| //===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a MachineFunctionPass that inserts the appropriate |
| // XRay instrumentation instructions. We look for XRay-specific attributes |
| // on the function to determine whether we should insert the replacement |
| // operations. |
| // |
| //===---------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| |
| struct InstrumentationOptions { |
| // Whether to emit PATCHABLE_TAIL_CALL. |
| bool HandleTailcall; |
| |
| // Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of |
| // return, e.g. conditional return. |
| bool HandleAllReturns; |
| }; |
| |
| struct XRayInstrumentation : public MachineFunctionPass { |
| static char ID; |
| |
| XRayInstrumentation() : MachineFunctionPass(ID) { |
| initializeXRayInstrumentationPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| private: |
| // Replace the original RET instruction with the exit sled code ("patchable |
| // ret" pseudo-instruction), so that at runtime XRay can replace the sled |
| // with a code jumping to XRay trampoline, which calls the tracing handler |
| // and, in the end, issues the RET instruction. |
| // This is the approach to go on CPUs which have a single RET instruction, |
| // like x86/x86_64. |
| void replaceRetWithPatchableRet(MachineFunction &MF, |
| const TargetInstrInfo *TII, |
| InstrumentationOptions); |
| |
| // Prepend the original return instruction with the exit sled code ("patchable |
| // function exit" pseudo-instruction), preserving the original return |
| // instruction just after the exit sled code. |
| // This is the approach to go on CPUs which have multiple options for the |
| // return instruction, like ARM. For such CPUs we can't just jump into the |
| // XRay trampoline and issue a single return instruction there. We rather |
| // have to call the trampoline and return from it to the original return |
| // instruction of the function being instrumented. |
| void prependRetWithPatchableExit(MachineFunction &MF, |
| const TargetInstrInfo *TII, |
| InstrumentationOptions); |
| }; |
| |
| } // end anonymous namespace |
| |
| void XRayInstrumentation::replaceRetWithPatchableRet( |
| MachineFunction &MF, const TargetInstrInfo *TII, |
| InstrumentationOptions op) { |
| // We look for *all* terminators and returns, then replace those with |
| // PATCHABLE_RET instructions. |
| SmallVector<MachineInstr *, 4> Terminators; |
| for (auto &MBB : MF) { |
| for (auto &T : MBB.terminators()) { |
| unsigned Opc = 0; |
| if (T.isReturn() && |
| (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) { |
| // Replace return instructions with: |
| // PATCHABLE_RET <Opcode>, <Operand>... |
| Opc = TargetOpcode::PATCHABLE_RET; |
| } |
| if (TII->isTailCall(T) && op.HandleTailcall) { |
| // Treat the tail call as a return instruction, which has a |
| // different-looking sled than the normal return case. |
| Opc = TargetOpcode::PATCHABLE_TAIL_CALL; |
| } |
| if (Opc != 0) { |
| auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc)) |
| .addImm(T.getOpcode()); |
| for (auto &MO : T.operands()) |
| MIB.add(MO); |
| Terminators.push_back(&T); |
| if (T.shouldUpdateCallSiteInfo()) |
| MF.eraseCallSiteInfo(&T); |
| } |
| } |
| } |
| |
| for (auto &I : Terminators) |
| I->eraseFromParent(); |
| } |
| |
| void XRayInstrumentation::prependRetWithPatchableExit( |
| MachineFunction &MF, const TargetInstrInfo *TII, |
| InstrumentationOptions op) { |
| for (auto &MBB : MF) |
| for (auto &T : MBB.terminators()) { |
| unsigned Opc = 0; |
| if (T.isReturn() && |
| (op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) { |
| Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT; |
| } |
| if (TII->isTailCall(T) && op.HandleTailcall) { |
| Opc = TargetOpcode::PATCHABLE_TAIL_CALL; |
| } |
| if (Opc != 0) { |
| // Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or |
| // PATCHABLE_TAIL_CALL . |
| BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc)); |
| } |
| } |
| } |
| |
| bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) { |
| auto &F = MF.getFunction(); |
| auto InstrAttr = F.getFnAttribute("function-instrument"); |
| bool AlwaysInstrument = InstrAttr.isStringAttribute() && |
| InstrAttr.getValueAsString() == "xray-always"; |
| bool NeverInstrument = InstrAttr.isStringAttribute() && |
| InstrAttr.getValueAsString() == "xray-never"; |
| if (NeverInstrument && !AlwaysInstrument) |
| return false; |
| auto IgnoreLoopsAttr = F.getFnAttribute("xray-ignore-loops"); |
| |
| uint64_t XRayThreshold = 0; |
| if (!AlwaysInstrument) { |
| bool IgnoreLoops = IgnoreLoopsAttr.isValid(); |
| XRayThreshold = F.getFnAttributeAsParsedInteger( |
| "xray-instruction-threshold", std::numeric_limits<uint64_t>::max()); |
| if (XRayThreshold == std::numeric_limits<uint64_t>::max()) |
| return false; |
| |
| // Count the number of MachineInstr`s in MachineFunction |
| uint64_t MICount = 0; |
| for (const auto &MBB : MF) |
| MICount += MBB.size(); |
| |
| bool TooFewInstrs = MICount < XRayThreshold; |
| |
| if (!IgnoreLoops) { |
| // Get MachineDominatorTree or compute it on the fly if it's unavailable |
| auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>(); |
| MachineDominatorTree ComputedMDT; |
| if (!MDT) { |
| ComputedMDT.getBase().recalculate(MF); |
| MDT = &ComputedMDT; |
| } |
| |
| // Get MachineLoopInfo or compute it on the fly if it's unavailable |
| auto *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); |
| MachineLoopInfo ComputedMLI; |
| if (!MLI) { |
| ComputedMLI.getBase().analyze(MDT->getBase()); |
| MLI = &ComputedMLI; |
| } |
| |
| // Check if we have a loop. |
| // FIXME: Maybe make this smarter, and see whether the loops are dependent |
| // on inputs or side-effects? |
| if (MLI->empty() && TooFewInstrs) |
| return false; // Function is too small and has no loops. |
| } else if (TooFewInstrs) { |
| // Function is too small |
| return false; |
| } |
| } |
| |
| // We look for the first non-empty MachineBasicBlock, so that we can insert |
| // the function instrumentation in the appropriate place. |
| auto MBI = llvm::find_if( |
| MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); }); |
| if (MBI == MF.end()) |
| return false; // The function is empty. |
| |
| auto *TII = MF.getSubtarget().getInstrInfo(); |
| auto &FirstMBB = *MBI; |
| auto &FirstMI = *FirstMBB.begin(); |
| |
| if (!MF.getSubtarget().isXRaySupported()) { |
| FirstMI.emitError("An attempt to perform XRay instrumentation for an" |
| " unsupported target."); |
| return false; |
| } |
| |
| if (!F.hasFnAttribute("xray-skip-entry")) { |
| // First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the |
| // MachineFunction. |
| BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(), |
| TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER)); |
| } |
| |
| if (!F.hasFnAttribute("xray-skip-exit")) { |
| switch (MF.getTarget().getTargetTriple().getArch()) { |
| case Triple::ArchType::arm: |
| case Triple::ArchType::thumb: |
| case Triple::ArchType::aarch64: |
| case Triple::ArchType::hexagon: |
| case Triple::ArchType::mips: |
| case Triple::ArchType::mipsel: |
| case Triple::ArchType::mips64: |
| case Triple::ArchType::mips64el: { |
| // For the architectures which don't have a single return instruction |
| InstrumentationOptions op; |
| op.HandleTailcall = false; |
| op.HandleAllReturns = true; |
| prependRetWithPatchableExit(MF, TII, op); |
| break; |
| } |
| case Triple::ArchType::ppc64le: { |
| // PPC has conditional returns. Turn them into branch and plain returns. |
| InstrumentationOptions op; |
| op.HandleTailcall = false; |
| op.HandleAllReturns = true; |
| replaceRetWithPatchableRet(MF, TII, op); |
| break; |
| } |
| default: { |
| // For the architectures that have a single return instruction (such as |
| // RETQ on x86_64). |
| InstrumentationOptions op; |
| op.HandleTailcall = true; |
| op.HandleAllReturns = false; |
| replaceRetWithPatchableRet(MF, TII, op); |
| break; |
| } |
| } |
| } |
| return true; |
| } |
| |
| char XRayInstrumentation::ID = 0; |
| char &llvm::XRayInstrumentationID = XRayInstrumentation::ID; |
| INITIALIZE_PASS_BEGIN(XRayInstrumentation, "xray-instrumentation", |
| "Insert XRay ops", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_END(XRayInstrumentation, "xray-instrumentation", |
| "Insert XRay ops", false, false) |