| //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Hexagon specific subclass of TargetSubtarget. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "HexagonSubtarget.h" |
| #include "Hexagon.h" |
| #include "HexagonInstrInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "MCTargetDesc/HexagonMCTargetDesc.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| #include "llvm/IR/IntrinsicsHexagon.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <map> |
| #include <optional> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "hexagon-subtarget" |
| |
| #define GET_SUBTARGETINFO_CTOR |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #include "HexagonGenSubtargetInfo.inc" |
| |
| static cl::opt<bool> EnableBSBSched("enable-bsb-sched", cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", cl::Hidden, |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| EnableDotCurSched("enable-cur-sched", cl::Hidden, cl::init(true), |
| cl::desc("Enable the scheduler to generate .cur")); |
| |
| static cl::opt<bool> |
| DisableHexagonMISched("disable-hexagon-misched", cl::Hidden, |
| cl::desc("Disable Hexagon MI Scheduling")); |
| |
| static cl::opt<bool> EnableSubregLiveness( |
| "hexagon-subreg-liveness", cl::Hidden, cl::init(true), |
| cl::desc("Enable subregister liveness tracking for Hexagon")); |
| |
| static cl::opt<bool> OverrideLongCalls( |
| "hexagon-long-calls", cl::Hidden, |
| cl::desc("If present, forces/disables the use of long calls")); |
| |
| static cl::opt<bool> |
| EnablePredicatedCalls("hexagon-pred-calls", cl::Hidden, |
| cl::desc("Consider calls to be predicable")); |
| |
| static cl::opt<bool> SchedPredsCloser("sched-preds-closer", cl::Hidden, |
| cl::init(true)); |
| |
| static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization", |
| cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> EnableCheckBankConflict( |
| "hexagon-check-bank-conflict", cl::Hidden, cl::init(true), |
| cl::desc("Enable checking for cache bank conflicts")); |
| |
| HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU, |
| StringRef FS, const TargetMachine &TM) |
| : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS), |
| OptLevel(TM.getOptLevel()), |
| CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))), |
| TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)), |
| RegInfo(getHwMode()), TLInfo(TM, *this), |
| InstrItins(getInstrItineraryForCPU(CPUString)) { |
| Hexagon_MC::addArchSubtarget(this, FS); |
| // Beware of the default constructor of InstrItineraryData: it will |
| // reset all members to 0. |
| assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized"); |
| } |
| |
| HexagonSubtarget & |
| HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) { |
| std::optional<Hexagon::ArchEnum> ArchVer = Hexagon::getCpu(CPUString); |
| if (ArchVer) |
| HexagonArchVersion = *ArchVer; |
| else |
| llvm_unreachable("Unrecognized Hexagon processor version"); |
| |
| UseHVX128BOps = false; |
| UseHVX64BOps = false; |
| UseAudioOps = false; |
| UseLongCalls = false; |
| |
| SubtargetFeatures Features(FS); |
| |
| // Turn on QFloat if the HVX version is v68+. |
| // The function ParseSubtargetFeatures will set feature bits and initialize |
| // subtarget's variables all in one, so there isn't a good way to preprocess |
| // the feature string, other than by tinkering with it directly. |
| auto IsQFloatFS = [](StringRef F) { |
| return F == "+hvx-qfloat" || F == "-hvx-qfloat"; |
| }; |
| if (!llvm::count_if(Features.getFeatures(), IsQFloatFS)) { |
| auto getHvxVersion = [&Features](StringRef FS) -> StringRef { |
| for (StringRef F : llvm::reverse(Features.getFeatures())) { |
| if (F.startswith("+hvxv")) |
| return F; |
| } |
| for (StringRef F : llvm::reverse(Features.getFeatures())) { |
| if (F == "-hvx") |
| return StringRef(); |
| if (F.startswith("+hvx") || F == "-hvx") |
| return F.take_front(4); // Return "+hvx" or "-hvx". |
| } |
| return StringRef(); |
| }; |
| |
| bool AddQFloat = false; |
| StringRef HvxVer = getHvxVersion(FS); |
| if (HvxVer.startswith("+hvxv")) { |
| int Ver = 0; |
| if (!HvxVer.drop_front(5).consumeInteger(10, Ver) && Ver >= 68) |
| AddQFloat = true; |
| } else if (HvxVer == "+hvx") { |
| if (hasV68Ops()) |
| AddQFloat = true; |
| } |
| |
| if (AddQFloat) |
| Features.AddFeature("+hvx-qfloat"); |
| } |
| |
| std::string FeatureString = Features.getString(); |
| ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FeatureString); |
| |
| if (useHVXV68Ops()) |
| UseHVXFloatingPoint = UseHVXIEEEFPOps || UseHVXQFloatOps; |
| |
| if (UseHVXQFloatOps && UseHVXIEEEFPOps && UseHVXFloatingPoint) |
| LLVM_DEBUG( |
| dbgs() << "Behavior is undefined for simultaneous qfloat and ieee hvx codegen..."); |
| |
| if (OverrideLongCalls.getPosition()) |
| UseLongCalls = OverrideLongCalls; |
| |
| UseBSBScheduling = hasV60Ops() && EnableBSBSched; |
| |
| if (isTinyCore()) { |
| // Tiny core has a single thread, so back-to-back scheduling is enabled by |
| // default. |
| if (!EnableBSBSched.getPosition()) |
| UseBSBScheduling = false; |
| } |
| |
| FeatureBitset FeatureBits = getFeatureBits(); |
| if (HexagonDisableDuplex) |
| setFeatureBits(FeatureBits.reset(Hexagon::FeatureDuplex)); |
| setFeatureBits(Hexagon_MC::completeHVXFeatures(FeatureBits)); |
| |
| return *this; |
| } |
| |
| bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const { |
| if (!useHVXOps()) |
| return false; |
| if (Ty.isVector()) |
| Ty = Ty.getVectorElementType(); |
| if (IncludeBool && Ty == MVT::i1) |
| return true; |
| ArrayRef<MVT> ElemTypes = getHVXElementTypes(); |
| return llvm::is_contained(ElemTypes, Ty); |
| } |
| |
| bool HexagonSubtarget::isHVXVectorType(EVT VecTy, bool IncludeBool) const { |
| if (!VecTy.isSimple()) |
| return false; |
| if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector()) |
| return false; |
| MVT ElemTy = VecTy.getSimpleVT().getVectorElementType(); |
| if (!IncludeBool && ElemTy == MVT::i1) |
| return false; |
| |
| unsigned HwLen = getVectorLength(); |
| unsigned NumElems = VecTy.getVectorNumElements(); |
| ArrayRef<MVT> ElemTypes = getHVXElementTypes(); |
| |
| if (IncludeBool && ElemTy == MVT::i1) { |
| // Boolean HVX vector types are formed from regular HVX vector types |
| // by replacing the element type with i1. |
| for (MVT T : ElemTypes) |
| if (NumElems * T.getSizeInBits() == 8 * HwLen) |
| return true; |
| return false; |
| } |
| |
| unsigned VecWidth = VecTy.getSizeInBits(); |
| if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen) |
| return false; |
| return llvm::is_contained(ElemTypes, ElemTy); |
| } |
| |
| bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const { |
| if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy)) |
| return false; |
| // Avoid types like <2 x i32*>. |
| Type *ScalTy = VecTy->getScalarType(); |
| if (!ScalTy->isIntegerTy() && |
| !(ScalTy->isFloatingPointTy() && useHVXFloatingPoint())) |
| return false; |
| // The given type may be something like <17 x i32>, which is not MVT, |
| // but can be represented as (non-simple) EVT. |
| EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false); |
| if (!Ty.getVectorElementType().isSimple()) |
| return false; |
| |
| auto isHvxTy = [this, IncludeBool](MVT SimpleTy) { |
| if (isHVXVectorType(SimpleTy, IncludeBool)) |
| return true; |
| auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy); |
| return Action == TargetLoweringBase::TypeWidenVector; |
| }; |
| |
| // Round up EVT to have power-of-2 elements, and keep checking if it |
| // qualifies for HVX, dividing it in half after each step. |
| MVT ElemTy = Ty.getVectorElementType().getSimpleVT(); |
| unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements()); |
| while (VecLen > 1) { |
| MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen); |
| if (SimpleTy.isValid() && isHvxTy(SimpleTy)) |
| return true; |
| VecLen /= 2; |
| } |
| |
| return false; |
| } |
| |
| void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) { |
| for (SUnit &SU : DAG->SUnits) { |
| if (!SU.isInstr()) |
| continue; |
| SmallVector<SDep, 4> Erase; |
| for (auto &D : SU.Preds) |
| if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF) |
| Erase.push_back(D); |
| for (auto &E : Erase) |
| SU.removePred(E); |
| } |
| } |
| |
| void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) { |
| for (SUnit &SU : DAG->SUnits) { |
| // Update the latency of chain edges between v60 vector load or store |
| // instructions to be 1. These instruction cannot be scheduled in the |
| // same packet. |
| MachineInstr &MI1 = *SU.getInstr(); |
| auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII); |
| bool IsStoreMI1 = MI1.mayStore(); |
| bool IsLoadMI1 = MI1.mayLoad(); |
| if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1)) |
| continue; |
| for (SDep &SI : SU.Succs) { |
| if (SI.getKind() != SDep::Order || SI.getLatency() != 0) |
| continue; |
| MachineInstr &MI2 = *SI.getSUnit()->getInstr(); |
| if (!QII->isHVXVec(MI2)) |
| continue; |
| if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) { |
| SI.setLatency(1); |
| SU.setHeightDirty(); |
| // Change the dependence in the opposite direction too. |
| for (SDep &PI : SI.getSUnit()->Preds) { |
| if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order) |
| continue; |
| PI.setLatency(1); |
| SI.getSUnit()->setDepthDirty(); |
| } |
| } |
| } |
| } |
| } |
| |
| // Check if a call and subsequent A2_tfrpi instructions should maintain |
| // scheduling affinity. We are looking for the TFRI to be consumed in |
| // the next instruction. This should help reduce the instances of |
| // double register pairs being allocated and scheduled before a call |
| // when not used until after the call. This situation is exacerbated |
| // by the fact that we allocate the pair from the callee saves list, |
| // leading to excess spills and restores. |
| bool HexagonSubtarget::CallMutation::shouldTFRICallBind( |
| const HexagonInstrInfo &HII, const SUnit &Inst1, |
| const SUnit &Inst2) const { |
| if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi) |
| return false; |
| |
| // TypeXTYPE are 64 bit operations. |
| unsigned Type = HII.getType(*Inst2.getInstr()); |
| return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op || |
| Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM; |
| } |
| |
| void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) { |
| ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); |
| SUnit* LastSequentialCall = nullptr; |
| // Map from virtual register to physical register from the copy. |
| DenseMap<unsigned, unsigned> VRegHoldingReg; |
| // Map from the physical register to the instruction that uses virtual |
| // register. This is used to create the barrier edge. |
| DenseMap<unsigned, SUnit *> LastVRegUse; |
| auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo(); |
| auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); |
| |
| // Currently we only catch the situation when compare gets scheduled |
| // before preceding call. |
| for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) { |
| // Remember the call. |
| if (DAG->SUnits[su].getInstr()->isCall()) |
| LastSequentialCall = &DAG->SUnits[su]; |
| // Look for a compare that defines a predicate. |
| else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall) |
| DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier)); |
| // Look for call and tfri* instructions. |
| else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 && |
| shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1])) |
| DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier)); |
| // Prevent redundant register copies due to reads and writes of physical |
| // registers. The original motivation for this was the code generated |
| // between two calls, which are caused both the return value and the |
| // argument for the next call being in %r0. |
| // Example: |
| // 1: <call1> |
| // 2: %vreg = COPY %r0 |
| // 3: <use of %vreg> |
| // 4: %r0 = ... |
| // 5: <call2> |
| // The scheduler would often swap 3 and 4, so an additional register is |
| // needed. This code inserts a Barrier dependence between 3 & 4 to prevent |
| // this. |
| // The code below checks for all the physical registers, not just R0/D0/V0. |
| else if (SchedRetvalOptimization) { |
| const MachineInstr *MI = DAG->SUnits[su].getInstr(); |
| if (MI->isCopy() && MI->getOperand(1).getReg().isPhysical()) { |
| // %vregX = COPY %r0 |
| VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg(); |
| LastVRegUse.erase(MI->getOperand(1).getReg()); |
| } else { |
| for (const MachineOperand &MO : MI->operands()) { |
| if (!MO.isReg()) |
| continue; |
| if (MO.isUse() && !MI->isCopy() && |
| VRegHoldingReg.count(MO.getReg())) { |
| // <use of %vregX> |
| LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su]; |
| } else if (MO.isDef() && MO.getReg().isPhysical()) { |
| for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid(); |
| ++AI) { |
| if (LastVRegUse.count(*AI) && |
| LastVRegUse[*AI] != &DAG->SUnits[su]) |
| // %r0 = ... |
| DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier)); |
| LastVRegUse.erase(*AI); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) { |
| if (!EnableCheckBankConflict) |
| return; |
| |
| const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII); |
| |
| // Create artificial edges between loads that could likely cause a bank |
| // conflict. Since such loads would normally not have any dependency |
| // between them, we cannot rely on existing edges. |
| for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) { |
| SUnit &S0 = DAG->SUnits[i]; |
| MachineInstr &L0 = *S0.getInstr(); |
| if (!L0.mayLoad() || L0.mayStore() || |
| HII.getAddrMode(L0) != HexagonII::BaseImmOffset) |
| continue; |
| int64_t Offset0; |
| unsigned Size0; |
| MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0); |
| // Is the access size is longer than the L1 cache line, skip the check. |
| if (BaseOp0 == nullptr || !BaseOp0->isReg() || Size0 >= 32) |
| continue; |
| // Scan only up to 32 instructions ahead (to avoid n^2 complexity). |
| for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) { |
| SUnit &S1 = DAG->SUnits[j]; |
| MachineInstr &L1 = *S1.getInstr(); |
| if (!L1.mayLoad() || L1.mayStore() || |
| HII.getAddrMode(L1) != HexagonII::BaseImmOffset) |
| continue; |
| int64_t Offset1; |
| unsigned Size1; |
| MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1); |
| if (BaseOp1 == nullptr || !BaseOp1->isReg() || Size1 >= 32 || |
| BaseOp0->getReg() != BaseOp1->getReg()) |
| continue; |
| // Check bits 3 and 4 of the offset: if they differ, a bank conflict |
| // is unlikely. |
| if (((Offset0 ^ Offset1) & 0x18) != 0) |
| continue; |
| // Bits 3 and 4 are the same, add an artificial edge and set extra |
| // latency. |
| SDep A(&S0, SDep::Artificial); |
| A.setLatency(1); |
| S1.addPred(A, true); |
| } |
| } |
| } |
| |
| /// Enable use of alias analysis during code generation (during MI |
| /// scheduling, DAGCombine, etc.). |
| bool HexagonSubtarget::useAA() const { |
| if (OptLevel != CodeGenOpt::None) |
| return true; |
| return false; |
| } |
| |
| /// Perform target specific adjustments to the latency of a schedule |
| /// dependency. |
| void HexagonSubtarget::adjustSchedDependency(SUnit *Src, int SrcOpIdx, |
| SUnit *Dst, int DstOpIdx, |
| SDep &Dep) const { |
| if (!Src->isInstr() || !Dst->isInstr()) |
| return; |
| |
| MachineInstr *SrcInst = Src->getInstr(); |
| MachineInstr *DstInst = Dst->getInstr(); |
| const HexagonInstrInfo *QII = getInstrInfo(); |
| |
| // Instructions with .new operands have zero latency. |
| SmallSet<SUnit *, 4> ExclSrc; |
| SmallSet<SUnit *, 4> ExclDst; |
| if (QII->canExecuteInBundle(*SrcInst, *DstInst) && |
| isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { |
| Dep.setLatency(0); |
| return; |
| } |
| |
| // Set the latency for a copy to zero since we hope that is will get |
| // removed. |
| if (DstInst->isCopy()) |
| Dep.setLatency(0); |
| |
| // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine |
| // the correct latency. |
| // If there are multiple uses of the def of COPY/REG_SEQUENCE, set the latency |
| // only if the latencies on all the uses are equal, otherwise set it to |
| // default. |
| if ((DstInst->isRegSequence() || DstInst->isCopy())) { |
| Register DReg = DstInst->getOperand(0).getReg(); |
| int DLatency = -1; |
| for (const auto &DDep : Dst->Succs) { |
| MachineInstr *DDst = DDep.getSUnit()->getInstr(); |
| int UseIdx = -1; |
| for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) { |
| const MachineOperand &MO = DDst->getOperand(OpNum); |
| if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) { |
| UseIdx = OpNum; |
| break; |
| } |
| } |
| |
| if (UseIdx == -1) |
| continue; |
| |
| int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0, |
| *DDst, UseIdx)); |
| // Set DLatency for the first time. |
| DLatency = (DLatency == -1) ? Latency : DLatency; |
| |
| // For multiple uses, if the Latency is different across uses, reset |
| // DLatency. |
| if (DLatency != Latency) { |
| DLatency = -1; |
| break; |
| } |
| } |
| |
| DLatency = std::max(DLatency, 0); |
| Dep.setLatency((unsigned)DLatency); |
| } |
| |
| // Try to schedule uses near definitions to generate .cur. |
| ExclSrc.clear(); |
| ExclDst.clear(); |
| if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) && |
| isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) { |
| Dep.setLatency(0); |
| return; |
| } |
| int Latency = Dep.getLatency(); |
| bool IsArtificial = Dep.isArtificial(); |
| Latency = updateLatency(*SrcInst, *DstInst, IsArtificial, Latency); |
| Dep.setLatency(Latency); |
| } |
| |
| void HexagonSubtarget::getPostRAMutations( |
| std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { |
| Mutations.push_back(std::make_unique<UsrOverflowMutation>()); |
| Mutations.push_back(std::make_unique<HVXMemLatencyMutation>()); |
| Mutations.push_back(std::make_unique<BankConflictMutation>()); |
| } |
| |
| void HexagonSubtarget::getSMSMutations( |
| std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { |
| Mutations.push_back(std::make_unique<UsrOverflowMutation>()); |
| Mutations.push_back(std::make_unique<HVXMemLatencyMutation>()); |
| } |
| |
| // Pin the vtable to this file. |
| void HexagonSubtarget::anchor() {} |
| |
| bool HexagonSubtarget::enableMachineScheduler() const { |
| if (DisableHexagonMISched.getNumOccurrences()) |
| return !DisableHexagonMISched; |
| return true; |
| } |
| |
| bool HexagonSubtarget::usePredicatedCalls() const { |
| return EnablePredicatedCalls; |
| } |
| |
| int HexagonSubtarget::updateLatency(MachineInstr &SrcInst, |
| MachineInstr &DstInst, bool IsArtificial, |
| int Latency) const { |
| if (IsArtificial) |
| return 1; |
| if (!hasV60Ops()) |
| return Latency; |
| |
| auto &QII = static_cast<const HexagonInstrInfo &>(*getInstrInfo()); |
| // BSB scheduling. |
| if (QII.isHVXVec(SrcInst) || useBSBScheduling()) |
| Latency = (Latency + 1) >> 1; |
| return Latency; |
| } |
| |
| void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const { |
| MachineInstr *SrcI = Src->getInstr(); |
| for (auto &I : Src->Succs) { |
| if (!I.isAssignedRegDep() || I.getSUnit() != Dst) |
| continue; |
| Register DepR = I.getReg(); |
| int DefIdx = -1; |
| for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) { |
| const MachineOperand &MO = SrcI->getOperand(OpNum); |
| bool IsSameOrSubReg = false; |
| if (MO.isReg()) { |
| Register MOReg = MO.getReg(); |
| if (DepR.isVirtual()) { |
| IsSameOrSubReg = (MOReg == DepR); |
| } else { |
| IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg); |
| } |
| if (MO.isDef() && IsSameOrSubReg) |
| DefIdx = OpNum; |
| } |
| } |
| assert(DefIdx >= 0 && "Def Reg not found in Src MI"); |
| MachineInstr *DstI = Dst->getInstr(); |
| SDep T = I; |
| for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) { |
| const MachineOperand &MO = DstI->getOperand(OpNum); |
| if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) { |
| int Latency = (InstrInfo.getOperandLatency(&InstrItins, *SrcI, |
| DefIdx, *DstI, OpNum)); |
| |
| // For some instructions (ex: COPY), we might end up with < 0 latency |
| // as they don't have any Itinerary class associated with them. |
| Latency = std::max(Latency, 0); |
| bool IsArtificial = I.isArtificial(); |
| Latency = updateLatency(*SrcI, *DstI, IsArtificial, Latency); |
| I.setLatency(Latency); |
| } |
| } |
| |
| // Update the latency of opposite edge too. |
| T.setSUnit(Src); |
| auto F = find(Dst->Preds, T); |
| assert(F != Dst->Preds.end()); |
| F->setLatency(I.getLatency()); |
| } |
| } |
| |
| /// Change the latency between the two SUnits. |
| void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat) |
| const { |
| for (auto &I : Src->Succs) { |
| if (!I.isAssignedRegDep() || I.getSUnit() != Dst) |
| continue; |
| SDep T = I; |
| I.setLatency(Lat); |
| |
| // Update the latency of opposite edge too. |
| T.setSUnit(Src); |
| auto F = find(Dst->Preds, T); |
| assert(F != Dst->Preds.end()); |
| F->setLatency(Lat); |
| } |
| } |
| |
| /// If the SUnit has a zero latency edge, return the other SUnit. |
| static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) { |
| for (auto &I : Deps) |
| if (I.isAssignedRegDep() && I.getLatency() == 0 && |
| !I.getSUnit()->getInstr()->isPseudo()) |
| return I.getSUnit(); |
| return nullptr; |
| } |
| |
| // Return true if these are the best two instructions to schedule |
| // together with a zero latency. Only one dependence should have a zero |
| // latency. If there are multiple choices, choose the best, and change |
| // the others, if needed. |
| bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst, |
| const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc, |
| SmallSet<SUnit*, 4> &ExclDst) const { |
| MachineInstr &SrcInst = *Src->getInstr(); |
| MachineInstr &DstInst = *Dst->getInstr(); |
| |
| // Ignore Boundary SU nodes as these have null instructions. |
| if (Dst->isBoundaryNode()) |
| return false; |
| |
| if (SrcInst.isPHI() || DstInst.isPHI()) |
| return false; |
| |
| if (!TII->isToBeScheduledASAP(SrcInst, DstInst) && |
| !TII->canExecuteInBundle(SrcInst, DstInst)) |
| return false; |
| |
| // The architecture doesn't allow three dependent instructions in the same |
| // packet. So, if the destination has a zero latency successor, then it's |
| // not a candidate for a zero latency predecessor. |
| if (getZeroLatency(Dst, Dst->Succs) != nullptr) |
| return false; |
| |
| // Check if the Dst instruction is the best candidate first. |
| SUnit *Best = nullptr; |
| SUnit *DstBest = nullptr; |
| SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds); |
| if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) { |
| // Check that Src doesn't have a better candidate. |
| DstBest = getZeroLatency(Src, Src->Succs); |
| if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum) |
| Best = Dst; |
| } |
| if (Best != Dst) |
| return false; |
| |
| // The caller frequently adds the same dependence twice. If so, then |
| // return true for this case too. |
| if ((Src == SrcBest && Dst == DstBest ) || |
| (SrcBest == nullptr && Dst == DstBest) || |
| (Src == SrcBest && Dst == nullptr)) |
| return true; |
| |
| // Reassign the latency for the previous bests, which requires setting |
| // the dependence edge in both directions. |
| if (SrcBest != nullptr) { |
| if (!hasV60Ops()) |
| changeLatency(SrcBest, Dst, 1); |
| else |
| restoreLatency(SrcBest, Dst); |
| } |
| if (DstBest != nullptr) { |
| if (!hasV60Ops()) |
| changeLatency(Src, DstBest, 1); |
| else |
| restoreLatency(Src, DstBest); |
| } |
| |
| // Attempt to find another opprotunity for zero latency in a different |
| // dependence. |
| if (SrcBest && DstBest) |
| // If there is an edge from SrcBest to DstBst, then try to change that |
| // to 0 now. |
| changeLatency(SrcBest, DstBest, 0); |
| else if (DstBest) { |
| // Check if the previous best destination instruction has a new zero |
| // latency dependence opportunity. |
| ExclSrc.insert(Src); |
| for (auto &I : DstBest->Preds) |
| if (ExclSrc.count(I.getSUnit()) == 0 && |
| isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst)) |
| changeLatency(I.getSUnit(), DstBest, 0); |
| } else if (SrcBest) { |
| // Check if previous best source instruction has a new zero latency |
| // dependence opportunity. |
| ExclDst.insert(Dst); |
| for (auto &I : SrcBest->Succs) |
| if (ExclDst.count(I.getSUnit()) == 0 && |
| isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst)) |
| changeLatency(SrcBest, I.getSUnit(), 0); |
| } |
| |
| return true; |
| } |
| |
| unsigned HexagonSubtarget::getL1CacheLineSize() const { |
| return 32; |
| } |
| |
| unsigned HexagonSubtarget::getL1PrefetchDistance() const { |
| return 32; |
| } |
| |
| bool HexagonSubtarget::enableSubRegLiveness() const { |
| return EnableSubregLiveness; |
| } |
| |
| Intrinsic::ID HexagonSubtarget::getIntrinsicId(unsigned Opc) const { |
| struct Scalar { |
| unsigned Opcode; |
| Intrinsic::ID IntId; |
| }; |
| struct Hvx { |
| unsigned Opcode; |
| Intrinsic::ID Int64Id, Int128Id; |
| }; |
| |
| static Scalar ScalarInts[] = { |
| #define GET_SCALAR_INTRINSICS |
| #include "HexagonDepInstrIntrinsics.inc" |
| #undef GET_SCALAR_INTRINSICS |
| }; |
| |
| static Hvx HvxInts[] = { |
| #define GET_HVX_INTRINSICS |
| #include "HexagonDepInstrIntrinsics.inc" |
| #undef GET_HVX_INTRINSICS |
| }; |
| |
| const auto CmpOpcode = [](auto A, auto B) { return A.Opcode < B.Opcode; }; |
| [[maybe_unused]] static bool SortedScalar = |
| (llvm::sort(ScalarInts, CmpOpcode), true); |
| [[maybe_unused]] static bool SortedHvx = |
| (llvm::sort(HvxInts, CmpOpcode), true); |
| |
| auto [BS, ES] = std::make_pair(std::begin(ScalarInts), std::end(ScalarInts)); |
| auto [BH, EH] = std::make_pair(std::begin(HvxInts), std::end(HvxInts)); |
| |
| auto FoundScalar = std::lower_bound(BS, ES, Scalar{Opc, 0}, CmpOpcode); |
| if (FoundScalar != ES && FoundScalar->Opcode == Opc) |
| return FoundScalar->IntId; |
| |
| auto FoundHvx = std::lower_bound(BH, EH, Hvx{Opc, 0, 0}, CmpOpcode); |
| if (FoundHvx != EH && FoundHvx->Opcode == Opc) { |
| unsigned HwLen = getVectorLength(); |
| if (HwLen == 64) |
| return FoundHvx->Int64Id; |
| if (HwLen == 128) |
| return FoundHvx->Int128Id; |
| } |
| |
| std::string error = "Invalid opcode (" + std::to_string(Opc) + ")"; |
| llvm_unreachable(error.c_str()); |
| return 0; |
| } |