blob: c869ee87571176a46befe53fbc055712806cb890 [file] [log] [blame]
//==- SIMachineFunctionInfo.h - SIMachineFunctionInfo interface --*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
#define LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
#include "AMDGPUArgumentUsageInfo.h"
#include "AMDGPUMachineFunction.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
namespace llvm {
class MachineFrameInfo;
class MachineFunction;
class SIMachineFunctionInfo;
class SIRegisterInfo;
class TargetRegisterClass;
class AMDGPUPseudoSourceValue : public PseudoSourceValue {
public:
enum AMDGPUPSVKind : unsigned {
PSVImage = PseudoSourceValue::TargetCustom,
GWSResource
};
protected:
AMDGPUPseudoSourceValue(unsigned Kind, const AMDGPUTargetMachine &TM)
: PseudoSourceValue(Kind, TM) {}
public:
bool isConstant(const MachineFrameInfo *) const override {
// This should probably be true for most images, but we will start by being
// conservative.
return false;
}
bool isAliased(const MachineFrameInfo *) const override {
return true;
}
bool mayAlias(const MachineFrameInfo *) const override {
return true;
}
};
class AMDGPUGWSResourcePseudoSourceValue final : public AMDGPUPseudoSourceValue {
public:
explicit AMDGPUGWSResourcePseudoSourceValue(const AMDGPUTargetMachine &TM)
: AMDGPUPseudoSourceValue(GWSResource, TM) {}
static bool classof(const PseudoSourceValue *V) {
return V->kind() == GWSResource;
}
// These are inaccessible memory from IR.
bool isAliased(const MachineFrameInfo *) const override {
return false;
}
// These are inaccessible memory from IR.
bool mayAlias(const MachineFrameInfo *) const override {
return false;
}
void printCustom(raw_ostream &OS) const override {
OS << "GWSResource";
}
};
namespace yaml {
struct SIArgument {
bool IsRegister;
union {
StringValue RegisterName;
unsigned StackOffset;
};
std::optional<unsigned> Mask;
// Default constructor, which creates a stack argument.
SIArgument() : IsRegister(false), StackOffset(0) {}
SIArgument(const SIArgument &Other) {
IsRegister = Other.IsRegister;
if (IsRegister) {
::new ((void *)std::addressof(RegisterName))
StringValue(Other.RegisterName);
} else
StackOffset = Other.StackOffset;
Mask = Other.Mask;
}
SIArgument &operator=(const SIArgument &Other) {
IsRegister = Other.IsRegister;
if (IsRegister) {
::new ((void *)std::addressof(RegisterName))
StringValue(Other.RegisterName);
} else
StackOffset = Other.StackOffset;
Mask = Other.Mask;
return *this;
}
~SIArgument() {
if (IsRegister)
RegisterName.~StringValue();
}
// Helper to create a register or stack argument.
static inline SIArgument createArgument(bool IsReg) {
if (IsReg)
return SIArgument(IsReg);
return SIArgument();
}
private:
// Construct a register argument.
SIArgument(bool) : IsRegister(true), RegisterName() {}
};
template <> struct MappingTraits<SIArgument> {
static void mapping(IO &YamlIO, SIArgument &A) {
if (YamlIO.outputting()) {
if (A.IsRegister)
YamlIO.mapRequired("reg", A.RegisterName);
else
YamlIO.mapRequired("offset", A.StackOffset);
} else {
auto Keys = YamlIO.keys();
if (is_contained(Keys, "reg")) {
A = SIArgument::createArgument(true);
YamlIO.mapRequired("reg", A.RegisterName);
} else if (is_contained(Keys, "offset"))
YamlIO.mapRequired("offset", A.StackOffset);
else
YamlIO.setError("missing required key 'reg' or 'offset'");
}
YamlIO.mapOptional("mask", A.Mask);
}
static const bool flow = true;
};
struct SIArgumentInfo {
std::optional<SIArgument> PrivateSegmentBuffer;
std::optional<SIArgument> DispatchPtr;
std::optional<SIArgument> QueuePtr;
std::optional<SIArgument> KernargSegmentPtr;
std::optional<SIArgument> DispatchID;
std::optional<SIArgument> FlatScratchInit;
std::optional<SIArgument> PrivateSegmentSize;
std::optional<SIArgument> WorkGroupIDX;
std::optional<SIArgument> WorkGroupIDY;
std::optional<SIArgument> WorkGroupIDZ;
std::optional<SIArgument> WorkGroupInfo;
std::optional<SIArgument> LDSKernelId;
std::optional<SIArgument> PrivateSegmentWaveByteOffset;
std::optional<SIArgument> ImplicitArgPtr;
std::optional<SIArgument> ImplicitBufferPtr;
std::optional<SIArgument> WorkItemIDX;
std::optional<SIArgument> WorkItemIDY;
std::optional<SIArgument> WorkItemIDZ;
};
template <> struct MappingTraits<SIArgumentInfo> {
static void mapping(IO &YamlIO, SIArgumentInfo &AI) {
YamlIO.mapOptional("privateSegmentBuffer", AI.PrivateSegmentBuffer);
YamlIO.mapOptional("dispatchPtr", AI.DispatchPtr);
YamlIO.mapOptional("queuePtr", AI.QueuePtr);
YamlIO.mapOptional("kernargSegmentPtr", AI.KernargSegmentPtr);
YamlIO.mapOptional("dispatchID", AI.DispatchID);
YamlIO.mapOptional("flatScratchInit", AI.FlatScratchInit);
YamlIO.mapOptional("privateSegmentSize", AI.PrivateSegmentSize);
YamlIO.mapOptional("workGroupIDX", AI.WorkGroupIDX);
YamlIO.mapOptional("workGroupIDY", AI.WorkGroupIDY);
YamlIO.mapOptional("workGroupIDZ", AI.WorkGroupIDZ);
YamlIO.mapOptional("workGroupInfo", AI.WorkGroupInfo);
YamlIO.mapOptional("LDSKernelId", AI.LDSKernelId);
YamlIO.mapOptional("privateSegmentWaveByteOffset",
AI.PrivateSegmentWaveByteOffset);
YamlIO.mapOptional("implicitArgPtr", AI.ImplicitArgPtr);
YamlIO.mapOptional("implicitBufferPtr", AI.ImplicitBufferPtr);
YamlIO.mapOptional("workItemIDX", AI.WorkItemIDX);
YamlIO.mapOptional("workItemIDY", AI.WorkItemIDY);
YamlIO.mapOptional("workItemIDZ", AI.WorkItemIDZ);
}
};
// Default to default mode for default calling convention.
struct SIMode {
bool IEEE = true;
bool DX10Clamp = true;
bool FP32InputDenormals = true;
bool FP32OutputDenormals = true;
bool FP64FP16InputDenormals = true;
bool FP64FP16OutputDenormals = true;
SIMode() = default;
SIMode(const AMDGPU::SIModeRegisterDefaults &Mode) {
IEEE = Mode.IEEE;
DX10Clamp = Mode.DX10Clamp;
FP32InputDenormals = Mode.FP32Denormals.Input != DenormalMode::PreserveSign;
FP32OutputDenormals =
Mode.FP32Denormals.Output != DenormalMode::PreserveSign;
FP64FP16InputDenormals =
Mode.FP64FP16Denormals.Input != DenormalMode::PreserveSign;
FP64FP16OutputDenormals =
Mode.FP64FP16Denormals.Output != DenormalMode::PreserveSign;
}
bool operator ==(const SIMode Other) const {
return IEEE == Other.IEEE &&
DX10Clamp == Other.DX10Clamp &&
FP32InputDenormals == Other.FP32InputDenormals &&
FP32OutputDenormals == Other.FP32OutputDenormals &&
FP64FP16InputDenormals == Other.FP64FP16InputDenormals &&
FP64FP16OutputDenormals == Other.FP64FP16OutputDenormals;
}
};
template <> struct MappingTraits<SIMode> {
static void mapping(IO &YamlIO, SIMode &Mode) {
YamlIO.mapOptional("ieee", Mode.IEEE, true);
YamlIO.mapOptional("dx10-clamp", Mode.DX10Clamp, true);
YamlIO.mapOptional("fp32-input-denormals", Mode.FP32InputDenormals, true);
YamlIO.mapOptional("fp32-output-denormals", Mode.FP32OutputDenormals, true);
YamlIO.mapOptional("fp64-fp16-input-denormals", Mode.FP64FP16InputDenormals, true);
YamlIO.mapOptional("fp64-fp16-output-denormals", Mode.FP64FP16OutputDenormals, true);
}
};
struct SIMachineFunctionInfo final : public yaml::MachineFunctionInfo {
uint64_t ExplicitKernArgSize = 0;
Align MaxKernArgAlign;
uint32_t LDSSize = 0;
uint32_t GDSSize = 0;
Align DynLDSAlign;
bool IsEntryFunction = false;
bool NoSignedZerosFPMath = false;
bool MemoryBound = false;
bool WaveLimiter = false;
bool HasSpilledSGPRs = false;
bool HasSpilledVGPRs = false;
uint32_t HighBitsOf32BitAddress = 0;
// TODO: 10 may be a better default since it's the maximum.
unsigned Occupancy = 0;
SmallVector<StringValue> WWMReservedRegs;
StringValue ScratchRSrcReg = "$private_rsrc_reg";
StringValue FrameOffsetReg = "$fp_reg";
StringValue StackPtrOffsetReg = "$sp_reg";
unsigned BytesInStackArgArea = 0;
bool ReturnsVoid = true;
std::optional<SIArgumentInfo> ArgInfo;
SIMode Mode;
std::optional<FrameIndex> ScavengeFI;
StringValue VGPRForAGPRCopy;
SIMachineFunctionInfo() = default;
SIMachineFunctionInfo(const llvm::SIMachineFunctionInfo &,
const TargetRegisterInfo &TRI,
const llvm::MachineFunction &MF);
void mappingImpl(yaml::IO &YamlIO) override;
~SIMachineFunctionInfo() = default;
};
template <> struct MappingTraits<SIMachineFunctionInfo> {
static void mapping(IO &YamlIO, SIMachineFunctionInfo &MFI) {
YamlIO.mapOptional("explicitKernArgSize", MFI.ExplicitKernArgSize,
UINT64_C(0));
YamlIO.mapOptional("maxKernArgAlign", MFI.MaxKernArgAlign);
YamlIO.mapOptional("ldsSize", MFI.LDSSize, 0u);
YamlIO.mapOptional("gdsSize", MFI.GDSSize, 0u);
YamlIO.mapOptional("dynLDSAlign", MFI.DynLDSAlign, Align());
YamlIO.mapOptional("isEntryFunction", MFI.IsEntryFunction, false);
YamlIO.mapOptional("noSignedZerosFPMath", MFI.NoSignedZerosFPMath, false);
YamlIO.mapOptional("memoryBound", MFI.MemoryBound, false);
YamlIO.mapOptional("waveLimiter", MFI.WaveLimiter, false);
YamlIO.mapOptional("hasSpilledSGPRs", MFI.HasSpilledSGPRs, false);
YamlIO.mapOptional("hasSpilledVGPRs", MFI.HasSpilledVGPRs, false);
YamlIO.mapOptional("scratchRSrcReg", MFI.ScratchRSrcReg,
StringValue("$private_rsrc_reg"));
YamlIO.mapOptional("frameOffsetReg", MFI.FrameOffsetReg,
StringValue("$fp_reg"));
YamlIO.mapOptional("stackPtrOffsetReg", MFI.StackPtrOffsetReg,
StringValue("$sp_reg"));
YamlIO.mapOptional("bytesInStackArgArea", MFI.BytesInStackArgArea, 0u);
YamlIO.mapOptional("returnsVoid", MFI.ReturnsVoid, true);
YamlIO.mapOptional("argumentInfo", MFI.ArgInfo);
YamlIO.mapOptional("mode", MFI.Mode, SIMode());
YamlIO.mapOptional("highBitsOf32BitAddress",
MFI.HighBitsOf32BitAddress, 0u);
YamlIO.mapOptional("occupancy", MFI.Occupancy, 0);
YamlIO.mapOptional("wwmReservedRegs", MFI.WWMReservedRegs);
YamlIO.mapOptional("scavengeFI", MFI.ScavengeFI);
YamlIO.mapOptional("vgprForAGPRCopy", MFI.VGPRForAGPRCopy,
StringValue()); // Don't print out when it's empty.
}
};
} // end namespace yaml
// A CSR SGPR value can be preserved inside a callee using one of the following
// methods.
// 1. Copy to an unused scratch SGPR.
// 2. Spill to a VGPR lane.
// 3. Spill to memory via. a scratch VGPR.
// class PrologEpilogSGPRSaveRestoreInfo represents the save/restore method used
// for an SGPR at function prolog/epilog.
enum class SGPRSaveKind : uint8_t {
COPY_TO_SCRATCH_SGPR,
SPILL_TO_VGPR_LANE,
SPILL_TO_MEM
};
class PrologEpilogSGPRSaveRestoreInfo {
SGPRSaveKind Kind;
union {
int Index;
Register Reg;
};
public:
PrologEpilogSGPRSaveRestoreInfo(SGPRSaveKind K, int I) : Kind(K), Index(I) {}
PrologEpilogSGPRSaveRestoreInfo(SGPRSaveKind K, Register R)
: Kind(K), Reg(R) {}
Register getReg() const { return Reg; }
int getIndex() const { return Index; }
SGPRSaveKind getKind() const { return Kind; }
};
/// This class keeps track of the SPI_SP_INPUT_ADDR config register, which
/// tells the hardware which interpolation parameters to load.
class SIMachineFunctionInfo final : public AMDGPUMachineFunction {
friend class GCNTargetMachine;
// State of MODE register, assumed FP mode.
AMDGPU::SIModeRegisterDefaults Mode;
// Registers that may be reserved for spilling purposes. These may be the same
// as the input registers.
Register ScratchRSrcReg = AMDGPU::PRIVATE_RSRC_REG;
// This is the unswizzled offset from the current dispatch's scratch wave
// base to the beginning of the current function's frame.
Register FrameOffsetReg = AMDGPU::FP_REG;
// This is an ABI register used in the non-entry calling convention to
// communicate the unswizzled offset from the current dispatch's scratch wave
// base to the beginning of the new function's frame.
Register StackPtrOffsetReg = AMDGPU::SP_REG;
AMDGPUFunctionArgInfo ArgInfo;
// Graphics info.
unsigned PSInputAddr = 0;
unsigned PSInputEnable = 0;
/// Number of bytes of arguments this function has on the stack. If the callee
/// is expected to restore the argument stack this should be a multiple of 16,
/// all usable during a tail call.
///
/// The alternative would forbid tail call optimisation in some cases: if we
/// want to transfer control from a function with 8-bytes of stack-argument
/// space to a function with 16-bytes then misalignment of this value would
/// make a stack adjustment necessary, which could not be undone by the
/// callee.
unsigned BytesInStackArgArea = 0;
bool ReturnsVoid = true;
// A pair of default/requested minimum/maximum flat work group sizes.
// Minimum - first, maximum - second.
std::pair<unsigned, unsigned> FlatWorkGroupSizes = {0, 0};
// A pair of default/requested minimum/maximum number of waves per execution
// unit. Minimum - first, maximum - second.
std::pair<unsigned, unsigned> WavesPerEU = {0, 0};
const AMDGPUGWSResourcePseudoSourceValue GWSResourcePSV;
private:
unsigned NumUserSGPRs = 0;
unsigned NumSystemSGPRs = 0;
bool HasSpilledSGPRs = false;
bool HasSpilledVGPRs = false;
bool HasNonSpillStackObjects = false;
bool IsStackRealigned = false;
unsigned NumSpilledSGPRs = 0;
unsigned NumSpilledVGPRs = 0;
// Feature bits required for inputs passed in user SGPRs.
bool PrivateSegmentBuffer : 1;
bool DispatchPtr : 1;
bool QueuePtr : 1;
bool KernargSegmentPtr : 1;
bool DispatchID : 1;
bool FlatScratchInit : 1;
// Feature bits required for inputs passed in system SGPRs.
bool WorkGroupIDX : 1; // Always initialized.
bool WorkGroupIDY : 1;
bool WorkGroupIDZ : 1;
bool WorkGroupInfo : 1;
bool LDSKernelId : 1;
bool PrivateSegmentWaveByteOffset : 1;
bool WorkItemIDX : 1; // Always initialized.
bool WorkItemIDY : 1;
bool WorkItemIDZ : 1;
// Private memory buffer
// Compute directly in sgpr[0:1]
// Other shaders indirect 64-bits at sgpr[0:1]
bool ImplicitBufferPtr : 1;
// Pointer to where the ABI inserts special kernel arguments separate from the
// user arguments. This is an offset from the KernargSegmentPtr.
bool ImplicitArgPtr : 1;
bool MayNeedAGPRs : 1;
// The hard-wired high half of the address of the global information table
// for AMDPAL OS type. 0xffffffff represents no hard-wired high half, since
// current hardware only allows a 16 bit value.
unsigned GITPtrHigh;
unsigned HighBitsOf32BitAddress;
// Current recorded maximum possible occupancy.
unsigned Occupancy;
mutable std::optional<bool> UsesAGPRs;
MCPhysReg getNextUserSGPR() const;
MCPhysReg getNextSystemSGPR() const;
public:
struct VGPRSpillToAGPR {
SmallVector<MCPhysReg, 32> Lanes;
bool FullyAllocated = false;
bool IsDead = false;
};
private:
// To track VGPR + lane index for each subregister of the SGPR spilled to
// frameindex key during SILowerSGPRSpills pass.
DenseMap<int, std::vector<SIRegisterInfo::SpilledReg>> SGPRSpillToVGPRLanes;
// To track VGPR + lane index for spilling special SGPRs like Frame Pointer
// identified during PrologEpilogInserter.
DenseMap<int, std::vector<SIRegisterInfo::SpilledReg>>
PrologEpilogSGPRSpillToVGPRLanes;
unsigned NumVGPRSpillLanes = 0;
unsigned NumVGPRPrologEpilogSpillLanes = 0;
SmallVector<Register, 2> SpillVGPRs;
using WWMSpillsMap = MapVector<Register, int>;
// To track the registers used in instructions that can potentially modify the
// inactive lanes. The WWM instructions and the writelane instructions for
// spilling SGPRs to VGPRs fall under such category of operations. The VGPRs
// modified by them should be spilled/restored at function prolog/epilog to
// avoid any undesired outcome. Each entry in this map holds a pair of values,
// the VGPR and its stack slot index.
WWMSpillsMap WWMSpills;
using ReservedRegSet = SmallSetVector<Register, 8>;
// To track the VGPRs reserved for WWM instructions. They get stack slots
// later during PrologEpilogInserter and get added into the superset WWMSpills
// for actual spilling. A separate set makes the register reserved part and
// the serialization easier.
ReservedRegSet WWMReservedRegs;
using PrologEpilogSGPRSpillsMap =
DenseMap<Register, PrologEpilogSGPRSaveRestoreInfo>;
// To track the SGPR spill method used for a CSR SGPR register during
// frame lowering. Even though the SGPR spills are handled during
// SILowerSGPRSpills pass, some special handling needed later during the
// PrologEpilogInserter.
PrologEpilogSGPRSpillsMap PrologEpilogSGPRSpills;
DenseMap<int, VGPRSpillToAGPR> VGPRToAGPRSpills;
// AGPRs used for VGPR spills.
SmallVector<MCPhysReg, 32> SpillAGPR;
// VGPRs used for AGPR spills.
SmallVector<MCPhysReg, 32> SpillVGPR;
// Emergency stack slot. Sometimes, we create this before finalizing the stack
// frame, so save it here and add it to the RegScavenger later.
std::optional<int> ScavengeFI;
private:
Register VGPRForAGPRCopy;
bool allocateVGPRForSGPRSpills(MachineFunction &MF, int FI,
unsigned LaneIndex);
bool allocateVGPRForPrologEpilogSGPRSpills(MachineFunction &MF, int FI,
unsigned LaneIndex);
public:
Register getVGPRForAGPRCopy() const {
return VGPRForAGPRCopy;
}
void setVGPRForAGPRCopy(Register NewVGPRForAGPRCopy) {
VGPRForAGPRCopy = NewVGPRForAGPRCopy;
}
bool isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg) const;
public:
SIMachineFunctionInfo(const SIMachineFunctionInfo &MFI) = default;
SIMachineFunctionInfo(const Function &F, const GCNSubtarget *STI);
MachineFunctionInfo *
clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF,
const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
const override;
bool initializeBaseYamlFields(const yaml::SIMachineFunctionInfo &YamlMFI,
const MachineFunction &MF,
PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange);
void reserveWWMRegister(Register Reg) { WWMReservedRegs.insert(Reg); }
AMDGPU::SIModeRegisterDefaults getMode() const {
return Mode;
}
ArrayRef<SIRegisterInfo::SpilledReg>
getSGPRSpillToVGPRLanes(int FrameIndex) const {
auto I = SGPRSpillToVGPRLanes.find(FrameIndex);
return (I == SGPRSpillToVGPRLanes.end())
? ArrayRef<SIRegisterInfo::SpilledReg>()
: ArrayRef(I->second);
}
ArrayRef<Register> getSGPRSpillVGPRs() const { return SpillVGPRs; }
const WWMSpillsMap &getWWMSpills() const { return WWMSpills; }
const ReservedRegSet &getWWMReservedRegs() const { return WWMReservedRegs; }
const PrologEpilogSGPRSpillsMap &getPrologEpilogSGPRSpills() const {
return PrologEpilogSGPRSpills;
}
void addToPrologEpilogSGPRSpills(Register Reg,
PrologEpilogSGPRSaveRestoreInfo SI) {
PrologEpilogSGPRSpills.insert(std::make_pair(Reg, SI));
}
// Check if an entry created for \p Reg in PrologEpilogSGPRSpills. Return true
// on success and false otherwise.
bool hasPrologEpilogSGPRSpillEntry(Register Reg) const {
return PrologEpilogSGPRSpills.find(Reg) != PrologEpilogSGPRSpills.end();
}
// Get the scratch SGPR if allocated to save/restore \p Reg.
Register getScratchSGPRCopyDstReg(Register Reg) const {
auto I = PrologEpilogSGPRSpills.find(Reg);
if (I != PrologEpilogSGPRSpills.end() &&
I->second.getKind() == SGPRSaveKind::COPY_TO_SCRATCH_SGPR)
return I->second.getReg();
return AMDGPU::NoRegister;
}
// Get all scratch SGPRs allocated to copy/restore the SGPR spills.
void getAllScratchSGPRCopyDstRegs(SmallVectorImpl<Register> &Regs) const {
for (const auto &SI : PrologEpilogSGPRSpills) {
if (SI.second.getKind() == SGPRSaveKind::COPY_TO_SCRATCH_SGPR)
Regs.push_back(SI.second.getReg());
}
}
// Check if \p FI is allocated for any SGPR spill to a VGPR lane during PEI.
bool checkIndexInPrologEpilogSGPRSpills(int FI) const {
return find_if(PrologEpilogSGPRSpills,
[FI](const std::pair<Register,
PrologEpilogSGPRSaveRestoreInfo> &SI) {
return SI.second.getKind() ==
SGPRSaveKind::SPILL_TO_VGPR_LANE &&
SI.second.getIndex() == FI;
}) != PrologEpilogSGPRSpills.end();
}
const PrologEpilogSGPRSaveRestoreInfo &
getPrologEpilogSGPRSaveRestoreInfo(Register Reg) const {
auto I = PrologEpilogSGPRSpills.find(Reg);
assert(I != PrologEpilogSGPRSpills.end());
return I->second;
}
ArrayRef<SIRegisterInfo::SpilledReg>
getPrologEpilogSGPRSpillToVGPRLanes(int FrameIndex) const {
auto I = PrologEpilogSGPRSpillToVGPRLanes.find(FrameIndex);
return (I == PrologEpilogSGPRSpillToVGPRLanes.end())
? ArrayRef<SIRegisterInfo::SpilledReg>()
: ArrayRef(I->second);
}
void allocateWWMSpill(MachineFunction &MF, Register VGPR, uint64_t Size = 4,
Align Alignment = Align(4));
void splitWWMSpillRegisters(
MachineFunction &MF,
SmallVectorImpl<std::pair<Register, int>> &CalleeSavedRegs,
SmallVectorImpl<std::pair<Register, int>> &ScratchRegs) const;
ArrayRef<MCPhysReg> getAGPRSpillVGPRs() const {
return SpillAGPR;
}
ArrayRef<MCPhysReg> getVGPRSpillAGPRs() const {
return SpillVGPR;
}
MCPhysReg getVGPRToAGPRSpill(int FrameIndex, unsigned Lane) const {
auto I = VGPRToAGPRSpills.find(FrameIndex);
return (I == VGPRToAGPRSpills.end()) ? (MCPhysReg)AMDGPU::NoRegister
: I->second.Lanes[Lane];
}
void setVGPRToAGPRSpillDead(int FrameIndex) {
auto I = VGPRToAGPRSpills.find(FrameIndex);
if (I != VGPRToAGPRSpills.end())
I->second.IsDead = true;
}
bool allocateSGPRSpillToVGPRLane(MachineFunction &MF, int FI,
bool IsPrologEpilog = false);
bool allocateVGPRSpillToAGPR(MachineFunction &MF, int FI, bool isAGPRtoVGPR);
/// If \p ResetSGPRSpillStackIDs is true, reset the stack ID from sgpr-spill
/// to the default stack.
bool removeDeadFrameIndices(MachineFrameInfo &MFI,
bool ResetSGPRSpillStackIDs);
int getScavengeFI(MachineFrameInfo &MFI, const SIRegisterInfo &TRI);
std::optional<int> getOptionalScavengeFI() const { return ScavengeFI; }
unsigned getBytesInStackArgArea() const {
return BytesInStackArgArea;
}
void setBytesInStackArgArea(unsigned Bytes) {
BytesInStackArgArea = Bytes;
}
// Add user SGPRs.
Register addPrivateSegmentBuffer(const SIRegisterInfo &TRI);
Register addDispatchPtr(const SIRegisterInfo &TRI);
Register addQueuePtr(const SIRegisterInfo &TRI);
Register addKernargSegmentPtr(const SIRegisterInfo &TRI);
Register addDispatchID(const SIRegisterInfo &TRI);
Register addFlatScratchInit(const SIRegisterInfo &TRI);
Register addImplicitBufferPtr(const SIRegisterInfo &TRI);
Register addLDSKernelId();
/// Increment user SGPRs used for padding the argument list only.
Register addReservedUserSGPR() {
Register Next = getNextUserSGPR();
++NumUserSGPRs;
return Next;
}
// Add system SGPRs.
Register addWorkGroupIDX() {
ArgInfo.WorkGroupIDX = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDX.getRegister();
}
Register addWorkGroupIDY() {
ArgInfo.WorkGroupIDY = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDY.getRegister();
}
Register addWorkGroupIDZ() {
ArgInfo.WorkGroupIDZ = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupIDZ.getRegister();
}
Register addWorkGroupInfo() {
ArgInfo.WorkGroupInfo = ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.WorkGroupInfo.getRegister();
}
// Add special VGPR inputs
void setWorkItemIDX(ArgDescriptor Arg) {
ArgInfo.WorkItemIDX = Arg;
}
void setWorkItemIDY(ArgDescriptor Arg) {
ArgInfo.WorkItemIDY = Arg;
}
void setWorkItemIDZ(ArgDescriptor Arg) {
ArgInfo.WorkItemIDZ = Arg;
}
Register addPrivateSegmentWaveByteOffset() {
ArgInfo.PrivateSegmentWaveByteOffset
= ArgDescriptor::createRegister(getNextSystemSGPR());
NumSystemSGPRs += 1;
return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
}
void setPrivateSegmentWaveByteOffset(Register Reg) {
ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(Reg);
}
bool hasPrivateSegmentBuffer() const {
return PrivateSegmentBuffer;
}
bool hasDispatchPtr() const {
return DispatchPtr;
}
bool hasQueuePtr() const {
return QueuePtr;
}
bool hasKernargSegmentPtr() const {
return KernargSegmentPtr;
}
bool hasDispatchID() const {
return DispatchID;
}
bool hasFlatScratchInit() const {
return FlatScratchInit;
}
bool hasWorkGroupIDX() const {
return WorkGroupIDX;
}
bool hasWorkGroupIDY() const {
return WorkGroupIDY;
}
bool hasWorkGroupIDZ() const {
return WorkGroupIDZ;
}
bool hasWorkGroupInfo() const {
return WorkGroupInfo;
}
bool hasLDSKernelId() const { return LDSKernelId; }
bool hasPrivateSegmentWaveByteOffset() const {
return PrivateSegmentWaveByteOffset;
}
bool hasWorkItemIDX() const {
return WorkItemIDX;
}
bool hasWorkItemIDY() const {
return WorkItemIDY;
}
bool hasWorkItemIDZ() const {
return WorkItemIDZ;
}
bool hasImplicitArgPtr() const {
return ImplicitArgPtr;
}
bool hasImplicitBufferPtr() const {
return ImplicitBufferPtr;
}
AMDGPUFunctionArgInfo &getArgInfo() {
return ArgInfo;
}
const AMDGPUFunctionArgInfo &getArgInfo() const {
return ArgInfo;
}
std::tuple<const ArgDescriptor *, const TargetRegisterClass *, LLT>
getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
return ArgInfo.getPreloadedValue(Value);
}
MCRegister getPreloadedReg(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
auto Arg = std::get<0>(ArgInfo.getPreloadedValue(Value));
return Arg ? Arg->getRegister() : MCRegister();
}
unsigned getGITPtrHigh() const {
return GITPtrHigh;
}
Register getGITPtrLoReg(const MachineFunction &MF) const;
uint32_t get32BitAddressHighBits() const {
return HighBitsOf32BitAddress;
}
unsigned getNumUserSGPRs() const {
return NumUserSGPRs;
}
unsigned getNumPreloadedSGPRs() const {
return NumUserSGPRs + NumSystemSGPRs;
}
Register getPrivateSegmentWaveByteOffsetSystemSGPR() const {
return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
}
/// Returns the physical register reserved for use as the resource
/// descriptor for scratch accesses.
Register getScratchRSrcReg() const {
return ScratchRSrcReg;
}
void setScratchRSrcReg(Register Reg) {
assert(Reg != 0 && "Should never be unset");
ScratchRSrcReg = Reg;
}
Register getFrameOffsetReg() const {
return FrameOffsetReg;
}
void setFrameOffsetReg(Register Reg) {
assert(Reg != 0 && "Should never be unset");
FrameOffsetReg = Reg;
}
void setStackPtrOffsetReg(Register Reg) {
assert(Reg != 0 && "Should never be unset");
StackPtrOffsetReg = Reg;
}
// Note the unset value for this is AMDGPU::SP_REG rather than
// NoRegister. This is mostly a workaround for MIR tests where state that
// can't be directly computed from the function is not preserved in serialized
// MIR.
Register getStackPtrOffsetReg() const {
return StackPtrOffsetReg;
}
Register getQueuePtrUserSGPR() const {
return ArgInfo.QueuePtr.getRegister();
}
Register getImplicitBufferPtrUserSGPR() const {
return ArgInfo.ImplicitBufferPtr.getRegister();
}
bool hasSpilledSGPRs() const {
return HasSpilledSGPRs;
}
void setHasSpilledSGPRs(bool Spill = true) {
HasSpilledSGPRs = Spill;
}
bool hasSpilledVGPRs() const {
return HasSpilledVGPRs;
}
void setHasSpilledVGPRs(bool Spill = true) {
HasSpilledVGPRs = Spill;
}
bool hasNonSpillStackObjects() const {
return HasNonSpillStackObjects;
}
void setHasNonSpillStackObjects(bool StackObject = true) {
HasNonSpillStackObjects = StackObject;
}
bool isStackRealigned() const {
return IsStackRealigned;
}
void setIsStackRealigned(bool Realigned = true) {
IsStackRealigned = Realigned;
}
unsigned getNumSpilledSGPRs() const {
return NumSpilledSGPRs;
}
unsigned getNumSpilledVGPRs() const {
return NumSpilledVGPRs;
}
void addToSpilledSGPRs(unsigned num) {
NumSpilledSGPRs += num;
}
void addToSpilledVGPRs(unsigned num) {
NumSpilledVGPRs += num;
}
unsigned getPSInputAddr() const {
return PSInputAddr;
}
unsigned getPSInputEnable() const {
return PSInputEnable;
}
bool isPSInputAllocated(unsigned Index) const {
return PSInputAddr & (1 << Index);
}
void markPSInputAllocated(unsigned Index) {
PSInputAddr |= 1 << Index;
}
void markPSInputEnabled(unsigned Index) {
PSInputEnable |= 1 << Index;
}
bool returnsVoid() const {
return ReturnsVoid;
}
void setIfReturnsVoid(bool Value) {
ReturnsVoid = Value;
}
/// \returns A pair of default/requested minimum/maximum flat work group sizes
/// for this function.
std::pair<unsigned, unsigned> getFlatWorkGroupSizes() const {
return FlatWorkGroupSizes;
}
/// \returns Default/requested minimum flat work group size for this function.
unsigned getMinFlatWorkGroupSize() const {
return FlatWorkGroupSizes.first;
}
/// \returns Default/requested maximum flat work group size for this function.
unsigned getMaxFlatWorkGroupSize() const {
return FlatWorkGroupSizes.second;
}
/// \returns A pair of default/requested minimum/maximum number of waves per
/// execution unit.
std::pair<unsigned, unsigned> getWavesPerEU() const {
return WavesPerEU;
}
/// \returns Default/requested minimum number of waves per execution unit.
unsigned getMinWavesPerEU() const {
return WavesPerEU.first;
}
/// \returns Default/requested maximum number of waves per execution unit.
unsigned getMaxWavesPerEU() const {
return WavesPerEU.second;
}
/// \returns SGPR used for \p Dim's work group ID.
Register getWorkGroupIDSGPR(unsigned Dim) const {
switch (Dim) {
case 0:
assert(hasWorkGroupIDX());
return ArgInfo.WorkGroupIDX.getRegister();
case 1:
assert(hasWorkGroupIDY());
return ArgInfo.WorkGroupIDY.getRegister();
case 2:
assert(hasWorkGroupIDZ());
return ArgInfo.WorkGroupIDZ.getRegister();
}
llvm_unreachable("unexpected dimension");
}
const AMDGPUGWSResourcePseudoSourceValue *
getGWSPSV(const AMDGPUTargetMachine &TM) {
return &GWSResourcePSV;
}
unsigned getOccupancy() const {
return Occupancy;
}
unsigned getMinAllowedOccupancy() const {
if (!isMemoryBound() && !needsWaveLimiter())
return Occupancy;
return (Occupancy < 4) ? Occupancy : 4;
}
void limitOccupancy(const MachineFunction &MF);
void limitOccupancy(unsigned Limit) {
if (Occupancy > Limit)
Occupancy = Limit;
}
void increaseOccupancy(const MachineFunction &MF, unsigned Limit) {
if (Occupancy < Limit)
Occupancy = Limit;
limitOccupancy(MF);
}
bool mayNeedAGPRs() const {
return MayNeedAGPRs;
}
// \returns true if a function has a use of AGPRs via inline asm or
// has a call which may use it.
bool mayUseAGPRs(const Function &F) const;
// \returns true if a function needs or may need AGPRs.
bool usesAGPRs(const MachineFunction &MF) const;
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H