| //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // MachineScheduler schedules machine instructions after phi elimination. It |
| // preserves LiveIntervals so it can be invoked before register allocation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/LiveIntervals.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachinePassRegistry.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/RegisterPressure.h" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| #include "llvm/CodeGen/ScheduleDAGMutation.h" |
| #include "llvm/CodeGen/ScheduleDFS.h" |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetPassConfig.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSchedule.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "machine-scheduler" |
| |
| STATISTIC(NumClustered, "Number of load/store pairs clustered"); |
| |
| namespace llvm { |
| |
| cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden, |
| cl::desc("Force top-down list scheduling")); |
| cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden, |
| cl::desc("Force bottom-up list scheduling")); |
| cl::opt<bool> |
| DumpCriticalPathLength("misched-dcpl", cl::Hidden, |
| cl::desc("Print critical path length to stdout")); |
| |
| cl::opt<bool> VerifyScheduling( |
| "verify-misched", cl::Hidden, |
| cl::desc("Verify machine instrs before and after machine scheduling")); |
| |
| #ifndef NDEBUG |
| cl::opt<bool> ViewMISchedDAGs( |
| "view-misched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show MISched dags after they are processed")); |
| cl::opt<bool> PrintDAGs("misched-print-dags", cl::Hidden, |
| cl::desc("Print schedule DAGs")); |
| cl::opt<bool> MISchedDumpReservedCycles( |
| "misched-dump-reserved-cycles", cl::Hidden, cl::init(false), |
| cl::desc("Dump resource usage at schedule boundary.")); |
| #else |
| const bool ViewMISchedDAGs = false; |
| const bool PrintDAGs = false; |
| #ifdef LLVM_ENABLE_DUMP |
| const bool MISchedDumpReservedCycles = false; |
| #endif // LLVM_ENABLE_DUMP |
| #endif // NDEBUG |
| |
| } // end namespace llvm |
| |
| #ifndef NDEBUG |
| /// In some situations a few uninteresting nodes depend on nearly all other |
| /// nodes in the graph, provide a cutoff to hide them. |
| static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden, |
| cl::desc("Hide nodes with more predecessor/successor than cutoff")); |
| |
| static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden, |
| cl::desc("Stop scheduling after N instructions"), cl::init(~0U)); |
| |
| static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden, |
| cl::desc("Only schedule this function")); |
| static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden, |
| cl::desc("Only schedule this MBB#")); |
| #endif // NDEBUG |
| |
| /// Avoid quadratic complexity in unusually large basic blocks by limiting the |
| /// size of the ready lists. |
| static cl::opt<unsigned> ReadyListLimit("misched-limit", cl::Hidden, |
| cl::desc("Limit ready list to N instructions"), cl::init(256)); |
| |
| static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden, |
| cl::desc("Enable register pressure scheduling."), cl::init(true)); |
| |
| static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden, |
| cl::desc("Enable cyclic critical path analysis."), cl::init(true)); |
| |
| static cl::opt<bool> EnableMemOpCluster("misched-cluster", cl::Hidden, |
| cl::desc("Enable memop clustering."), |
| cl::init(true)); |
| static cl::opt<bool> |
| ForceFastCluster("force-fast-cluster", cl::Hidden, |
| cl::desc("Switch to fast cluster algorithm with the lost " |
| "of some fusion opportunities"), |
| cl::init(false)); |
| static cl::opt<unsigned> |
| FastClusterThreshold("fast-cluster-threshold", cl::Hidden, |
| cl::desc("The threshold for fast cluster"), |
| cl::init(1000)); |
| |
| // DAG subtrees must have at least this many nodes. |
| static const unsigned MinSubtreeSize = 8; |
| |
| // Pin the vtables to this file. |
| void MachineSchedStrategy::anchor() {} |
| |
| void ScheduleDAGMutation::anchor() {} |
| |
| //===----------------------------------------------------------------------===// |
| // Machine Instruction Scheduling Pass and Registry |
| //===----------------------------------------------------------------------===// |
| |
| MachineSchedContext::MachineSchedContext() { |
| RegClassInfo = new RegisterClassInfo(); |
| } |
| |
| MachineSchedContext::~MachineSchedContext() { |
| delete RegClassInfo; |
| } |
| |
| namespace { |
| |
| /// Base class for a machine scheduler class that can run at any point. |
| class MachineSchedulerBase : public MachineSchedContext, |
| public MachineFunctionPass { |
| public: |
| MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {} |
| |
| void print(raw_ostream &O, const Module* = nullptr) const override; |
| |
| protected: |
| void scheduleRegions(ScheduleDAGInstrs &Scheduler, bool FixKillFlags); |
| }; |
| |
| /// MachineScheduler runs after coalescing and before register allocation. |
| class MachineScheduler : public MachineSchedulerBase { |
| public: |
| MachineScheduler(); |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| |
| bool runOnMachineFunction(MachineFunction&) override; |
| |
| static char ID; // Class identification, replacement for typeinfo |
| |
| protected: |
| ScheduleDAGInstrs *createMachineScheduler(); |
| }; |
| |
| /// PostMachineScheduler runs after shortly before code emission. |
| class PostMachineScheduler : public MachineSchedulerBase { |
| public: |
| PostMachineScheduler(); |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override; |
| |
| bool runOnMachineFunction(MachineFunction&) override; |
| |
| static char ID; // Class identification, replacement for typeinfo |
| |
| protected: |
| ScheduleDAGInstrs *createPostMachineScheduler(); |
| }; |
| |
| } // end anonymous namespace |
| |
| char MachineScheduler::ID = 0; |
| |
| char &llvm::MachineSchedulerID = MachineScheduler::ID; |
| |
| INITIALIZE_PASS_BEGIN(MachineScheduler, DEBUG_TYPE, |
| "Machine Instruction Scheduler", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes) |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals) |
| INITIALIZE_PASS_END(MachineScheduler, DEBUG_TYPE, |
| "Machine Instruction Scheduler", false, false) |
| |
| MachineScheduler::MachineScheduler() : MachineSchedulerBase(ID) { |
| initializeMachineSchedulerPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| AU.addRequired<SlotIndexes>(); |
| AU.addPreserved<SlotIndexes>(); |
| AU.addRequired<LiveIntervals>(); |
| AU.addPreserved<LiveIntervals>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| char PostMachineScheduler::ID = 0; |
| |
| char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID; |
| |
| INITIALIZE_PASS_BEGIN(PostMachineScheduler, "postmisched", |
| "PostRA Machine Instruction Scheduler", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_END(PostMachineScheduler, "postmisched", |
| "PostRA Machine Instruction Scheduler", false, false) |
| |
| PostMachineScheduler::PostMachineScheduler() : MachineSchedulerBase(ID) { |
| initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addRequired<TargetPassConfig>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| MachinePassRegistry<MachineSchedRegistry::ScheduleDAGCtor> |
| MachineSchedRegistry::Registry; |
| |
| /// A dummy default scheduler factory indicates whether the scheduler |
| /// is overridden on the command line. |
| static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) { |
| return nullptr; |
| } |
| |
| /// MachineSchedOpt allows command line selection of the scheduler. |
| static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false, |
| RegisterPassParser<MachineSchedRegistry>> |
| MachineSchedOpt("misched", |
| cl::init(&useDefaultMachineSched), cl::Hidden, |
| cl::desc("Machine instruction scheduler to use")); |
| |
| static MachineSchedRegistry |
| DefaultSchedRegistry("default", "Use the target's default scheduler choice.", |
| useDefaultMachineSched); |
| |
| static cl::opt<bool> EnableMachineSched( |
| "enable-misched", |
| cl::desc("Enable the machine instruction scheduling pass."), cl::init(true), |
| cl::Hidden); |
| |
| static cl::opt<bool> EnablePostRAMachineSched( |
| "enable-post-misched", |
| cl::desc("Enable the post-ra machine instruction scheduling pass."), |
| cl::init(true), cl::Hidden); |
| |
| /// Decrement this iterator until reaching the top or a non-debug instr. |
| static MachineBasicBlock::const_iterator |
| priorNonDebug(MachineBasicBlock::const_iterator I, |
| MachineBasicBlock::const_iterator Beg) { |
| assert(I != Beg && "reached the top of the region, cannot decrement"); |
| while (--I != Beg) { |
| if (!I->isDebugOrPseudoInstr()) |
| break; |
| } |
| return I; |
| } |
| |
| /// Non-const version. |
| static MachineBasicBlock::iterator |
| priorNonDebug(MachineBasicBlock::iterator I, |
| MachineBasicBlock::const_iterator Beg) { |
| return priorNonDebug(MachineBasicBlock::const_iterator(I), Beg) |
| .getNonConstIterator(); |
| } |
| |
| /// If this iterator is a debug value, increment until reaching the End or a |
| /// non-debug instruction. |
| static MachineBasicBlock::const_iterator |
| nextIfDebug(MachineBasicBlock::const_iterator I, |
| MachineBasicBlock::const_iterator End) { |
| for(; I != End; ++I) { |
| if (!I->isDebugOrPseudoInstr()) |
| break; |
| } |
| return I; |
| } |
| |
| /// Non-const version. |
| static MachineBasicBlock::iterator |
| nextIfDebug(MachineBasicBlock::iterator I, |
| MachineBasicBlock::const_iterator End) { |
| return nextIfDebug(MachineBasicBlock::const_iterator(I), End) |
| .getNonConstIterator(); |
| } |
| |
| /// Instantiate a ScheduleDAGInstrs that will be owned by the caller. |
| ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() { |
| // Select the scheduler, or set the default. |
| MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt; |
| if (Ctor != useDefaultMachineSched) |
| return Ctor(this); |
| |
| // Get the default scheduler set by the target for this function. |
| ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this); |
| if (Scheduler) |
| return Scheduler; |
| |
| // Default to GenericScheduler. |
| return createGenericSchedLive(this); |
| } |
| |
| /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by |
| /// the caller. We don't have a command line option to override the postRA |
| /// scheduler. The Target must configure it. |
| ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() { |
| // Get the postRA scheduler set by the target for this function. |
| ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this); |
| if (Scheduler) |
| return Scheduler; |
| |
| // Default to GenericScheduler. |
| return createGenericSchedPostRA(this); |
| } |
| |
| /// Top-level MachineScheduler pass driver. |
| /// |
| /// Visit blocks in function order. Divide each block into scheduling regions |
| /// and visit them bottom-up. Visiting regions bottom-up is not required, but is |
| /// consistent with the DAG builder, which traverses the interior of the |
| /// scheduling regions bottom-up. |
| /// |
| /// This design avoids exposing scheduling boundaries to the DAG builder, |
| /// simplifying the DAG builder's support for "special" target instructions. |
| /// At the same time the design allows target schedulers to operate across |
| /// scheduling boundaries, for example to bundle the boundary instructions |
| /// without reordering them. This creates complexity, because the target |
| /// scheduler must update the RegionBegin and RegionEnd positions cached by |
| /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler |
| /// design would be to split blocks at scheduling boundaries, but LLVM has a |
| /// general bias against block splitting purely for implementation simplicity. |
| bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) { |
| if (skipFunction(mf.getFunction())) |
| return false; |
| |
| if (EnableMachineSched.getNumOccurrences()) { |
| if (!EnableMachineSched) |
| return false; |
| } else if (!mf.getSubtarget().enableMachineScheduler()) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs())); |
| |
| // Initialize the context of the pass. |
| MF = &mf; |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| PassConfig = &getAnalysis<TargetPassConfig>(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| |
| LIS = &getAnalysis<LiveIntervals>(); |
| |
| if (VerifyScheduling) { |
| LLVM_DEBUG(LIS->dump()); |
| MF->verify(this, "Before machine scheduling."); |
| } |
| RegClassInfo->runOnMachineFunction(*MF); |
| |
| // Instantiate the selected scheduler for this target, function, and |
| // optimization level. |
| std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler()); |
| scheduleRegions(*Scheduler, false); |
| |
| LLVM_DEBUG(LIS->dump()); |
| if (VerifyScheduling) |
| MF->verify(this, "After machine scheduling."); |
| return true; |
| } |
| |
| bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) { |
| if (skipFunction(mf.getFunction())) |
| return false; |
| |
| if (EnablePostRAMachineSched.getNumOccurrences()) { |
| if (!EnablePostRAMachineSched) |
| return false; |
| } else if (!mf.getSubtarget().enablePostRAMachineScheduler()) { |
| LLVM_DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n"); |
| return false; |
| } |
| LLVM_DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs())); |
| |
| // Initialize the context of the pass. |
| MF = &mf; |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| PassConfig = &getAnalysis<TargetPassConfig>(); |
| AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| |
| if (VerifyScheduling) |
| MF->verify(this, "Before post machine scheduling."); |
| |
| // Instantiate the selected scheduler for this target, function, and |
| // optimization level. |
| std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler()); |
| scheduleRegions(*Scheduler, true); |
| |
| if (VerifyScheduling) |
| MF->verify(this, "After post machine scheduling."); |
| return true; |
| } |
| |
| /// Return true of the given instruction should not be included in a scheduling |
| /// region. |
| /// |
| /// MachineScheduler does not currently support scheduling across calls. To |
| /// handle calls, the DAG builder needs to be modified to create register |
| /// anti/output dependencies on the registers clobbered by the call's regmask |
| /// operand. In PreRA scheduling, the stack pointer adjustment already prevents |
| /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce |
| /// the boundary, but there would be no benefit to postRA scheduling across |
| /// calls this late anyway. |
| static bool isSchedBoundary(MachineBasicBlock::iterator MI, |
| MachineBasicBlock *MBB, |
| MachineFunction *MF, |
| const TargetInstrInfo *TII) { |
| return MI->isCall() || TII->isSchedulingBoundary(*MI, MBB, *MF); |
| } |
| |
| /// A region of an MBB for scheduling. |
| namespace { |
| struct SchedRegion { |
| /// RegionBegin is the first instruction in the scheduling region, and |
| /// RegionEnd is either MBB->end() or the scheduling boundary after the |
| /// last instruction in the scheduling region. These iterators cannot refer |
| /// to instructions outside of the identified scheduling region because |
| /// those may be reordered before scheduling this region. |
| MachineBasicBlock::iterator RegionBegin; |
| MachineBasicBlock::iterator RegionEnd; |
| unsigned NumRegionInstrs; |
| |
| SchedRegion(MachineBasicBlock::iterator B, MachineBasicBlock::iterator E, |
| unsigned N) : |
| RegionBegin(B), RegionEnd(E), NumRegionInstrs(N) {} |
| }; |
| } // end anonymous namespace |
| |
| using MBBRegionsVector = SmallVector<SchedRegion, 16>; |
| |
| static void |
| getSchedRegions(MachineBasicBlock *MBB, |
| MBBRegionsVector &Regions, |
| bool RegionsTopDown) { |
| MachineFunction *MF = MBB->getParent(); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| |
| MachineBasicBlock::iterator I = nullptr; |
| for(MachineBasicBlock::iterator RegionEnd = MBB->end(); |
| RegionEnd != MBB->begin(); RegionEnd = I) { |
| |
| // Avoid decrementing RegionEnd for blocks with no terminator. |
| if (RegionEnd != MBB->end() || |
| isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII)) { |
| --RegionEnd; |
| } |
| |
| // The next region starts above the previous region. Look backward in the |
| // instruction stream until we find the nearest boundary. |
| unsigned NumRegionInstrs = 0; |
| I = RegionEnd; |
| for (;I != MBB->begin(); --I) { |
| MachineInstr &MI = *std::prev(I); |
| if (isSchedBoundary(&MI, &*MBB, MF, TII)) |
| break; |
| if (!MI.isDebugOrPseudoInstr()) { |
| // MBB::size() uses instr_iterator to count. Here we need a bundle to |
| // count as a single instruction. |
| ++NumRegionInstrs; |
| } |
| } |
| |
| // It's possible we found a scheduling region that only has debug |
| // instructions. Don't bother scheduling these. |
| if (NumRegionInstrs != 0) |
| Regions.push_back(SchedRegion(I, RegionEnd, NumRegionInstrs)); |
| } |
| |
| if (RegionsTopDown) |
| std::reverse(Regions.begin(), Regions.end()); |
| } |
| |
| /// Main driver for both MachineScheduler and PostMachineScheduler. |
| void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler, |
| bool FixKillFlags) { |
| // Visit all machine basic blocks. |
| // |
| // TODO: Visit blocks in global postorder or postorder within the bottom-up |
| // loop tree. Then we can optionally compute global RegPressure. |
| for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end(); |
| MBB != MBBEnd; ++MBB) { |
| |
| Scheduler.startBlock(&*MBB); |
| |
| #ifndef NDEBUG |
| if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName()) |
| continue; |
| if (SchedOnlyBlock.getNumOccurrences() |
| && (int)SchedOnlyBlock != MBB->getNumber()) |
| continue; |
| #endif |
| |
| // Break the block into scheduling regions [I, RegionEnd). RegionEnd |
| // points to the scheduling boundary at the bottom of the region. The DAG |
| // does not include RegionEnd, but the region does (i.e. the next |
| // RegionEnd is above the previous RegionBegin). If the current block has |
| // no terminator then RegionEnd == MBB->end() for the bottom region. |
| // |
| // All the regions of MBB are first found and stored in MBBRegions, which |
| // will be processed (MBB) top-down if initialized with true. |
| // |
| // The Scheduler may insert instructions during either schedule() or |
| // exitRegion(), even for empty regions. So the local iterators 'I' and |
| // 'RegionEnd' are invalid across these calls. Instructions must not be |
| // added to other regions than the current one without updating MBBRegions. |
| |
| MBBRegionsVector MBBRegions; |
| getSchedRegions(&*MBB, MBBRegions, Scheduler.doMBBSchedRegionsTopDown()); |
| for (const SchedRegion &R : MBBRegions) { |
| MachineBasicBlock::iterator I = R.RegionBegin; |
| MachineBasicBlock::iterator RegionEnd = R.RegionEnd; |
| unsigned NumRegionInstrs = R.NumRegionInstrs; |
| |
| // Notify the scheduler of the region, even if we may skip scheduling |
| // it. Perhaps it still needs to be bundled. |
| Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs); |
| |
| // Skip empty scheduling regions (0 or 1 schedulable instructions). |
| if (I == RegionEnd || I == std::prev(RegionEnd)) { |
| // Close the current region. Bundle the terminator if needed. |
| // This invalidates 'RegionEnd' and 'I'. |
| Scheduler.exitRegion(); |
| continue; |
| } |
| LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n"); |
| LLVM_DEBUG(dbgs() << MF->getName() << ":" << printMBBReference(*MBB) |
| << " " << MBB->getName() << "\n From: " << *I |
| << " To: "; |
| if (RegionEnd != MBB->end()) dbgs() << *RegionEnd; |
| else dbgs() << "End\n"; |
| dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n'); |
| if (DumpCriticalPathLength) { |
| errs() << MF->getName(); |
| errs() << ":%bb. " << MBB->getNumber(); |
| errs() << " " << MBB->getName() << " \n"; |
| } |
| |
| // Schedule a region: possibly reorder instructions. |
| // This invalidates the original region iterators. |
| Scheduler.schedule(); |
| |
| // Close the current region. |
| Scheduler.exitRegion(); |
| } |
| Scheduler.finishBlock(); |
| // FIXME: Ideally, no further passes should rely on kill flags. However, |
| // thumb2 size reduction is currently an exception, so the PostMIScheduler |
| // needs to do this. |
| if (FixKillFlags) |
| Scheduler.fixupKills(*MBB); |
| } |
| Scheduler.finalizeSchedule(); |
| } |
| |
| void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const { |
| // unimplemented |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void ReadyQueue::dump() const { |
| dbgs() << "Queue " << Name << ": "; |
| for (const SUnit *SU : Queue) |
| dbgs() << SU->NodeNum << " "; |
| dbgs() << "\n"; |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // ScheduleDAGMI - Basic machine instruction scheduling. This is |
| // independent of PreRA/PostRA scheduling and involves no extra book-keeping for |
| // virtual registers. |
| // ===----------------------------------------------------------------------===/ |
| |
| // Provide a vtable anchor. |
| ScheduleDAGMI::~ScheduleDAGMI() = default; |
| |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When |
| /// NumPredsLeft reaches zero, release the successor node. |
| /// |
| /// FIXME: Adjust SuccSU height based on MinLatency. |
| void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) { |
| SUnit *SuccSU = SuccEdge->getSUnit(); |
| |
| if (SuccEdge->isWeak()) { |
| --SuccSU->WeakPredsLeft; |
| if (SuccEdge->isCluster()) |
| NextClusterSucc = SuccSU; |
| return; |
| } |
| #ifndef NDEBUG |
| if (SuccSU->NumPredsLeft == 0) { |
| dbgs() << "*** Scheduling failed! ***\n"; |
| dumpNode(*SuccSU); |
| dbgs() << " has been released too many times!\n"; |
| llvm_unreachable(nullptr); |
| } |
| #endif |
| // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However, |
| // CurrCycle may have advanced since then. |
| if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency()) |
| SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency(); |
| |
| --SuccSU->NumPredsLeft; |
| if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) |
| SchedImpl->releaseTopNode(SuccSU); |
| } |
| |
| /// releaseSuccessors - Call releaseSucc on each of SU's successors. |
| void ScheduleDAGMI::releaseSuccessors(SUnit *SU) { |
| for (SDep &Succ : SU->Succs) |
| releaseSucc(SU, &Succ); |
| } |
| |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When |
| /// NumSuccsLeft reaches zero, release the predecessor node. |
| /// |
| /// FIXME: Adjust PredSU height based on MinLatency. |
| void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) { |
| SUnit *PredSU = PredEdge->getSUnit(); |
| |
| if (PredEdge->isWeak()) { |
| --PredSU->WeakSuccsLeft; |
| if (PredEdge->isCluster()) |
| NextClusterPred = PredSU; |
| return; |
| } |
| #ifndef NDEBUG |
| if (PredSU->NumSuccsLeft == 0) { |
| dbgs() << "*** Scheduling failed! ***\n"; |
| dumpNode(*PredSU); |
| dbgs() << " has been released too many times!\n"; |
| llvm_unreachable(nullptr); |
| } |
| #endif |
| // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However, |
| // CurrCycle may have advanced since then. |
| if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency()) |
| PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency(); |
| |
| --PredSU->NumSuccsLeft; |
| if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) |
| SchedImpl->releaseBottomNode(PredSU); |
| } |
| |
| /// releasePredecessors - Call releasePred on each of SU's predecessors. |
| void ScheduleDAGMI::releasePredecessors(SUnit *SU) { |
| for (SDep &Pred : SU->Preds) |
| releasePred(SU, &Pred); |
| } |
| |
| void ScheduleDAGMI::startBlock(MachineBasicBlock *bb) { |
| ScheduleDAGInstrs::startBlock(bb); |
| SchedImpl->enterMBB(bb); |
| } |
| |
| void ScheduleDAGMI::finishBlock() { |
| SchedImpl->leaveMBB(); |
| ScheduleDAGInstrs::finishBlock(); |
| } |
| |
| /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after |
| /// crossing a scheduling boundary. [begin, end) includes all instructions in |
| /// the region, including the boundary itself and single-instruction regions |
| /// that don't get scheduled. |
| void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb, |
| MachineBasicBlock::iterator begin, |
| MachineBasicBlock::iterator end, |
| unsigned regioninstrs) |
| { |
| ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); |
| |
| SchedImpl->initPolicy(begin, end, regioninstrs); |
| } |
| |
| /// This is normally called from the main scheduler loop but may also be invoked |
| /// by the scheduling strategy to perform additional code motion. |
| void ScheduleDAGMI::moveInstruction( |
| MachineInstr *MI, MachineBasicBlock::iterator InsertPos) { |
| // Advance RegionBegin if the first instruction moves down. |
| if (&*RegionBegin == MI) |
| ++RegionBegin; |
| |
| // Update the instruction stream. |
| BB->splice(InsertPos, BB, MI); |
| |
| // Update LiveIntervals |
| if (LIS) |
| LIS->handleMove(*MI, /*UpdateFlags=*/true); |
| |
| // Recede RegionBegin if an instruction moves above the first. |
| if (RegionBegin == InsertPos) |
| RegionBegin = MI; |
| } |
| |
| bool ScheduleDAGMI::checkSchedLimit() { |
| #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG) |
| if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) { |
| CurrentTop = CurrentBottom; |
| return false; |
| } |
| ++NumInstrsScheduled; |
| #endif |
| return true; |
| } |
| |
| /// Per-region scheduling driver, called back from |
| /// MachineScheduler::runOnMachineFunction. This is a simplified driver that |
| /// does not consider liveness or register pressure. It is useful for PostRA |
| /// scheduling and potentially other custom schedulers. |
| void ScheduleDAGMI::schedule() { |
| LLVM_DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n"); |
| LLVM_DEBUG(SchedImpl->dumpPolicy()); |
| |
| // Build the DAG. |
| buildSchedGraph(AA); |
| |
| postprocessDAG(); |
| |
| SmallVector<SUnit*, 8> TopRoots, BotRoots; |
| findRootsAndBiasEdges(TopRoots, BotRoots); |
| |
| LLVM_DEBUG(dump()); |
| if (PrintDAGs) dump(); |
| if (ViewMISchedDAGs) viewGraph(); |
| |
| // Initialize the strategy before modifying the DAG. |
| // This may initialize a DFSResult to be used for queue priority. |
| SchedImpl->initialize(this); |
| |
| // Initialize ready queues now that the DAG and priority data are finalized. |
| initQueues(TopRoots, BotRoots); |
| |
| bool IsTopNode = false; |
| while (true) { |
| LLVM_DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n"); |
| SUnit *SU = SchedImpl->pickNode(IsTopNode); |
| if (!SU) break; |
| |
| assert(!SU->isScheduled && "Node already scheduled"); |
| if (!checkSchedLimit()) |
| break; |
| |
| MachineInstr *MI = SU->getInstr(); |
| if (IsTopNode) { |
| assert(SU->isTopReady() && "node still has unscheduled dependencies"); |
| if (&*CurrentTop == MI) |
| CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); |
| else |
| moveInstruction(MI, CurrentTop); |
| } else { |
| assert(SU->isBottomReady() && "node still has unscheduled dependencies"); |
| MachineBasicBlock::iterator priorII = |
| priorNonDebug(CurrentBottom, CurrentTop); |
| if (&*priorII == MI) |
| CurrentBottom = priorII; |
| else { |
| if (&*CurrentTop == MI) |
| CurrentTop = nextIfDebug(++CurrentTop, priorII); |
| moveInstruction(MI, CurrentBottom); |
| CurrentBottom = MI; |
| } |
| } |
| // Notify the scheduling strategy before updating the DAG. |
| // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues |
| // runs, it can then use the accurate ReadyCycle time to determine whether |
| // newly released nodes can move to the readyQ. |
| SchedImpl->schedNode(SU, IsTopNode); |
| |
| updateQueues(SU, IsTopNode); |
| } |
| assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); |
| |
| placeDebugValues(); |
| |
| LLVM_DEBUG({ |
| dbgs() << "*** Final schedule for " |
| << printMBBReference(*begin()->getParent()) << " ***\n"; |
| dumpSchedule(); |
| dbgs() << '\n'; |
| }); |
| } |
| |
| /// Apply each ScheduleDAGMutation step in order. |
| void ScheduleDAGMI::postprocessDAG() { |
| for (auto &m : Mutations) |
| m->apply(this); |
| } |
| |
| void ScheduleDAGMI:: |
| findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots, |
| SmallVectorImpl<SUnit*> &BotRoots) { |
| for (SUnit &SU : SUnits) { |
| assert(!SU.isBoundaryNode() && "Boundary node should not be in SUnits"); |
| |
| // Order predecessors so DFSResult follows the critical path. |
| SU.biasCriticalPath(); |
| |
| // A SUnit is ready to top schedule if it has no predecessors. |
| if (!SU.NumPredsLeft) |
| TopRoots.push_back(&SU); |
| // A SUnit is ready to bottom schedule if it has no successors. |
| if (!SU.NumSuccsLeft) |
| BotRoots.push_back(&SU); |
| } |
| ExitSU.biasCriticalPath(); |
| } |
| |
| /// Identify DAG roots and setup scheduler queues. |
| void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots, |
| ArrayRef<SUnit*> BotRoots) { |
| NextClusterSucc = nullptr; |
| NextClusterPred = nullptr; |
| |
| // Release all DAG roots for scheduling, not including EntrySU/ExitSU. |
| // |
| // Nodes with unreleased weak edges can still be roots. |
| // Release top roots in forward order. |
| for (SUnit *SU : TopRoots) |
| SchedImpl->releaseTopNode(SU); |
| |
| // Release bottom roots in reverse order so the higher priority nodes appear |
| // first. This is more natural and slightly more efficient. |
| for (SmallVectorImpl<SUnit*>::const_reverse_iterator |
| I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) { |
| SchedImpl->releaseBottomNode(*I); |
| } |
| |
| releaseSuccessors(&EntrySU); |
| releasePredecessors(&ExitSU); |
| |
| SchedImpl->registerRoots(); |
| |
| // Advance past initial DebugValues. |
| CurrentTop = nextIfDebug(RegionBegin, RegionEnd); |
| CurrentBottom = RegionEnd; |
| } |
| |
| /// Update scheduler queues after scheduling an instruction. |
| void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) { |
| // Release dependent instructions for scheduling. |
| if (IsTopNode) |
| releaseSuccessors(SU); |
| else |
| releasePredecessors(SU); |
| |
| SU->isScheduled = true; |
| } |
| |
| /// Reinsert any remaining debug_values, just like the PostRA scheduler. |
| void ScheduleDAGMI::placeDebugValues() { |
| // If first instruction was a DBG_VALUE then put it back. |
| if (FirstDbgValue) { |
| BB->splice(RegionBegin, BB, FirstDbgValue); |
| RegionBegin = FirstDbgValue; |
| } |
| |
| for (std::vector<std::pair<MachineInstr *, MachineInstr *>>::iterator |
| DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { |
| std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); |
| MachineInstr *DbgValue = P.first; |
| MachineBasicBlock::iterator OrigPrevMI = P.second; |
| if (&*RegionBegin == DbgValue) |
| ++RegionBegin; |
| BB->splice(std::next(OrigPrevMI), BB, DbgValue); |
| if (RegionEnd != BB->end() && OrigPrevMI == &*RegionEnd) |
| RegionEnd = DbgValue; |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void ScheduleDAGMI::dumpSchedule() const { |
| for (MachineInstr &MI : *this) { |
| if (SUnit *SU = getSUnit(&MI)) |
| dumpNode(*SU); |
| else |
| dbgs() << "Missing SUnit\n"; |
| } |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals |
| // preservation. |
| //===----------------------------------------------------------------------===// |
| |
| ScheduleDAGMILive::~ScheduleDAGMILive() { |
| delete DFSResult; |
| } |
| |
| void ScheduleDAGMILive::collectVRegUses(SUnit &SU) { |
| const MachineInstr &MI = *SU.getInstr(); |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg()) |
| continue; |
| if (!MO.readsReg()) |
| continue; |
| if (TrackLaneMasks && !MO.isUse()) |
| continue; |
| |
| Register Reg = MO.getReg(); |
| if (!Reg.isVirtual()) |
| continue; |
| |
| // Ignore re-defs. |
| if (TrackLaneMasks) { |
| bool FoundDef = false; |
| for (const MachineOperand &MO2 : MI.operands()) { |
| if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) { |
| FoundDef = true; |
| break; |
| } |
| } |
| if (FoundDef) |
| continue; |
| } |
| |
| // Record this local VReg use. |
| VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg); |
| for (; UI != VRegUses.end(); ++UI) { |
| if (UI->SU == &SU) |
| break; |
| } |
| if (UI == VRegUses.end()) |
| VRegUses.insert(VReg2SUnit(Reg, LaneBitmask::getNone(), &SU)); |
| } |
| } |
| |
| /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after |
| /// crossing a scheduling boundary. [begin, end) includes all instructions in |
| /// the region, including the boundary itself and single-instruction regions |
| /// that don't get scheduled. |
| void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb, |
| MachineBasicBlock::iterator begin, |
| MachineBasicBlock::iterator end, |
| unsigned regioninstrs) |
| { |
| // ScheduleDAGMI initializes SchedImpl's per-region policy. |
| ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs); |
| |
| // For convenience remember the end of the liveness region. |
| LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd); |
| |
| SUPressureDiffs.clear(); |
| |
| ShouldTrackPressure = SchedImpl->shouldTrackPressure(); |
| ShouldTrackLaneMasks = SchedImpl->shouldTrackLaneMasks(); |
| |
| assert((!ShouldTrackLaneMasks || ShouldTrackPressure) && |
| "ShouldTrackLaneMasks requires ShouldTrackPressure"); |
| } |
| |
| // Setup the register pressure trackers for the top scheduled and bottom |
| // scheduled regions. |
| void ScheduleDAGMILive::initRegPressure() { |
| VRegUses.clear(); |
| VRegUses.setUniverse(MRI.getNumVirtRegs()); |
| for (SUnit &SU : SUnits) |
| collectVRegUses(SU); |
| |
| TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin, |
| ShouldTrackLaneMasks, false); |
| BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, |
| ShouldTrackLaneMasks, false); |
| |
| // Close the RPTracker to finalize live ins. |
| RPTracker.closeRegion(); |
| |
| LLVM_DEBUG(RPTracker.dump()); |
| |
| // Initialize the live ins and live outs. |
| TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs); |
| BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs); |
| |
| // Close one end of the tracker so we can call |
| // getMaxUpward/DownwardPressureDelta before advancing across any |
| // instructions. This converts currently live regs into live ins/outs. |
| TopRPTracker.closeTop(); |
| BotRPTracker.closeBottom(); |
| |
| BotRPTracker.initLiveThru(RPTracker); |
| if (!BotRPTracker.getLiveThru().empty()) { |
| TopRPTracker.initLiveThru(BotRPTracker.getLiveThru()); |
| LLVM_DEBUG(dbgs() << "Live Thru: "; |
| dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI)); |
| }; |
| |
| // For each live out vreg reduce the pressure change associated with other |
| // uses of the same vreg below the live-out reaching def. |
| updatePressureDiffs(RPTracker.getPressure().LiveOutRegs); |
| |
| // Account for liveness generated by the region boundary. |
| if (LiveRegionEnd != RegionEnd) { |
| SmallVector<RegisterMaskPair, 8> LiveUses; |
| BotRPTracker.recede(&LiveUses); |
| updatePressureDiffs(LiveUses); |
| } |
| |
| LLVM_DEBUG(dbgs() << "Top Pressure:\n"; |
| dumpRegSetPressure(TopRPTracker.getRegSetPressureAtPos(), TRI); |
| dbgs() << "Bottom Pressure:\n"; |
| dumpRegSetPressure(BotRPTracker.getRegSetPressureAtPos(), TRI);); |
| |
| assert((BotRPTracker.getPos() == RegionEnd || |
| (RegionEnd->isDebugInstr() && |
| BotRPTracker.getPos() == priorNonDebug(RegionEnd, RegionBegin))) && |
| "Can't find the region bottom"); |
| |
| // Cache the list of excess pressure sets in this region. This will also track |
| // the max pressure in the scheduled code for these sets. |
| RegionCriticalPSets.clear(); |
| const std::vector<unsigned> &RegionPressure = |
| RPTracker.getPressure().MaxSetPressure; |
| for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) { |
| unsigned Limit = RegClassInfo->getRegPressureSetLimit(i); |
| if (RegionPressure[i] > Limit) { |
| LLVM_DEBUG(dbgs() << TRI->getRegPressureSetName(i) << " Limit " << Limit |
| << " Actual " << RegionPressure[i] << "\n"); |
| RegionCriticalPSets.push_back(PressureChange(i)); |
| } |
| } |
| LLVM_DEBUG(dbgs() << "Excess PSets: "; |
| for (const PressureChange &RCPS |
| : RegionCriticalPSets) dbgs() |
| << TRI->getRegPressureSetName(RCPS.getPSet()) << " "; |
| dbgs() << "\n"); |
| } |
| |
| void ScheduleDAGMILive:: |
| updateScheduledPressure(const SUnit *SU, |
| const std::vector<unsigned> &NewMaxPressure) { |
| const PressureDiff &PDiff = getPressureDiff(SU); |
| unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size(); |
| for (const PressureChange &PC : PDiff) { |
| if (!PC.isValid()) |
| break; |
| unsigned ID = PC.getPSet(); |
| while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID) |
| ++CritIdx; |
| if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) { |
| if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc() |
| && NewMaxPressure[ID] <= (unsigned)std::numeric_limits<int16_t>::max()) |
| RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]); |
| } |
| unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID); |
| if (NewMaxPressure[ID] >= Limit - 2) { |
| LLVM_DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": " |
| << NewMaxPressure[ID] |
| << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") |
| << Limit << "(+ " << BotRPTracker.getLiveThru()[ID] |
| << " livethru)\n"); |
| } |
| } |
| } |
| |
| /// Update the PressureDiff array for liveness after scheduling this |
| /// instruction. |
| void ScheduleDAGMILive::updatePressureDiffs( |
| ArrayRef<RegisterMaskPair> LiveUses) { |
| for (const RegisterMaskPair &P : LiveUses) { |
| Register Reg = P.RegUnit; |
| /// FIXME: Currently assuming single-use physregs. |
| if (!Reg.isVirtual()) |
| continue; |
| |
| if (ShouldTrackLaneMasks) { |
| // If the register has just become live then other uses won't change |
| // this fact anymore => decrement pressure. |
| // If the register has just become dead then other uses make it come |
| // back to life => increment pressure. |
| bool Decrement = P.LaneMask.any(); |
| |
| for (const VReg2SUnit &V2SU |
| : make_range(VRegUses.find(Reg), VRegUses.end())) { |
| SUnit &SU = *V2SU.SU; |
| if (SU.isScheduled || &SU == &ExitSU) |
| continue; |
| |
| PressureDiff &PDiff = getPressureDiff(&SU); |
| PDiff.addPressureChange(Reg, Decrement, &MRI); |
| LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU.NodeNum << ") " |
| << printReg(Reg, TRI) << ':' |
| << PrintLaneMask(P.LaneMask) << ' ' << *SU.getInstr(); |
| dbgs() << " to "; PDiff.dump(*TRI);); |
| } |
| } else { |
| assert(P.LaneMask.any()); |
| LLVM_DEBUG(dbgs() << " LiveReg: " << printVRegOrUnit(Reg, TRI) << "\n"); |
| // This may be called before CurrentBottom has been initialized. However, |
| // BotRPTracker must have a valid position. We want the value live into the |
| // instruction or live out of the block, so ask for the previous |
| // instruction's live-out. |
| const LiveInterval &LI = LIS->getInterval(Reg); |
| VNInfo *VNI; |
| MachineBasicBlock::const_iterator I = |
| nextIfDebug(BotRPTracker.getPos(), BB->end()); |
| if (I == BB->end()) |
| VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); |
| else { |
| LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*I)); |
| VNI = LRQ.valueIn(); |
| } |
| // RegisterPressureTracker guarantees that readsReg is true for LiveUses. |
| assert(VNI && "No live value at use."); |
| for (const VReg2SUnit &V2SU |
| : make_range(VRegUses.find(Reg), VRegUses.end())) { |
| SUnit *SU = V2SU.SU; |
| // If this use comes before the reaching def, it cannot be a last use, |
| // so decrease its pressure change. |
| if (!SU->isScheduled && SU != &ExitSU) { |
| LiveQueryResult LRQ = |
| LI.Query(LIS->getInstructionIndex(*SU->getInstr())); |
| if (LRQ.valueIn() == VNI) { |
| PressureDiff &PDiff = getPressureDiff(SU); |
| PDiff.addPressureChange(Reg, true, &MRI); |
| LLVM_DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") " |
| << *SU->getInstr(); |
| dbgs() << " to "; PDiff.dump(*TRI);); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void ScheduleDAGMILive::dump() const { |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| if (EntrySU.getInstr() != nullptr) |
| dumpNodeAll(EntrySU); |
| for (const SUnit &SU : SUnits) { |
| dumpNodeAll(SU); |
| if (ShouldTrackPressure) { |
| dbgs() << " Pressure Diff : "; |
| getPressureDiff(&SU).dump(*TRI); |
| } |
| dbgs() << " Single Issue : "; |
| if (SchedModel.mustBeginGroup(SU.getInstr()) && |
| SchedModel.mustEndGroup(SU.getInstr())) |
| dbgs() << "true;"; |
| else |
| dbgs() << "false;"; |
| dbgs() << '\n'; |
| } |
| if (ExitSU.getInstr() != nullptr) |
| dumpNodeAll(ExitSU); |
| #endif |
| } |
| |
| /// schedule - Called back from MachineScheduler::runOnMachineFunction |
| /// after setting up the current scheduling region. [RegionBegin, RegionEnd) |
| /// only includes instructions that have DAG nodes, not scheduling boundaries. |
| /// |
| /// This is a skeletal driver, with all the functionality pushed into helpers, |
| /// so that it can be easily extended by experimental schedulers. Generally, |
| /// implementing MachineSchedStrategy should be sufficient to implement a new |
| /// scheduling algorithm. However, if a scheduler further subclasses |
| /// ScheduleDAGMILive then it will want to override this virtual method in order |
| /// to update any specialized state. |
| void ScheduleDAGMILive::schedule() { |
| LLVM_DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n"); |
| LLVM_DEBUG(SchedImpl->dumpPolicy()); |
| buildDAGWithRegPressure(); |
| |
| postprocessDAG(); |
| |
| SmallVector<SUnit*, 8> TopRoots, BotRoots; |
| findRootsAndBiasEdges(TopRoots, BotRoots); |
| |
| // Initialize the strategy before modifying the DAG. |
| // This may initialize a DFSResult to be used for queue priority. |
| SchedImpl->initialize(this); |
| |
| LLVM_DEBUG(dump()); |
| if (PrintDAGs) dump(); |
| if (ViewMISchedDAGs) viewGraph(); |
| |
| // Initialize ready queues now that the DAG and priority data are finalized. |
| initQueues(TopRoots, BotRoots); |
| |
| bool IsTopNode = false; |
| while (true) { |
| LLVM_DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n"); |
| SUnit *SU = SchedImpl->pickNode(IsTopNode); |
| if (!SU) break; |
| |
| assert(!SU->isScheduled && "Node already scheduled"); |
| if (!checkSchedLimit()) |
| break; |
| |
| scheduleMI(SU, IsTopNode); |
| |
| if (DFSResult) { |
| unsigned SubtreeID = DFSResult->getSubtreeID(SU); |
| if (!ScheduledTrees.test(SubtreeID)) { |
| ScheduledTrees.set(SubtreeID); |
| DFSResult->scheduleTree(SubtreeID); |
| SchedImpl->scheduleTree(SubtreeID); |
| } |
| } |
| |
| // Notify the scheduling strategy after updating the DAG. |
| SchedImpl->schedNode(SU, IsTopNode); |
| |
| updateQueues(SU, IsTopNode); |
| } |
| assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); |
| |
| placeDebugValues(); |
| |
| LLVM_DEBUG({ |
| dbgs() << "*** Final schedule for " |
| << printMBBReference(*begin()->getParent()) << " ***\n"; |
| dumpSchedule(); |
| dbgs() << '\n'; |
| }); |
| } |
| |
| /// Build the DAG and setup three register pressure trackers. |
| void ScheduleDAGMILive::buildDAGWithRegPressure() { |
| if (!ShouldTrackPressure) { |
| RPTracker.reset(); |
| RegionCriticalPSets.clear(); |
| buildSchedGraph(AA); |
| return; |
| } |
| |
| // Initialize the register pressure tracker used by buildSchedGraph. |
| RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd, |
| ShouldTrackLaneMasks, /*TrackUntiedDefs=*/true); |
| |
| // Account for liveness generate by the region boundary. |
| if (LiveRegionEnd != RegionEnd) |
| RPTracker.recede(); |
| |
| // Build the DAG, and compute current register pressure. |
| buildSchedGraph(AA, &RPTracker, &SUPressureDiffs, LIS, ShouldTrackLaneMasks); |
| |
| // Initialize top/bottom trackers after computing region pressure. |
| initRegPressure(); |
| } |
| |
| void ScheduleDAGMILive::computeDFSResult() { |
| if (!DFSResult) |
| DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize); |
| DFSResult->clear(); |
| ScheduledTrees.clear(); |
| DFSResult->resize(SUnits.size()); |
| DFSResult->compute(SUnits); |
| ScheduledTrees.resize(DFSResult->getNumSubtrees()); |
| } |
| |
| /// Compute the max cyclic critical path through the DAG. The scheduling DAG |
| /// only provides the critical path for single block loops. To handle loops that |
| /// span blocks, we could use the vreg path latencies provided by |
| /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently |
| /// available for use in the scheduler. |
| /// |
| /// The cyclic path estimation identifies a def-use pair that crosses the back |
| /// edge and considers the depth and height of the nodes. For example, consider |
| /// the following instruction sequence where each instruction has unit latency |
| /// and defines an eponymous virtual register: |
| /// |
| /// a->b(a,c)->c(b)->d(c)->exit |
| /// |
| /// The cyclic critical path is a two cycles: b->c->b |
| /// The acyclic critical path is four cycles: a->b->c->d->exit |
| /// LiveOutHeight = height(c) = len(c->d->exit) = 2 |
| /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3 |
| /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4 |
| /// LiveInDepth = depth(b) = len(a->b) = 1 |
| /// |
| /// LiveOutDepth - LiveInDepth = 3 - 1 = 2 |
| /// LiveInHeight - LiveOutHeight = 4 - 2 = 2 |
| /// CyclicCriticalPath = min(2, 2) = 2 |
| /// |
| /// This could be relevant to PostRA scheduling, but is currently implemented |
| /// assuming LiveIntervals. |
| unsigned ScheduleDAGMILive::computeCyclicCriticalPath() { |
| // This only applies to single block loop. |
| if (!BB->isSuccessor(BB)) |
| return 0; |
| |
| unsigned MaxCyclicLatency = 0; |
| // Visit each live out vreg def to find def/use pairs that cross iterations. |
| for (const RegisterMaskPair &P : RPTracker.getPressure().LiveOutRegs) { |
| Register Reg = P.RegUnit; |
| if (!Reg.isVirtual()) |
| continue; |
| const LiveInterval &LI = LIS->getInterval(Reg); |
| const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB)); |
| if (!DefVNI) |
| continue; |
| |
| MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def); |
| const SUnit *DefSU = getSUnit(DefMI); |
| if (!DefSU) |
| continue; |
| |
| unsigned LiveOutHeight = DefSU->getHeight(); |
| unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency; |
| // Visit all local users of the vreg def. |
| for (const VReg2SUnit &V2SU |
| : make_range(VRegUses.find(Reg), VRegUses.end())) { |
| SUnit *SU = V2SU.SU; |
| if (SU == &ExitSU) |
| continue; |
| |
| // Only consider uses of the phi. |
| LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(*SU->getInstr())); |
| if (!LRQ.valueIn()->isPHIDef()) |
| continue; |
| |
| // Assume that a path spanning two iterations is a cycle, which could |
| // overestimate in strange cases. This allows cyclic latency to be |
| // estimated as the minimum slack of the vreg's depth or height. |
| unsigned CyclicLatency = 0; |
| if (LiveOutDepth > SU->getDepth()) |
| CyclicLatency = LiveOutDepth - SU->getDepth(); |
| |
| unsigned LiveInHeight = SU->getHeight() + DefSU->Latency; |
| if (LiveInHeight > LiveOutHeight) { |
| if (LiveInHeight - LiveOutHeight < CyclicLatency) |
| CyclicLatency = LiveInHeight - LiveOutHeight; |
| } else |
| CyclicLatency = 0; |
| |
| LLVM_DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU(" |
| << SU->NodeNum << ") = " << CyclicLatency << "c\n"); |
| if (CyclicLatency > MaxCyclicLatency) |
| MaxCyclicLatency = CyclicLatency; |
| } |
| } |
| LLVM_DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n"); |
| return MaxCyclicLatency; |
| } |
| |
| /// Release ExitSU predecessors and setup scheduler queues. Re-position |
| /// the Top RP tracker in case the region beginning has changed. |
| void ScheduleDAGMILive::initQueues(ArrayRef<SUnit*> TopRoots, |
| ArrayRef<SUnit*> BotRoots) { |
| ScheduleDAGMI::initQueues(TopRoots, BotRoots); |
| if (ShouldTrackPressure) { |
| assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker"); |
| TopRPTracker.setPos(CurrentTop); |
| } |
| } |
| |
| /// Move an instruction and update register pressure. |
| void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) { |
| // Move the instruction to its new location in the instruction stream. |
| MachineInstr *MI = SU->getInstr(); |
| |
| if (IsTopNode) { |
| assert(SU->isTopReady() && "node still has unscheduled dependencies"); |
| if (&*CurrentTop == MI) |
| CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom); |
| else { |
| moveInstruction(MI, CurrentTop); |
| TopRPTracker.setPos(MI); |
| } |
| |
| if (ShouldTrackPressure) { |
| // Update top scheduled pressure. |
| RegisterOperands RegOpers; |
| RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); |
| if (ShouldTrackLaneMasks) { |
| // Adjust liveness and add missing dead+read-undef flags. |
| SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); |
| RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); |
| } else { |
| // Adjust for missing dead-def flags. |
| RegOpers.detectDeadDefs(*MI, *LIS); |
| } |
| |
| TopRPTracker.advance(RegOpers); |
| assert(TopRPTracker.getPos() == CurrentTop && "out of sync"); |
| LLVM_DEBUG(dbgs() << "Top Pressure:\n"; dumpRegSetPressure( |
| TopRPTracker.getRegSetPressureAtPos(), TRI);); |
| |
| updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure); |
| } |
| } else { |
| assert(SU->isBottomReady() && "node still has unscheduled dependencies"); |
| MachineBasicBlock::iterator priorII = |
| priorNonDebug(CurrentBottom, CurrentTop); |
| if (&*priorII == MI) |
| CurrentBottom = priorII; |
| else { |
| if (&*CurrentTop == MI) { |
| CurrentTop = nextIfDebug(++CurrentTop, priorII); |
| TopRPTracker.setPos(CurrentTop); |
| } |
| moveInstruction(MI, CurrentBottom); |
| CurrentBottom = MI; |
| BotRPTracker.setPos(CurrentBottom); |
| } |
| if (ShouldTrackPressure) { |
| RegisterOperands RegOpers; |
| RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false); |
| if (ShouldTrackLaneMasks) { |
| // Adjust liveness and add missing dead+read-undef flags. |
| SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot(); |
| RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI); |
| } else { |
| // Adjust for missing dead-def flags. |
| RegOpers.detectDeadDefs(*MI, *LIS); |
| } |
| |
| if (BotRPTracker.getPos() != CurrentBottom) |
| BotRPTracker.recedeSkipDebugValues(); |
| SmallVector<RegisterMaskPair, 8> LiveUses; |
| BotRPTracker.recede(RegOpers, &LiveUses); |
| assert(BotRPTracker.getPos() == CurrentBottom && "out of sync"); |
| LLVM_DEBUG(dbgs() << "Bottom Pressure:\n"; dumpRegSetPressure( |
| BotRPTracker.getRegSetPressureAtPos(), TRI);); |
| |
| updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure); |
| updatePressureDiffs(LiveUses); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BaseMemOpClusterMutation - DAG post-processing to cluster loads or stores. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Post-process the DAG to create cluster edges between neighboring |
| /// loads or between neighboring stores. |
| class BaseMemOpClusterMutation : public ScheduleDAGMutation { |
| struct MemOpInfo { |
| SUnit *SU; |
| SmallVector<const MachineOperand *, 4> BaseOps; |
| int64_t Offset; |
| unsigned Width; |
| |
| MemOpInfo(SUnit *SU, ArrayRef<const MachineOperand *> BaseOps, |
| int64_t Offset, unsigned Width) |
| : SU(SU), BaseOps(BaseOps.begin(), BaseOps.end()), Offset(Offset), |
| Width(Width) {} |
| |
| static bool Compare(const MachineOperand *const &A, |
| const MachineOperand *const &B) { |
| if (A->getType() != B->getType()) |
| return A->getType() < B->getType(); |
| if (A->isReg()) |
| return A->getReg() < B->getReg(); |
| if (A->isFI()) { |
| const MachineFunction &MF = *A->getParent()->getParent()->getParent(); |
| const TargetFrameLowering &TFI = *MF.getSubtarget().getFrameLowering(); |
| bool StackGrowsDown = TFI.getStackGrowthDirection() == |
| TargetFrameLowering::StackGrowsDown; |
| return StackGrowsDown ? A->getIndex() > B->getIndex() |
| : A->getIndex() < B->getIndex(); |
| } |
| |
| llvm_unreachable("MemOpClusterMutation only supports register or frame " |
| "index bases."); |
| } |
| |
| bool operator<(const MemOpInfo &RHS) const { |
| // FIXME: Don't compare everything twice. Maybe use C++20 three way |
| // comparison instead when it's available. |
| if (std::lexicographical_compare(BaseOps.begin(), BaseOps.end(), |
| RHS.BaseOps.begin(), RHS.BaseOps.end(), |
| Compare)) |
| return true; |
| if (std::lexicographical_compare(RHS.BaseOps.begin(), RHS.BaseOps.end(), |
| BaseOps.begin(), BaseOps.end(), Compare)) |
| return false; |
| if (Offset != RHS.Offset) |
| return Offset < RHS.Offset; |
| return SU->NodeNum < RHS.SU->NodeNum; |
| } |
| }; |
| |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| bool IsLoad; |
| |
| public: |
| BaseMemOpClusterMutation(const TargetInstrInfo *tii, |
| const TargetRegisterInfo *tri, bool IsLoad) |
| : TII(tii), TRI(tri), IsLoad(IsLoad) {} |
| |
| void apply(ScheduleDAGInstrs *DAGInstrs) override; |
| |
| protected: |
| void clusterNeighboringMemOps(ArrayRef<MemOpInfo> MemOps, bool FastCluster, |
| ScheduleDAGInstrs *DAG); |
| void collectMemOpRecords(std::vector<SUnit> &SUnits, |
| SmallVectorImpl<MemOpInfo> &MemOpRecords); |
| bool groupMemOps(ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, |
| DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups); |
| }; |
| |
| class StoreClusterMutation : public BaseMemOpClusterMutation { |
| public: |
| StoreClusterMutation(const TargetInstrInfo *tii, |
| const TargetRegisterInfo *tri) |
| : BaseMemOpClusterMutation(tii, tri, false) {} |
| }; |
| |
| class LoadClusterMutation : public BaseMemOpClusterMutation { |
| public: |
| LoadClusterMutation(const TargetInstrInfo *tii, const TargetRegisterInfo *tri) |
| : BaseMemOpClusterMutation(tii, tri, true) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| std::unique_ptr<ScheduleDAGMutation> |
| createLoadClusterDAGMutation(const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) { |
| return EnableMemOpCluster ? std::make_unique<LoadClusterMutation>(TII, TRI) |
| : nullptr; |
| } |
| |
| std::unique_ptr<ScheduleDAGMutation> |
| createStoreClusterDAGMutation(const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) { |
| return EnableMemOpCluster ? std::make_unique<StoreClusterMutation>(TII, TRI) |
| : nullptr; |
| } |
| |
| } // end namespace llvm |
| |
| // Sorting all the loads/stores first, then for each load/store, checking the |
| // following load/store one by one, until reach the first non-dependent one and |
| // call target hook to see if they can cluster. |
| // If FastCluster is enabled, we assume that, all the loads/stores have been |
| // preprocessed and now, they didn't have dependencies on each other. |
| void BaseMemOpClusterMutation::clusterNeighboringMemOps( |
| ArrayRef<MemOpInfo> MemOpRecords, bool FastCluster, |
| ScheduleDAGInstrs *DAG) { |
| // Keep track of the current cluster length and bytes for each SUnit. |
| DenseMap<unsigned, std::pair<unsigned, unsigned>> SUnit2ClusterInfo; |
| |
| // At this point, `MemOpRecords` array must hold atleast two mem ops. Try to |
| // cluster mem ops collected within `MemOpRecords` array. |
| for (unsigned Idx = 0, End = MemOpRecords.size(); Idx < (End - 1); ++Idx) { |
| // Decision to cluster mem ops is taken based on target dependent logic |
| auto MemOpa = MemOpRecords[Idx]; |
| |
| // Seek for the next load/store to do the cluster. |
| unsigned NextIdx = Idx + 1; |
| for (; NextIdx < End; ++NextIdx) |
| // Skip if MemOpb has been clustered already or has dependency with |
| // MemOpa. |
| if (!SUnit2ClusterInfo.count(MemOpRecords[NextIdx].SU->NodeNum) && |
| (FastCluster || |
| (!DAG->IsReachable(MemOpRecords[NextIdx].SU, MemOpa.SU) && |
| !DAG->IsReachable(MemOpa.SU, MemOpRecords[NextIdx].SU)))) |
| break; |
| if (NextIdx == End) |
| continue; |
| |
| auto MemOpb = MemOpRecords[NextIdx]; |
| unsigned ClusterLength = 2; |
| unsigned CurrentClusterBytes = MemOpa.Width + MemOpb.Width; |
| if (SUnit2ClusterInfo.count(MemOpa.SU->NodeNum)) { |
| ClusterLength = SUnit2ClusterInfo[MemOpa.SU->NodeNum].first + 1; |
| CurrentClusterBytes = |
| SUnit2ClusterInfo[MemOpa.SU->NodeNum].second + MemOpb.Width; |
| } |
| |
| if (!TII->shouldClusterMemOps(MemOpa.BaseOps, MemOpb.BaseOps, ClusterLength, |
| CurrentClusterBytes)) |
| continue; |
| |
| SUnit *SUa = MemOpa.SU; |
| SUnit *SUb = MemOpb.SU; |
| if (SUa->NodeNum > SUb->NodeNum) |
| std::swap(SUa, SUb); |
| |
| // FIXME: Is this check really required? |
| if (!DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Cluster ld/st SU(" << SUa->NodeNum << ") - SU(" |
| << SUb->NodeNum << ")\n"); |
| ++NumClustered; |
| |
| if (IsLoad) { |
| // Copy successor edges from SUa to SUb. Interleaving computation |
| // dependent on SUa can prevent load combining due to register reuse. |
| // Predecessor edges do not need to be copied from SUb to SUa since |
| // nearby loads should have effectively the same inputs. |
| for (const SDep &Succ : SUa->Succs) { |
| if (Succ.getSUnit() == SUb) |
| continue; |
| LLVM_DEBUG(dbgs() << " Copy Succ SU(" << Succ.getSUnit()->NodeNum |
| << ")\n"); |
| DAG->addEdge(Succ.getSUnit(), SDep(SUb, SDep::Artificial)); |
| } |
| } else { |
| // Copy predecessor edges from SUb to SUa to avoid the SUnits that |
| // SUb dependent on scheduled in-between SUb and SUa. Successor edges |
| // do not need to be copied from SUa to SUb since no one will depend |
| // on stores. |
| // Notice that, we don't need to care about the memory dependency as |
| // we won't try to cluster them if they have any memory dependency. |
| for (const SDep &Pred : SUb->Preds) { |
| if (Pred.getSUnit() == SUa) |
| continue; |
| LLVM_DEBUG(dbgs() << " Copy Pred SU(" << Pred.getSUnit()->NodeNum |
| << ")\n"); |
| DAG->addEdge(SUa, SDep(Pred.getSUnit(), SDep::Artificial)); |
| } |
| } |
| |
| SUnit2ClusterInfo[MemOpb.SU->NodeNum] = {ClusterLength, |
| CurrentClusterBytes}; |
| |
| LLVM_DEBUG(dbgs() << " Curr cluster length: " << ClusterLength |
| << ", Curr cluster bytes: " << CurrentClusterBytes |
| << "\n"); |
| } |
| } |
| |
| void BaseMemOpClusterMutation::collectMemOpRecords( |
| std::vector<SUnit> &SUnits, SmallVectorImpl<MemOpInfo> &MemOpRecords) { |
| for (auto &SU : SUnits) { |
| if ((IsLoad && !SU.getInstr()->mayLoad()) || |
| (!IsLoad && !SU.getInstr()->mayStore())) |
| continue; |
| |
| const MachineInstr &MI = *SU.getInstr(); |
| SmallVector<const MachineOperand *, 4> BaseOps; |
| int64_t Offset; |
| bool OffsetIsScalable; |
| unsigned Width; |
| if (TII->getMemOperandsWithOffsetWidth(MI, BaseOps, Offset, |
| OffsetIsScalable, Width, TRI)) { |
| MemOpRecords.push_back(MemOpInfo(&SU, BaseOps, Offset, Width)); |
| |
| LLVM_DEBUG(dbgs() << "Num BaseOps: " << BaseOps.size() << ", Offset: " |
| << Offset << ", OffsetIsScalable: " << OffsetIsScalable |
| << ", Width: " << Width << "\n"); |
| } |
| #ifndef NDEBUG |
| for (const auto *Op : BaseOps) |
| assert(Op); |
| #endif |
| } |
| } |
| |
| bool BaseMemOpClusterMutation::groupMemOps( |
| ArrayRef<MemOpInfo> MemOps, ScheduleDAGInstrs *DAG, |
| DenseMap<unsigned, SmallVector<MemOpInfo, 32>> &Groups) { |
| bool FastCluster = |
| ForceFastCluster || |
| MemOps.size() * DAG->SUnits.size() / 1000 > FastClusterThreshold; |
| |
| for (const auto &MemOp : MemOps) { |
| unsigned ChainPredID = DAG->SUnits.size(); |
| if (FastCluster) { |
| for (const SDep &Pred : MemOp.SU->Preds) { |
| // We only want to cluster the mem ops that have the same ctrl(non-data) |
| // pred so that they didn't have ctrl dependency for each other. But for |
| // store instrs, we can still cluster them if the pred is load instr. |
| if ((Pred.isCtrl() && |
| (IsLoad || |
| (Pred.getSUnit() && Pred.getSUnit()->getInstr()->mayStore()))) && |
| !Pred.isArtificial()) { |
| ChainPredID = Pred.getSUnit()->NodeNum; |
| break; |
| } |
| } |
| } else |
| ChainPredID = 0; |
| |
| Groups[ChainPredID].push_back(MemOp); |
| } |
| return FastCluster; |
| } |
| |
| /// Callback from DAG postProcessing to create cluster edges for loads/stores. |
| void BaseMemOpClusterMutation::apply(ScheduleDAGInstrs *DAG) { |
| // Collect all the clusterable loads/stores |
| SmallVector<MemOpInfo, 32> MemOpRecords; |
| collectMemOpRecords(DAG->SUnits, MemOpRecords); |
| |
| if (MemOpRecords.size() < 2) |
| return; |
| |
| // Put the loads/stores without dependency into the same group with some |
| // heuristic if the DAG is too complex to avoid compiling time blow up. |
| // Notice that, some fusion pair could be lost with this. |
| DenseMap<unsigned, SmallVector<MemOpInfo, 32>> Groups; |
| bool FastCluster = groupMemOps(MemOpRecords, DAG, Groups); |
| |
| for (auto &Group : Groups) { |
| // Sorting the loads/stores, so that, we can stop the cluster as early as |
| // possible. |
| llvm::sort(Group.second); |
| |
| // Trying to cluster all the neighboring loads/stores. |
| clusterNeighboringMemOps(Group.second, FastCluster, DAG); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // CopyConstrain - DAG post-processing to encourage copy elimination. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Post-process the DAG to create weak edges from all uses of a copy to |
| /// the one use that defines the copy's source vreg, most likely an induction |
| /// variable increment. |
| class CopyConstrain : public ScheduleDAGMutation { |
| // Transient state. |
| SlotIndex RegionBeginIdx; |
| |
| // RegionEndIdx is the slot index of the last non-debug instruction in the |
| // scheduling region. So we may have RegionBeginIdx == RegionEndIdx. |
| SlotIndex RegionEndIdx; |
| |
| public: |
| CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {} |
| |
| void apply(ScheduleDAGInstrs *DAGInstrs) override; |
| |
| protected: |
| void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG); |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| std::unique_ptr<ScheduleDAGMutation> |
| createCopyConstrainDAGMutation(const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) { |
| return std::make_unique<CopyConstrain>(TII, TRI); |
| } |
| |
| } // end namespace llvm |
| |
| /// constrainLocalCopy handles two possibilities: |
| /// 1) Local src: |
| /// I0: = dst |
| /// I1: src = ... |
| /// I2: = dst |
| /// I3: dst = src (copy) |
| /// (create pred->succ edges I0->I1, I2->I1) |
| /// |
| /// 2) Local copy: |
| /// I0: dst = src (copy) |
| /// I1: = dst |
| /// I2: src = ... |
| /// I3: = dst |
| /// (create pred->succ edges I1->I2, I3->I2) |
| /// |
| /// Although the MachineScheduler is currently constrained to single blocks, |
| /// this algorithm should handle extended blocks. An EBB is a set of |
| /// contiguously numbered blocks such that the previous block in the EBB is |
| /// always the single predecessor. |
| void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) { |
| LiveIntervals *LIS = DAG->getLIS(); |
| MachineInstr *Copy = CopySU->getInstr(); |
| |
| // Check for pure vreg copies. |
| const MachineOperand &SrcOp = Copy->getOperand(1); |
| Register SrcReg = SrcOp.getReg(); |
| if (!SrcReg.isVirtual() || !SrcOp.readsReg()) |
| return; |
| |
| const MachineOperand &DstOp = Copy->getOperand(0); |
| Register DstReg = DstOp.getReg(); |
| if (!DstReg.isVirtual() || DstOp.isDead()) |
| return; |
| |
| // Check if either the dest or source is local. If it's live across a back |
| // edge, it's not local. Note that if both vregs are live across the back |
| // edge, we cannot successfully contrain the copy without cyclic scheduling. |
| // If both the copy's source and dest are local live intervals, then we |
| // should treat the dest as the global for the purpose of adding |
| // constraints. This adds edges from source's other uses to the copy. |
| unsigned LocalReg = SrcReg; |
| unsigned GlobalReg = DstReg; |
| LiveInterval *LocalLI = &LIS->getInterval(LocalReg); |
| if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) { |
| LocalReg = DstReg; |
| GlobalReg = SrcReg; |
| LocalLI = &LIS->getInterval(LocalReg); |
| if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) |
| return; |
| } |
| LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg); |
| |
| // Find the global segment after the start of the local LI. |
| LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex()); |
| // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a |
| // local live range. We could create edges from other global uses to the local |
| // start, but the coalescer should have already eliminated these cases, so |
| // don't bother dealing with it. |
| if (GlobalSegment == GlobalLI->end()) |
| return; |
| |
| // If GlobalSegment is killed at the LocalLI->start, the call to find() |
| // returned the next global segment. But if GlobalSegment overlaps with |
| // LocalLI->start, then advance to the next segment. If a hole in GlobalLI |
| // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole. |
| if (GlobalSegment->contains(LocalLI->beginIndex())) |
| ++GlobalSegment; |
| |
| if (GlobalSegment == GlobalLI->end()) |
| return; |
| |
| // Check if GlobalLI contains a hole in the vicinity of LocalLI. |
| if (GlobalSegment != GlobalLI->begin()) { |
| // Two address defs have no hole. |
| if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end, |
| GlobalSegment->start)) { |
| return; |
| } |
| // If the prior global segment may be defined by the same two-address |
| // instruction that also defines LocalLI, then can't make a hole here. |
| if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start, |
| LocalLI->beginIndex())) { |
| return; |
| } |
| // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise |
| // it would be a disconnected component in the live range. |
| assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() && |
| "Disconnected LRG within the scheduling region."); |
| } |
| MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start); |
| if (!GlobalDef) |
| return; |
| |
| SUnit *GlobalSU = DAG->getSUnit(GlobalDef); |
| if (!GlobalSU) |
| return; |
| |
| // GlobalDef is the bottom of the GlobalLI hole. Open the hole by |
| // constraining the uses of the last local def to precede GlobalDef. |
| SmallVector<SUnit*,8> LocalUses; |
| const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex()); |
| MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def); |
| SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef); |
| for (const SDep &Succ : LastLocalSU->Succs) { |
| if (Succ.getKind() != SDep::Data || Succ.getReg() != LocalReg) |
| continue; |
| if (Succ.getSUnit() == GlobalSU) |
| continue; |
| if (!DAG->canAddEdge(GlobalSU, Succ.getSUnit())) |
| return; |
| LocalUses.push_back(Succ.getSUnit()); |
| } |
| // Open the top of the GlobalLI hole by constraining any earlier global uses |
| // to precede the start of LocalLI. |
| SmallVector<SUnit*,8> GlobalUses; |
| MachineInstr *FirstLocalDef = |
| LIS->getInstructionFromIndex(LocalLI->beginIndex()); |
| SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef); |
| for (const SDep &Pred : GlobalSU->Preds) { |
| if (Pred.getKind() != SDep::Anti || Pred.getReg() != GlobalReg) |
| continue; |
| if (Pred.getSUnit() == FirstLocalSU) |
| continue; |
| if (!DAG->canAddEdge(FirstLocalSU, Pred.getSUnit())) |
| return; |
| GlobalUses.push_back(Pred.getSUnit()); |
| } |
| LLVM_DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n"); |
| // Add the weak edges. |
| for (SUnit *LU : LocalUses) { |
| LLVM_DEBUG(dbgs() << " Local use SU(" << LU->NodeNum << ") -> SU(" |
| << GlobalSU->NodeNum << ")\n"); |
| DAG->addEdge(GlobalSU, SDep(LU, SDep::Weak)); |
| } |
| for (SUnit *GU : GlobalUses) { |
| LLVM_DEBUG(dbgs() << " Global use SU(" << GU->NodeNum << ") -> SU(" |
| << FirstLocalSU->NodeNum << ")\n"); |
| DAG->addEdge(FirstLocalSU, SDep(GU, SDep::Weak)); |
| } |
| } |
| |
| /// Callback from DAG postProcessing to create weak edges to encourage |
| /// copy elimination. |
| void CopyConstrain::apply(ScheduleDAGInstrs *DAGInstrs) { |
| ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); |
| assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals"); |
| |
| MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end()); |
| if (FirstPos == DAG->end()) |
| return; |
| RegionBeginIdx = DAG->getLIS()->getInstructionIndex(*FirstPos); |
| RegionEndIdx = DAG->getLIS()->getInstructionIndex( |
| *priorNonDebug(DAG->end(), DAG->begin())); |
| |
| for (SUnit &SU : DAG->SUnits) { |
| if (!SU.getInstr()->isCopy()) |
| continue; |
| |
| constrainLocalCopy(&SU, static_cast<ScheduleDAGMILive*>(DAG)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler |
| // and possibly other custom schedulers. |
| //===----------------------------------------------------------------------===// |
| |
| static const unsigned InvalidCycle = ~0U; |
| |
| SchedBoundary::~SchedBoundary() { delete HazardRec; } |
| |
| /// Given a Count of resource usage and a Latency value, return true if a |
| /// SchedBoundary becomes resource limited. |
| /// If we are checking after scheduling a node, we should return true when |
| /// we just reach the resource limit. |
| static bool checkResourceLimit(unsigned LFactor, unsigned Count, |
| unsigned Latency, bool AfterSchedNode) { |
| int ResCntFactor = (int)(Count - (Latency * LFactor)); |
| if (AfterSchedNode) |
| return ResCntFactor >= (int)LFactor; |
| else |
| return ResCntFactor > (int)LFactor; |
| } |
| |
| void SchedBoundary::reset() { |
| // A new HazardRec is created for each DAG and owned by SchedBoundary. |
| // Destroying and reconstructing it is very expensive though. So keep |
| // invalid, placeholder HazardRecs. |
| if (HazardRec && HazardRec->isEnabled()) { |
| delete HazardRec; |
| HazardRec = nullptr; |
| } |
| Available.clear(); |
| Pending.clear(); |
| CheckPending = false; |
| CurrCycle = 0; |
| CurrMOps = 0; |
| MinReadyCycle = std::numeric_limits<unsigned>::max(); |
| ExpectedLatency = 0; |
| DependentLatency = 0; |
| RetiredMOps = 0; |
| MaxExecutedResCount = 0; |
| ZoneCritResIdx = 0; |
| IsResourceLimited = false; |
| ReservedCycles.clear(); |
| ReservedCyclesIndex.clear(); |
| ResourceGroupSubUnitMasks.clear(); |
| #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| // Track the maximum number of stall cycles that could arise either from the |
| // latency of a DAG edge or the number of cycles that a processor resource is |
| // reserved (SchedBoundary::ReservedCycles). |
| MaxObservedStall = 0; |
| #endif |
| // Reserve a zero-count for invalid CritResIdx. |
| ExecutedResCounts.resize(1); |
| assert(!ExecutedResCounts[0] && "nonzero count for bad resource"); |
| } |
| |
| void SchedRemainder:: |
| init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) { |
| reset(); |
| if (!SchedModel->hasInstrSchedModel()) |
| return; |
| RemainingCounts.resize(SchedModel->getNumProcResourceKinds()); |
| for (SUnit &SU : DAG->SUnits) { |
| const MCSchedClassDesc *SC = DAG->getSchedClass(&SU); |
| RemIssueCount += SchedModel->getNumMicroOps(SU.getInstr(), SC) |
| * SchedModel->getMicroOpFactor(); |
| for (TargetSchedModel::ProcResIter |
| PI = SchedModel->getWriteProcResBegin(SC), |
| PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { |
| unsigned PIdx = PI->ProcResourceIdx; |
| unsigned Factor = SchedModel->getResourceFactor(PIdx); |
| RemainingCounts[PIdx] += (Factor * PI->Cycles); |
| } |
| } |
| } |
| |
| void SchedBoundary:: |
| init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) { |
| reset(); |
| DAG = dag; |
| SchedModel = smodel; |
| Rem = rem; |
| if (SchedModel->hasInstrSchedModel()) { |
| unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); |
| ReservedCyclesIndex.resize(ResourceCount); |
| ExecutedResCounts.resize(ResourceCount); |
| ResourceGroupSubUnitMasks.resize(ResourceCount, APInt(ResourceCount, 0)); |
| unsigned NumUnits = 0; |
| |
| for (unsigned i = 0; i < ResourceCount; ++i) { |
| ReservedCyclesIndex[i] = NumUnits; |
| NumUnits += SchedModel->getProcResource(i)->NumUnits; |
| if (isUnbufferedGroup(i)) { |
| auto SubUnits = SchedModel->getProcResource(i)->SubUnitsIdxBegin; |
| for (unsigned U = 0, UE = SchedModel->getProcResource(i)->NumUnits; |
| U != UE; ++U) |
| ResourceGroupSubUnitMasks[i].setBit(SubUnits[U]); |
| } |
| } |
| |
| ReservedCycles.resize(NumUnits, InvalidCycle); |
| } |
| } |
| |
| /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat |
| /// these "soft stalls" differently than the hard stall cycles based on CPU |
| /// resources and computed by checkHazard(). A fully in-order model |
| /// (MicroOpBufferSize==0) will not make use of this since instructions are not |
| /// available for scheduling until they are ready. However, a weaker in-order |
| /// model may use this for heuristics. For example, if a processor has in-order |
| /// behavior when reading certain resources, this may come into play. |
| unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) { |
| if (!SU->isUnbuffered) |
| return 0; |
| |
| unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); |
| if (ReadyCycle > CurrCycle) |
| return ReadyCycle - CurrCycle; |
| return 0; |
| } |
| |
| /// Compute the next cycle at which the given processor resource unit |
| /// can be scheduled. |
| unsigned SchedBoundary::getNextResourceCycleByInstance(unsigned InstanceIdx, |
| unsigned Cycles) { |
| unsigned NextUnreserved = ReservedCycles[InstanceIdx]; |
| // If this resource has never been used, always return cycle zero. |
| if (NextUnreserved == InvalidCycle) |
| return 0; |
| // For bottom-up scheduling add the cycles needed for the current operation. |
| if (!isTop()) |
| NextUnreserved += Cycles; |
| return NextUnreserved; |
| } |
| |
| /// Compute the next cycle at which the given processor resource can be |
| /// scheduled. Returns the next cycle and the index of the processor resource |
| /// instance in the reserved cycles vector. |
| std::pair<unsigned, unsigned> |
| SchedBoundary::getNextResourceCycle(const MCSchedClassDesc *SC, unsigned PIdx, |
| unsigned Cycles) { |
| |
| unsigned MinNextUnreserved = InvalidCycle; |
| unsigned InstanceIdx = 0; |
| unsigned StartIndex = ReservedCyclesIndex[PIdx]; |
| unsigned NumberOfInstances = SchedModel->getProcResource(PIdx)->NumUnits; |
| assert(NumberOfInstances > 0 && |
| "Cannot have zero instances of a ProcResource"); |
| |
| if (isUnbufferedGroup(PIdx)) { |
| // If any subunits are used by the instruction, report that the resource |
| // group is available at 0, effectively removing the group record from |
| // hazarding and basing the hazarding decisions on the subunit records. |
| // Otherwise, choose the first available instance from among the subunits. |
| // Specifications which assign cycles to both the subunits and the group or |
| // which use an unbuffered group with buffered subunits will appear to |
| // schedule strangely. In the first case, the additional cycles for the |
| // group will be ignored. In the second, the group will be ignored |
| // entirely. |
| for (const MCWriteProcResEntry &PE : |
| make_range(SchedModel->getWriteProcResBegin(SC), |
| SchedModel->getWriteProcResEnd(SC))) |
| if (ResourceGroupSubUnitMasks[PIdx][PE.ProcResourceIdx]) |
| return std::make_pair(0u, StartIndex); |
| |
| auto SubUnits = SchedModel->getProcResource(PIdx)->SubUnitsIdxBegin; |
| for (unsigned I = 0, End = NumberOfInstances; I < End; ++I) { |
| unsigned NextUnreserved, NextInstanceIdx; |
| std::tie(NextUnreserved, NextInstanceIdx) = |
| getNextResourceCycle(SC, SubUnits[I], Cycles); |
| if (MinNextUnreserved > NextUnreserved) { |
| InstanceIdx = NextInstanceIdx; |
| MinNextUnreserved = NextUnreserved; |
| } |
| } |
| return std::make_pair(MinNextUnreserved, InstanceIdx); |
| } |
| |
| for (unsigned I = StartIndex, End = StartIndex + NumberOfInstances; I < End; |
| ++I) { |
| unsigned NextUnreserved = getNextResourceCycleByInstance(I, Cycles); |
| if (MinNextUnreserved > NextUnreserved) { |
| InstanceIdx = I; |
| MinNextUnreserved = NextUnreserved; |
| } |
| } |
| return std::make_pair(MinNextUnreserved, InstanceIdx); |
| } |
| |
| /// Does this SU have a hazard within the current instruction group. |
| /// |
| /// The scheduler supports two modes of hazard recognition. The first is the |
| /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that |
| /// supports highly complicated in-order reservation tables |
| /// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. |
| /// |
| /// The second is a streamlined mechanism that checks for hazards based on |
| /// simple counters that the scheduler itself maintains. It explicitly checks |
| /// for instruction dispatch limitations, including the number of micro-ops that |
| /// can dispatch per cycle. |
| /// |
| /// TODO: Also check whether the SU must start a new group. |
| bool SchedBoundary::checkHazard(SUnit *SU) { |
| if (HazardRec->isEnabled() |
| && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) { |
| return true; |
| } |
| |
| unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); |
| if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) { |
| LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops=" |
| << SchedModel->getNumMicroOps(SU->getInstr()) << '\n'); |
| return true; |
| } |
| |
| if (CurrMOps > 0 && |
| ((isTop() && SchedModel->mustBeginGroup(SU->getInstr())) || |
| (!isTop() && SchedModel->mustEndGroup(SU->getInstr())))) { |
| LLVM_DEBUG(dbgs() << " hazard: SU(" << SU->NodeNum << ") must " |
| << (isTop() ? "begin" : "end") << " group\n"); |
| return true; |
| } |
| |
| if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) { |
| const MCSchedClassDesc *SC = DAG->getSchedClass(SU); |
| for (const MCWriteProcResEntry &PE : |
| make_range(SchedModel->getWriteProcResBegin(SC), |
| SchedModel->getWriteProcResEnd(SC))) { |
| unsigned ResIdx = PE.ProcResourceIdx; |
| unsigned Cycles = PE.Cycles; |
| unsigned NRCycle, InstanceIdx; |
| std::tie(NRCycle, InstanceIdx) = getNextResourceCycle(SC, ResIdx, Cycles); |
| if (NRCycle > CurrCycle) { |
| #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| MaxObservedStall = std::max(Cycles, MaxObservedStall); |
| #endif |
| LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum << ") " |
| << SchedModel->getResourceName(ResIdx) |
| << '[' << InstanceIdx - ReservedCyclesIndex[ResIdx] << ']' |
| << "=" << NRCycle << "c\n"); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| // Find the unscheduled node in ReadySUs with the highest latency. |
| unsigned SchedBoundary:: |
| findMaxLatency(ArrayRef<SUnit*> ReadySUs) { |
| SUnit *LateSU = nullptr; |
| unsigned RemLatency = 0; |
| for (SUnit *SU : ReadySUs) { |
| unsigned L = getUnscheduledLatency(SU); |
| if (L > RemLatency) { |
| RemLatency = L; |
| LateSU = SU; |
| } |
| } |
| if (LateSU) { |
| LLVM_DEBUG(dbgs() << Available.getName() << " RemLatency SU(" |
| << LateSU->NodeNum << ") " << RemLatency << "c\n"); |
| } |
| return RemLatency; |
| } |
| |
| // Count resources in this zone and the remaining unscheduled |
| // instruction. Return the max count, scaled. Set OtherCritIdx to the critical |
| // resource index, or zero if the zone is issue limited. |
| unsigned SchedBoundary:: |
| getOtherResourceCount(unsigned &OtherCritIdx) { |
| OtherCritIdx = 0; |
| if (!SchedModel->hasInstrSchedModel()) |
| return 0; |
| |
| unsigned OtherCritCount = Rem->RemIssueCount |
| + (RetiredMOps * SchedModel->getMicroOpFactor()); |
| LLVM_DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: " |
| << OtherCritCount / SchedModel->getMicroOpFactor() << '\n'); |
| for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds(); |
| PIdx != PEnd; ++PIdx) { |
| unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx]; |
| if (OtherCount > OtherCritCount) { |
| OtherCritCount = OtherCount; |
| OtherCritIdx = PIdx; |
| } |
| } |
| if (OtherCritIdx) { |
| LLVM_DEBUG( |
| dbgs() << " " << Available.getName() << " + Remain CritRes: " |
| << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx) |
| << " " << SchedModel->getResourceName(OtherCritIdx) << "\n"); |
| } |
| return OtherCritCount; |
| } |
| |
| void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle, bool InPQueue, |
| unsigned Idx) { |
| assert(SU->getInstr() && "Scheduled SUnit must have instr"); |
| |
| #if LLVM_ENABLE_ABI_BREAKING_CHECKS |
| // ReadyCycle was been bumped up to the CurrCycle when this node was |
| // scheduled, but CurrCycle may have been eagerly advanced immediately after |
| // scheduling, so may now be greater than ReadyCycle. |
| if (ReadyCycle > CurrCycle) |
| MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall); |
| #endif |
| |
| if (ReadyCycle < MinReadyCycle) |
| MinReadyCycle = ReadyCycle; |
| |
| // Check for interlocks first. For the purpose of other heuristics, an |
| // instruction that cannot issue appears as if it's not in the ReadyQueue. |
| bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0; |
| bool HazardDetected = (!IsBuffered && ReadyCycle > CurrCycle) || |
| checkHazard(SU) || (Available.size() >= ReadyListLimit); |
| |
| if (!HazardDetected) { |
| Available.push(SU); |
| |
| if (InPQueue) |
| Pending.remove(Pending.begin() + Idx); |
| return; |
| } |
| |
| if (!InPQueue) |
| Pending.push(SU); |
| } |
| |
| /// Move the boundary of scheduled code by one cycle. |
| void SchedBoundary::bumpCycle(unsigned NextCycle) { |
| if (SchedModel->getMicroOpBufferSize() == 0) { |
| assert(MinReadyCycle < std::numeric_limits<unsigned>::max() && |
| "MinReadyCycle uninitialized"); |
| if (MinReadyCycle > NextCycle) |
| NextCycle = MinReadyCycle; |
| } |
| // Update the current micro-ops, which will issue in the next cycle. |
| unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle); |
| CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps; |
| |
| // Decrement DependentLatency based on the next cycle. |
| if ((NextCycle - CurrCycle) > DependentLatency) |
| DependentLatency = 0; |
| else |
| DependentLatency -= (NextCycle - CurrCycle); |
| |
| if (!HazardRec->isEnabled()) { |
| // Bypass HazardRec virtual calls. |
| CurrCycle = NextCycle; |
| } else { |
| // Bypass getHazardType calls in case of long latency. |
| for (; CurrCycle != NextCycle; ++CurrCycle) { |
| if (isTop()) |
| HazardRec->AdvanceCycle(); |
| else |
| HazardRec->RecedeCycle(); |
| } |
| } |
| CheckPending = true; |
| IsResourceLimited = |
| checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), |
| getScheduledLatency(), true); |
| |
| LLVM_DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() |
| << '\n'); |
| } |
| |
| void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) { |
| ExecutedResCounts[PIdx] += Count; |
| if (ExecutedResCounts[PIdx] > MaxExecutedResCount) |
| MaxExecutedResCount = ExecutedResCounts[PIdx]; |
| } |
| |
| /// Add the given processor resource to this scheduled zone. |
| /// |
| /// \param Cycles indicates the number of consecutive (non-pipelined) cycles |
| /// during which this resource is consumed. |
| /// |
| /// \return the next cycle at which the instruction may execute without |
| /// oversubscribing resources. |
| unsigned SchedBoundary::countResource(const MCSchedClassDesc *SC, unsigned PIdx, |
| unsigned Cycles, unsigned NextCycle) { |
| unsigned Factor = SchedModel->getResourceFactor(PIdx); |
| unsigned Count = Factor * Cycles; |
| LLVM_DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx) << " +" |
| << Cycles << "x" << Factor << "u\n"); |
| |
| // Update Executed resources counts. |
| incExecutedResources(PIdx, Count); |
| assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted"); |
| Rem->RemainingCounts[PIdx] -= Count; |
| |
| // Check if this resource exceeds the current critical resource. If so, it |
| // becomes the critical resource. |
| if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) { |
| ZoneCritResIdx = PIdx; |
| LLVM_DEBUG(dbgs() << " *** Critical resource " |
| << SchedModel->getResourceName(PIdx) << ": " |
| << getResourceCount(PIdx) / SchedModel->getLatencyFactor() |
| << "c\n"); |
| } |
| // For reserved resources, record the highest cycle using the resource. |
| unsigned NextAvailable, InstanceIdx; |
| std::tie(NextAvailable, InstanceIdx) = getNextResourceCycle(SC, PIdx, Cycles); |
| if (NextAvailable > CurrCycle) { |
| LLVM_DEBUG(dbgs() << " Resource conflict: " |
| << SchedModel->getResourceName(PIdx) |
| << '[' << InstanceIdx - ReservedCyclesIndex[PIdx] << ']' |
| << " reserved until @" << NextAvailable << "\n"); |
| } |
| return NextAvailable; |
| } |
| |
| /// Move the boundary of scheduled code by one SUnit. |
| void SchedBoundary::bumpNode(SUnit *SU) { |
| // Update the reservation table. |
| if (HazardRec->isEnabled()) { |
| if (!isTop() && SU->isCall) { |
| // Calls are scheduled with their preceding instructions. For bottom-up |
| // scheduling, clear the pipeline state before emitting. |
| HazardRec->Reset(); |
| } |
| HazardRec->EmitInstruction(SU); |
| // Scheduling an instruction may have made pending instructions available. |
| CheckPending = true; |
| } |
| // checkHazard should prevent scheduling multiple instructions per cycle that |
| // exceed the issue width. |
| const MCSchedClassDesc *SC = DAG->getSchedClass(SU); |
| unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr()); |
| assert( |
| (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) && |
| "Cannot schedule this instruction's MicroOps in the current cycle."); |
| |
| unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle); |
| LLVM_DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n"); |
| |
| unsigned NextCycle = CurrCycle; |
| switch (SchedModel->getMicroOpBufferSize()) { |
| case 0: |
| assert(ReadyCycle <= CurrCycle && "Broken PendingQueue"); |
| break; |
| case 1: |
| if (ReadyCycle > NextCycle) { |
| NextCycle = ReadyCycle; |
| LLVM_DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n"); |
| } |
| break; |
| default: |
| // We don't currently model the OOO reorder buffer, so consider all |
| // scheduled MOps to be "retired". We do loosely model in-order resource |
| // latency. If this instruction uses an in-order resource, account for any |
| // likely stall cycles. |
| if (SU->isUnbuffered && ReadyCycle > NextCycle) |
| NextCycle = ReadyCycle; |
| break; |
| } |
| RetiredMOps += IncMOps; |
| |
| // Update resource counts and critical resource. |
| if (SchedModel->hasInstrSchedModel()) { |
| unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor(); |
| assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted"); |
| Rem->RemIssueCount -= DecRemIssue; |
| if (ZoneCritResIdx) { |
| // Scale scheduled micro-ops for comparing with the critical resource. |
| unsigned ScaledMOps = |
| RetiredMOps * SchedModel->getMicroOpFactor(); |
| |
| // If scaled micro-ops are now more than the previous critical resource by |
| // a full cycle, then micro-ops issue becomes critical. |
| if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx)) |
| >= (int)SchedModel->getLatencyFactor()) { |
| ZoneCritResIdx = 0; |
| LLVM_DEBUG(dbgs() << " *** Critical resource NumMicroOps: " |
| << ScaledMOps / SchedModel->getLatencyFactor() |
| << "c\n"); |
| } |
| } |
| for (TargetSchedModel::ProcResIter |
| PI = SchedModel->getWriteProcResBegin(SC), |
| PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { |
| unsigned RCycle = |
| countResource(SC, PI->ProcResourceIdx, PI->Cycles, NextCycle); |
| if (RCycle > NextCycle) |
| NextCycle = RCycle; |
| } |
| if (SU->hasReservedResource) { |
| // For reserved resources, record the highest cycle using the resource. |
| // For top-down scheduling, this is the cycle in which we schedule this |
| // instruction plus the number of cycles the operations reserves the |
| // resource. For bottom-up is it simply the instruction's cycle. |
| for (TargetSchedModel::ProcResIter |
| PI = SchedModel->getWriteProcResBegin(SC), |
| PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { |
| unsigned PIdx = PI->ProcResourceIdx; |
| if (SchedModel->getProcResource(PIdx)->BufferSize == 0) { |
| unsigned ReservedUntil, InstanceIdx; |
| std::tie(ReservedUntil, InstanceIdx) = |
| getNextResourceCycle(SC, PIdx, 0); |
| if (isTop()) { |
| ReservedCycles[InstanceIdx] = |
| std::max(ReservedUntil, NextCycle + PI->Cycles); |
| } else |
| ReservedCycles[InstanceIdx] = NextCycle; |
| } |
| } |
| } |
| } |
| // Update ExpectedLatency and DependentLatency. |
| unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency; |
| unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency; |
| if (SU->getDepth() > TopLatency) { |
| TopLatency = SU->getDepth(); |
| LLVM_DEBUG(dbgs() << " " << Available.getName() << " TopLatency SU(" |
| << SU->NodeNum << ") " << TopLatency << "c\n"); |
| } |
| if (SU->getHeight() > BotLatency) { |
| BotLatency = SU->getHeight(); |
| LLVM_DEBUG(dbgs() << " " << Available.getName() << " BotLatency SU(" |
| << SU->NodeNum << ") " << BotLatency << "c\n"); |
| } |
| // If we stall for any reason, bump the cycle. |
| if (NextCycle > CurrCycle) |
| bumpCycle(NextCycle); |
| else |
| // After updating ZoneCritResIdx and ExpectedLatency, check if we're |
| // resource limited. If a stall occurred, bumpCycle does this. |
| IsResourceLimited = |
| checkResourceLimit(SchedModel->getLatencyFactor(), getCriticalCount(), |
| getScheduledLatency(), true); |
| |
| // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle |
| // resets CurrMOps. Loop to handle instructions with more MOps than issue in |
| // one cycle. Since we commonly reach the max MOps here, opportunistically |
| // bump the cycle to avoid uselessly checking everything in the readyQ. |
| CurrMOps += IncMOps; |
| |
| // Bump the cycle count for issue group constraints. |
| // This must be done after NextCycle has been adjust for all other stalls. |
| // Calling bumpCycle(X) will reduce CurrMOps by one issue group and set |
| // currCycle to X. |
| if ((isTop() && SchedModel->mustEndGroup(SU->getInstr())) || |
| (!isTop() && SchedModel->mustBeginGroup(SU->getInstr()))) { |
| LLVM_DEBUG(dbgs() << " Bump cycle to " << (isTop() ? "end" : "begin") |
| << " group\n"); |
| bumpCycle(++NextCycle); |
| } |
| |
| while (CurrMOps >= SchedModel->getIssueWidth()) { |
| LLVM_DEBUG(dbgs() << " *** Max MOps " << CurrMOps << " at cycle " |
| << CurrCycle << '\n'); |
| bumpCycle(++NextCycle); |
| } |
| LLVM_DEBUG(dumpScheduledState()); |
| } |
| |
| /// Release pending ready nodes in to the available queue. This makes them |
| /// visible to heuristics. |
| void SchedBoundary::releasePending() { |
| // If the available queue is empty, it is safe to reset MinReadyCycle. |
| if (Available.empty()) |
| MinReadyCycle = std::numeric_limits<unsigned>::max(); |
| |
| // Check to see if any of the pending instructions are ready to issue. If |
| // so, add them to the available queue. |
| for (unsigned I = 0, E = Pending.size(); I < E; ++I) { |
| SUnit *SU = *(Pending.begin() + I); |
| unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; |
| |
| if (ReadyCycle < MinReadyCycle) |
| MinReadyCycle = ReadyCycle; |
| |
| if (Available.size() >= ReadyListLimit) |
| break; |
| |
| releaseNode(SU, ReadyCycle, true, I); |
| if (E != Pending.size()) { |
| --I; |
| --E; |
| } |
| } |
| CheckPending = false; |
| } |
| |
| /// Remove SU from the ready set for this boundary. |
| void SchedBoundary::removeReady(SUnit *SU) { |
| if (Available.isInQueue(SU)) |
| Available.remove(Available.find(SU)); |
| else { |
| assert(Pending.isInQueue(SU) && "bad ready count"); |
| Pending.remove(Pending.find(SU)); |
| } |
| } |
| |
| /// If this queue only has one ready candidate, return it. As a side effect, |
| /// defer any nodes that now hit a hazard, and advance the cycle until at least |
| /// one node is ready. If multiple instructions are ready, return NULL. |
| SUnit *SchedBoundary::pickOnlyChoice() { |
| if (CheckPending) |
| releasePending(); |
| |
| // Defer any ready instrs that now have a hazard. |
| for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) { |
| if (checkHazard(*I)) { |
| Pending.push(*I); |
| I = Available.remove(I); |
| continue; |
| } |
| ++I; |
| } |
| for (unsigned i = 0; Available.empty(); ++i) { |
| // FIXME: Re-enable assert once PR20057 is resolved. |
| // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) && |
| // "permanent hazard"); |
| (void)i; |
| bumpCycle(CurrCycle + 1); |
| releasePending(); |
| } |
| |
| LLVM_DEBUG(Pending.dump()); |
| LLVM_DEBUG(Available.dump()); |
| |
| if (Available.size() == 1) |
| return *Available.begin(); |
| return nullptr; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| |
| /// Dump the content of the \ref ReservedCycles vector for the |
| /// resources that are used in the basic block. |
| /// |
| LLVM_DUMP_METHOD void SchedBoundary::dumpReservedCycles() const { |
| if (!SchedModel->hasInstrSchedModel()) |
| return; |
| |
| unsigned ResourceCount = SchedModel->getNumProcResourceKinds(); |
| unsigned StartIdx = 0; |
| |
| for (unsigned ResIdx = 0; ResIdx < ResourceCount; ++ResIdx) { |
| const unsigned NumUnits = SchedModel->getProcResource(ResIdx)->NumUnits; |
| std::string ResName = SchedModel->getResourceName(ResIdx); |
| for (unsigned UnitIdx = 0; UnitIdx < NumUnits; ++UnitIdx) { |
| dbgs() << ResName << "(" << UnitIdx |
| << ") = " << ReservedCycles[StartIdx + UnitIdx] << "\n"; |
| } |
| StartIdx += NumUnits; |
| } |
| } |
| |
| // This is useful information to dump after bumpNode. |
| // Note that the Queue contents are more useful before pickNodeFromQueue. |
| LLVM_DUMP_METHOD void SchedBoundary::dumpScheduledState() const { |
| unsigned ResFactor; |
| unsigned ResCount; |
| if (ZoneCritResIdx) { |
| ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx); |
| ResCount = getResourceCount(ZoneCritResIdx); |
| } else { |
| ResFactor = SchedModel->getMicroOpFactor(); |
| ResCount = RetiredMOps * ResFactor; |
| } |
| unsigned LFactor = SchedModel->getLatencyFactor(); |
| dbgs() << Available.getName() << " @" << CurrCycle << "c\n" |
| << " Retired: " << RetiredMOps; |
| dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c"; |
| dbgs() << "\n Critical: " << ResCount / LFactor << "c, " |
| << ResCount / ResFactor << " " |
| << SchedModel->getResourceName(ZoneCritResIdx) |
| << "\n ExpectedLatency: " << ExpectedLatency << "c\n" |
| << (IsResourceLimited ? " - Resource" : " - Latency") |
| << " limited.\n"; |
| if (MISchedDumpReservedCycles) |
| dumpReservedCycles(); |
| } |
| #endif |
| |
| //===----------------------------------------------------------------------===// |
| // GenericScheduler - Generic implementation of MachineSchedStrategy. |
| //===----------------------------------------------------------------------===// |
| |
| void GenericSchedulerBase::SchedCandidate:: |
| initResourceDelta(const ScheduleDAGMI *DAG, |
| const TargetSchedModel *SchedModel) { |
| if (!Policy.ReduceResIdx && !Policy.DemandResIdx) |
| return; |
| |
| const MCSchedClassDesc *SC = DAG->getSchedClass(SU); |
| for (TargetSchedModel::ProcResIter |
| PI = SchedModel->getWriteProcResBegin(SC), |
| PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) { |
| if (PI->ProcResourceIdx == Policy.ReduceResIdx) |
| ResDelta.CritResources += PI->Cycles; |
| if (PI->ProcResourceIdx == Policy.DemandResIdx) |
| ResDelta.DemandedResources += PI->Cycles; |
| } |
| } |
| |
| /// Compute remaining latency. We need this both to determine whether the |
| /// overall schedule has become latency-limited and whether the instructions |
| /// outside this zone are resource or latency limited. |
| /// |
| /// The "dependent" latency is updated incrementally during scheduling as the |
| /// max height/depth of scheduled nodes minus the cycles since it was |
| /// scheduled: |
| /// DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone |
| /// |
| /// The "independent" latency is the max ready queue depth: |
| /// ILat = max N.depth for N in Available|Pending |
| /// |
| /// RemainingLatency is the greater of independent and dependent latency. |
| /// |
| /// These computations are expensive, especially in DAGs with many edges, so |
| /// only do them if necessary. |
| static unsigned computeRemLatency(SchedBoundary &CurrZone) { |
| unsigned RemLatency = CurrZone.getDependentLatency(); |
| RemLatency = std::max(RemLatency, |
| CurrZone.findMaxLatency(CurrZone.Available.elements())); |
| RemLatency = std::max(RemLatency, |
| CurrZone.findMaxLatency(CurrZone.Pending.elements())); |
| return RemLatency; |
| } |
| |
| /// Returns true if the current cycle plus remaning latency is greater than |
| /// the critical path in the scheduling region. |
| bool GenericSchedulerBase::shouldReduceLatency(const CandPolicy &Policy, |
| SchedBoundary &CurrZone, |
| bool ComputeRemLatency, |
| unsigned &RemLatency) const { |
| // The current cycle is already greater than the critical path, so we are |
| // already latency limited and don't need to compute the remaining latency. |
| if (CurrZone.getCurrCycle() > Rem.CriticalPath) |
| return true; |
| |
| // If we haven't scheduled anything yet, then we aren't latency limited. |
| if (CurrZone.getCurrCycle() == 0) |
| return false; |
| |
| if (ComputeRemLatency) |
| RemLatency = computeRemLatency(CurrZone); |
| |
| return RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath; |
| } |
| |
| /// Set the CandPolicy given a scheduling zone given the current resources and |
| /// latencies inside and outside the zone. |
| void GenericSchedulerBase::setPolicy(CandPolicy &Policy, bool IsPostRA, |
| SchedBoundary &CurrZone, |
| SchedBoundary *OtherZone) { |
| // Apply preemptive heuristics based on the total latency and resources |
| // inside and outside this zone. Potential stalls should be considered before |
| // following this policy. |
| |
| // Compute the critical resource outside the zone. |
| unsigned OtherCritIdx = 0; |
| unsigned OtherCount = |
| OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0; |
| |
| bool OtherResLimited = false; |
| unsigned RemLatency = 0; |
| bool RemLatencyComputed = false; |
| if (SchedModel->hasInstrSchedModel() && OtherCount != 0) { |
| RemLatency = computeRemLatency(CurrZone); |
| RemLatencyComputed = true; |
| OtherResLimited = checkResourceLimit(SchedModel->getLatencyFactor(), |
| OtherCount, RemLatency, false); |
| } |
| |
| // Schedule aggressively for latency in PostRA mode. We don't check for |
| // acyclic latency during PostRA, and highly out-of-order processors will |
| // skip PostRA scheduling. |
| if (!OtherResLimited && |
| (IsPostRA || shouldReduceLatency(Policy, CurrZone, !RemLatencyComputed, |
| RemLatency))) { |
| Policy.ReduceLatency |= true; |
| LLVM_DEBUG(dbgs() << " " << CurrZone.Available.getName() |
| << " RemainingLatency " << RemLatency << " + " |
| << CurrZone.getCurrCycle() << "c > CritPath " |
| << Rem.CriticalPath << "\n"); |
| } |
| // If the same resource is limiting inside and outside the zone, do nothing. |
| if (CurrZone.getZoneCritResIdx() == OtherCritIdx) |
| return; |
| |
| LLVM_DEBUG(if (CurrZone.isResourceLimited()) { |
| dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: " |
| << SchedModel->getResourceName(CurrZone.getZoneCritResIdx()) << "\n"; |
| } if (OtherResLimited) dbgs() |
| << " RemainingLimit: " |
| << SchedModel->getResourceName(OtherCritIdx) << "\n"; |
| if (!CurrZone.isResourceLimited() && !OtherResLimited) dbgs() |
| << " Latency limited both directions.\n"); |
| |
| if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx) |
| Policy.ReduceResIdx = CurrZone.getZoneCritResIdx(); |
| |
| if (OtherResLimited) |
| Policy.DemandResIdx = OtherCritIdx; |
| } |
| |
| #ifndef NDEBUG |
| const char *GenericSchedulerBase::getReasonStr( |
| GenericSchedulerBase::CandReason Reason) { |
| switch (Reason) { |
| case NoCand: return "NOCAND "; |
| case Only1: return "ONLY1 "; |
| case PhysReg: return "PHYS-REG "; |
| case RegExcess: return "REG-EXCESS"; |
| case RegCritical: return "REG-CRIT "; |
| case Stall: return "STALL "; |
| case Cluster: return "CLUSTER "; |
| case Weak: return "WEAK "; |
| case RegMax: return "REG-MAX "; |
| case ResourceReduce: return "RES-REDUCE"; |
| case ResourceDemand: return "RES-DEMAND"; |
| case TopDepthReduce: return "TOP-DEPTH "; |
| case TopPathReduce: return "TOP-PATH "; |
| case BotHeightReduce:return "BOT-HEIGHT"; |
| case BotPathReduce: return "BOT-PATH "; |
| case NextDefUse: return "DEF-USE "; |
| case NodeOrder: return "ORDER "; |
| }; |
| llvm_unreachable("Unknown reason!"); |
| } |
| |
| void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) { |
| PressureChange P; |
| unsigned ResIdx = 0; |
| unsigned Latency = 0; |
| switch (Cand.Reason) { |
| default: |
| break; |
| case RegExcess: |
| P = Cand.RPDelta.Excess; |
| break; |
| case RegCritical: |
| P = Cand.RPDelta.CriticalMax; |
| break; |
| case RegMax: |
| P = Cand.RPDelta.CurrentMax; |
| break; |
| case ResourceReduce: |
| ResIdx = Cand.Policy.ReduceResIdx; |
| break; |
| case ResourceDemand: |
| ResIdx = Cand.Policy.DemandResIdx; |
| break; |
| case TopDepthReduce: |
| Latency = Cand.SU->getDepth(); |
| break; |
| case TopPathReduce: |
| Latency = Cand.SU->getHeight(); |
| break; |
| case BotHeightReduce: |
| Latency = Cand.SU->getHeight(); |
| break; |
| case BotPathReduce: |
| Latency = Cand.SU->getDepth(); |
| break; |
| } |
| dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason); |
| if (P.isValid()) |
| dbgs() << " " << TRI->getRegPressureSetName(P.getPSet()) |
| << ":" << P.getUnitInc() << " "; |
| else |
| dbgs() << " "; |
| if (ResIdx) |
| dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " "; |
| else |
| dbgs() << " "; |
| if (Latency) |
| dbgs() << " " << Latency << " cycles "; |
| else |
| dbgs() << " "; |
| dbgs() << '\n'; |
| } |
| #endif |
| |
| namespace llvm { |
| /// Return true if this heuristic determines order. |
| /// TODO: Consider refactor return type of these functions as integer or enum, |
| /// as we may need to differentiate whether TryCand is better than Cand. |
| bool tryLess(int TryVal, int CandVal, |
| GenericSchedulerBase::SchedCandidate &TryCand, |
| GenericSchedulerBase::SchedCandidate &Cand, |
| GenericSchedulerBase::CandReason Reason) { |
| if (TryVal < CandVal) { |
| TryCand.Reason = Reason; |
| return true; |
| } |
| if (TryVal > CandVal) { |
| if (Cand.Reason > Reason) |
| Cand.Reason = Reason; |
| return true; |
| } |
| return false; |
| } |
| |
| bool tryGreater(int TryVal, int CandVal, |
| GenericSchedulerBase::SchedCandidate &TryCand, |
| GenericSchedulerBase::SchedCandidate &Cand, |
| GenericSchedulerBase::CandReason Reason) { |
| if (TryVal > CandVal) { |
| TryCand.Reason = Reason; |
| return true; |
| } |
| if (TryVal < CandVal) { |
| if (Cand.Reason > Reason) |
| Cand.Reason = Reason; |
| return true; |
| } |
| return false; |
| } |
| |
| bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand, |
| GenericSchedulerBase::SchedCandidate &Cand, |
| SchedBoundary &Zone) { |
| if (Zone.isTop()) { |
| // Prefer the candidate with the lesser depth, but only if one of them has |
| // depth greater than the total latency scheduled so far, otherwise either |
| // of them could be scheduled now with no stall. |
| if (std::max(TryCand.SU->getDepth(), Cand.SU->getDepth()) > |
| Zone.getScheduledLatency()) { |
| if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(), |
| TryCand, Cand, GenericSchedulerBase::TopDepthReduce)) |
| return true; |
| } |
| if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(), |
| TryCand, Cand, GenericSchedulerBase::TopPathReduce)) |
| return true; |
| } else { |
| // Prefer the candidate with the lesser height, but only if one of them has |
| // height greater than the total latency scheduled so far, otherwise either |
| // of them could be scheduled now with no stall. |
| if (std::max(TryCand.SU->getHeight(), Cand.SU->getHeight()) > |
| Zone.getScheduledLatency()) { |
| if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(), |
| TryCand, Cand, GenericSchedulerBase::BotHeightReduce)) |
| return true; |
| } |
| if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(), |
| TryCand, Cand, GenericSchedulerBase::BotPathReduce)) |
| return true; |
| } |
| return false; |
| } |
| } // end namespace llvm |
| |
| static void tracePick(GenericSchedulerBase::CandReason Reason, bool IsTop) { |
| LLVM_DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ") |
| << GenericSchedulerBase::getReasonStr(Reason) << '\n'); |
| } |
| |
| static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand) { |
| tracePick(Cand.Reason, Cand.AtTop); |
| } |
| |
| void GenericScheduler::initialize(ScheduleDAGMI *dag) { |
| assert(dag->hasVRegLiveness() && |
| "(PreRA)GenericScheduler needs vreg liveness"); |
| DAG = static_cast<ScheduleDAGMILive*>(dag); |
| SchedModel = DAG->getSchedModel(); |
| TRI = DAG->TRI; |
| |
| if (RegionPolicy.ComputeDFSResult) |
| DAG->computeDFSResult(); |
| |
| Rem.init(DAG, SchedModel); |
| Top.init(DAG, SchedModel, &Rem); |
| Bot.init(DAG, SchedModel, &Rem); |
| |
| // Initialize resource counts. |
| |
| // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or |
| // are disabled, then these HazardRecs will be disabled. |
| const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); |
| if (!Top.HazardRec) { |
| Top.HazardRec = |
| DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( |
| Itin, DAG); |
| } |
| if (!Bot.HazardRec) { |
| Bot.HazardRec = |
| DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( |
| Itin, DAG); |
| } |
| TopCand.SU = nullptr; |
| BotCand.SU = nullptr; |
| } |
| |
| /// Initialize the per-region scheduling policy. |
| void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin, |
| MachineBasicBlock::iterator End, |
| unsigned NumRegionInstrs) { |
| const MachineFunction &MF = *Begin->getMF(); |
| const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); |
| |
| // Avoid setting up the register pressure tracker for small regions to save |
| // compile time. As a rough heuristic, only track pressure when the number of |
| // schedulable instructions exceeds half the integer register file. |
| RegionPolicy.ShouldTrackPressure = true; |
| for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) { |
| MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT; |
| if (TLI->isTypeLegal(LegalIntVT)) { |
| unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs( |
| TLI->getRegClassFor(LegalIntVT)); |
| RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2); |
| } |
| } |
| |
| // For generic targets, we default to bottom-up, because it's simpler and more |
| // compile-time optimizations have been implemented in that direction. |
| RegionPolicy.OnlyBottomUp = true; |
| |
| // Allow the subtarget to override default policy. |
| MF.getSubtarget().overrideSchedPolicy(RegionPolicy, NumRegionInstrs); |
| |
| // After subtarget overrides, apply command line options. |
| if (!EnableRegPressure) { |
| RegionPolicy.ShouldTrackPressure = false; |
| RegionPolicy.ShouldTrackLaneMasks = false; |
| } |
| |
| // Check -misched-topdown/bottomup can force or unforce scheduling direction. |
| // e.g. -misched-bottomup=false allows scheduling in both directions. |
| assert((!ForceTopDown || !ForceBottomUp) && |
| "-misched-topdown incompatible with -misched-bottomup"); |
| if (ForceBottomUp.getNumOccurrences() > 0) { |
| RegionPolicy.OnlyBottomUp = ForceBottomUp; |
| if (RegionPolicy.OnlyBottomUp) |
| RegionPolicy.OnlyTopDown = false; |
| } |
| if (ForceTopDown.getNumOccurrences() > 0) { |
| RegionPolicy.OnlyTopDown = ForceTopDown; |
| if (RegionPolicy.OnlyTopDown) |
| RegionPolicy.OnlyBottomUp = false; |
| } |
| } |
| |
| void GenericScheduler::dumpPolicy() const { |
| // Cannot completely remove virtual function even in release mode. |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| dbgs() << "GenericScheduler RegionPolicy: " |
| << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure |
| << " OnlyTopDown=" << RegionPolicy.OnlyTopDown |
| << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp |
| << "\n"; |
| #endif |
| } |
| |
| /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic |
| /// critical path by more cycles than it takes to drain the instruction buffer. |
| /// We estimate an upper bounds on in-flight instructions as: |
| /// |
| /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height ) |
| /// InFlightIterations = AcyclicPath / CyclesPerIteration |
| /// InFlightResources = InFlightIterations * LoopResources |
| /// |
| /// TODO: Check execution resources in addition to IssueCount. |
| void GenericScheduler::checkAcyclicLatency() { |
| if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath) |
| return; |
| |
| // Scaled number of cycles per loop iteration. |
| unsigned IterCount = |
| std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(), |
| Rem.RemIssueCount); |
| // Scaled acyclic critical path. |
| unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor(); |
| // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop |
| unsigned InFlightCount = |
| (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount; |
| unsigned BufferLimit = |
| SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor(); |
| |
| Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit; |
| |
| LLVM_DEBUG( |
| dbgs() << "IssueCycles=" |
| << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c " |
| << "IterCycles=" << IterCount / SchedModel->getLatencyFactor() |
| << "c NumIters=" << (AcyclicCount + IterCount - 1) / IterCount |
| << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor() |
| << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n"; |
| if (Rem.IsAcyclicLatencyLimited) dbgs() << " ACYCLIC LATENCY LIMIT\n"); |
| } |
| |
| void GenericScheduler::registerRoots() { |
| Rem.CriticalPath = DAG->ExitSU.getDepth(); |
| |
| // Some roots may not feed into ExitSU. Check all of them in case. |
| for (const SUnit *SU : Bot.Available) { |
| if (SU->getDepth() > Rem.CriticalPath) |
| Rem.CriticalPath = SU->getDepth(); |
| } |
| LLVM_DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n'); |
| if (DumpCriticalPathLength) { |
| errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n"; |
| } |
| |
| if (EnableCyclicPath && SchedModel->getMicroOpBufferSize() > 0) { |
| Rem.CyclicCritPath = DAG->computeCyclicCriticalPath(); |
| checkAcyclicLatency(); |
| } |
| } |
| |
| namespace llvm { |
| bool tryPressure(const PressureChange &TryP, |
| const PressureChange &CandP, |
| GenericSchedulerBase::SchedCandidate &TryCand, |
| GenericSchedulerBase::SchedCandidate &Cand, |
| GenericSchedulerBase::CandReason Reason, |
| const TargetRegisterInfo *TRI, |
| const MachineFunction &MF) { |
| // If one candidate decreases and the other increases, go with it. |
| // Invalid candidates have UnitInc==0. |
| if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand, |
| Reason)) { |
| return true; |
| } |
| // Do not compare the magnitude of pressure changes between top and bottom |
| // boundary. |
| if (Cand.AtTop != TryCand.AtTop) |
| return false; |
| |
| // If both candidates affect the same set in the same boundary, go with the |
| // smallest increase. |
| unsigned TryPSet = TryP.getPSetOrMax(); |
| unsigned CandPSet = CandP.getPSetOrMax(); |
| if (TryPSet == CandPSet) { |
| return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand, |
| Reason); |
| } |
| |
| int TryRank = TryP.isValid() ? TRI->getRegPressureSetScore(MF, TryPSet) : |
| std::numeric_limits<int>::max(); |
| |
| int CandRank = CandP.isValid() ? TRI->getRegPressureSetScore(MF, CandPSet) : |
| std::numeric_limits<int>::max(); |
| |
| // If the candidates are decreasing pressure, reverse priority. |
| if (TryP.getUnitInc() < 0) |
| std::swap(TryRank, CandRank); |
| return tryGreater(TryRank, CandRank, TryCand, Cand, Reason); |
| } |
| |
| unsigned getWeakLeft(const SUnit *SU, bool isTop) { |
| return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft; |
| } |
| |
| /// Minimize physical register live ranges. Regalloc wants them adjacent to |
| /// their physreg def/use. |
| /// |
| /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf |
| /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled |
| /// with the operation that produces or consumes the physreg. We'll do this when |
| /// regalloc has support for parallel copies. |
| int biasPhysReg(const SUnit *SU, bool isTop) { |
| const MachineInstr *MI = SU->getInstr(); |
| |
| if (MI->isCopy()) { |
| unsigned ScheduledOper = isTop ? 1 : 0; |
| unsigned UnscheduledOper = isTop ? 0 : 1; |
| // If we have already scheduled the physreg produce/consumer, immediately |
| // schedule the copy. |
| if (MI->getOperand(ScheduledOper).getReg().isPhysical()) |
| return 1; |
| // If the physreg is at the boundary, defer it. Otherwise schedule it |
| // immediately to free the dependent. We can hoist the copy later. |
| bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft; |
| if (MI->getOperand(UnscheduledOper).getReg().isPhysical()) |
| return AtBoundary ? -1 : 1; |
| } |
| |
| if (MI->isMoveImmediate()) { |
| // If we have a move immediate and all successors have been assigned, bias |
| // towards scheduling this later. Make sure all register defs are to |
| // physical registers. |
| bool DoBias = true; |
| for (const MachineOperand &Op : MI->defs()) { |
| if (Op.isReg() && !Op.getReg().isPhysical()) { |
| DoBias = false; |
| break; |
| } |
| } |
| |
| if (DoBias) |
| return isTop ? -1 : 1; |
| } |
| |
| return 0; |
| } |
| } // end namespace llvm |
| |
| void GenericScheduler::initCandidate(SchedCandidate &Cand, SUnit *SU, |
| bool AtTop, |
| const RegPressureTracker &RPTracker, |
| RegPressureTracker &TempTracker) { |
| Cand.SU = SU; |
| Cand.AtTop = AtTop; |
| if (DAG->isTrackingPressure()) { |
| if (AtTop) { |
| TempTracker.getMaxDownwardPressureDelta( |
| Cand.SU->getInstr(), |
| Cand.RPDelta, |
| DAG->getRegionCriticalPSets(), |
| DAG->getRegPressure().MaxSetPressure); |
| } else { |
| if (VerifyScheduling) { |
| TempTracker.getMaxUpwardPressureDelta( |
| Cand.SU->getInstr(), |
| &DAG->getPressureDiff(Cand.SU), |
| Cand.RPDelta, |
| DAG->getRegionCriticalPSets(), |
| DAG->getRegPressure().MaxSetPressure); |
| } else { |
| RPTracker.getUpwardPressureDelta( |
| Cand.SU->getInstr(), |
| DAG->getPressureDiff(Cand.SU), |
| Cand.RPDelta, |
| DAG->getRegionCriticalPSets(), |
| DAG->getRegPressure().MaxSetPressure); |
| } |
| } |
| } |
| LLVM_DEBUG(if (Cand.RPDelta.Excess.isValid()) dbgs() |
| << " Try SU(" << Cand.SU->NodeNum << ") " |
| << TRI->getRegPressureSetName(Cand.RPDelta.Excess.getPSet()) << ":" |
| << Cand.RPDelta.Excess.getUnitInc() << "\n"); |
| } |
| |
| /// Apply a set of heuristics to a new candidate. Heuristics are currently |
| /// hierarchical. This may be more efficient than a graduated cost model because |
| /// we don't need to evaluate all aspects of the model for each node in the |
| /// queue. But it's really done to make the heuristics easier to debug and |
| /// statistically analyze. |
| /// |
| /// \param Cand provides the policy and current best candidate. |
| /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. |
| /// \param Zone describes the scheduled zone that we are extending, or nullptr |
| /// if Cand is from a different zone than TryCand. |
| /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) |
| bool GenericScheduler::tryCandidate(SchedCandidate &Cand, |
| SchedCandidate &TryCand, |
| SchedBoundary *Zone) const { |
| // Initialize the candidate if needed. |
| if (!Cand.isValid()) { |
| TryCand.Reason = NodeOrder; |
| return true; |
| } |
| |
| // Bias PhysReg Defs and copies to their uses and defined respectively. |
| if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop), |
| biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg)) |
| return TryCand.Reason != NoCand; |
| |
| // Avoid exceeding the target's limit. |
| if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess, |
| Cand.RPDelta.Excess, |
| TryCand, Cand, RegExcess, TRI, |
| DAG->MF)) |
| return TryCand.Reason != NoCand; |
| |
| // Avoid increasing the max critical pressure in the scheduled region. |
| if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax, |
| Cand.RPDelta.CriticalMax, |
| TryCand, Cand, RegCritical, TRI, |
| DAG->MF)) |
| return TryCand.Reason != NoCand; |
| |
| // We only compare a subset of features when comparing nodes between |
| // Top and Bottom boundary. Some properties are simply incomparable, in many |
| // other instances we should only override the other boundary if something |
| // is a clear good pick on one boundary. Skip heuristics that are more |
| // "tie-breaking" in nature. |
| bool SameBoundary = Zone != nullptr; |
| if (SameBoundary) { |
| // For loops that are acyclic path limited, aggressively schedule for |
| // latency. Within an single cycle, whenever CurrMOps > 0, allow normal |
| // heuristics to take precedence. |
| if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() && |
| tryLatency(TryCand, Cand, *Zone)) |
| return TryCand.Reason != NoCand; |
| |
| // Prioritize instructions that read unbuffered resources by stall cycles. |
| if (tryLess(Zone->getLatencyStallCycles(TryCand.SU), |
| Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) |
| return TryCand.Reason != NoCand; |
| } |
| |
| // Keep clustered nodes together to encourage downstream peephole |
| // optimizations which may reduce resource requirements. |
| // |
| // This is a best effort to set things up for a post-RA pass. Optimizations |
| // like generating loads of multiple registers should ideally be done within |
| // the scheduler pass by combining the loads during DAG postprocessing. |
| const SUnit *CandNextClusterSU = |
| Cand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); |
| const SUnit *TryCandNextClusterSU = |
| TryCand.AtTop ? DAG->getNextClusterSucc() : DAG->getNextClusterPred(); |
| if (tryGreater(TryCand.SU == TryCandNextClusterSU, |
| Cand.SU == CandNextClusterSU, |
| TryCand, Cand, Cluster)) |
| return TryCand.Reason != NoCand; |
| |
| if (SameBoundary) { |
| // Weak edges are for clustering and other constraints. |
| if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop), |
| getWeakLeft(Cand.SU, Cand.AtTop), |
| TryCand, Cand, Weak)) |
| return TryCand.Reason != NoCand; |
| } |
| |
| // Avoid increasing the max pressure of the entire region. |
| if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax, |
| Cand.RPDelta.CurrentMax, |
| TryCand, Cand, RegMax, TRI, |
| DAG->MF)) |
| return TryCand.Reason != NoCand; |
| |
| if (SameBoundary) { |
| // Avoid critical resource consumption and balance the schedule. |
| TryCand.initResourceDelta(DAG, SchedModel); |
| if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, |
| TryCand, Cand, ResourceReduce)) |
| return TryCand.Reason != NoCand; |
| if (tryGreater(TryCand.ResDelta.DemandedResources, |
| Cand.ResDelta.DemandedResources, |
| TryCand, Cand, ResourceDemand)) |
| return TryCand.Reason != NoCand; |
| |
| // Avoid serializing long latency dependence chains. |
| // For acyclic path limited loops, latency was already checked above. |
| if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency && |
| !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone)) |
| return TryCand.Reason != NoCand; |
| |
| // Fall through to original instruction order. |
| if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) |
| || (!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) { |
| TryCand.Reason = NodeOrder; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Pick the best candidate from the queue. |
| /// |
| /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during |
| /// DAG building. To adjust for the current scheduling location we need to |
| /// maintain the number of vreg uses remaining to be top-scheduled. |
| void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone, |
| const CandPolicy &ZonePolicy, |
| const RegPressureTracker &RPTracker, |
| SchedCandidate &Cand) { |
| // getMaxPressureDelta temporarily modifies the tracker. |
| RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); |
| |
| ReadyQueue &Q = Zone.Available; |
| for (SUnit *SU : Q) { |
| |
| SchedCandidate TryCand(ZonePolicy); |
| initCandidate(TryCand, SU, Zone.isTop(), RPTracker, TempTracker); |
| // Pass SchedBoundary only when comparing nodes from the same boundary. |
| SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr; |
| if (tryCandidate(Cand, TryCand, ZoneArg)) { |
| // Initialize resource delta if needed in case future heuristics query it. |
| if (TryCand.ResDelta == SchedResourceDelta()) |
| TryCand.initResourceDelta(DAG, SchedModel); |
| Cand.setBest(TryCand); |
| LLVM_DEBUG(traceCandidate(Cand)); |
| } |
| } |
| } |
| |
| /// Pick the best candidate node from either the top or bottom queue. |
| SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) { |
| // Schedule as far as possible in the direction of no choice. This is most |
| // efficient, but also provides the best heuristics for CriticalPSets. |
| if (SUnit *SU = Bot.pickOnlyChoice()) { |
| IsTopNode = false; |
| tracePick(Only1, false); |
| return SU; |
| } |
| if (SUnit *SU = Top.pickOnlyChoice()) { |
| IsTopNode = true; |
| tracePick(Only1, true); |
| return SU; |
| } |
| // Set the bottom-up policy based on the state of the current bottom zone and |
| // the instructions outside the zone, including the top zone. |
| CandPolicy BotPolicy; |
| setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top); |
| // Set the top-down policy based on the state of the current top zone and |
| // the instructions outside the zone, including the bottom zone. |
| CandPolicy TopPolicy; |
| setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot); |
| |
| // See if BotCand is still valid (because we previously scheduled from Top). |
| LLVM_DEBUG(dbgs() << "Picking from Bot:\n"); |
| if (!BotCand.isValid() || BotCand.SU->isScheduled || |
| BotCand.Policy != BotPolicy) { |
| BotCand.reset(CandPolicy()); |
| pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand); |
| assert(BotCand.Reason != NoCand && "failed to find the first candidate"); |
| } else { |
| LLVM_DEBUG(traceCandidate(BotCand)); |
| #ifndef NDEBUG |
| if (VerifyScheduling) { |
| SchedCandidate TCand; |
| TCand.reset(CandPolicy()); |
| pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand); |
| assert(TCand.SU == BotCand.SU && |
| "Last pick result should correspond to re-picking right now"); |
| } |
| #endif |
| } |
| |
| // Check if the top Q has a better candidate. |
| LLVM_DEBUG(dbgs() << "Picking from Top:\n"); |
| if (!TopCand.isValid() || TopCand.SU->isScheduled || |
| TopCand.Policy != TopPolicy) { |
| TopCand.reset(CandPolicy()); |
| pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find the first candidate"); |
| } else { |
| LLVM_DEBUG(traceCandidate(TopCand)); |
| #ifndef NDEBUG |
| if (VerifyScheduling) { |
| SchedCandidate TCand; |
| TCand.reset(CandPolicy()); |
| pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand); |
| assert(TCand.SU == TopCand.SU && |
| "Last pick result should correspond to re-picking right now"); |
| } |
| #endif |
| } |
| |
| // Pick best from BotCand and TopCand. |
| assert(BotCand.isValid()); |
| assert(TopCand.isValid()); |
| SchedCandidate Cand = BotCand; |
| TopCand.Reason = NoCand; |
| if (tryCandidate(Cand, TopCand, nullptr)) { |
| Cand.setBest(TopCand); |
| LLVM_DEBUG(traceCandidate(Cand)); |
| } |
| |
| IsTopNode = Cand.AtTop; |
| tracePick(Cand); |
| return Cand.SU; |
| } |
| |
| /// Pick the best node to balance the schedule. Implements MachineSchedStrategy. |
| SUnit *GenericScheduler::pickNode(bool &IsTopNode) { |
| if (DAG->top() == DAG->bottom()) { |
| assert(Top.Available.empty() && Top.Pending.empty() && |
| Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); |
| return nullptr; |
| } |
| SUnit *SU; |
| do { |
| if (RegionPolicy.OnlyTopDown) { |
| SU = Top.pickOnlyChoice(); |
| if (!SU) { |
| CandPolicy NoPolicy; |
| TopCand.reset(NoPolicy); |
| pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find a candidate"); |
| tracePick(TopCand); |
| SU = TopCand.SU; |
| } |
| IsTopNode = true; |
| } else if (RegionPolicy.OnlyBottomUp) { |
| SU = Bot.pickOnlyChoice(); |
| if (!SU) { |
| CandPolicy NoPolicy; |
| BotCand.reset(NoPolicy); |
| pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand); |
| assert(BotCand.Reason != NoCand && "failed to find a candidate"); |
| tracePick(BotCand); |
| SU = BotCand.SU; |
| } |
| IsTopNode = false; |
| } else { |
| SU = pickNodeBidirectional(IsTopNode); |
| } |
| } while (SU->isScheduled); |
| |
| if (SU->isTopReady()) |
| Top.removeReady(SU); |
| if (SU->isBottomReady()) |
| Bot.removeReady(SU); |
| |
| LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " |
| << *SU->getInstr()); |
| return SU; |
| } |
| |
| void GenericScheduler::reschedulePhysReg(SUnit *SU, bool isTop) { |
| MachineBasicBlock::iterator InsertPos = SU->getInstr(); |
| if (!isTop) |
| ++InsertPos; |
| SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs; |
| |
| // Find already scheduled copies with a single physreg dependence and move |
| // them just above the scheduled instruction. |
| for (SDep &Dep : Deps) { |
| if (Dep.getKind() != SDep::Data || |
| !Register::isPhysicalRegister(Dep.getReg())) |
| continue; |
| SUnit *DepSU = Dep.getSUnit(); |
| if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1) |
| continue; |
| MachineInstr *Copy = DepSU->getInstr(); |
| if (!Copy->isCopy() && !Copy->isMoveImmediate()) |
| continue; |
| LLVM_DEBUG(dbgs() << " Rescheduling physreg copy "; |
| DAG->dumpNode(*Dep.getSUnit())); |
| DAG->moveInstruction(Copy, InsertPos); |
| } |
| } |
| |
| /// Update the scheduler's state after scheduling a node. This is the same node |
| /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to |
| /// update it's state based on the current cycle before MachineSchedStrategy |
| /// does. |
| /// |
| /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling |
| /// them here. See comments in biasPhysReg. |
| void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { |
| if (IsTopNode) { |
| SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); |
| Top.bumpNode(SU); |
| if (SU->hasPhysRegUses) |
| reschedulePhysReg(SU, true); |
| } else { |
| SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle()); |
| Bot.bumpNode(SU); |
| if (SU->hasPhysRegDefs) |
| reschedulePhysReg(SU, false); |
| } |
| } |
| |
| /// Create the standard converging machine scheduler. This will be used as the |
| /// default scheduler if the target does not set a default. |
| ScheduleDAGMILive *llvm::createGenericSchedLive(MachineSchedContext *C) { |
| ScheduleDAGMILive *DAG = |
| new ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)); |
| // Register DAG post-processors. |
| // |
| // FIXME: extend the mutation API to allow earlier mutations to instantiate |
| // data and pass it to later mutations. Have a single mutation that gathers |
| // the interesting nodes in one pass. |
| DAG->addMutation(createCopyConstrainDAGMutation(DAG->TII, DAG->TRI)); |
| return DAG; |
| } |
| |
| static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) { |
| return createGenericSchedLive(C); |
| } |
| |
| static MachineSchedRegistry |
| GenericSchedRegistry("converge", "Standard converging scheduler.", |
| createConvergingSched); |
| |
| //===----------------------------------------------------------------------===// |
| // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy. |
| //===----------------------------------------------------------------------===// |
| |
| void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) { |
| DAG = Dag; |
| SchedModel = DAG->getSchedModel(); |
| TRI = DAG->TRI; |
| |
| Rem.init(DAG, SchedModel); |
| Top.init(DAG, SchedModel, &Rem); |
| BotRoots.clear(); |
| |
| // Initialize the HazardRecognizers. If itineraries don't exist, are empty, |
| // or are disabled, then these HazardRecs will be disabled. |
| const InstrItineraryData *Itin = SchedModel->getInstrItineraries(); |
| if (!Top.HazardRec) { |
| Top.HazardRec = |
| DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer( |
| Itin, DAG); |
| } |
| } |
| |
| void PostGenericScheduler::registerRoots() { |
| Rem.CriticalPath = DAG->ExitSU.getDepth(); |
| |
| // Some roots may not feed into ExitSU. Check all of them in case. |
| for (const SUnit *SU : BotRoots) { |
| if (SU->getDepth() > Rem.CriticalPath) |
| Rem.CriticalPath = SU->getDepth(); |
| } |
| LLVM_DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n'); |
| if (DumpCriticalPathLength) { |
| errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n"; |
| } |
| } |
| |
| /// Apply a set of heuristics to a new candidate for PostRA scheduling. |
| /// |
| /// \param Cand provides the policy and current best candidate. |
| /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized. |
| /// \return \c true if TryCand is better than Cand (Reason is NOT NoCand) |
| bool PostGenericScheduler::tryCandidate(SchedCandidate &Cand, |
| SchedCandidate &TryCand) { |
| // Initialize the candidate if needed. |
| if (!Cand.isValid()) { |
| TryCand.Reason = NodeOrder; |
| return true; |
| } |
| |
| // Prioritize instructions that read unbuffered resources by stall cycles. |
| if (tryLess(Top.getLatencyStallCycles(TryCand.SU), |
| Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall)) |
| return TryCand.Reason != NoCand; |
| |
| // Keep clustered nodes together. |
| if (tryGreater(TryCand.SU == DAG->getNextClusterSucc(), |
| Cand.SU == DAG->getNextClusterSucc(), |
| TryCand, Cand, Cluster)) |
| return TryCand.Reason != NoCand; |
| |
| // Avoid critical resource consumption and balance the schedule. |
| if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources, |
| TryCand, Cand, ResourceReduce)) |
| return TryCand.Reason != NoCand; |
| if (tryGreater(TryCand.ResDelta.DemandedResources, |
| Cand.ResDelta.DemandedResources, |
| TryCand, Cand, ResourceDemand)) |
| return TryCand.Reason != NoCand; |
| |
| // Avoid serializing long latency dependence chains. |
| if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) { |
| return TryCand.Reason != NoCand; |
| } |
| |
| // Fall through to original instruction order. |
| if (TryCand.SU->NodeNum < Cand.SU->NodeNum) { |
| TryCand.Reason = NodeOrder; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) { |
| ReadyQueue &Q = Top.Available; |
| for (SUnit *SU : Q) { |
| SchedCandidate TryCand(Cand.Policy); |
| TryCand.SU = SU; |
| TryCand.AtTop = true; |
| TryCand.initResourceDelta(DAG, SchedModel); |
| if (tryCandidate(Cand, TryCand)) { |
| Cand.setBest(TryCand); |
| LLVM_DEBUG(traceCandidate(Cand)); |
| } |
| } |
| } |
| |
| /// Pick the next node to schedule. |
| SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) { |
| if (DAG->top() == DAG->bottom()) { |
| assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage"); |
| return nullptr; |
| } |
| SUnit *SU; |
| do { |
| SU = Top.pickOnlyChoice(); |
| if (SU) { |
| tracePick(Only1, true); |
| } else { |
| CandPolicy NoPolicy; |
| SchedCandidate TopCand(NoPolicy); |
| // Set the top-down policy based on the state of the current top zone and |
| // the instructions outside the zone, including the bottom zone. |
| setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr); |
| pickNodeFromQueue(TopCand); |
| assert(TopCand.Reason != NoCand && "failed to find a candidate"); |
| tracePick(TopCand); |
| SU = TopCand.SU; |
| } |
| } while (SU->isScheduled); |
| |
| IsTopNode = true; |
| Top.removeReady(SU); |
| |
| LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " |
| << *SU->getInstr()); |
| return SU; |
| } |
| |
| /// Called after ScheduleDAGMI has scheduled an instruction and updated |
| /// scheduled/remaining flags in the DAG nodes. |
| void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) { |
| SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle()); |
| Top.bumpNode(SU); |
| } |
| |
| ScheduleDAGMI *llvm::createGenericSchedPostRA(MachineSchedContext *C) { |
| return new ScheduleDAGMI(C, std::make_unique<PostGenericScheduler>(C), |
| /*RemoveKillFlags=*/true); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ILP Scheduler. Currently for experimental analysis of heuristics. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| |
| /// Order nodes by the ILP metric. |
| struct ILPOrder { |
| const SchedDFSResult *DFSResult = nullptr; |
| const BitVector *ScheduledTrees = nullptr; |
| bool MaximizeILP; |
| |
| ILPOrder(bool MaxILP) : MaximizeILP(MaxILP) {} |
| |
| /// Apply a less-than relation on node priority. |
| /// |
| /// (Return true if A comes after B in the Q.) |
| bool operator()(const SUnit *A, const SUnit *B) const { |
| unsigned SchedTreeA = DFSResult->getSubtreeID(A); |
| unsigned SchedTreeB = DFSResult->getSubtreeID(B); |
| if (SchedTreeA != SchedTreeB) { |
| // Unscheduled trees have lower priority. |
| if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB)) |
| return ScheduledTrees->test(SchedTreeB); |
| |
| // Trees with shallower connections have have lower priority. |
| if (DFSResult->getSubtreeLevel(SchedTreeA) |
| != DFSResult->getSubtreeLevel(SchedTreeB)) { |
| return DFSResult->getSubtreeLevel(SchedTreeA) |
| < DFSResult->getSubtreeLevel(SchedTreeB); |
| } |
| } |
| if (MaximizeILP) |
| return DFSResult->getILP(A) < DFSResult->getILP(B); |
| else |
| return DFSResult->getILP(A) > DFSResult->getILP(B); |
| } |
| }; |
| |
| /// Schedule based on the ILP metric. |
| class ILPScheduler : public MachineSchedStrategy { |
| ScheduleDAGMILive *DAG = nullptr; |
| ILPOrder Cmp; |
| |
| std::vector<SUnit*> ReadyQ; |
| |
| public: |
| ILPScheduler(bool MaximizeILP) : Cmp(MaximizeILP) {} |
| |
| void initialize(ScheduleDAGMI *dag) override { |
| assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness"); |
| DAG = static_cast<ScheduleDAGMILive*>(dag); |
| DAG->computeDFSResult(); |
| Cmp.DFSResult = DAG->getDFSResult(); |
| Cmp.ScheduledTrees = &DAG->getScheduledTrees(); |
| ReadyQ.clear(); |
| } |
| |
| void registerRoots() override { |
| // Restore the heap in ReadyQ with the updated DFS results. |
| std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); |
| } |
| |
| /// Implement MachineSchedStrategy interface. |
| /// ----------------------------------------- |
| |
| /// Callback to select the highest priority node from the ready Q. |
| SUnit *pickNode(bool &IsTopNode) override { |
| if (ReadyQ.empty()) return nullptr; |
| std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); |
| SUnit *SU = ReadyQ.back(); |
| ReadyQ.pop_back(); |
| IsTopNode = false; |
| LLVM_DEBUG(dbgs() << "Pick node " |
| << "SU(" << SU->NodeNum << ") " |
| << " ILP: " << DAG->getDFSResult()->getILP(SU) |
| << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) |
| << " @" |
| << DAG->getDFSResult()->getSubtreeLevel( |
| DAG->getDFSResult()->getSubtreeID(SU)) |
| << '\n' |
| << "Scheduling " << *SU->getInstr()); |
| return SU; |
| } |
| |
| /// Scheduler callback to notify that a new subtree is scheduled. |
| void scheduleTree(unsigned SubtreeID) override { |
| std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); |
| } |
| |
| /// Callback after a node is scheduled. Mark a newly scheduled tree, notify |
| /// DFSResults, and resort the priority Q. |
| void schedNode(SUnit *SU, bool IsTopNode) override { |
| assert(!IsTopNode && "SchedDFSResult needs bottom-up"); |
| } |
| |
| void releaseTopNode(SUnit *) override { /*only called for top roots*/ } |
| |
| void releaseBottomNode(SUnit *SU) override { |
| ReadyQ.push_back(SU); |
| std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) { |
| return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(true)); |
| } |
| static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) { |
| return new ScheduleDAGMILive(C, std::make_unique<ILPScheduler>(false)); |
| } |
| |
| static MachineSchedRegistry ILPMaxRegistry( |
| "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler); |
| static MachineSchedRegistry ILPMinRegistry( |
| "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler); |
| |
| //===----------------------------------------------------------------------===// |
| // Machine Instruction Shuffler for Correctness Testing |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| namespace { |
| |
| /// Apply a less-than relation on the node order, which corresponds to the |
| /// instruction order prior to scheduling. IsReverse implements greater-than. |
| template<bool IsReverse> |
| struct SUnitOrder { |
| bool operator()(SUnit *A, SUnit *B) const { |
| if (IsReverse) |
| return A->NodeNum > B->NodeNum; |
| else |
| return A->NodeNum < B->NodeNum; |
| } |
| }; |
| |
| /// Reorder instructions as much as possible. |
| class InstructionShuffler : public MachineSchedStrategy { |
| bool IsAlternating; |
| bool IsTopDown; |
| |
| // Using a less-than relation (SUnitOrder<false>) for the TopQ priority |
| // gives nodes with a higher number higher priority causing the latest |
| // instructions to be scheduled first. |
| PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false>> |
| TopQ; |
| |
| // When scheduling bottom-up, use greater-than as the queue priority. |
| PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true>> |
| BottomQ; |
| |
| public: |
| InstructionShuffler(bool alternate, bool topdown) |
| : IsAlternating(alternate), IsTopDown(topdown) {} |
| |
| void initialize(ScheduleDAGMI*) override { |
| TopQ.clear(); |
| BottomQ.clear(); |
| } |
| |
| /// Implement MachineSchedStrategy interface. |
| /// ----------------------------------------- |
| |
| SUnit *pickNode(bool &IsTopNode) override { |
| SUnit *SU; |
| if (IsTopDown) { |
| do { |
| if (TopQ.empty()) return nullptr; |
| SU = TopQ.top(); |
| TopQ.pop(); |
| } while (SU->isScheduled); |
| IsTopNode = true; |
| } else { |
| do { |
| if (BottomQ.empty()) return nullptr; |
| SU = BottomQ.top(); |
| BottomQ.pop(); |
| } while (SU->isScheduled); |
| IsTopNode = false; |
| } |
| if (IsAlternating) |
| IsTopDown = !IsTopDown; |
| return SU; |
| } |
| |
| void schedNode(SUnit *SU, bool IsTopNode) override {} |
| |
| void releaseTopNode(SUnit *SU) override { |
| TopQ.push(SU); |
| } |
| void releaseBottomNode(SUnit *SU) override { |
| BottomQ.push(SU); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) { |
| bool Alternate = !ForceTopDown && !ForceBottomUp; |
| bool TopDown = !ForceBottomUp; |
| assert((TopDown || !ForceTopDown) && |
| "-misched-topdown incompatible with -misched-bottomup"); |
| return new ScheduleDAGMILive( |
| C, std::make_unique<InstructionShuffler>(Alternate, TopDown)); |
| } |
| |
| static MachineSchedRegistry ShufflerRegistry( |
| "shuffle", "Shuffle machine instructions alternating directions", |
| createInstructionShuffler); |
| #endif // !NDEBUG |
| |
| //===----------------------------------------------------------------------===// |
| // GraphWriter support for ScheduleDAGMILive. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| namespace llvm { |
| |
| template<> struct GraphTraits< |
| ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {}; |
| |
| template<> |
| struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits { |
| DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} |
| |
| static std::string getGraphName(const ScheduleDAG *G) { |
| return std::string(G->MF.getName()); |
| } |
| |
| static bool renderGraphFromBottomUp() { |
| return true; |
| } |
| |
| static bool isNodeHidden(const SUnit *Node, const ScheduleDAG *G) { |
| if (ViewMISchedCutoff == 0) |
| return false; |
| return (Node->Preds.size() > ViewMISchedCutoff |
| || Node->Succs.size() > ViewMISchedCutoff); |
| } |
| |
| /// If you want to override the dot attributes printed for a particular |
| /// edge, override this method. |
| static std::string getEdgeAttributes(const SUnit *Node, |
| SUnitIterator EI, |
| const ScheduleDAG *Graph) { |
| if (EI.isArtificialDep()) |
| return "color=cyan,style=dashed"; |
| if (EI.isCtrlDep()) |
| return "color=blue,style=dashed"; |
| return ""; |
| } |
| |
| static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) { |
| std::string Str; |
| raw_string_ostream SS(Str); |
| const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); |
| const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? |
| static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; |
| SS << "SU:" << SU->NodeNum; |
| if (DFS) |
| SS << " I:" << DFS->getNumInstrs(SU); |
| return SS.str(); |
| } |
| |
| static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) { |
| return G->getGraphNodeLabel(SU); |
| } |
| |
| static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) { |
| std::string Str("shape=Mrecord"); |
| const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G); |
| const SchedDFSResult *DFS = DAG->hasVRegLiveness() ? |
| static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr; |
| if (DFS) { |
| Str += ",style=filled,fillcolor=\"#"; |
| Str += DOT::getColorString(DFS->getSubtreeID(N)); |
| Str += '"'; |
| } |
| return Str; |
| } |
| }; |
| |
| } // end namespace llvm |
| #endif // NDEBUG |
| |
| /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG |
| /// rendered using 'dot'. |
| void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) { |
| #ifndef NDEBUG |
| ViewGraph(this, Name, false, Title); |
| #else |
| errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on " |
| << "systems with Graphviz or gv!\n"; |
| #endif // NDEBUG |
| } |
| |
| /// Out-of-line implementation with no arguments is handy for gdb. |
| void ScheduleDAGMI::viewGraph() { |
| viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName()); |
| } |