blob: c400ce190b46faddcf28efc9dc057a01cb5e9f38 [file] [log] [blame]
//==--- MachineLateInstrsCleanup.cpp - Late Instructions Cleanup Pass -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This simple pass removes any identical and redundant immediate or address
// loads to the same register. The immediate loads removed can originally be
// the result of rematerialization, while the addresses are redundant frame
// addressing anchor points created during Frame Indices elimination.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "machine-latecleanup"
STATISTIC(NumRemoved, "Number of redundant instructions removed.");
namespace {
class MachineLateInstrsCleanup : public MachineFunctionPass {
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
// Data structures to map regs to their definitions per MBB.
using Reg2DefMap = std::map<Register, MachineInstr*>;
std::vector<Reg2DefMap> RegDefs;
// Walk through the instructions in MBB and remove any redundant
// instructions.
bool processBlock(MachineBasicBlock *MBB);
public:
static char ID; // Pass identification, replacement for typeid
MachineLateInstrsCleanup() : MachineFunctionPass(ID) {
initializeMachineLateInstrsCleanupPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
};
} // end anonymous namespace
char MachineLateInstrsCleanup::ID = 0;
char &llvm::MachineLateInstrsCleanupID = MachineLateInstrsCleanup::ID;
INITIALIZE_PASS(MachineLateInstrsCleanup, DEBUG_TYPE,
"Machine Late Instructions Cleanup Pass", false, false)
bool MachineLateInstrsCleanup::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
TRI = MF.getSubtarget().getRegisterInfo();
TII = MF.getSubtarget().getInstrInfo();
RegDefs.clear();
RegDefs.resize(MF.getNumBlockIDs());
// Visit all MBBs in an order that maximises the reuse from predecessors.
bool Changed = false;
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
for (MachineBasicBlock *MBB : RPOT)
Changed |= processBlock(MBB);
return Changed;
}
// Clear any previous kill flag on Reg found before I in MBB. Walk backwards
// in MBB and if needed continue in predecessors until a use/def of Reg is
// encountered. This seems to be faster in practice than tracking kill flags
// in a map.
static void clearKillsForDef(Register Reg, MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
BitVector &VisitedPreds,
const TargetRegisterInfo *TRI) {
VisitedPreds.set(MBB->getNumber());
while (I != MBB->begin()) {
--I;
bool Found = false;
for (auto &MO : I->operands())
if (MO.isReg() && TRI->regsOverlap(MO.getReg(), Reg)) {
if (MO.isDef())
return;
if (MO.readsReg()) {
MO.setIsKill(false);
Found = true; // Keep going for an implicit kill of the super-reg.
}
}
if (Found)
return;
}
// If an earlier def is not in MBB, continue in predecessors.
if (!MBB->isLiveIn(Reg))
MBB->addLiveIn(Reg);
assert(!MBB->pred_empty() && "Predecessor def not found!");
for (MachineBasicBlock *Pred : MBB->predecessors())
if (!VisitedPreds.test(Pred->getNumber()))
clearKillsForDef(Reg, Pred, Pred->end(), VisitedPreds, TRI);
}
static void removeRedundantDef(MachineInstr *MI,
const TargetRegisterInfo *TRI) {
Register Reg = MI->getOperand(0).getReg();
BitVector VisitedPreds(MI->getMF()->getNumBlockIDs());
clearKillsForDef(Reg, MI->getParent(), MI->getIterator(), VisitedPreds, TRI);
MI->eraseFromParent();
++NumRemoved;
}
// Return true if MI is a potential candidate for reuse/removal and if so
// also the register it defines in DefedReg. A candidate is a simple
// instruction that does not touch memory, has only one register definition
// and the only reg it may use is FrameReg. Typically this is an immediate
// load or a load-address instruction.
static bool isCandidate(const MachineInstr *MI, Register &DefedReg,
Register FrameReg) {
DefedReg = MCRegister::NoRegister;
bool SawStore = true;
if (!MI->isSafeToMove(nullptr, SawStore) || MI->isImplicitDef() ||
MI->isInlineAsm())
return false;
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg()) {
if (MO.isDef()) {
if (i == 0 && !MO.isImplicit() && !MO.isDead())
DefedReg = MO.getReg();
else
return false;
} else if (MO.getReg() && MO.getReg() != FrameReg)
return false;
} else if (!(MO.isImm() || MO.isCImm() || MO.isFPImm() || MO.isCPI() ||
MO.isGlobal() || MO.isSymbol()))
return false;
}
return DefedReg.isValid();
}
bool MachineLateInstrsCleanup::processBlock(MachineBasicBlock *MBB) {
bool Changed = false;
Reg2DefMap &MBBDefs = RegDefs[MBB->getNumber()];
// Find reusable definitions in the predecessor(s).
if (!MBB->pred_empty() && !MBB->isEHPad()) {
MachineBasicBlock *FirstPred = *MBB->pred_begin();
for (auto [Reg, DefMI] : RegDefs[FirstPred->getNumber()])
if (llvm::all_of(
drop_begin(MBB->predecessors()),
[&, &Reg = Reg, &DefMI = DefMI](const MachineBasicBlock *Pred) {
auto PredDefI = RegDefs[Pred->getNumber()].find(Reg);
return PredDefI != RegDefs[Pred->getNumber()].end() &&
DefMI->isIdenticalTo(*PredDefI->second);
})) {
MBBDefs[Reg] = DefMI;
LLVM_DEBUG(dbgs() << "Reusable instruction from pred(s): in "
<< printMBBReference(*MBB) << ": " << *DefMI;);
}
}
// Process MBB.
MachineFunction *MF = MBB->getParent();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
Register FrameReg = TRI->getFrameRegister(*MF);
for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
// If FrameReg is modified, no previous load-address instructions (using
// it) are valid.
if (MI.modifiesRegister(FrameReg, TRI)) {
MBBDefs.clear();
continue;
}
Register DefedReg;
bool IsCandidate = isCandidate(&MI, DefedReg, FrameReg);
// Check for an earlier identical and reusable instruction.
if (IsCandidate) {
auto DefI = MBBDefs.find(DefedReg);
if (DefI != MBBDefs.end() && MI.isIdenticalTo(*DefI->second)) {
LLVM_DEBUG(dbgs() << "Removing redundant instruction in "
<< printMBBReference(*MBB) << ": " << MI;);
removeRedundantDef(&MI, TRI);
Changed = true;
continue;
}
}
// Clear any entries in map that MI clobbers.
for (auto DefI = MBBDefs.begin(); DefI != MBBDefs.end();) {
Register Reg = DefI->first;
if (MI.modifiesRegister(Reg, TRI))
DefI = MBBDefs.erase(DefI);
else
++DefI;
}
// Record this MI for potential later reuse.
if (IsCandidate) {
LLVM_DEBUG(dbgs() << "Found interesting instruction in "
<< printMBBReference(*MBB) << ": " << MI;);
MBBDefs[DefedReg] = &MI;
}
}
return Changed;
}