DefMI->getOperand(0).getReg(); |
| Register ShiftOp1 = DefMI->getOperand(1).getReg(); |
| Register ShiftOp2 = DefMI->getOperand(2).getReg(); |
| unsigned ShiftImm = DefMI->getOperand(3).getImm(); |
| unsigned SplatImm = |
| MI.getOperand(MyOpcode == PPC::XXSPLTW ? 2 : 1).getImm(); |
| if (ShiftOp1 == ShiftOp2) { |
| unsigned NewElem = (SplatImm + ShiftImm) & 0x3; |
| if (MRI->hasOneNonDBGUse(ShiftRes)) { |
| LLVM_DEBUG(dbgs() << "Removing redundant shift: "); |
| LLVM_DEBUG(DefMI->dump()); |
| ToErase = DefMI; |
| } |
| Simplified = true; |
| LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm |
| << " to " << NewElem << " in instruction: "); |
| LLVM_DEBUG(MI.dump()); |
| MI.getOperand(1).setReg(ShiftOp1); |
| MI.getOperand(2).setImm(NewElem); |
| } |
| } |
| break; |
| } |
| case PPC::XVCVDPSP: { |
| // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant. |
| Register TrueReg = |
| TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI); |
| if (!TrueReg.isVirtual()) |
| break; |
| MachineInstr *DefMI = MRI->getVRegDef(TrueReg); |
| |
| // This can occur when building a vector of single precision or integer |
| // values. |
| if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) { |
| Register DefsReg1 = |
| TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI); |
| Register DefsReg2 = |
| TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI); |
| if (!DefsReg1.isVirtual() || !DefsReg2.isVirtual()) |
| break; |
| MachineInstr *P1 = MRI->getVRegDef(DefsReg1); |
| MachineInstr *P2 = MRI->getVRegDef(DefsReg2); |
| |
| if (!P1 || !P2) |
| break; |
| |
| // Remove the passed FRSP/XSRSP instruction if it only feeds this MI |
| // and set any uses of that FRSP/XSRSP (in this MI) to the source of |
| // the FRSP/XSRSP. |
| auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) { |
| unsigned Opc = RoundInstr->getOpcode(); |
| if ((Opc == PPC::FRSP || Opc == PPC::XSRSP) && |
| MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) { |
| Simplified = true; |
| Register ConvReg1 = RoundInstr->getOperand(1).getReg(); |
| Register FRSPDefines = RoundInstr->getOperand(0).getReg(); |
| MachineInstr &Use = *(MRI->use_instr_nodbg_begin(FRSPDefines)); |
| for (int i = 0, e = Use.getNumOperands(); i < e; ++i) |
| if (Use.getOperand(i).isReg() && |
| Use.getOperand(i).getReg() == FRSPDefines) |
| Use.getOperand(i).setReg(ConvReg1); |
| LLVM_DEBUG(dbgs() << "Removing redundant FRSP/XSRSP:\n"); |
| LLVM_DEBUG(RoundInstr->dump()); |
| LLVM_DEBUG(dbgs() << "As it feeds instruction:\n"); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "Through instruction:\n"); |
| LLVM_DEBUG(DefMI->dump()); |
| RoundInstr->eraseFromParent(); |
| } |
| }; |
| |
| // If the input to XVCVDPSP is a vector that was built (even |
| // partially) out of FRSP's, the FRSP(s) can safely be removed |
| // since this instruction performs the same operation. |
| if (P1 != P2) { |
| removeFRSPIfPossible(P1); |
| removeFRSPIfPossible(P2); |
| break; |
| } |
| removeFRSPIfPossible(P1); |
| } |
| break; |
| } |
| case PPC::EXTSH: |
| case PPC::EXTSH8: |
| case PPC::EXTSH8_32_64: { |
| if (!EnableSExtElimination) break; |
| Register NarrowReg = MI.getOperand(1).getReg(); |
| if (!NarrowReg.isVirtual()) |
| break; |
| |
| MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); |
| unsigned SrcOpcode = SrcMI->getOpcode(); |
| // If we've used a zero-extending load that we will sign-extend, |
| // just do a sign-extending load. |
| if (SrcOpcode == PPC::LHZ || SrcOpcode == PPC::LHZX) { |
| if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) |
| break; |
| // Determine the new opcode. We need to make sure that if the original |
| // instruction has a 64 bit opcode we keep using a 64 bit opcode. |
| // Likewise if the source is X-Form the new opcode should also be |
| // X-Form. |
| unsigned Opc = PPC::LHA; |
| bool SourceIsXForm = SrcOpcode == PPC::LHZX; |
| bool MIIs64Bit = MI.getOpcode() == PPC::EXTSH8 || |
| MI.getOpcode() == PPC::EXTSH8_32_64; |
| |
| if (SourceIsXForm && MIIs64Bit) |
| Opc = PPC::LHAX8; |
| else if (SourceIsXForm && !MIIs64Bit) |
| Opc = PPC::LHAX; |
| else if (MIIs64Bit) |
| Opc = PPC::LHA8; |
| |
| LLVM_DEBUG(dbgs() << "Zero-extending load\n"); |
| LLVM_DEBUG(SrcMI->dump()); |
| LLVM_DEBUG(dbgs() << "and sign-extension\n"); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); |
| SrcMI->setDesc(TII->get(Opc)); |
| SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); |
| ToErase = &MI; |
| Simplified = true; |
| NumEliminatedSExt++; |
| } |
| break; |
| } |
| case PPC::EXTSW: |
| case PPC::EXTSW_32: |
| case PPC::EXTSW_32_64: { |
| if (!EnableSExtElimination) break; |
| Register NarrowReg = MI.getOperand(1).getReg(); |
| if (!NarrowReg.isVirtual()) |
| break; |
| |
| MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg); |
| unsigned SrcOpcode = SrcMI->getOpcode(); |
| // If we've used a zero-extending load that we will sign-extend, |
| // just do a sign-extending load. |
| if (SrcOpcode == PPC::LWZ || SrcOpcode == PPC::LWZX) { |
| if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg())) |
| break; |
| |
| // The transformation from a zero-extending load to a sign-extending |
| // load is only legal when the displacement is a multiple of 4. |
| // If the displacement is not at least 4 byte aligned, don't perform |
| // the transformation. |
| bool IsWordAligned = false; |
| if (SrcMI->getOperand(1).isGlobal()) { |
| const GlobalObject *GO = |
| dyn_cast<GlobalObject>(SrcMI->getOperand(1).getGlobal()); |
| if (GO && GO->getAlign() && *GO->getAlign() >= 4) |
| IsWordAligned = true; |
| } else if (SrcMI->getOperand(1).isImm()) { |
| int64_t Value = SrcMI->getOperand(1).getImm(); |
| if (Value % 4 == 0) |
| IsWordAligned = true; |
| } |
| |
| // Determine the new opcode. We need to make sure that if the original |
| // instruction has a 64 bit opcode we keep using a 64 bit opcode. |
| // Likewise if the source is X-Form the new opcode should also be |
| // X-Form. |
| unsigned Opc = PPC::LWA_32; |
| bool SourceIsXForm = SrcOpcode == PPC::LWZX; |
| bool MIIs64Bit = MI.getOpcode() == PPC::EXTSW || |
| MI.getOpcode() == PPC::EXTSW_32_64; |
| |
| if (SourceIsXForm && MIIs64Bit) |
| Opc = PPC::LWAX; |
| else if (SourceIsXForm && !MIIs64Bit) |
| Opc = PPC::LWAX_32; |
| else if (MIIs64Bit) |
| Opc = PPC::LWA; |
| |
| if (!IsWordAligned && (Opc == PPC::LWA || Opc == PPC::LWA_32)) |
| break; |
| |
| LLVM_DEBUG(dbgs() << "Zero-extending load\n"); |
| LLVM_DEBUG(SrcMI->dump()); |
| LLVM_DEBUG(dbgs() << "and sign-extension\n"); |
| LLVM_DEBUG(MI.dump()); |
| LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n"); |
| SrcMI->setDesc(TII->get(Opc)); |
| SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg()); |
| ToErase = &MI; |
| Simplified = true; |
| NumEliminatedSExt++; |
| } else if (MI.getOpcode() == PPC::EXTSW_32_64 && |
| TII->isSignExtended(NarrowReg, MRI)) { |
| // We can eliminate EXTSW if the input is known to be already |
| // sign-extended. |
| LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n"); |
| Register TmpReg = |
| MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF), |
| TmpReg); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG), |
| MI.getOperand(0).getReg()) |
| .addReg(TmpReg) |
| .addReg(NarrowReg) |
| .addImm(PPC::sub_32); |
| ToErase = &MI; |
| Simplified = true; |
| NumEliminatedSExt++; |
| } |
| break; |
| } |
| case PPC::RLDICL: { |
| // We can eliminate RLDICL (e.g. for zero-extension) |
| // if all bits to clear are already zero in the input. |
| // This code assume following code sequence for zero-extension. |
| // %6 = COPY %5:sub_32; (optional) |
| // %8 = IMPLICIT_DEF; |
| // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32; |
| if (!EnableZExtElimination) break; |
| |
| if (MI.getOperand(2).getImm() != 0) |
| break; |
| |
| Register SrcReg = MI.getOperand(1).getReg(); |
| if (!SrcReg.isVirtual()) |
| break; |
| |
| MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); |
| if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG && |
| SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg())) |
| break; |
| |
| MachineInstr *ImpDefMI, *SubRegMI; |
| ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg()); |
| SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg()); |
| if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break; |
| |
| SrcMI = SubRegMI; |
| if (SubRegMI->getOpcode() == PPC::COPY) { |
| Register CopyReg = SubRegMI->getOperand(1).getReg(); |
| if (CopyReg.isVirtual()) |
| SrcMI = MRI->getVRegDef(CopyReg); |
| } |
| if (!SrcMI->getOperand(0).isReg()) |
| break; |
| |
| unsigned KnownZeroCount = |
| getKnownLeadingZeroCount(SrcMI->getOperand(0).getReg(), TII, MRI); |
| if (MI.getOperand(3).getImm() <= KnownZeroCount) { |
| LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n"); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), |
| MI.getOperand(0).getReg()) |
| .addReg(SrcReg); |
| ToErase = &MI; |
| Simplified = true; |
| NumEliminatedZExt++; |
| } |
| break; |
| } |
| |
| // TODO: Any instruction that has an immediate form fed only by a PHI |
| // whose operands are all load immediate can be folded away. We currently |
| // do this for ADD instructions, but should expand it to arithmetic and |
| // binary instructions with immediate forms in the future. |
| case PPC::ADD4: |
| case PPC::ADD8: { |
| auto isSingleUsePHI = [&](MachineOperand *PhiOp) { |
| assert(PhiOp && "Invalid Operand!"); |
| MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); |
| |
| return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) && |
| MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg()); |
| }; |
| |
| auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp, |
| MachineOperand *PhiOp) { |
| assert(PhiOp && "Invalid Operand!"); |
| assert(DominatorOp && "Invalid Operand!"); |
| MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI); |
| MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI); |
| |
| // Note: the vregs only show up at odd indices position of PHI Node, |
| // the even indices position save the BB info. |
| for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { |
| MachineInstr *LiMI = |
| getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); |
| if (!LiMI || |
| (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8) |
| || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) || |
| !MDT->dominates(DefDomMI, LiMI)) |
| return false; |
| } |
| |
| return true; |
| }; |
| |
| MachineOperand Op1 = MI.getOperand(1); |
| MachineOperand Op2 = MI.getOperand(2); |
| if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2)) |
| std::swap(Op1, Op2); |
| else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1)) |
| break; // We don't have an ADD fed by LI's that can be transformed |
| |
| // Now we know that Op1 is the PHI node and Op2 is the dominator |
| Register DominatorReg = Op2.getReg(); |
| |
| const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8 |
| ? &PPC::G8RC_and_G8RC_NOX0RegClass |
| : &PPC::GPRC_and_GPRC_NOR0RegClass; |
| MRI->setRegClass(DominatorReg, TRC); |
| |
| // replace LIs with ADDIs |
| MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI); |
| for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) { |
| MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI); |
| LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: "); |
| LLVM_DEBUG(LiMI->dump()); |
| |
| // There could be repeated registers in the PHI, e.g: %1 = |
| // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've |
| // already replaced the def instruction, skip. |
| if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8) |
| continue; |
| |
| assert((LiMI->getOpcode() == PPC::LI || |
| LiMI->getOpcode() == PPC::LI8) && |
| "Invalid Opcode!"); |
| auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI |
| LiMI->removeOperand(1); // remove the imm of LI |
| LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI |
| : PPC::ADDI8)); |
| MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI) |
| .addReg(DominatorReg) |
| .addImm(LiImm); // restore the imm of LI |
| LLVM_DEBUG(LiMI->dump()); |
| } |
| |
| // Replace ADD with COPY |
| LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: "); |
| LLVM_DEBUG(MI.dump()); |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY), |
| MI.getOperand(0).getReg()) |
| .add(Op1); |
| ToErase = &MI; |
| Simplified = true; |
| NumOptADDLIs++; |
| break; |
| } |
| case PPC::RLDICR: { |
| Simplified |= emitRLDICWhenLoweringJumpTables(MI) || |
| combineSEXTAndSHL(MI, ToErase); |
| break; |
| } |
| case PPC::RLWINM: |
| case PPC::RLWINM_rec: |
| case PPC::RLWINM8: |
| case PPC::RLWINM8_rec: { |
| Simplified = TII->combineRLWINM(MI, &ToErase); |
| if (Simplified) |
| ++NumRotatesCollapsed; |
| break; |
| } |
| // We will replace TD/TW/TDI/TWI with an unconditional trap if it will |
| // always trap, we will delete the node if it will never trap. |
| case PPC::TDI: |
| case PPC::TWI: |
| case PPC::TD: |
| case PPC::TW: { |
| if (!EnableTrapOptimization) break; |
| MachineInstr *LiMI1 = getVRegDefOrNull(&MI.getOperand(1), MRI); |
| MachineInstr *LiMI2 = getVRegDefOrNull(&MI.getOperand(2), MRI); |
| bool IsOperand2Immediate = MI.getOperand(2).isImm(); |
| // We can only do the optimization if we can get immediates |
| // from both operands |
| if (!(LiMI1 && (LiMI1->getOpcode() == PPC::LI || |
| LiMI1->getOpcode() == PPC::LI8))) |
| break; |
| if (!IsOperand2Immediate && |
| !(LiMI2 && (LiMI2->getOpcode() == PPC::LI || |
| LiMI2->getOpcode() == PPC::LI8))) |
| break; |
| |
| auto ImmOperand0 = MI.getOperand(0).getImm(); |
| auto ImmOperand1 = LiMI1->getOperand(1).getImm(); |
| auto ImmOperand2 = IsOperand2Immediate ? MI.getOperand(2).getImm() |
| : LiMI2->getOperand(1).getImm(); |
| |
| // We will replace the MI with an unconditional trap if it will always |
| // trap. |
| if ((ImmOperand0 == 31) || |
| ((ImmOperand0 & 0x10) && |
| ((int64_t)ImmOperand1 < (int64_t)ImmOperand2)) || |
| ((ImmOperand0 & 0x8) && |
| ((int64_t)ImmOperand1 > (int64_t)ImmOperand2)) || |
| ((ImmOperand0 & 0x2) && |
| ((uint64_t)ImmOperand1 < (uint64_t)ImmOperand2)) || |
| ((ImmOperand0 & 0x1) && |
| ((uint64_t)ImmOperand1 > (uint64_t)ImmOperand2)) || |
| ((ImmOperand0 & 0x4) && (ImmOperand1 == ImmOperand2))) { |
| BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::TRAP)); |
| TrapOpt = true; |
| } |
| // We will delete the MI if it will never trap. |
| ToErase = &MI; |
| Simplified = true; |
| break; |
| } |
| } |
| } |
| |
| // If the last instruction was marked for elimination, |
| // remove it now. |
| if (ToErase) { |
| ToErase->eraseFromParent(); |
| ToErase = nullptr; |
| } |
| // Reset TrapOpt to false at the end of the basic block. |
| if (EnableTrapOptimization) |
| TrapOpt = false; |
| } |
| |
| // Eliminate all the TOC save instructions which are redundant. |
| Simplified |= eliminateRedundantTOCSaves(TOCSaves); |
| PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>(); |
| if (FI->mustSaveTOC()) |
| NumTOCSavesInPrologue++; |
| |
| // We try to eliminate redundant compare instruction. |
| Simplified |= eliminateRedundantCompare(); |
| |
| return Simplified; |
| } |
| |
| // helper functions for eliminateRedundantCompare |
| static bool isEqOrNe(MachineInstr *BI) { |
| PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); |
| unsigned PredCond = PPC::getPredicateCondition(Pred); |
| return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE); |
| } |
| |
| static bool isSupportedCmpOp(unsigned opCode) { |
| return (opCode == PPC::CMPLD || opCode == PPC::CMPD || |
| opCode == PPC::CMPLW || opCode == PPC::CMPW || |
| opCode == PPC::CMPLDI || opCode == PPC::CMPDI || |
| opCode == PPC::CMPLWI || opCode == PPC::CMPWI); |
| } |
| |
| static bool is64bitCmpOp(unsigned opCode) { |
| return (opCode == PPC::CMPLD || opCode == PPC::CMPD || |
| opCode == PPC::CMPLDI || opCode == PPC::CMPDI); |
| } |
| |
| static bool isSignedCmpOp(unsigned opCode) { |
| return (opCode == PPC::CMPD || opCode == PPC::CMPW || |
| opCode == PPC::CMPDI || opCode == PPC::CMPWI); |
| } |
| |
| static unsigned getSignedCmpOpCode(unsigned opCode) { |
| if (opCode == PPC::CMPLD) return PPC::CMPD; |
| if (opCode == PPC::CMPLW) return PPC::CMPW; |
| if (opCode == PPC::CMPLDI) return PPC::CMPDI; |
| if (opCode == PPC::CMPLWI) return PPC::CMPWI; |
| return opCode; |
| } |
| |
| // We can decrement immediate x in (GE x) by changing it to (GT x-1) or |
| // (LT x) to (LE x-1) |
| static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) { |
| uint64_t Imm = CMPI->getOperand(2).getImm(); |
| bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); |
| if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000)) |
| return 0; |
| |
| PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); |
| unsigned PredCond = PPC::getPredicateCondition(Pred); |
| unsigned PredHint = PPC::getPredicateHint(Pred); |
| if (PredCond == PPC::PRED_GE) |
| return PPC::getPredicate(PPC::PRED_GT, PredHint); |
| if (PredCond == PPC::PRED_LT) |
| return PPC::getPredicate(PPC::PRED_LE, PredHint); |
| |
| return 0; |
| } |
| |
| // We can increment immediate x in (GT x) by changing it to (GE x+1) or |
| // (LE x) to (LT x+1) |
| static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) { |
| uint64_t Imm = CMPI->getOperand(2).getImm(); |
| bool SignedCmp = isSignedCmpOp(CMPI->getOpcode()); |
| if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF)) |
| return 0; |
| |
| PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm(); |
| unsigned PredCond = PPC::getPredicateCondition(Pred); |
| unsigned PredHint = PPC::getPredicateHint(Pred); |
| if (PredCond == PPC::PRED_GT) |
| return PPC::getPredicate(PPC::PRED_GE, PredHint); |
| if (PredCond == PPC::PRED_LE) |
| return PPC::getPredicate(PPC::PRED_LT, PredHint); |
| |
| return 0; |
| } |
| |
| // This takes a Phi node and returns a register value for the specified BB. |
| static unsigned getIncomingRegForBlock(MachineInstr *Phi, |
| MachineBasicBlock *MBB) { |
| for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) { |
| MachineOperand &MO = Phi->getOperand(I); |
| if (MO.getMBB() == MBB) |
| return Phi->getOperand(I-1).getReg(); |
| } |
| llvm_unreachable("invalid src basic block for this Phi node\n"); |
| return 0; |
| } |
| |
| // This function tracks the source of the register through register copy. |
| // If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2 |
| // assuming that the control comes from BB1 into BB2. |
| static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1, |
| MachineBasicBlock *BB2, MachineRegisterInfo *MRI) { |
| unsigned SrcReg = Reg; |
| while (true) { |
| unsigned NextReg = SrcReg; |
| MachineInstr *Inst = MRI->getVRegDef(SrcReg); |
| if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) { |
| NextReg = getIncomingRegForBlock(Inst, BB1); |
| // We track through PHI only once to avoid infinite loop. |
| BB1 = nullptr; |
| } |
| else if (Inst->isFullCopy()) |
| NextReg = Inst->getOperand(1).getReg(); |
| if (NextReg == SrcReg || !Register::isVirtualRegister(NextReg)) |
| break; |
| SrcReg = NextReg; |
| } |
| return SrcReg; |
| } |
| |
| static bool eligibleForCompareElimination(MachineBasicBlock &MBB, |
| MachineBasicBlock *&PredMBB, |
| MachineBasicBlock *&MBBtoMoveCmp, |
| MachineRegisterInfo *MRI) { |
| |
| auto isEligibleBB = [&](MachineBasicBlock &BB) { |
| auto BII = BB.getFirstInstrTerminator(); |
| // We optimize BBs ending with a conditional branch. |
| // We check only for BCC here, not BCCLR, because BCCLR |
| // will be formed only later in the pipeline. |
| if (BB.succ_size() == 2 && |
| BII != BB.instr_end() && |
| (*BII).getOpcode() == PPC::BCC && |
| (*BII).getOperand(1).isReg()) { |
| // We optimize only if the condition code is used only by one BCC. |
| Register CndReg = (*BII).getOperand(1).getReg(); |
| if (!CndReg.isVirtual() || !MRI->hasOneNonDBGUse(CndReg)) |
| return false; |
| |
| MachineInstr *CMPI = MRI->getVRegDef(CndReg); |
| // We assume compare and branch are in the same BB for ease of analysis. |
| if (CMPI->getParent() != &BB) |
| return false; |
| |
| // We skip this BB if a physical register is used in comparison. |
| for (MachineOperand &MO : CMPI->operands()) |
| if (MO.isReg() && !MO.getReg().isVirtual()) |
| return false; |
| |
| return true; |
| } |
| return false; |
| }; |
| |
| // If this BB has more than one successor, we can create a new BB and |
| // move the compare instruction in the new BB. |
| // So far, we do not move compare instruction to a BB having multiple |
| // successors to avoid potentially increasing code size. |
| auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) { |
| return BB.succ_size() == 1; |
| }; |
| |
| if (!isEligibleBB(MBB)) |
| return false; |
| |
| unsigned NumPredBBs = MBB.pred_size(); |
| if (NumPredBBs == 1) { |
| MachineBasicBlock *TmpMBB = *MBB.pred_begin(); |
| if (isEligibleBB(*TmpMBB)) { |
| PredMBB = TmpMBB; |
| MBBtoMoveCmp = nullptr; |
| return true; |
| } |
| } |
| else if (NumPredBBs == 2) { |
| // We check for partially redundant case. |
| // So far, we support cases with only two predecessors |
| // to avoid increasing the number of instructions. |
| MachineBasicBlock::pred_iterator PI = MBB.pred_begin(); |
| MachineBasicBlock *Pred1MBB = *PI; |
| MachineBasicBlock *Pred2MBB = *(PI+1); |
| |
| if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) { |
| // We assume Pred1MBB is the BB containing the compare to be merged and |
| // Pred2MBB is the BB to which we will append a compare instruction. |
| // Hence we can proceed as is. |
| } |
| else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) { |
| // We need to swap Pred1MBB and Pred2MBB to canonicalize. |
| std::swap(Pred1MBB, Pred2MBB); |
| } |
| else return false; |
| |
| // Here, Pred2MBB is the BB to which we need to append a compare inst. |
| // We cannot move the compare instruction if operands are not available |
| // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI). |
| MachineInstr *BI = &*MBB.getFirstInstrTerminator(); |
| MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg()); |
| for (int I = 1; I <= 2; I++) |
| if (CMPI->getOperand(I).isReg()) { |
| MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg()); |
| if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI) |
| return false; |
| } |
| |
| PredMBB = Pred1MBB; |
| MBBtoMoveCmp = Pred2MBB; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // This function will iterate over the input map containing a pair of TOC save |
| // instruction and a flag. The flag will be set to false if the TOC save is |
| // proven redundant. This function will erase from the basic block all the TOC |
| // saves marked as redundant. |
| bool PPCMIPeephole::eliminateRedundantTOCSaves( |
| std::map<MachineInstr *, bool> &TOCSaves) { |
| bool Simplified = false; |
| int NumKept = 0; |
| for (auto TOCSave : TOCSaves) { |
| if (!TOCSave.second) { |
| TOCSave.first->eraseFromParent(); |
| RemoveTOCSave++; |
| Simplified = true; |
| } else { |
| NumKept++; |
| } |
| } |
| |
| if (NumKept > 1) |
| MultiTOCSaves++; |
| |
| return Simplified; |
| } |
| |
| // If multiple conditional branches are executed based on the (essentially) |
| // same comparison, we merge compare instructions into one and make multiple |
| // conditional branches on this comparison. |
| // For example, |
| // if (a == 0) { ... } |
| // else if (a < 0) { ... } |
| // can be executed by one compare and two conditional branches instead of |
| // two pairs of a compare and a conditional branch. |
| // |
| // This method merges two compare instructions in two MBBs and modifies the |
| // compare and conditional branch instructions if needed. |
| // For the above example, the input for this pass looks like: |
| // cmplwi r3, 0 |
| // beq 0, .LBB0_3 |
| // cmpwi r3, -1 |
| // bgt 0, .LBB0_4 |
| // So, before merging two compares, we need to modify these instructions as |
| // cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq |
| // beq 0, .LBB0_3 |
| // cmpwi r3, 0 ; greather than -1 means greater or equal to 0 |
| // bge 0, .LBB0_4 |
| |
| bool PPCMIPeephole::eliminateRedundantCompare() { |
| bool Simplified = false; |
| |
| for (MachineBasicBlock &MBB2 : *MF) { |
| MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr; |
| |
| // For fully redundant case, we select two basic blocks MBB1 and MBB2 |
| // as an optimization target if |
| // - both MBBs end with a conditional branch, |
| // - MBB1 is the only predecessor of MBB2, and |
| // - compare does not take a physical register as a operand in both MBBs. |
| // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr. |
| // |
| // As partially redundant case, we additionally handle if MBB2 has one |
| // additional predecessor, which has only one successor (MBB2). |
| // In this case, we move the compare instruction originally in MBB2 into |
| // MBBtoMoveCmp. This partially redundant case is typically appear by |
| // compiling a while loop; here, MBBtoMoveCmp is the loop preheader. |
| // |
| // Overview of CFG of related basic blocks |
| // Fully redundant case Partially redundant case |
| // -------- ---------------- -------- |
| // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ) |
| // -------- ---------------- -------- |
| // | \ (w/ 1 succ) \ | \ |
| // | \ \ | \ |
| // | \ | |
| // -------- -------- |
| // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred |
| // -------- and 2 succ) -------- and 2 succ) |
| // | \ | \ |
| // | \ | \ |
| // |
| if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI)) |
| continue; |
| |
| MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator(); |
| MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg()); |
| |
| MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator(); |
| MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg()); |
| bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr); |
| |
| // We cannot optimize an unsupported compare opcode or |
| // a mix of 32-bit and 64-bit comparisons |
| if (!isSupportedCmpOp(CMPI1->getOpcode()) || |
| !isSupportedCmpOp(CMPI2->getOpcode()) || |
| is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode())) |
| continue; |
| |
| unsigned NewOpCode = 0; |
| unsigned NewPredicate1 = 0, NewPredicate2 = 0; |
| int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0; |
| bool SwapOperands = false; |
| |
| if (CMPI1->getOpcode() != CMPI2->getOpcode()) { |
| // Typically, unsigned comparison is used for equality check, but |
| // we replace it with a signed comparison if the comparison |
| // to be merged is a signed comparison. |
| // In other cases of opcode mismatch, we cannot optimize this. |
| |
| // We cannot change opcode when comparing against an immediate |
| // if the most significant bit of the immediate is one |
| // due to the difference in sign extension. |
| auto CmpAgainstImmWithSignBit = [](MachineInstr *I) { |
| if (!I->getOperand(2).isImm()) |
| return false; |
| int16_t Imm = (int16_t)I->getOperand(2).getImm(); |
| return Imm < 0; |
| }; |
| |
| if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) && |
| CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode())) |
| NewOpCode = CMPI1->getOpcode(); |
| else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) && |
| getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode()) |
| NewOpCode = CMPI2->getOpcode(); |
| else continue; |
| } |
| |
| if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) { |
| // In case of comparisons between two registers, these two registers |
| // must be same to merge two comparisons. |
| unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), |
| nullptr, nullptr, MRI); |
| unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(), |
| nullptr, nullptr, MRI); |
| unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), |
| MBB1, &MBB2, MRI); |
| unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(), |
| MBB1, &MBB2, MRI); |
| |
| if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) { |
| // Same pair of registers in the same order; ready to merge as is. |
| } |
| else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) { |
| // Same pair of registers in different order. |
| // We reverse the predicate to merge compare instructions. |
| PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm(); |
| NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred); |
| // In case of partial redundancy, we need to swap operands |
| // in another compare instruction. |
| SwapOperands = true; |
| } |
| else continue; |
| } |
| else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) { |
| // In case of comparisons between a register and an immediate, |
| // the operand register must be same for two compare instructions. |
| unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(), |
| nullptr, nullptr, MRI); |
| unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(), |
| MBB1, &MBB2, MRI); |
| if (Cmp1Operand1 != Cmp2Operand1) |
| continue; |
| |
| NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm(); |
| NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm(); |
| |
| // If immediate are not same, we try to adjust by changing predicate; |
| // e.g. GT imm means GE (imm+1). |
| if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) { |
| int Diff = Imm1 - Imm2; |
| if (Diff < -2 || Diff > 2) |
| continue; |
| |
| unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1); |
| unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1); |
| unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2); |
| unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2); |
| if (Diff == 2) { |
| if (PredToInc2 && PredToDec1) { |
| NewPredicate2 = PredToInc2; |
| NewPredicate1 = PredToDec1; |
| NewImm2++; |
| NewImm1--; |
| } |
| } |
| else if (Diff == 1) { |
| if (PredToInc2) { |
| NewImm2++; |
| NewPredicate2 = PredToInc2; |
| } |
| else if (PredToDec1) { |
| NewImm1--; |
| NewPredicate1 = PredToDec1; |
| } |
| } |
| else if (Diff == -1) { |
| if (PredToDec2) { |
| NewImm2--; |
| NewPredicate2 = PredToDec2; |
| } |
| else if (PredToInc1) { |
| NewImm1++; |
| NewPredicate1 = PredToInc1; |
| } |
| } |
| else if (Diff == -2) { |
| if (PredToDec2 && PredToInc1) { |
| NewPredicate2 = PredToDec2; |
| NewPredicate1 = PredToInc1; |
| NewImm2--; |
| NewImm1++; |
| } |
| } |
| } |
| |
| // We cannot merge two compares if the immediates are not same. |
| if (NewImm2 != NewImm1) |
| continue; |
| } |
| |
| LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n"); |
| LLVM_DEBUG(CMPI1->dump()); |
| LLVM_DEBUG(BI1->dump()); |
| LLVM_DEBUG(CMPI2->dump()); |
| LLVM_DEBUG(BI2->dump()); |
| |
| // We adjust opcode, predicates and immediate as we determined above. |
| if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) { |
| CMPI1->setDesc(TII->get(NewOpCode)); |
| } |
| if (NewPredicate1) { |
| BI1->getOperand(0).setImm(NewPredicate1); |
| } |
| if (NewPredicate2) { |
| BI2->getOperand(0).setImm(NewPredicate2); |
| } |
| if (NewImm1 != Imm1) { |
| CMPI1->getOperand(2).setImm(NewImm1); |
| } |
| |
| if (IsPartiallyRedundant) { |
| // We touch up the compare instruction in MBB2 and move it to |
| // a previous BB to handle partially redundant case. |
| if (SwapOperands) { |
| Register Op1 = CMPI2->getOperand(1).getReg(); |
| Register Op2 = CMPI2->getOperand(2).getReg(); |
| CMPI2->getOperand(1).setReg(Op2); |
| CMPI2->getOperand(2).setReg(Op1); |
| } |
| if (NewImm2 != Imm2) |
| CMPI2->getOperand(2).setImm(NewImm2); |
| |
| for (int I = 1; I <= 2; I++) { |
| if (CMPI2->getOperand(I).isReg()) { |
| MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg()); |
| if (Inst->getParent() != &MBB2) |
| continue; |
| |
| assert(Inst->getOpcode() == PPC::PHI && |
| "We cannot support if an operand comes from this BB."); |
| unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp); |
| CMPI2->getOperand(I).setReg(SrcReg); |
| } |
| } |
| auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator()); |
| MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2)); |
| |
| DebugLoc DL = CMPI2->getDebugLoc(); |
| Register NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass); |
| BuildMI(MBB2, MBB2.begin(), DL, |
| TII->get(PPC::PHI), NewVReg) |
| .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1) |
| .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp); |
| BI2->getOperand(1).setReg(NewVReg); |
| } |
| else { |
| // We finally eliminate compare instruction in MBB2. |
| BI2->getOperand(1).setReg(BI1->getOperand(1).getReg()); |
| CMPI2->eraseFromParent(); |
| } |
| BI2->getOperand(1).setIsKill(true); |
| BI1->getOperand(1).setIsKill(false); |
| |
| LLVM_DEBUG(dbgs() << "into a compare and two branches:\n"); |
| LLVM_DEBUG(CMPI1->dump()); |
| LLVM_DEBUG(BI1->dump()); |
| LLVM_DEBUG(BI2->dump()); |
| if (IsPartiallyRedundant) { |
| LLVM_DEBUG(dbgs() << "The following compare is moved into " |
| << printMBBReference(*MBBtoMoveCmp) |
| << " to handle partial redundancy.\n"); |
| LLVM_DEBUG(CMPI2->dump()); |
| } |
| |
| Simplified = true; |
| } |
| |
| return Simplified; |
| } |
| |
| // We miss the opportunity to emit an RLDIC when lowering jump tables |
| // since ISEL sees only a single basic block. When selecting, the clear |
| // and shift left will be in different blocks. |
| bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) { |
| if (MI.getOpcode() != PPC::RLDICR) |
| return false; |
| |
| Register SrcReg = MI.getOperand(1).getReg(); |
| if (!SrcReg.isVirtual()) |
| return false; |
| |
| MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); |
| if (SrcMI->getOpcode() != PPC::RLDICL) |
| return false; |
| |
| MachineOperand MOpSHSrc = SrcMI->getOperand(2); |
| MachineOperand MOpMBSrc = SrcMI->getOperand(3); |
| MachineOperand MOpSHMI = MI.getOperand(2); |
| MachineOperand MOpMEMI = MI.getOperand(3); |
| if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() && |
| MOpMEMI.isImm())) |
| return false; |
| |
| uint64_t SHSrc = MOpSHSrc.getImm(); |
| uint64_t MBSrc = MOpMBSrc.getImm(); |
| uint64_t SHMI = MOpSHMI.getImm(); |
| uint64_t MEMI = MOpMEMI.getImm(); |
| uint64_t NewSH = SHSrc + SHMI; |
| uint64_t NewMB = MBSrc - SHMI; |
| if (NewMB > 63 || NewSH > 63) |
| return false; |
| |
| // The bits cleared with RLDICL are [0, MBSrc). |
| // The bits cleared with RLDICR are (MEMI, 63]. |
| // After the sequence, the bits cleared are: |
| // [0, MBSrc-SHMI) and (MEMI, 63). |
| // |
| // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63]. |
| if ((63 - NewSH) != MEMI) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Converting pair: "); |
| LLVM_DEBUG(SrcMI->dump()); |
| LLVM_DEBUG(MI.dump()); |
| |
| MI.setDesc(TII->get(PPC::RLDIC)); |
| MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg()); |
| MI.getOperand(2).setImm(NewSH); |
| MI.getOperand(3).setImm(NewMB); |
| MI.getOperand(1).setIsKill(SrcMI->getOperand(1).isKill()); |
| SrcMI->getOperand(1).setIsKill(false); |
| |
| LLVM_DEBUG(dbgs() << "To: "); |
| LLVM_DEBUG(MI.dump()); |
| NumRotatesCollapsed++; |
| // If SrcReg has no non-debug use it's safe to delete its def SrcMI. |
| if (MRI->use_nodbg_empty(SrcReg)) { |
| assert(!SrcMI->hasImplicitDef() && |
| "Not expecting an implicit def with this instr."); |
| SrcMI->eraseFromParent(); |
| } |
| return true; |
| } |
| |
| // For case in LLVM IR |
| // entry: |
| // %iconv = sext i32 %index to i64 |
| // br i1 undef label %true, label %false |
| // true: |
| // %ptr = getelementptr inbounds i32, i32* null, i64 %iconv |
| // ... |
| // PPCISelLowering::combineSHL fails to combine, because sext and shl are in |
| // different BBs when conducting instruction selection. We can do a peephole |
| // optimization to combine these two instructions into extswsli after |
| // instruction selection. |
| bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI, |
| MachineInstr *&ToErase) { |
| if (MI.getOpcode() != PPC::RLDICR) |
| return false; |
| |
| if (!MF->getSubtarget<PPCSubtarget>().isISA3_0()) |
| return false; |
| |
| assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands"); |
| |
| MachineOperand MOpSHMI = MI.getOperand(2); |
| MachineOperand MOpMEMI = MI.getOperand(3); |
| if (!(MOpSHMI.isImm() && MOpMEMI.isImm())) |
| return false; |
| |
| uint64_t SHMI = MOpSHMI.getImm(); |
| uint64_t MEMI = MOpMEMI.getImm(); |
| if (SHMI + MEMI != 63) |
| return false; |
| |
| Register SrcReg = MI.getOperand(1).getReg(); |
| if (!SrcReg.isVirtual()) |
| return false; |
| |
| MachineInstr *SrcMI = MRI->getVRegDef(SrcReg); |
| if (SrcMI->getOpcode() != PPC::EXTSW && |
| SrcMI->getOpcode() != PPC::EXTSW_32_64) |
| return false; |
| |
| // If the register defined by extsw has more than one use, combination is not |
| // needed. |
| if (!MRI->hasOneNonDBGUse(SrcReg)) |
| return false; |
| |
| assert(SrcMI->getNumOperands() == 2 && "EXTSW should have 2 operands"); |
| assert(SrcMI->getOperand(1).isReg() && |
| "EXTSW's second operand should be a register"); |
| if (!SrcMI->getOperand(1).getReg().isVirtual()) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Combining pair: "); |
| LLVM_DEBUG(SrcMI->dump()); |
| LLVM_DEBUG(MI.dump()); |
| |
| MachineInstr *NewInstr = |
| BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), |
| SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI) |
| : TII->get(PPC::EXTSWSLI_32_64), |
| MI.getOperand(0).getReg()) |
| .add(SrcMI->getOperand(1)) |
| .add(MOpSHMI); |
| (void)NewInstr; |
| |
| LLVM_DEBUG(dbgs() << "TO: "); |
| LLVM_DEBUG(NewInstr->dump()); |
| ++NumEXTSWAndSLDICombined; |
| ToErase = &MI; |
| // SrcMI, which is extsw, is of no use now, erase it. |
| SrcMI->eraseFromParent(); |
| return true; |
| } |
| |
| } // end default namespace |
| |
| INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE, |
| "PowerPC MI Peephole Optimization", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) |
| INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE, |
| "PowerPC MI Peephole Optimization", false, false) |
| |
| char PPCMIPeephole::ID = 0; |
| FunctionPass* |
| llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); } |