blob: 4d6669f8f94dadb659188165f843d1651c172555 [file] [log] [blame]
//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass adds instructions to enable whole quad mode (strict or non-strict)
/// for pixel shaders, and strict whole wavefront mode for all programs.
///
/// The "strict" prefix indicates that inactive lanes do not take part in
/// control flow, specifically an inactive lane enabled by a strict WQM/WWM will
/// always be enabled irrespective of control flow decisions. Conversely in
/// non-strict WQM inactive lanes may control flow decisions.
///
/// Whole quad mode is required for derivative computations, but it interferes
/// with shader side effects (stores and atomics). It ensures that WQM is
/// enabled when necessary, but disabled around stores and atomics.
///
/// When necessary, this pass creates a function prolog
///
/// S_MOV_B64 LiveMask, EXEC
/// S_WQM_B64 EXEC, EXEC
///
/// to enter WQM at the top of the function and surrounds blocks of Exact
/// instructions by
///
/// S_AND_SAVEEXEC_B64 Tmp, LiveMask
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// We also compute when a sequence of instructions requires strict whole
/// wavefront mode (StrictWWM) and insert instructions to save and restore it:
///
/// S_OR_SAVEEXEC_B64 Tmp, -1
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// When a sequence of instructions requires strict whole quad mode (StrictWQM)
/// we use a similar save and restore mechanism and force whole quad mode for
/// those instructions:
///
/// S_MOV_B64 Tmp, EXEC
/// S_WQM_B64 EXEC, EXEC
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// In order to avoid excessive switching during sequences of Exact
/// instructions, the pass first analyzes which instructions must be run in WQM
/// (aka which instructions produce values that lead to derivative
/// computations).
///
/// Basic blocks are always exited in WQM as long as some successor needs WQM.
///
/// There is room for improvement given better control flow analysis:
///
/// (1) at the top level (outside of control flow statements, and as long as
/// kill hasn't been used), one SGPR can be saved by recovering WQM from
/// the LiveMask (this is implemented for the entry block).
///
/// (2) when entire regions (e.g. if-else blocks or entire loops) only
/// consist of exact and don't-care instructions, the switch only has to
/// be done at the entry and exit points rather than potentially in each
/// block of the region.
///
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "si-wqm"
namespace {
enum {
StateWQM = 0x1,
StateStrictWWM = 0x2,
StateStrictWQM = 0x4,
StateExact = 0x8,
StateStrict = StateStrictWWM | StateStrictWQM,
};
struct PrintState {
public:
int State;
explicit PrintState(int State) : State(State) {}
};
#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {
static const std::pair<char, const char *> Mapping[] = {
std::pair(StateWQM, "WQM"), std::pair(StateStrictWWM, "StrictWWM"),
std::pair(StateStrictWQM, "StrictWQM"), std::pair(StateExact, "Exact")};
char State = PS.State;
for (auto M : Mapping) {
if (State & M.first) {
OS << M.second;
State &= ~M.first;
if (State)
OS << '|';
}
}
assert(State == 0);
return OS;
}
#endif
struct InstrInfo {
char Needs = 0;
char Disabled = 0;
char OutNeeds = 0;
};
struct BlockInfo {
char Needs = 0;
char InNeeds = 0;
char OutNeeds = 0;
char InitialState = 0;
bool NeedsLowering = false;
};
struct WorkItem {
MachineBasicBlock *MBB = nullptr;
MachineInstr *MI = nullptr;
WorkItem() = default;
WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
WorkItem(MachineInstr *MI) : MI(MI) {}
};
class SIWholeQuadMode : public MachineFunctionPass {
private:
const SIInstrInfo *TII;
const SIRegisterInfo *TRI;
const GCNSubtarget *ST;
MachineRegisterInfo *MRI;
LiveIntervals *LIS;
MachineDominatorTree *MDT;
MachinePostDominatorTree *PDT;
unsigned AndOpc;
unsigned AndN2Opc;
unsigned XorOpc;
unsigned AndSaveExecOpc;
unsigned OrSaveExecOpc;
unsigned WQMOpc;
Register Exec;
Register LiveMaskReg;
DenseMap<const MachineInstr *, InstrInfo> Instructions;
MapVector<MachineBasicBlock *, BlockInfo> Blocks;
// Tracks state (WQM/StrictWWM/StrictWQM/Exact) after a given instruction
DenseMap<const MachineInstr *, char> StateTransition;
SmallVector<MachineInstr *, 2> LiveMaskQueries;
SmallVector<MachineInstr *, 4> LowerToMovInstrs;
SmallVector<MachineInstr *, 4> LowerToCopyInstrs;
SmallVector<MachineInstr *, 4> KillInstrs;
void printInfo();
void markInstruction(MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist);
void markDefs(const MachineInstr &UseMI, LiveRange &LR, Register Reg,
unsigned SubReg, char Flag, std::vector<WorkItem> &Worklist);
void markOperand(const MachineInstr &MI, const MachineOperand &Op, char Flag,
std::vector<WorkItem> &Worklist);
void markInstructionUses(const MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist);
char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
char analyzeFunction(MachineFunction &MF);
MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before);
MachineBasicBlock::iterator
prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
MachineBasicBlock::iterator Last, bool PreferLast,
bool SaveSCC);
void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
Register SaveWQM);
void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
Register SavedWQM);
void toStrictMode(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
Register SaveOrig, char StrictStateNeeded);
void fromStrictMode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before, Register SavedOrig,
char NonStrictState, char CurrentStrictState);
MachineBasicBlock *splitBlock(MachineBasicBlock *BB, MachineInstr *TermMI);
MachineInstr *lowerKillI1(MachineBasicBlock &MBB, MachineInstr &MI,
bool IsWQM);
MachineInstr *lowerKillF32(MachineBasicBlock &MBB, MachineInstr &MI);
void lowerPseudoStrictMode(MachineBasicBlock &MBB, MachineInstr *Entry,
MachineInstr *Exit);
void lowerBlock(MachineBasicBlock &MBB);
void processBlock(MachineBasicBlock &MBB, bool IsEntry);
void lowerLiveMaskQueries();
void lowerCopyInstrs();
void lowerKillInstrs(bool IsWQM);
public:
static char ID;
SIWholeQuadMode() :
MachineFunctionPass(ID) { }
bool runOnMachineFunction(MachineFunction &MF) override;
StringRef getPassName() const override { return "SI Whole Quad Mode"; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachinePostDominatorTree>();
AU.addPreserved<MachinePostDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getClearedProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::IsSSA);
}
};
} // end anonymous namespace
char SIWholeQuadMode::ID = 0;
INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
false)
char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;
FunctionPass *llvm::createSIWholeQuadModePass() {
return new SIWholeQuadMode;
}
#ifndef NDEBUG
LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() {
for (const auto &BII : Blocks) {
dbgs() << "\n"
<< printMBBReference(*BII.first) << ":\n"
<< " InNeeds = " << PrintState(BII.second.InNeeds)
<< ", Needs = " << PrintState(BII.second.Needs)
<< ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";
for (const MachineInstr &MI : *BII.first) {
auto III = Instructions.find(&MI);
if (III == Instructions.end())
continue;
dbgs() << " " << MI << " Needs = " << PrintState(III->second.Needs)
<< ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
}
}
}
#endif
void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist) {
InstrInfo &II = Instructions[&MI];
assert(!(Flag & StateExact) && Flag != 0);
// Remove any disabled states from the flag. The user that required it gets
// an undefined value in the helper lanes. For example, this can happen if
// the result of an atomic is used by instruction that requires WQM, where
// ignoring the request for WQM is correct as per the relevant specs.
Flag &= ~II.Disabled;
// Ignore if the flag is already encompassed by the existing needs, or we
// just disabled everything.
if ((II.Needs & Flag) == Flag)
return;
LLVM_DEBUG(dbgs() << "markInstruction " << PrintState(Flag) << ": " << MI);
II.Needs |= Flag;
Worklist.push_back(&MI);
}
/// Mark all relevant definitions of register \p Reg in usage \p UseMI.
void SIWholeQuadMode::markDefs(const MachineInstr &UseMI, LiveRange &LR,
Register Reg, unsigned SubReg, char Flag,
std::vector<WorkItem> &Worklist) {
LLVM_DEBUG(dbgs() << "markDefs " << PrintState(Flag) << ": " << UseMI);
LiveQueryResult UseLRQ = LR.Query(LIS->getInstructionIndex(UseMI));
const VNInfo *Value = UseLRQ.valueIn();
if (!Value)
return;
// Note: this code assumes that lane masks on AMDGPU completely
// cover registers.
const LaneBitmask UseLanes =
SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
: (Reg.isVirtual() ? MRI->getMaxLaneMaskForVReg(Reg)
: LaneBitmask::getNone());
// Perform a depth-first iteration of the LiveRange graph marking defs.
// Stop processing of a given branch when all use lanes have been defined.
// The first definition stops processing for a physical register.
struct PhiEntry {
const VNInfo *Phi;
unsigned PredIdx;
LaneBitmask DefinedLanes;
PhiEntry(const VNInfo *Phi, unsigned PredIdx, LaneBitmask DefinedLanes)
: Phi(Phi), PredIdx(PredIdx), DefinedLanes(DefinedLanes) {}
};
using VisitKey = std::pair<const VNInfo *, LaneBitmask>;
SmallVector<PhiEntry, 2> PhiStack;
SmallSet<VisitKey, 4> Visited;
LaneBitmask DefinedLanes;
unsigned NextPredIdx = 0; // Only used for processing phi nodes
do {
const VNInfo *NextValue = nullptr;
const VisitKey Key(Value, DefinedLanes);
if (Visited.insert(Key).second) {
// On first visit to a phi then start processing first predecessor
NextPredIdx = 0;
}
if (Value->isPHIDef()) {
// Each predecessor node in the phi must be processed as a subgraph
const MachineBasicBlock *MBB = LIS->getMBBFromIndex(Value->def);
assert(MBB && "Phi-def has no defining MBB");
// Find next predecessor to process
unsigned Idx = NextPredIdx;
auto PI = MBB->pred_begin() + Idx;
auto PE = MBB->pred_end();
for (; PI != PE && !NextValue; ++PI, ++Idx) {
if (const VNInfo *VN = LR.getVNInfoBefore(LIS->getMBBEndIdx(*PI))) {
if (!Visited.count(VisitKey(VN, DefinedLanes)))
NextValue = VN;
}
}
// If there are more predecessors to process; add phi to stack
if (PI != PE)
PhiStack.emplace_back(Value, Idx, DefinedLanes);
} else {
MachineInstr *MI = LIS->getInstructionFromIndex(Value->def);
assert(MI && "Def has no defining instruction");
if (Reg.isVirtual()) {
// Iterate over all operands to find relevant definitions
bool HasDef = false;
for (const MachineOperand &Op : MI->operands()) {
if (!(Op.isReg() && Op.isDef() && Op.getReg() == Reg))
continue;
// Compute lanes defined and overlap with use
LaneBitmask OpLanes =
Op.isUndef() ? LaneBitmask::getAll()
: TRI->getSubRegIndexLaneMask(Op.getSubReg());
LaneBitmask Overlap = (UseLanes & OpLanes);
// Record if this instruction defined any of use
HasDef |= Overlap.any();
// Mark any lanes defined
DefinedLanes |= OpLanes;
}
// Check if all lanes of use have been defined
if ((DefinedLanes & UseLanes) != UseLanes) {
// Definition not complete; need to process input value
LiveQueryResult LRQ = LR.Query(LIS->getInstructionIndex(*MI));
if (const VNInfo *VN = LRQ.valueIn()) {
if (!Visited.count(VisitKey(VN, DefinedLanes)))
NextValue = VN;
}
}
// Only mark the instruction if it defines some part of the use
if (HasDef)
markInstruction(*MI, Flag, Worklist);
} else {
// For physical registers simply mark the defining instruction
markInstruction(*MI, Flag, Worklist);
}
}
if (!NextValue && !PhiStack.empty()) {
// Reach end of chain; revert to processing last phi
PhiEntry &Entry = PhiStack.back();
NextValue = Entry.Phi;
NextPredIdx = Entry.PredIdx;
DefinedLanes = Entry.DefinedLanes;
PhiStack.pop_back();
}
Value = NextValue;
} while (Value);
}
void SIWholeQuadMode::markOperand(const MachineInstr &MI,
const MachineOperand &Op, char Flag,
std::vector<WorkItem> &Worklist) {
assert(Op.isReg());
Register Reg = Op.getReg();
// Ignore some hardware registers
switch (Reg) {
case AMDGPU::EXEC:
case AMDGPU::EXEC_LO:
return;
default:
break;
}
LLVM_DEBUG(dbgs() << "markOperand " << PrintState(Flag) << ": " << Op
<< " for " << MI);
if (Reg.isVirtual()) {
LiveRange &LR = LIS->getInterval(Reg);
markDefs(MI, LR, Reg, Op.getSubReg(), Flag, Worklist);
} else {
// Handle physical registers that we need to track; this is mostly relevant
// for VCC, which can appear as the (implicit) input of a uniform branch,
// e.g. when a loop counter is stored in a VGPR.
for (MCRegUnitIterator RegUnit(Reg.asMCReg(), TRI); RegUnit.isValid();
++RegUnit) {
LiveRange &LR = LIS->getRegUnit(*RegUnit);
const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
if (!Value)
continue;
markDefs(MI, LR, *RegUnit, AMDGPU::NoSubRegister, Flag, Worklist);
}
}
}
/// Mark all instructions defining the uses in \p MI with \p Flag.
void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag,
std::vector<WorkItem> &Worklist) {
LLVM_DEBUG(dbgs() << "markInstructionUses " << PrintState(Flag) << ": "
<< MI);
for (const MachineOperand &Use : MI.uses()) {
if (!Use.isReg() || !Use.isUse())
continue;
markOperand(MI, Use, Flag, Worklist);
}
}
// Scan instructions to determine which ones require an Exact execmask and
// which ones seed WQM requirements.
char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
std::vector<WorkItem> &Worklist) {
char GlobalFlags = 0;
bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs");
SmallVector<MachineInstr *, 4> SetInactiveInstrs;
SmallVector<MachineInstr *, 4> SoftWQMInstrs;
bool HasImplicitDerivatives =
MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS;
// We need to visit the basic blocks in reverse post-order so that we visit
// defs before uses, in particular so that we don't accidentally mark an
// instruction as needing e.g. WQM before visiting it and realizing it needs
// WQM disabled.
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
for (MachineBasicBlock *MBB : RPOT) {
BlockInfo &BBI = Blocks[MBB];
for (MachineInstr &MI : *MBB) {
InstrInfo &III = Instructions[&MI];
unsigned Opcode = MI.getOpcode();
char Flags = 0;
if (TII->isWQM(Opcode)) {
// If LOD is not supported WQM is not needed.
if (!ST->hasExtendedImageInsts())
continue;
// Only generate implicit WQM if implicit derivatives are required.
// This avoids inserting unintended WQM if a shader type without
// implicit derivatives uses an image sampling instruction.
if (!HasImplicitDerivatives)
continue;
// Sampling instructions don't need to produce results for all pixels
// in a quad, they just require all inputs of a quad to have been
// computed for derivatives.
markInstructionUses(MI, StateWQM, Worklist);
GlobalFlags |= StateWQM;
continue;
} else if (Opcode == AMDGPU::WQM) {
// The WQM intrinsic requires its output to have all the helper lanes
// correct, so we need it to be in WQM.
Flags = StateWQM;
LowerToCopyInstrs.push_back(&MI);
} else if (Opcode == AMDGPU::SOFT_WQM) {
LowerToCopyInstrs.push_back(&MI);
SoftWQMInstrs.push_back(&MI);
continue;
} else if (Opcode == AMDGPU::STRICT_WWM) {
// The STRICT_WWM intrinsic doesn't make the same guarantee, and plus
// it needs to be executed in WQM or Exact so that its copy doesn't
// clobber inactive lanes.
markInstructionUses(MI, StateStrictWWM, Worklist);
GlobalFlags |= StateStrictWWM;
LowerToMovInstrs.push_back(&MI);
continue;
} else if (Opcode == AMDGPU::STRICT_WQM ||
TII->isDualSourceBlendEXP(MI)) {
// STRICT_WQM is similar to STRICTWWM, but instead of enabling all
// threads of the wave like STRICTWWM, STRICT_WQM enables all threads in
// quads that have at least one active thread.
markInstructionUses(MI, StateStrictWQM, Worklist);
GlobalFlags |= StateStrictWQM;
if (Opcode == AMDGPU::STRICT_WQM) {
LowerToMovInstrs.push_back(&MI);
} else {
// Dual source blend export acts as implicit strict-wqm, its sources
// need to be shuffled in strict wqm, but the export itself needs to
// run in exact mode.
BBI.Needs |= StateExact;
if (!(BBI.InNeeds & StateExact)) {
BBI.InNeeds |= StateExact;
Worklist.push_back(MBB);
}
GlobalFlags |= StateExact;
III.Disabled = StateWQM | StateStrict;
}
continue;
} else if (Opcode == AMDGPU::LDS_PARAM_LOAD ||
Opcode == AMDGPU::LDS_DIRECT_LOAD) {
// Mark these STRICTWQM, but only for the instruction, not its operands.
// This avoid unnecessarily marking M0 as requiring WQM.
InstrInfo &II = Instructions[&MI];
II.Needs |= StateStrictWQM;
GlobalFlags |= StateStrictWQM;
continue;
} else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 ||
Opcode == AMDGPU::V_SET_INACTIVE_B64) {
III.Disabled = StateStrict;
MachineOperand &Inactive = MI.getOperand(2);
if (Inactive.isReg()) {
if (Inactive.isUndef()) {
LowerToCopyInstrs.push_back(&MI);
} else {
markOperand(MI, Inactive, StateStrictWWM, Worklist);
}
}
SetInactiveInstrs.push_back(&MI);
continue;
} else if (TII->isDisableWQM(MI)) {
BBI.Needs |= StateExact;
if (!(BBI.InNeeds & StateExact)) {
BBI.InNeeds |= StateExact;
Worklist.push_back(MBB);
}
GlobalFlags |= StateExact;
III.Disabled = StateWQM | StateStrict;
continue;
} else {
if (Opcode == AMDGPU::SI_PS_LIVE || Opcode == AMDGPU::SI_LIVE_MASK) {
LiveMaskQueries.push_back(&MI);
} else if (Opcode == AMDGPU::SI_KILL_I1_TERMINATOR ||
Opcode == AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR ||
Opcode == AMDGPU::SI_DEMOTE_I1) {
KillInstrs.push_back(&MI);
BBI.NeedsLowering = true;
} else if (WQMOutputs) {
// The function is in machine SSA form, which means that physical
// VGPRs correspond to shader inputs and outputs. Inputs are
// only used, outputs are only defined.
// FIXME: is this still valid?
for (const MachineOperand &MO : MI.defs()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual() &&
TRI->hasVectorRegisters(TRI->getPhysRegBaseClass(Reg))) {
Flags = StateWQM;
break;
}
}
}
if (!Flags)
continue;
}
markInstruction(MI, Flags, Worklist);
GlobalFlags |= Flags;
}
}
// Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is
// ever used anywhere in the function. This implements the corresponding
// semantics of @llvm.amdgcn.set.inactive.
// Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm.
if (GlobalFlags & StateWQM) {
for (MachineInstr *MI : SetInactiveInstrs)
markInstruction(*MI, StateWQM, Worklist);
for (MachineInstr *MI : SoftWQMInstrs)
markInstruction(*MI, StateWQM, Worklist);
}
return GlobalFlags;
}
void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
std::vector<WorkItem>& Worklist) {
MachineBasicBlock *MBB = MI.getParent();
InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
BlockInfo &BI = Blocks[MBB];
// Control flow-type instructions and stores to temporary memory that are
// followed by WQM computations must themselves be in WQM.
if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) &&
(MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
Instructions[&MI].Needs = StateWQM;
II.Needs = StateWQM;
}
// Propagate to block level
if (II.Needs & StateWQM) {
BI.Needs |= StateWQM;
if (!(BI.InNeeds & StateWQM)) {
BI.InNeeds |= StateWQM;
Worklist.push_back(MBB);
}
}
// Propagate backwards within block
if (MachineInstr *PrevMI = MI.getPrevNode()) {
char InNeeds = (II.Needs & ~StateStrict) | II.OutNeeds;
if (!PrevMI->isPHI()) {
InstrInfo &PrevII = Instructions[PrevMI];
if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
PrevII.OutNeeds |= InNeeds;
Worklist.push_back(PrevMI);
}
}
}
// Propagate WQM flag to instruction inputs
assert(!(II.Needs & StateExact));
if (II.Needs != 0)
markInstructionUses(MI, II.Needs, Worklist);
// Ensure we process a block containing StrictWWM/StrictWQM, even if it does
// not require any WQM transitions.
if (II.Needs & StateStrictWWM)
BI.Needs |= StateStrictWWM;
if (II.Needs & StateStrictWQM)
BI.Needs |= StateStrictWQM;
}
void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
std::vector<WorkItem>& Worklist) {
BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.
// Propagate through instructions
if (!MBB.empty()) {
MachineInstr *LastMI = &*MBB.rbegin();
InstrInfo &LastII = Instructions[LastMI];
if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
LastII.OutNeeds |= BI.OutNeeds;
Worklist.push_back(LastMI);
}
}
// Predecessor blocks must provide for our WQM/Exact needs.
for (MachineBasicBlock *Pred : MBB.predecessors()) {
BlockInfo &PredBI = Blocks[Pred];
if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
continue;
PredBI.OutNeeds |= BI.InNeeds;
PredBI.InNeeds |= BI.InNeeds;
Worklist.push_back(Pred);
}
// All successors must be prepared to accept the same set of WQM/Exact data.
for (MachineBasicBlock *Succ : MBB.successors()) {
BlockInfo &SuccBI = Blocks[Succ];
if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
continue;
SuccBI.InNeeds |= BI.OutNeeds;
Worklist.push_back(Succ);
}
}
char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
std::vector<WorkItem> Worklist;
char GlobalFlags = scanInstructions(MF, Worklist);
while (!Worklist.empty()) {
WorkItem WI = Worklist.back();
Worklist.pop_back();
if (WI.MI)
propagateInstruction(*WI.MI, Worklist);
else
propagateBlock(*WI.MBB, Worklist);
}
return GlobalFlags;
}
MachineBasicBlock::iterator
SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before) {
Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
MachineInstr *Save =
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
.addReg(AMDGPU::SCC);
MachineInstr *Restore =
BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
.addReg(SaveReg);
LIS->InsertMachineInstrInMaps(*Save);
LIS->InsertMachineInstrInMaps(*Restore);
LIS->createAndComputeVirtRegInterval(SaveReg);
return Restore;
}
MachineBasicBlock *SIWholeQuadMode::splitBlock(MachineBasicBlock *BB,
MachineInstr *TermMI) {
LLVM_DEBUG(dbgs() << "Split block " << printMBBReference(*BB) << " @ "
<< *TermMI << "\n");
MachineBasicBlock *SplitBB =
BB->splitAt(*TermMI, /*UpdateLiveIns*/ true, LIS);
// Convert last instruction in block to a terminator.
// Note: this only covers the expected patterns
unsigned NewOpcode = 0;
switch (TermMI->getOpcode()) {
case AMDGPU::S_AND_B32:
NewOpcode = AMDGPU::S_AND_B32_term;
break;
case AMDGPU::S_AND_B64:
NewOpcode = AMDGPU::S_AND_B64_term;
break;
case AMDGPU::S_MOV_B32:
NewOpcode = AMDGPU::S_MOV_B32_term;
break;
case AMDGPU::S_MOV_B64:
NewOpcode = AMDGPU::S_MOV_B64_term;
break;
default:
break;
}
if (NewOpcode)
TermMI->setDesc(TII->get(NewOpcode));
if (SplitBB != BB) {
// Update dominator trees
using DomTreeT = DomTreeBase<MachineBasicBlock>;
SmallVector<DomTreeT::UpdateType, 16> DTUpdates;
for (MachineBasicBlock *Succ : SplitBB->successors()) {
DTUpdates.push_back({DomTreeT::Insert, SplitBB, Succ});
DTUpdates.push_back({DomTreeT::Delete, BB, Succ});
}
DTUpdates.push_back({DomTreeT::Insert, BB, SplitBB});
if (MDT)
MDT->getBase().applyUpdates(DTUpdates);
if (PDT)
PDT->getBase().applyUpdates(DTUpdates);
// Link blocks
MachineInstr *MI =
BuildMI(*BB, BB->end(), DebugLoc(), TII->get(AMDGPU::S_BRANCH))
.addMBB(SplitBB);
LIS->InsertMachineInstrInMaps(*MI);
}
return SplitBB;
}
MachineInstr *SIWholeQuadMode::lowerKillF32(MachineBasicBlock &MBB,
MachineInstr &MI) {
const DebugLoc &DL = MI.getDebugLoc();
unsigned Opcode = 0;
assert(MI.getOperand(0).isReg());
// Comparison is for live lanes; however here we compute the inverse
// (killed lanes). This is because VCMP will always generate 0 bits
// for inactive lanes so a mask of live lanes would not be correct
// inside control flow.
// Invert the comparison by swapping the operands and adjusting
// the comparison codes.
switch (MI.getOperand(2).getImm()) {
case ISD::SETUEQ:
Opcode = AMDGPU::V_CMP_LG_F32_e64;
break;
case ISD::SETUGT:
Opcode = AMDGPU::V_CMP_GE_F32_e64;
break;
case ISD::SETUGE:
Opcode = AMDGPU::V_CMP_GT_F32_e64;
break;
case ISD::SETULT:
Opcode = AMDGPU::V_CMP_LE_F32_e64;
break;
case ISD::SETULE:
Opcode = AMDGPU::V_CMP_LT_F32_e64;
break;
case ISD::SETUNE:
Opcode = AMDGPU::V_CMP_EQ_F32_e64;
break;
case ISD::SETO:
Opcode = AMDGPU::V_CMP_O_F32_e64;
break;
case ISD::SETUO:
Opcode = AMDGPU::V_CMP_U_F32_e64;
break;
case ISD::SETOEQ:
case ISD::SETEQ:
Opcode = AMDGPU::V_CMP_NEQ_F32_e64;
break;
case ISD::SETOGT:
case ISD::SETGT:
Opcode = AMDGPU::V_CMP_NLT_F32_e64;
break;
case ISD::SETOGE:
case ISD::SETGE:
Opcode = AMDGPU::V_CMP_NLE_F32_e64;
break;
case ISD::SETOLT:
case ISD::SETLT:
Opcode = AMDGPU::V_CMP_NGT_F32_e64;
break;
case ISD::SETOLE:
case ISD::SETLE:
Opcode = AMDGPU::V_CMP_NGE_F32_e64;
break;
case ISD::SETONE:
case ISD::SETNE:
Opcode = AMDGPU::V_CMP_NLG_F32_e64;
break;
default:
llvm_unreachable("invalid ISD:SET cond code");
}
// Pick opcode based on comparison type.
MachineInstr *VcmpMI;
const MachineOperand &Op0 = MI.getOperand(0);
const MachineOperand &Op1 = MI.getOperand(1);
// VCC represents lanes killed.
Register VCC = ST->isWave32() ? AMDGPU::VCC_LO : AMDGPU::VCC;
if (TRI->isVGPR(*MRI, Op0.getReg())) {
Opcode = AMDGPU::getVOPe32(Opcode);
VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode)).add(Op1).add(Op0);
} else {
VcmpMI = BuildMI(MBB, &MI, DL, TII->get(Opcode))
.addReg(VCC, RegState::Define)
.addImm(0) // src0 modifiers
.add(Op1)
.addImm(0) // src1 modifiers
.add(Op0)
.addImm(0); // omod
}
MachineInstr *MaskUpdateMI =
BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
.addReg(LiveMaskReg)
.addReg(VCC);
// State of SCC represents whether any lanes are live in mask,
// if SCC is 0 then no lanes will be alive anymore.
MachineInstr *EarlyTermMI =
BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0));
MachineInstr *ExecMaskMI =
BuildMI(MBB, MI, DL, TII->get(AndN2Opc), Exec).addReg(Exec).addReg(VCC);
assert(MBB.succ_size() == 1);
MachineInstr *NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH))
.addMBB(*MBB.succ_begin());
// Update live intervals
LIS->ReplaceMachineInstrInMaps(MI, *VcmpMI);
MBB.remove(&MI);
LIS->InsertMachineInstrInMaps(*MaskUpdateMI);
LIS->InsertMachineInstrInMaps(*ExecMaskMI);
LIS->InsertMachineInstrInMaps(*EarlyTermMI);
LIS->InsertMachineInstrInMaps(*NewTerm);
return NewTerm;
}
MachineInstr *SIWholeQuadMode::lowerKillI1(MachineBasicBlock &MBB,
MachineInstr &MI, bool IsWQM) {
const DebugLoc &DL = MI.getDebugLoc();
MachineInstr *MaskUpdateMI = nullptr;
const bool IsDemote = IsWQM && (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1);
const MachineOperand &Op = MI.getOperand(0);
int64_t KillVal = MI.getOperand(1).getImm();
MachineInstr *ComputeKilledMaskMI = nullptr;
Register CndReg = !Op.isImm() ? Op.getReg() : Register();
Register TmpReg;
// Is this a static or dynamic kill?
if (Op.isImm()) {
if (Op.getImm() == KillVal) {
// Static: all active lanes are killed
MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
.addReg(LiveMaskReg)
.addReg(Exec);
} else {
// Static: kill does nothing
MachineInstr *NewTerm = nullptr;
if (MI.getOpcode() == AMDGPU::SI_DEMOTE_I1) {
LIS->RemoveMachineInstrFromMaps(MI);
} else {
assert(MBB.succ_size() == 1);
NewTerm = BuildMI(MBB, MI, DL, TII->get(AMDGPU::S_BRANCH))
.addMBB(*MBB.succ_begin());
LIS->ReplaceMachineInstrInMaps(MI, *NewTerm);
}
MBB.remove(&MI);
return NewTerm;
}
} else {
if (!KillVal) {
// Op represents live lanes after kill,
// so exec mask needs to be factored in.
TmpReg = MRI->createVirtualRegister(TRI->getBoolRC());
ComputeKilledMaskMI =
BuildMI(MBB, MI, DL, TII->get(XorOpc), TmpReg).add(Op).addReg(Exec);
MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
.addReg(LiveMaskReg)
.addReg(TmpReg);
} else {
// Op represents lanes to kill
MaskUpdateMI = BuildMI(MBB, MI, DL, TII->get(AndN2Opc), LiveMaskReg)
.addReg(LiveMaskReg)
.add(Op);
}
}
// State of SCC represents whether any lanes are live in mask,
// if SCC is 0 then no lanes will be alive anymore.
MachineInstr *EarlyTermMI =
BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_EARLY_TERMINATE_SCC0));
// In the case we got this far some lanes are still live,
// update EXEC to deactivate lanes as appropriate.
MachineInstr *NewTerm;
MachineInstr *WQMMaskMI = nullptr;
Register LiveMaskWQM;
if (IsDemote) {
// Demote - deactivate quads with only helper lanes
LiveMaskWQM = MRI->createVirtualRegister(TRI->getBoolRC());
WQMMaskMI =
BuildMI(MBB, MI, DL, TII->get(WQMOpc), LiveMaskWQM).addReg(LiveMaskReg);
NewTerm = BuildMI(MBB, MI, DL, TII->get(AndOpc), Exec)
.addReg(Exec)
.addReg(LiveMaskWQM);
} else {
// Kill - deactivate lanes no longer in live mask
if (Op.isImm()) {
unsigned MovOpc = ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
NewTerm = BuildMI(MBB, &MI, DL, TII->get(MovOpc), Exec).addImm(0);
} else if (!IsWQM) {
NewTerm = BuildMI(MBB, &MI, DL, TII->get(AndOpc), Exec)
.addReg(Exec)
.addReg(LiveMaskReg);
} else {
unsigned Opcode = KillVal ? AndN2Opc : AndOpc;
NewTerm =
BuildMI(MBB, &MI, DL, TII->get(Opcode), Exec).addReg(Exec).add(Op);
}
}
// Update live intervals
LIS->RemoveMachineInstrFromMaps(MI);
MBB.remove(&MI);
assert(EarlyTermMI);
assert(MaskUpdateMI);
assert(NewTerm);
if (ComputeKilledMaskMI)
LIS->InsertMachineInstrInMaps(*ComputeKilledMaskMI);
LIS->InsertMachineInstrInMaps(*MaskUpdateMI);
LIS->InsertMachineInstrInMaps(*EarlyTermMI);
if (WQMMaskMI)
LIS->InsertMachineInstrInMaps(*WQMMaskMI);
LIS->InsertMachineInstrInMaps(*NewTerm);
if (CndReg) {
LIS->removeInterval(CndReg);
LIS->createAndComputeVirtRegInterval(CndReg);
}
if (TmpReg)
LIS->createAndComputeVirtRegInterval(TmpReg);
if (LiveMaskWQM)
LIS->createAndComputeVirtRegInterval(LiveMaskWQM);
return NewTerm;
}
// Convert a strict mode transition to a pseudo transition.
// This still pre-allocates registers to prevent clobbering,
// but avoids any EXEC mask changes.
void SIWholeQuadMode::lowerPseudoStrictMode(MachineBasicBlock &MBB,
MachineInstr *Entry,
MachineInstr *Exit) {
assert(Entry->getOpcode() == AMDGPU::ENTER_STRICT_WQM);
assert(Exit->getOpcode() == AMDGPU::EXIT_STRICT_WQM);
Register SaveOrig = Entry->getOperand(0).getReg();
MachineInstr *NewEntry =
BuildMI(MBB, Entry, DebugLoc(), TII->get(AMDGPU::ENTER_PSEUDO_WM));
MachineInstr *NewExit =
BuildMI(MBB, Exit, DebugLoc(), TII->get(AMDGPU::EXIT_PSEUDO_WM));
LIS->ReplaceMachineInstrInMaps(*Exit, *NewExit);
Exit->eraseFromParent();
LIS->ReplaceMachineInstrInMaps(*Entry, *NewEntry);
Entry->eraseFromParent();
LIS->removeInterval(SaveOrig);
}
// Replace (or supplement) instructions accessing live mask.
// This can only happen once all the live mask registers have been created
// and the execute state (WQM/StrictWWM/Exact) of instructions is known.
void SIWholeQuadMode::lowerBlock(MachineBasicBlock &MBB) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
const BlockInfo &BI = BII->second;
if (!BI.NeedsLowering)
return;
LLVM_DEBUG(dbgs() << "\nLowering block " << printMBBReference(MBB) << ":\n");
SmallVector<MachineInstr *, 4> SplitPoints;
char State = BI.InitialState;
MachineInstr *StrictEntry = nullptr;
for (MachineInstr &MI : llvm::make_early_inc_range(
llvm::make_range(MBB.getFirstNonPHI(), MBB.end()))) {
char PreviousState = State;
if (StateTransition.count(&MI))
State = StateTransition[&MI];
MachineInstr *SplitPoint = nullptr;
switch (MI.getOpcode()) {
case AMDGPU::SI_DEMOTE_I1:
case AMDGPU::SI_KILL_I1_TERMINATOR:
SplitPoint = lowerKillI1(MBB, MI, State == StateWQM);
break;
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
SplitPoint = lowerKillF32(MBB, MI);
break;
case AMDGPU::ENTER_STRICT_WQM:
StrictEntry = PreviousState == StateWQM ? &MI : nullptr;
break;
case AMDGPU::EXIT_STRICT_WQM:
if (State == StateWQM && StrictEntry) {
// Transition WQM -> StrictWQM -> WQM detected.
lowerPseudoStrictMode(MBB, StrictEntry, &MI);
}
StrictEntry = nullptr;
break;
case AMDGPU::ENTER_STRICT_WWM:
case AMDGPU::EXIT_STRICT_WWM:
StrictEntry = nullptr;
break;
default:
break;
}
if (SplitPoint)
SplitPoints.push_back(SplitPoint);
}
// Perform splitting after instruction scan to simplify iteration.
if (!SplitPoints.empty()) {
MachineBasicBlock *BB = &MBB;
for (MachineInstr *MI : SplitPoints) {
BB = splitBlock(BB, MI);
}
}
}
// Return an iterator in the (inclusive) range [First, Last] at which
// instructions can be safely inserted, keeping in mind that some of the
// instructions we want to add necessarily clobber SCC.
MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
if (!SaveSCC)
return PreferLast ? Last : First;
LiveRange &LR =
LIS->getRegUnit(*MCRegUnitIterator(MCRegister::from(AMDGPU::SCC), TRI));
auto MBBE = MBB.end();
SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
: LIS->getMBBEndIdx(&MBB);
SlotIndex LastIdx =
Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
const LiveRange::Segment *S;
for (;;) {
S = LR.getSegmentContaining(Idx);
if (!S)
break;
if (PreferLast) {
SlotIndex Next = S->start.getBaseIndex();
if (Next < FirstIdx)
break;
Idx = Next;
} else {
MachineInstr *EndMI = LIS->getInstructionFromIndex(S->end.getBaseIndex());
assert(EndMI && "Segment does not end on valid instruction");
auto NextI = std::next(EndMI->getIterator());
if (NextI == MBB.end())
break;
SlotIndex Next = LIS->getInstructionIndex(*NextI);
if (Next > LastIdx)
break;
Idx = Next;
}
}
MachineBasicBlock::iterator MBBI;
if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
MBBI = MI;
else {
assert(Idx == LIS->getMBBEndIdx(&MBB));
MBBI = MBB.end();
}
// Move insertion point past any operations modifying EXEC.
// This assumes that the value of SCC defined by any of these operations
// does not need to be preserved.
while (MBBI != Last) {
bool IsExecDef = false;
for (const MachineOperand &MO : MBBI->operands()) {
if (MO.isReg() && MO.isDef()) {
IsExecDef |=
MO.getReg() == AMDGPU::EXEC_LO || MO.getReg() == AMDGPU::EXEC;
}
}
if (!IsExecDef)
break;
MBBI++;
S = nullptr;
}
if (S)
MBBI = saveSCC(MBB, MBBI);
return MBBI;
}
void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
Register SaveWQM) {
MachineInstr *MI;
if (SaveWQM) {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AndSaveExecOpc), SaveWQM)
.addReg(LiveMaskReg);
} else {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AndOpc), Exec)
.addReg(Exec)
.addReg(LiveMaskReg);
}
LIS->InsertMachineInstrInMaps(*MI);
StateTransition[MI] = StateExact;
}
void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
Register SavedWQM) {
MachineInstr *MI;
if (SavedWQM) {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec)
.addReg(SavedWQM);
} else {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(WQMOpc), Exec).addReg(Exec);
}
LIS->InsertMachineInstrInMaps(*MI);
StateTransition[MI] = StateWQM;
}
void SIWholeQuadMode::toStrictMode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
Register SaveOrig, char StrictStateNeeded) {
MachineInstr *MI;
assert(SaveOrig);
assert(StrictStateNeeded == StateStrictWWM ||
StrictStateNeeded == StateStrictWQM);
if (StrictStateNeeded == StateStrictWWM) {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WWM),
SaveOrig)
.addImm(-1);
} else {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_STRICT_WQM),
SaveOrig)
.addImm(-1);
}
LIS->InsertMachineInstrInMaps(*MI);
StateTransition[MI] = StrictStateNeeded;
// Mark block as needing lower so it will be checked for unnecessary transitions.
auto BII = Blocks.find(&MBB);
if (BII != Blocks.end())
BII->second.NeedsLowering = true;
}
void SIWholeQuadMode::fromStrictMode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator Before,
Register SavedOrig, char NonStrictState,
char CurrentStrictState) {
MachineInstr *MI;
assert(SavedOrig);
assert(CurrentStrictState == StateStrictWWM ||
CurrentStrictState == StateStrictWQM);
if (CurrentStrictState == StateStrictWWM) {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WWM),
Exec)
.addReg(SavedOrig);
} else {
MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_STRICT_WQM),
Exec)
.addReg(SavedOrig);
}
LIS->InsertMachineInstrInMaps(*MI);
StateTransition[MI] = NonStrictState;
}
void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, bool IsEntry) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
BlockInfo &BI = BII->second;
// This is a non-entry block that is WQM throughout, so no need to do
// anything.
if (!IsEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact) {
BI.InitialState = StateWQM;
return;
}
LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
<< ":\n");
Register SavedWQMReg;
Register SavedNonStrictReg;
bool WQMFromExec = IsEntry;
char State = (IsEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
char NonStrictState = 0;
const TargetRegisterClass *BoolRC = TRI->getBoolRC();
auto II = MBB.getFirstNonPHI(), IE = MBB.end();
if (IsEntry) {
// Skip the instruction that saves LiveMask
if (II != IE && II->getOpcode() == AMDGPU::COPY)
++II;
}
// This stores the first instruction where it's safe to switch from WQM to
// Exact or vice versa.
MachineBasicBlock::iterator FirstWQM = IE;
// This stores the first instruction where it's safe to switch from Strict
// mode to Exact/WQM or to switch to Strict mode. It must always be the same
// as, or after, FirstWQM since if it's safe to switch to/from Strict, it must
// be safe to switch to/from WQM as well.
MachineBasicBlock::iterator FirstStrict = IE;
// Record initial state is block information.
BI.InitialState = State;
for (;;) {
MachineBasicBlock::iterator Next = II;
char Needs = StateExact | StateWQM; // Strict mode is disabled by default.
char OutNeeds = 0;
if (FirstWQM == IE)
FirstWQM = II;
if (FirstStrict == IE)
FirstStrict = II;
// First, figure out the allowed states (Needs) based on the propagated
// flags.
if (II != IE) {
MachineInstr &MI = *II;
if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) {
auto III = Instructions.find(&MI);
if (III != Instructions.end()) {
if (III->second.Needs & StateStrictWWM)
Needs = StateStrictWWM;
else if (III->second.Needs & StateStrictWQM)
Needs = StateStrictWQM;
else if (III->second.Needs & StateWQM)
Needs = StateWQM;
else
Needs &= ~III->second.Disabled;
OutNeeds = III->second.OutNeeds;
}
} else {
// If the instruction doesn't actually need a correct EXEC, then we can
// safely leave Strict mode enabled.
Needs = StateExact | StateWQM | StateStrict;
}
if (MI.isTerminator() && OutNeeds == StateExact)
Needs = StateExact;
++Next;
} else {
// End of basic block
if (BI.OutNeeds & StateWQM)
Needs = StateWQM;
else if (BI.OutNeeds == StateExact)
Needs = StateExact;
else
Needs = StateWQM | StateExact;
}
// Now, transition if necessary.
if (!(Needs & State)) {
MachineBasicBlock::iterator First;
if (State == StateStrictWWM || Needs == StateStrictWWM ||
State == StateStrictWQM || Needs == StateStrictWQM) {
// We must switch to or from Strict mode.
First = FirstStrict;
} else {
// We only need to switch to/from WQM, so we can use FirstWQM.
First = FirstWQM;
}
// Whether we need to save SCC depends on start and end states.
bool SaveSCC = false;
switch (State) {
case StateExact:
case StateStrictWWM:
case StateStrictWQM:
// Exact/Strict -> Strict: save SCC
// Exact/Strict -> WQM: save SCC if WQM mask is generated from exec
// Exact/Strict -> Exact: no save
SaveSCC = (Needs & StateStrict) || ((Needs & StateWQM) && WQMFromExec);
break;
case StateWQM:
// WQM -> Exact/Strict: save SCC
SaveSCC = !(Needs & StateWQM);
break;
default:
llvm_unreachable("Unknown state");
break;
}
MachineBasicBlock::iterator Before =
prepareInsertion(MBB, First, II, Needs == StateWQM, SaveSCC);
if (State & StateStrict) {
assert(State == StateStrictWWM || State == StateStrictWQM);
assert(SavedNonStrictReg);
fromStrictMode(MBB, Before, SavedNonStrictReg, NonStrictState, State);
LIS->createAndComputeVirtRegInterval(SavedNonStrictReg);
SavedNonStrictReg = 0;
State = NonStrictState;
}
if (Needs & StateStrict) {
NonStrictState = State;
assert(Needs == StateStrictWWM || Needs == StateStrictWQM);
assert(!SavedNonStrictReg);
SavedNonStrictReg = MRI->createVirtualRegister(BoolRC);
toStrictMode(MBB, Before, SavedNonStrictReg, Needs);
State = Needs;
} else {
if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) {
if (!WQMFromExec && (OutNeeds & StateWQM)) {
assert(!SavedWQMReg);
SavedWQMReg = MRI->createVirtualRegister(BoolRC);
}
toExact(MBB, Before, SavedWQMReg);
State = StateExact;
} else if (State == StateExact && (Needs & StateWQM) &&
!(Needs & StateExact)) {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, Before, SavedWQMReg);
if (SavedWQMReg) {
LIS->createAndComputeVirtRegInterval(SavedWQMReg);
SavedWQMReg = 0;
}
State = StateWQM;
} else {
// We can get here if we transitioned from StrictWWM to a
// non-StrictWWM state that already matches our needs, but we
// shouldn't need to do anything.
assert(Needs & State);
}
}
}
if (Needs != (StateExact | StateWQM | StateStrict)) {
if (Needs != (StateExact | StateWQM))
FirstWQM = IE;
FirstStrict = IE;
}
if (II == IE)
break;
II = Next;
}
assert(!SavedWQMReg);
assert(!SavedNonStrictReg);
}
void SIWholeQuadMode::lowerLiveMaskQueries() {
for (MachineInstr *MI : LiveMaskQueries) {
const DebugLoc &DL = MI->getDebugLoc();
Register Dest = MI->getOperand(0).getReg();
MachineInstr *Copy =
BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
.addReg(LiveMaskReg);
LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
MI->eraseFromParent();
}
}
void SIWholeQuadMode::lowerCopyInstrs() {
for (MachineInstr *MI : LowerToMovInstrs) {
assert(MI->getNumExplicitOperands() == 2);
const Register Reg = MI->getOperand(0).getReg();
const TargetRegisterClass *regClass =
TRI->getRegClassForOperandReg(*MRI, MI->getOperand(0));
if (TRI->isVGPRClass(regClass)) {
const unsigned MovOp = TII->getMovOpcode(regClass);
MI->setDesc(TII->get(MovOp));
// Check that it already implicitly depends on exec (like all VALU movs
// should do).
assert(any_of(MI->implicit_operands(), [](const MachineOperand &MO) {
return MO.isUse() && MO.getReg() == AMDGPU::EXEC;
}));
} else {
// Remove early-clobber and exec dependency from simple SGPR copies.
// This allows some to be eliminated during/post RA.
LLVM_DEBUG(dbgs() << "simplify SGPR copy: " << *MI);
if (MI->getOperand(0).isEarlyClobber()) {
LIS->removeInterval(Reg);
MI->getOperand(0).setIsEarlyClobber(false);
LIS->createAndComputeVirtRegInterval(Reg);
}
int Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC);
while (Index >= 0) {
MI->removeOperand(Index);
Index = MI->findRegisterUseOperandIdx(AMDGPU::EXEC);
}
MI->setDesc(TII->get(AMDGPU::COPY));
LLVM_DEBUG(dbgs() << " -> " << *MI);
}
}
for (MachineInstr *MI : LowerToCopyInstrs) {
if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 ||
MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) {
assert(MI->getNumExplicitOperands() == 3);
// the only reason we should be here is V_SET_INACTIVE has
// an undef input so it is being replaced by a simple copy.
// There should be a second undef source that we should remove.
assert(MI->getOperand(2).isUndef());
MI->removeOperand(2);
MI->untieRegOperand(1);
} else {
assert(MI->getNumExplicitOperands() == 2);
}
MI->setDesc(TII->get(AMDGPU::COPY));
}
}
void SIWholeQuadMode::lowerKillInstrs(bool IsWQM) {
for (MachineInstr *MI : KillInstrs) {
MachineBasicBlock *MBB = MI->getParent();
MachineInstr *SplitPoint = nullptr;
switch (MI->getOpcode()) {
case AMDGPU::SI_DEMOTE_I1:
case AMDGPU::SI_KILL_I1_TERMINATOR:
SplitPoint = lowerKillI1(*MBB, *MI, IsWQM);
break;
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
SplitPoint = lowerKillF32(*MBB, *MI);
break;
default:
continue;
}
if (SplitPoint)
splitBlock(MBB, SplitPoint);
}
}
bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "SI Whole Quad Mode on " << MF.getName()
<< " ------------- \n");
LLVM_DEBUG(MF.dump(););
Instructions.clear();
Blocks.clear();
LiveMaskQueries.clear();
LowerToCopyInstrs.clear();
LowerToMovInstrs.clear();
KillInstrs.clear();
StateTransition.clear();
ST = &MF.getSubtarget<GCNSubtarget>();
TII = ST->getInstrInfo();
TRI = &TII->getRegisterInfo();
MRI = &MF.getRegInfo();
LIS = &getAnalysis<LiveIntervals>();
MDT = &getAnalysis<MachineDominatorTree>();
PDT = &getAnalysis<MachinePostDominatorTree>();
if (ST->isWave32()) {
AndOpc = AMDGPU::S_AND_B32;
AndN2Opc = AMDGPU::S_ANDN2_B32;
XorOpc = AMDGPU::S_XOR_B32;
AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B32;
OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B32;
WQMOpc = AMDGPU::S_WQM_B32;
Exec = AMDGPU::EXEC_LO;
} else {
AndOpc = AMDGPU::S_AND_B64;
AndN2Opc = AMDGPU::S_ANDN2_B64;
XorOpc = AMDGPU::S_XOR_B64;
AndSaveExecOpc = AMDGPU::S_AND_SAVEEXEC_B64;
OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B64;
WQMOpc = AMDGPU::S_WQM_B64;
Exec = AMDGPU::EXEC;
}
const char GlobalFlags = analyzeFunction(MF);
const bool NeedsLiveMask = !(KillInstrs.empty() && LiveMaskQueries.empty());
LiveMaskReg = Exec;
// Shader is simple does not need any state changes or any complex lowering
if (!(GlobalFlags & (StateWQM | StateStrict)) && LowerToCopyInstrs.empty() &&
LowerToMovInstrs.empty() && KillInstrs.empty()) {
lowerLiveMaskQueries();
return !LiveMaskQueries.empty();
}
MachineBasicBlock &Entry = MF.front();
MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();
// Store a copy of the original live mask when required
if (NeedsLiveMask || (GlobalFlags & StateWQM)) {
LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC());
MachineInstr *MI =
BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::COPY), LiveMaskReg)
.addReg(Exec);
LIS->InsertMachineInstrInMaps(*MI);
}
LLVM_DEBUG(printInfo());
lowerLiveMaskQueries();
lowerCopyInstrs();
// Shader only needs WQM
if (GlobalFlags == StateWQM) {
auto MI = BuildMI(Entry, EntryMI, DebugLoc(), TII->get(WQMOpc), Exec)
.addReg(Exec);
LIS->InsertMachineInstrInMaps(*MI);
lowerKillInstrs(true);
} else {
for (auto BII : Blocks)
processBlock(*BII.first, BII.first == &Entry);
// Lowering blocks causes block splitting so perform as a second pass.
for (auto BII : Blocks)
lowerBlock(*BII.first);
}
// Compute live range for live mask
if (LiveMaskReg != Exec)
LIS->createAndComputeVirtRegInterval(LiveMaskReg);
// Physical registers like SCC aren't tracked by default anyway, so just
// removing the ranges we computed is the simplest option for maintaining
// the analysis results.
LIS->removeAllRegUnitsForPhysReg(AMDGPU::SCC);
// If we performed any kills then recompute EXEC
if (!KillInstrs.empty())
LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC);
return true;
}