| //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines vectorizer utilities. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/ADT/EquivalenceClasses.h" |
| #include "llvm/Analysis/DemandedBits.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/CommandLine.h" |
| |
| #define DEBUG_TYPE "vectorutils" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| /// Maximum factor for an interleaved memory access. |
| static cl::opt<unsigned> MaxInterleaveGroupFactor( |
| "max-interleave-group-factor", cl::Hidden, |
| cl::desc("Maximum factor for an interleaved access group (default = 8)"), |
| cl::init(8)); |
| |
| /// Return true if all of the intrinsic's arguments and return type are scalars |
| /// for the scalar form of the intrinsic, and vectors for the vector form of the |
| /// intrinsic (except operands that are marked as always being scalar by |
| /// isVectorIntrinsicWithScalarOpAtArg). |
| bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { |
| switch (ID) { |
| case Intrinsic::abs: // Begin integer bit-manipulation. |
| case Intrinsic::bswap: |
| case Intrinsic::bitreverse: |
| case Intrinsic::ctpop: |
| case Intrinsic::ctlz: |
| case Intrinsic::cttz: |
| case Intrinsic::fshl: |
| case Intrinsic::fshr: |
| case Intrinsic::smax: |
| case Intrinsic::smin: |
| case Intrinsic::umax: |
| case Intrinsic::umin: |
| case Intrinsic::sadd_sat: |
| case Intrinsic::ssub_sat: |
| case Intrinsic::uadd_sat: |
| case Intrinsic::usub_sat: |
| case Intrinsic::smul_fix: |
| case Intrinsic::smul_fix_sat: |
| case Intrinsic::umul_fix: |
| case Intrinsic::umul_fix_sat: |
| case Intrinsic::sqrt: // Begin floating-point. |
| case Intrinsic::sin: |
| case Intrinsic::cos: |
| case Intrinsic::exp: |
| case Intrinsic::exp2: |
| case Intrinsic::log: |
| case Intrinsic::log10: |
| case Intrinsic::log2: |
| case Intrinsic::fabs: |
| case Intrinsic::minnum: |
| case Intrinsic::maxnum: |
| case Intrinsic::minimum: |
| case Intrinsic::maximum: |
| case Intrinsic::copysign: |
| case Intrinsic::floor: |
| case Intrinsic::ceil: |
| case Intrinsic::trunc: |
| case Intrinsic::rint: |
| case Intrinsic::nearbyint: |
| case Intrinsic::round: |
| case Intrinsic::roundeven: |
| case Intrinsic::pow: |
| case Intrinsic::fma: |
| case Intrinsic::fmuladd: |
| case Intrinsic::powi: |
| case Intrinsic::canonicalize: |
| case Intrinsic::fptosi_sat: |
| case Intrinsic::fptoui_sat: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// Identifies if the vector form of the intrinsic has a scalar operand. |
| bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, |
| unsigned ScalarOpdIdx) { |
| switch (ID) { |
| case Intrinsic::abs: |
| case Intrinsic::ctlz: |
| case Intrinsic::cttz: |
| case Intrinsic::powi: |
| return (ScalarOpdIdx == 1); |
| case Intrinsic::smul_fix: |
| case Intrinsic::smul_fix_sat: |
| case Intrinsic::umul_fix: |
| case Intrinsic::umul_fix_sat: |
| return (ScalarOpdIdx == 2); |
| default: |
| return false; |
| } |
| } |
| |
| bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, |
| unsigned OpdIdx) { |
| switch (ID) { |
| case Intrinsic::fptosi_sat: |
| case Intrinsic::fptoui_sat: |
| return OpdIdx == 0; |
| case Intrinsic::powi: |
| return OpdIdx == 1; |
| default: |
| return false; |
| } |
| } |
| |
| /// Returns intrinsic ID for call. |
| /// For the input call instruction it finds mapping intrinsic and returns |
| /// its ID, in case it does not found it return not_intrinsic. |
| Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, |
| const TargetLibraryInfo *TLI) { |
| Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI); |
| if (ID == Intrinsic::not_intrinsic) |
| return Intrinsic::not_intrinsic; |
| |
| if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || |
| ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || |
| ID == Intrinsic::experimental_noalias_scope_decl || |
| ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) |
| return ID; |
| return Intrinsic::not_intrinsic; |
| } |
| |
| /// Find the operand of the GEP that should be checked for consecutive |
| /// stores. This ignores trailing indices that have no effect on the final |
| /// pointer. |
| unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { |
| const DataLayout &DL = Gep->getModule()->getDataLayout(); |
| unsigned LastOperand = Gep->getNumOperands() - 1; |
| TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); |
| |
| // Walk backwards and try to peel off zeros. |
| while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { |
| // Find the type we're currently indexing into. |
| gep_type_iterator GEPTI = gep_type_begin(Gep); |
| std::advance(GEPTI, LastOperand - 2); |
| |
| // If it's a type with the same allocation size as the result of the GEP we |
| // can peel off the zero index. |
| if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) |
| break; |
| --LastOperand; |
| } |
| |
| return LastOperand; |
| } |
| |
| /// If the argument is a GEP, then returns the operand identified by |
| /// getGEPInductionOperand. However, if there is some other non-loop-invariant |
| /// operand, it returns that instead. |
| Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { |
| GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| if (!GEP) |
| return Ptr; |
| |
| unsigned InductionOperand = getGEPInductionOperand(GEP); |
| |
| // Check that all of the gep indices are uniform except for our induction |
| // operand. |
| for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) |
| if (i != InductionOperand && |
| !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) |
| return Ptr; |
| return GEP->getOperand(InductionOperand); |
| } |
| |
| /// If a value has only one user that is a CastInst, return it. |
| Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { |
| Value *UniqueCast = nullptr; |
| for (User *U : Ptr->users()) { |
| CastInst *CI = dyn_cast<CastInst>(U); |
| if (CI && CI->getType() == Ty) { |
| if (!UniqueCast) |
| UniqueCast = CI; |
| else |
| return nullptr; |
| } |
| } |
| return UniqueCast; |
| } |
| |
| /// Get the stride of a pointer access in a loop. Looks for symbolic |
| /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. |
| Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { |
| auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); |
| if (!PtrTy || PtrTy->isAggregateType()) |
| return nullptr; |
| |
| // Try to remove a gep instruction to make the pointer (actually index at this |
| // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the |
| // pointer, otherwise, we are analyzing the index. |
| Value *OrigPtr = Ptr; |
| |
| // The size of the pointer access. |
| int64_t PtrAccessSize = 1; |
| |
| Ptr = stripGetElementPtr(Ptr, SE, Lp); |
| const SCEV *V = SE->getSCEV(Ptr); |
| |
| if (Ptr != OrigPtr) |
| // Strip off casts. |
| while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) |
| V = C->getOperand(); |
| |
| const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); |
| if (!S) |
| return nullptr; |
| |
| V = S->getStepRecurrence(*SE); |
| if (!V) |
| return nullptr; |
| |
| // Strip off the size of access multiplication if we are still analyzing the |
| // pointer. |
| if (OrigPtr == Ptr) { |
| if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { |
| if (M->getOperand(0)->getSCEVType() != scConstant) |
| return nullptr; |
| |
| const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); |
| |
| // Huge step value - give up. |
| if (APStepVal.getBitWidth() > 64) |
| return nullptr; |
| |
| int64_t StepVal = APStepVal.getSExtValue(); |
| if (PtrAccessSize != StepVal) |
| return nullptr; |
| V = M->getOperand(1); |
| } |
| } |
| |
| // Strip off casts. |
| Type *StripedOffRecurrenceCast = nullptr; |
| if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) { |
| StripedOffRecurrenceCast = C->getType(); |
| V = C->getOperand(); |
| } |
| |
| // Look for the loop invariant symbolic value. |
| const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); |
| if (!U) |
| return nullptr; |
| |
| Value *Stride = U->getValue(); |
| if (!Lp->isLoopInvariant(Stride)) |
| return nullptr; |
| |
| // If we have stripped off the recurrence cast we have to make sure that we |
| // return the value that is used in this loop so that we can replace it later. |
| if (StripedOffRecurrenceCast) |
| Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); |
| |
| return Stride; |
| } |
| |
| /// Given a vector and an element number, see if the scalar value is |
| /// already around as a register, for example if it were inserted then extracted |
| /// from the vector. |
| Value *llvm::findScalarElement(Value *V, unsigned EltNo) { |
| assert(V->getType()->isVectorTy() && "Not looking at a vector?"); |
| VectorType *VTy = cast<VectorType>(V->getType()); |
| // For fixed-length vector, return undef for out of range access. |
| if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { |
| unsigned Width = FVTy->getNumElements(); |
| if (EltNo >= Width) |
| return UndefValue::get(FVTy->getElementType()); |
| } |
| |
| if (Constant *C = dyn_cast<Constant>(V)) |
| return C->getAggregateElement(EltNo); |
| |
| if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { |
| // If this is an insert to a variable element, we don't know what it is. |
| if (!isa<ConstantInt>(III->getOperand(2))) |
| return nullptr; |
| unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); |
| |
| // If this is an insert to the element we are looking for, return the |
| // inserted value. |
| if (EltNo == IIElt) |
| return III->getOperand(1); |
| |
| // Guard against infinite loop on malformed, unreachable IR. |
| if (III == III->getOperand(0)) |
| return nullptr; |
| |
| // Otherwise, the insertelement doesn't modify the value, recurse on its |
| // vector input. |
| return findScalarElement(III->getOperand(0), EltNo); |
| } |
| |
| ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V); |
| // Restrict the following transformation to fixed-length vector. |
| if (SVI && isa<FixedVectorType>(SVI->getType())) { |
| unsigned LHSWidth = |
| cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements(); |
| int InEl = SVI->getMaskValue(EltNo); |
| if (InEl < 0) |
| return UndefValue::get(VTy->getElementType()); |
| if (InEl < (int)LHSWidth) |
| return findScalarElement(SVI->getOperand(0), InEl); |
| return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); |
| } |
| |
| // Extract a value from a vector add operation with a constant zero. |
| // TODO: Use getBinOpIdentity() to generalize this. |
| Value *Val; Constant *C; |
| if (match(V, m_Add(m_Value(Val), m_Constant(C)))) |
| if (Constant *Elt = C->getAggregateElement(EltNo)) |
| if (Elt->isNullValue()) |
| return findScalarElement(Val, EltNo); |
| |
| // If the vector is a splat then we can trivially find the scalar element. |
| if (isa<ScalableVectorType>(VTy)) |
| if (Value *Splat = getSplatValue(V)) |
| if (EltNo < VTy->getElementCount().getKnownMinValue()) |
| return Splat; |
| |
| // Otherwise, we don't know. |
| return nullptr; |
| } |
| |
| int llvm::getSplatIndex(ArrayRef<int> Mask) { |
| int SplatIndex = -1; |
| for (int M : Mask) { |
| // Ignore invalid (undefined) mask elements. |
| if (M < 0) |
| continue; |
| |
| // There can be only 1 non-negative mask element value if this is a splat. |
| if (SplatIndex != -1 && SplatIndex != M) |
| return -1; |
| |
| // Initialize the splat index to the 1st non-negative mask element. |
| SplatIndex = M; |
| } |
| assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?"); |
| return SplatIndex; |
| } |
| |
| /// Get splat value if the input is a splat vector or return nullptr. |
| /// This function is not fully general. It checks only 2 cases: |
| /// the input value is (1) a splat constant vector or (2) a sequence |
| /// of instructions that broadcasts a scalar at element 0. |
| Value *llvm::getSplatValue(const Value *V) { |
| if (isa<VectorType>(V->getType())) |
| if (auto *C = dyn_cast<Constant>(V)) |
| return C->getSplatValue(); |
| |
| // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> |
| Value *Splat; |
| if (match(V, |
| m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()), |
| m_Value(), m_ZeroMask()))) |
| return Splat; |
| |
| return nullptr; |
| } |
| |
| bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { |
| assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); |
| |
| if (isa<VectorType>(V->getType())) { |
| if (isa<UndefValue>(V)) |
| return true; |
| // FIXME: We can allow undefs, but if Index was specified, we may want to |
| // check that the constant is defined at that index. |
| if (auto *C = dyn_cast<Constant>(V)) |
| return C->getSplatValue() != nullptr; |
| } |
| |
| if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) { |
| // FIXME: We can safely allow undefs here. If Index was specified, we will |
| // check that the mask elt is defined at the required index. |
| if (!all_equal(Shuf->getShuffleMask())) |
| return false; |
| |
| // Match any index. |
| if (Index == -1) |
| return true; |
| |
| // Match a specific element. The mask should be defined at and match the |
| // specified index. |
| return Shuf->getMaskValue(Index) == Index; |
| } |
| |
| // The remaining tests are all recursive, so bail out if we hit the limit. |
| if (Depth++ == MaxAnalysisRecursionDepth) |
| return false; |
| |
| // If both operands of a binop are splats, the result is a splat. |
| Value *X, *Y, *Z; |
| if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) |
| return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth); |
| |
| // If all operands of a select are splats, the result is a splat. |
| if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) |
| return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) && |
| isSplatValue(Z, Index, Depth); |
| |
| // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). |
| |
| return false; |
| } |
| |
| bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, |
| const APInt &DemandedElts, APInt &DemandedLHS, |
| APInt &DemandedRHS, bool AllowUndefElts) { |
| DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth); |
| |
| // Early out if we don't demand any elements. |
| if (DemandedElts.isZero()) |
| return true; |
| |
| // Simple case of a shuffle with zeroinitializer. |
| if (all_of(Mask, [](int Elt) { return Elt == 0; })) { |
| DemandedLHS.setBit(0); |
| return true; |
| } |
| |
| for (unsigned I = 0, E = Mask.size(); I != E; ++I) { |
| int M = Mask[I]; |
| assert((-1 <= M) && (M < (SrcWidth * 2)) && |
| "Invalid shuffle mask constant"); |
| |
| if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) |
| continue; |
| |
| // For undef elements, we don't know anything about the common state of |
| // the shuffle result. |
| if (M < 0) |
| return false; |
| |
| if (M < SrcWidth) |
| DemandedLHS.setBit(M); |
| else |
| DemandedRHS.setBit(M - SrcWidth); |
| } |
| |
| return true; |
| } |
| |
| void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, |
| SmallVectorImpl<int> &ScaledMask) { |
| assert(Scale > 0 && "Unexpected scaling factor"); |
| |
| // Fast-path: if no scaling, then it is just a copy. |
| if (Scale == 1) { |
| ScaledMask.assign(Mask.begin(), Mask.end()); |
| return; |
| } |
| |
| ScaledMask.clear(); |
| for (int MaskElt : Mask) { |
| if (MaskElt >= 0) { |
| assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && |
| "Overflowed 32-bits"); |
| } |
| for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) |
| ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); |
| } |
| } |
| |
| bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, |
| SmallVectorImpl<int> &ScaledMask) { |
| assert(Scale > 0 && "Unexpected scaling factor"); |
| |
| // Fast-path: if no scaling, then it is just a copy. |
| if (Scale == 1) { |
| ScaledMask.assign(Mask.begin(), Mask.end()); |
| return true; |
| } |
| |
| // We must map the original elements down evenly to a type with less elements. |
| int NumElts = Mask.size(); |
| if (NumElts % Scale != 0) |
| return false; |
| |
| ScaledMask.clear(); |
| ScaledMask.reserve(NumElts / Scale); |
| |
| // Step through the input mask by splitting into Scale-sized slices. |
| do { |
| ArrayRef<int> MaskSlice = Mask.take_front(Scale); |
| assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice."); |
| |
| // The first element of the slice determines how we evaluate this slice. |
| int SliceFront = MaskSlice.front(); |
| if (SliceFront < 0) { |
| // Negative values (undef or other "sentinel" values) must be equal across |
| // the entire slice. |
| if (!all_equal(MaskSlice)) |
| return false; |
| ScaledMask.push_back(SliceFront); |
| } else { |
| // A positive mask element must be cleanly divisible. |
| if (SliceFront % Scale != 0) |
| return false; |
| // Elements of the slice must be consecutive. |
| for (int i = 1; i < Scale; ++i) |
| if (MaskSlice[i] != SliceFront + i) |
| return false; |
| ScaledMask.push_back(SliceFront / Scale); |
| } |
| Mask = Mask.drop_front(Scale); |
| } while (!Mask.empty()); |
| |
| assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask"); |
| |
| // All elements of the original mask can be scaled down to map to the elements |
| // of a mask with wider elements. |
| return true; |
| } |
| |
| void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, |
| SmallVectorImpl<int> &ScaledMask) { |
| std::array<SmallVector<int, 16>, 2> TmpMasks; |
| SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; |
| ArrayRef<int> InputMask = Mask; |
| for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { |
| while (widenShuffleMaskElts(Scale, InputMask, *Output)) { |
| InputMask = *Output; |
| std::swap(Output, Tmp); |
| } |
| } |
| ScaledMask.assign(InputMask.begin(), InputMask.end()); |
| } |
| |
| void llvm::processShuffleMasks( |
| ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, |
| unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, |
| function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, |
| function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { |
| SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); |
| // Try to perform better estimation of the permutation. |
| // 1. Split the source/destination vectors into real registers. |
| // 2. Do the mask analysis to identify which real registers are |
| // permuted. |
| int Sz = Mask.size(); |
| unsigned SzDest = Sz / NumOfDestRegs; |
| unsigned SzSrc = Sz / NumOfSrcRegs; |
| for (unsigned I = 0; I < NumOfDestRegs; ++I) { |
| auto &RegMasks = Res[I]; |
| RegMasks.assign(NumOfSrcRegs, {}); |
| // Check that the values in dest registers are in the one src |
| // register. |
| for (unsigned K = 0; K < SzDest; ++K) { |
| int Idx = I * SzDest + K; |
| if (Idx == Sz) |
| break; |
| if (Mask[Idx] >= Sz || Mask[Idx] == UndefMaskElem) |
| continue; |
| int SrcRegIdx = Mask[Idx] / SzSrc; |
| // Add a cost of PermuteTwoSrc for each new source register permute, |
| // if we have more than one source registers. |
| if (RegMasks[SrcRegIdx].empty()) |
| RegMasks[SrcRegIdx].assign(SzDest, UndefMaskElem); |
| RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; |
| } |
| } |
| // Process split mask. |
| for (unsigned I = 0; I < NumOfUsedRegs; ++I) { |
| auto &Dest = Res[I]; |
| int NumSrcRegs = |
| count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); |
| switch (NumSrcRegs) { |
| case 0: |
| // No input vectors were used! |
| NoInputAction(); |
| break; |
| case 1: { |
| // Find the only mask with at least single undef mask elem. |
| auto *It = |
| find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); }); |
| unsigned SrcReg = std::distance(Dest.begin(), It); |
| SingleInputAction(*It, SrcReg, I); |
| break; |
| } |
| default: { |
| // The first mask is a permutation of a single register. Since we have >2 |
| // input registers to shuffle, we merge the masks for 2 first registers |
| // and generate a shuffle of 2 registers rather than the reordering of the |
| // first register and then shuffle with the second register. Next, |
| // generate the shuffles of the resulting register + the remaining |
| // registers from the list. |
| auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, |
| ArrayRef<int> SecondMask) { |
| for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { |
| if (SecondMask[Idx] != UndefMaskElem) { |
| assert(FirstMask[Idx] == UndefMaskElem && |
| "Expected undefined mask element."); |
| FirstMask[Idx] = SecondMask[Idx] + VF; |
| } |
| } |
| }; |
| auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { |
| for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { |
| if (Mask[Idx] != UndefMaskElem) |
| Mask[Idx] = Idx; |
| } |
| }; |
| int SecondIdx; |
| do { |
| int FirstIdx = -1; |
| SecondIdx = -1; |
| MutableArrayRef<int> FirstMask, SecondMask; |
| for (unsigned I = 0; I < NumOfDestRegs; ++I) { |
| SmallVectorImpl<int> &RegMask = Dest[I]; |
| if (RegMask.empty()) |
| continue; |
| |
| if (FirstIdx == SecondIdx) { |
| FirstIdx = I; |
| FirstMask = RegMask; |
| continue; |
| } |
| SecondIdx = I; |
| SecondMask = RegMask; |
| CombineMasks(FirstMask, SecondMask); |
| ManyInputsAction(FirstMask, FirstIdx, SecondIdx); |
| NormalizeMask(FirstMask); |
| RegMask.clear(); |
| SecondMask = FirstMask; |
| SecondIdx = FirstIdx; |
| } |
| if (FirstIdx != SecondIdx && SecondIdx >= 0) { |
| CombineMasks(SecondMask, FirstMask); |
| ManyInputsAction(SecondMask, SecondIdx, FirstIdx); |
| Dest[FirstIdx].clear(); |
| NormalizeMask(SecondMask); |
| } |
| } while (SecondIdx >= 0); |
| break; |
| } |
| } |
| } |
| } |
| |
| MapVector<Instruction *, uint64_t> |
| llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, |
| const TargetTransformInfo *TTI) { |
| |
| // DemandedBits will give us every value's live-out bits. But we want |
| // to ensure no extra casts would need to be inserted, so every DAG |
| // of connected values must have the same minimum bitwidth. |
| EquivalenceClasses<Value *> ECs; |
| SmallVector<Value *, 16> Worklist; |
| SmallPtrSet<Value *, 4> Roots; |
| SmallPtrSet<Value *, 16> Visited; |
| DenseMap<Value *, uint64_t> DBits; |
| SmallPtrSet<Instruction *, 4> InstructionSet; |
| MapVector<Instruction *, uint64_t> MinBWs; |
| |
| // Determine the roots. We work bottom-up, from truncs or icmps. |
| bool SeenExtFromIllegalType = false; |
| for (auto *BB : Blocks) |
| for (auto &I : *BB) { |
| InstructionSet.insert(&I); |
| |
| if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && |
| !TTI->isTypeLegal(I.getOperand(0)->getType())) |
| SeenExtFromIllegalType = true; |
| |
| // Only deal with non-vector integers up to 64-bits wide. |
| if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && |
| !I.getType()->isVectorTy() && |
| I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { |
| // Don't make work for ourselves. If we know the loaded type is legal, |
| // don't add it to the worklist. |
| if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) |
| continue; |
| |
| Worklist.push_back(&I); |
| Roots.insert(&I); |
| } |
| } |
| // Early exit. |
| if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) |
| return MinBWs; |
| |
| // Now proceed breadth-first, unioning values together. |
| while (!Worklist.empty()) { |
| Value *Val = Worklist.pop_back_val(); |
| Value *Leader = ECs.getOrInsertLeaderValue(Val); |
| |
| if (!Visited.insert(Val).second) |
| continue; |
| |
| // Non-instructions terminate a chain successfully. |
| if (!isa<Instruction>(Val)) |
| continue; |
| Instruction *I = cast<Instruction>(Val); |
| |
| // If we encounter a type that is larger than 64 bits, we can't represent |
| // it so bail out. |
| if (DB.getDemandedBits(I).getBitWidth() > 64) |
| return MapVector<Instruction *, uint64_t>(); |
| |
| uint64_t V = DB.getDemandedBits(I).getZExtValue(); |
| DBits[Leader] |= V; |
| DBits[I] = V; |
| |
| // Casts, loads and instructions outside of our range terminate a chain |
| // successfully. |
| if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || |
| !InstructionSet.count(I)) |
| continue; |
| |
| // Unsafe casts terminate a chain unsuccessfully. We can't do anything |
| // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to |
| // transform anything that relies on them. |
| if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || |
| !I->getType()->isIntegerTy()) { |
| DBits[Leader] |= ~0ULL; |
| continue; |
| } |
| |
| // We don't modify the types of PHIs. Reductions will already have been |
| // truncated if possible, and inductions' sizes will have been chosen by |
| // indvars. |
| if (isa<PHINode>(I)) |
| continue; |
| |
| if (DBits[Leader] == ~0ULL) |
| // All bits demanded, no point continuing. |
| continue; |
| |
| for (Value *O : cast<User>(I)->operands()) { |
| ECs.unionSets(Leader, O); |
| Worklist.push_back(O); |
| } |
| } |
| |
| // Now we've discovered all values, walk them to see if there are |
| // any users we didn't see. If there are, we can't optimize that |
| // chain. |
| for (auto &I : DBits) |
| for (auto *U : I.first->users()) |
| if (U->getType()->isIntegerTy() && DBits.count(U) == 0) |
| DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; |
| |
| for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { |
| uint64_t LeaderDemandedBits = 0; |
| for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) |
| LeaderDemandedBits |= DBits[M]; |
| |
| uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - |
| llvm::countLeadingZeros(LeaderDemandedBits); |
| // Round up to a power of 2 |
| if (!isPowerOf2_64((uint64_t)MinBW)) |
| MinBW = NextPowerOf2(MinBW); |
| |
| // We don't modify the types of PHIs. Reductions will already have been |
| // truncated if possible, and inductions' sizes will have been chosen by |
| // indvars. |
| // If we are required to shrink a PHI, abandon this entire equivalence class. |
| bool Abort = false; |
| for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) |
| if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) { |
| Abort = true; |
| break; |
| } |
| if (Abort) |
| continue; |
| |
| for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) { |
| if (!isa<Instruction>(M)) |
| continue; |
| Type *Ty = M->getType(); |
| if (Roots.count(M)) |
| Ty = cast<Instruction>(M)->getOperand(0)->getType(); |
| if (MinBW < Ty->getScalarSizeInBits()) |
| MinBWs[cast<Instruction>(M)] = MinBW; |
| } |
| } |
| |
| return MinBWs; |
| } |
| |
| /// Add all access groups in @p AccGroups to @p List. |
| template <typename ListT> |
| static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { |
| // Interpret an access group as a list containing itself. |
| if (AccGroups->getNumOperands() == 0) { |
| assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); |
| List.insert(AccGroups); |
| return; |
| } |
| |
| for (const auto &AccGroupListOp : AccGroups->operands()) { |
| auto *Item = cast<MDNode>(AccGroupListOp.get()); |
| assert(isValidAsAccessGroup(Item) && "List item must be an access group"); |
| List.insert(Item); |
| } |
| } |
| |
| MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { |
| if (!AccGroups1) |
| return AccGroups2; |
| if (!AccGroups2) |
| return AccGroups1; |
| if (AccGroups1 == AccGroups2) |
| return AccGroups1; |
| |
| SmallSetVector<Metadata *, 4> Union; |
| addToAccessGroupList(Union, AccGroups1); |
| addToAccessGroupList(Union, AccGroups2); |
| |
| if (Union.size() == 0) |
| return nullptr; |
| if (Union.size() == 1) |
| return cast<MDNode>(Union.front()); |
| |
| LLVMContext &Ctx = AccGroups1->getContext(); |
| return MDNode::get(Ctx, Union.getArrayRef()); |
| } |
| |
| MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, |
| const Instruction *Inst2) { |
| bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); |
| bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); |
| |
| if (!MayAccessMem1 && !MayAccessMem2) |
| return nullptr; |
| if (!MayAccessMem1) |
| return Inst2->getMetadata(LLVMContext::MD_access_group); |
| if (!MayAccessMem2) |
| return Inst1->getMetadata(LLVMContext::MD_access_group); |
| |
| MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); |
| MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); |
| if (!MD1 || !MD2) |
| return nullptr; |
| if (MD1 == MD2) |
| return MD1; |
| |
| // Use set for scalable 'contains' check. |
| SmallPtrSet<Metadata *, 4> AccGroupSet2; |
| addToAccessGroupList(AccGroupSet2, MD2); |
| |
| SmallVector<Metadata *, 4> Intersection; |
| if (MD1->getNumOperands() == 0) { |
| assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); |
| if (AccGroupSet2.count(MD1)) |
| Intersection.push_back(MD1); |
| } else { |
| for (const MDOperand &Node : MD1->operands()) { |
| auto *Item = cast<MDNode>(Node.get()); |
| assert(isValidAsAccessGroup(Item) && "List item must be an access group"); |
| if (AccGroupSet2.count(Item)) |
| Intersection.push_back(Item); |
| } |
| } |
| |
| if (Intersection.size() == 0) |
| return nullptr; |
| if (Intersection.size() == 1) |
| return cast<MDNode>(Intersection.front()); |
| |
| LLVMContext &Ctx = Inst1->getContext(); |
| return MDNode::get(Ctx, Intersection); |
| } |
| |
| /// \returns \p I after propagating metadata from \p VL. |
| Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { |
| if (VL.empty()) |
| return Inst; |
| Instruction *I0 = cast<Instruction>(VL[0]); |
| SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; |
| I0->getAllMetadataOtherThanDebugLoc(Metadata); |
| |
| for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| LLVMContext::MD_noalias, LLVMContext::MD_fpmath, |
| LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, |
| LLVMContext::MD_access_group}) { |
| MDNode *MD = I0->getMetadata(Kind); |
| |
| for (int J = 1, E = VL.size(); MD && J != E; ++J) { |
| const Instruction *IJ = cast<Instruction>(VL[J]); |
| MDNode *IMD = IJ->getMetadata(Kind); |
| switch (Kind) { |
| case LLVMContext::MD_tbaa: |
| MD = MDNode::getMostGenericTBAA(MD, IMD); |
| break; |
| case LLVMContext::MD_alias_scope: |
| MD = MDNode::getMostGenericAliasScope(MD, IMD); |
| break; |
| case LLVMContext::MD_fpmath: |
| MD = MDNode::getMostGenericFPMath(MD, IMD); |
| break; |
| case LLVMContext::MD_noalias: |
| case LLVMContext::MD_nontemporal: |
| case LLVMContext::MD_invariant_load: |
| MD = MDNode::intersect(MD, IMD); |
| break; |
| case LLVMContext::MD_access_group: |
| MD = intersectAccessGroups(Inst, IJ); |
| break; |
| default: |
| llvm_unreachable("unhandled metadata"); |
| } |
| } |
| |
| Inst->setMetadata(Kind, MD); |
| } |
| |
| return Inst; |
| } |
| |
| Constant * |
| llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, |
| const InterleaveGroup<Instruction> &Group) { |
| // All 1's means mask is not needed. |
| if (Group.getNumMembers() == Group.getFactor()) |
| return nullptr; |
| |
| // TODO: support reversed access. |
| assert(!Group.isReverse() && "Reversed group not supported."); |
| |
| SmallVector<Constant *, 16> Mask; |
| for (unsigned i = 0; i < VF; i++) |
| for (unsigned j = 0; j < Group.getFactor(); ++j) { |
| unsigned HasMember = Group.getMember(j) ? 1 : 0; |
| Mask.push_back(Builder.getInt1(HasMember)); |
| } |
| |
| return ConstantVector::get(Mask); |
| } |
| |
| llvm::SmallVector<int, 16> |
| llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { |
| SmallVector<int, 16> MaskVec; |
| for (unsigned i = 0; i < VF; i++) |
| for (unsigned j = 0; j < ReplicationFactor; j++) |
| MaskVec.push_back(i); |
| |
| return MaskVec; |
| } |
| |
| llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, |
| unsigned NumVecs) { |
| SmallVector<int, 16> Mask; |
| for (unsigned i = 0; i < VF; i++) |
| for (unsigned j = 0; j < NumVecs; j++) |
| Mask.push_back(j * VF + i); |
| |
| return Mask; |
| } |
| |
| llvm::SmallVector<int, 16> |
| llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { |
| SmallVector<int, 16> Mask; |
| for (unsigned i = 0; i < VF; i++) |
| Mask.push_back(Start + i * Stride); |
| |
| return Mask; |
| } |
| |
| llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, |
| unsigned NumInts, |
| unsigned NumUndefs) { |
| SmallVector<int, 16> Mask; |
| for (unsigned i = 0; i < NumInts; i++) |
| Mask.push_back(Start + i); |
| |
| for (unsigned i = 0; i < NumUndefs; i++) |
| Mask.push_back(-1); |
| |
| return Mask; |
| } |
| |
| llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, |
| unsigned NumElts) { |
| // Avoid casts in the loop and make sure we have a reasonable number. |
| int NumEltsSigned = NumElts; |
| assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count"); |
| |
| // If the mask chooses an element from operand 1, reduce it to choose from the |
| // corresponding element of operand 0. Undef mask elements are unchanged. |
| SmallVector<int, 16> UnaryMask; |
| for (int MaskElt : Mask) { |
| assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask"); |
| int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; |
| UnaryMask.push_back(UnaryElt); |
| } |
| return UnaryMask; |
| } |
| |
| /// A helper function for concatenating vectors. This function concatenates two |
| /// vectors having the same element type. If the second vector has fewer |
| /// elements than the first, it is padded with undefs. |
| static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, |
| Value *V2) { |
| VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); |
| VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); |
| assert(VecTy1 && VecTy2 && |
| VecTy1->getScalarType() == VecTy2->getScalarType() && |
| "Expect two vectors with the same element type"); |
| |
| unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements(); |
| unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements(); |
| assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); |
| |
| if (NumElts1 > NumElts2) { |
| // Extend with UNDEFs. |
| V2 = Builder.CreateShuffleVector( |
| V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2)); |
| } |
| |
| return Builder.CreateShuffleVector( |
| V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0)); |
| } |
| |
| Value *llvm::concatenateVectors(IRBuilderBase &Builder, |
| ArrayRef<Value *> Vecs) { |
| unsigned NumVecs = Vecs.size(); |
| assert(NumVecs > 1 && "Should be at least two vectors"); |
| |
| SmallVector<Value *, 8> ResList; |
| ResList.append(Vecs.begin(), Vecs.end()); |
| do { |
| SmallVector<Value *, 8> TmpList; |
| for (unsigned i = 0; i < NumVecs - 1; i += 2) { |
| Value *V0 = ResList[i], *V1 = ResList[i + 1]; |
| assert((V0->getType() == V1->getType() || i == NumVecs - 2) && |
| "Only the last vector may have a different type"); |
| |
| TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); |
| } |
| |
| // Push the last vector if the total number of vectors is odd. |
| if (NumVecs % 2 != 0) |
| TmpList.push_back(ResList[NumVecs - 1]); |
| |
| ResList = TmpList; |
| NumVecs = ResList.size(); |
| } while (NumVecs > 1); |
| |
| return ResList[0]; |
| } |
| |
| bool llvm::maskIsAllZeroOrUndef(Value *Mask) { |
| assert(isa<VectorType>(Mask->getType()) && |
| isa<IntegerType>(Mask->getType()->getScalarType()) && |
| cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == |
| 1 && |
| "Mask must be a vector of i1"); |
| |
| auto *ConstMask = dyn_cast<Constant>(Mask); |
| if (!ConstMask) |
| return false; |
| if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) |
| return true; |
| if (isa<ScalableVectorType>(ConstMask->getType())) |
| return false; |
| for (unsigned |
| I = 0, |
| E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); |
| I != E; ++I) { |
| if (auto *MaskElt = ConstMask->getAggregateElement(I)) |
| if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) |
| continue; |
| return false; |
| } |
| return true; |
| } |
| |
| bool llvm::maskIsAllOneOrUndef(Value *Mask) { |
| assert(isa<VectorType>(Mask->getType()) && |
| isa<IntegerType>(Mask->getType()->getScalarType()) && |
| cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == |
| 1 && |
| "Mask must be a vector of i1"); |
| |
| auto *ConstMask = dyn_cast<Constant>(Mask); |
| if (!ConstMask) |
| return false; |
| if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask)) |
| return true; |
| if (isa<ScalableVectorType>(ConstMask->getType())) |
| return false; |
| for (unsigned |
| I = 0, |
| E = cast<FixedVectorType>(ConstMask->getType())->getNumElements(); |
| I != E; ++I) { |
| if (auto *MaskElt = ConstMask->getAggregateElement(I)) |
| if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt)) |
| continue; |
| return false; |
| } |
| return true; |
| } |
| |
| /// TODO: This is a lot like known bits, but for |
| /// vectors. Is there something we can common this with? |
| APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { |
| assert(isa<FixedVectorType>(Mask->getType()) && |
| isa<IntegerType>(Mask->getType()->getScalarType()) && |
| cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == |
| 1 && |
| "Mask must be a fixed width vector of i1"); |
| |
| const unsigned VWidth = |
| cast<FixedVectorType>(Mask->getType())->getNumElements(); |
| APInt DemandedElts = APInt::getAllOnes(VWidth); |
| if (auto *CV = dyn_cast<ConstantVector>(Mask)) |
| for (unsigned i = 0; i < VWidth; i++) |
| if (CV->getAggregateElement(i)->isNullValue()) |
| DemandedElts.clearBit(i); |
| return DemandedElts; |
| } |
| |
| bool InterleavedAccessInfo::isStrided(int Stride) { |
| unsigned Factor = std::abs(Stride); |
| return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; |
| } |
| |
| void InterleavedAccessInfo::collectConstStrideAccesses( |
| MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, |
| const ValueToValueMap &Strides) { |
| auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); |
| |
| // Since it's desired that the load/store instructions be maintained in |
| // "program order" for the interleaved access analysis, we have to visit the |
| // blocks in the loop in reverse postorder (i.e., in a topological order). |
| // Such an ordering will ensure that any load/store that may be executed |
| // before a second load/store will precede the second load/store in |
| // AccessStrideInfo. |
| LoopBlocksDFS DFS(TheLoop); |
| DFS.perform(LI); |
| for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) |
| for (auto &I : *BB) { |
| Value *Ptr = getLoadStorePointerOperand(&I); |
| if (!Ptr) |
| continue; |
| Type *ElementTy = getLoadStoreType(&I); |
| |
| // Currently, codegen doesn't support cases where the type size doesn't |
| // match the alloc size. Skip them for now. |
| uint64_t Size = DL.getTypeAllocSize(ElementTy); |
| if (Size * 8 != DL.getTypeSizeInBits(ElementTy)) |
| continue; |
| |
| // We don't check wrapping here because we don't know yet if Ptr will be |
| // part of a full group or a group with gaps. Checking wrapping for all |
| // pointers (even those that end up in groups with no gaps) will be overly |
| // conservative. For full groups, wrapping should be ok since if we would |
| // wrap around the address space we would do a memory access at nullptr |
| // even without the transformation. The wrapping checks are therefore |
| // deferred until after we've formed the interleaved groups. |
| int64_t Stride = |
| getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides, |
| /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0); |
| |
| const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); |
| AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, |
| getLoadStoreAlignment(&I)); |
| } |
| } |
| |
| // Analyze interleaved accesses and collect them into interleaved load and |
| // store groups. |
| // |
| // When generating code for an interleaved load group, we effectively hoist all |
| // loads in the group to the location of the first load in program order. When |
| // generating code for an interleaved store group, we sink all stores to the |
| // location of the last store. This code motion can change the order of load |
| // and store instructions and may break dependences. |
| // |
| // The code generation strategy mentioned above ensures that we won't violate |
| // any write-after-read (WAR) dependences. |
| // |
| // E.g., for the WAR dependence: a = A[i]; // (1) |
| // A[i] = b; // (2) |
| // |
| // The store group of (2) is always inserted at or below (2), and the load |
| // group of (1) is always inserted at or above (1). Thus, the instructions will |
| // never be reordered. All other dependences are checked to ensure the |
| // correctness of the instruction reordering. |
| // |
| // The algorithm visits all memory accesses in the loop in bottom-up program |
| // order. Program order is established by traversing the blocks in the loop in |
| // reverse postorder when collecting the accesses. |
| // |
| // We visit the memory accesses in bottom-up order because it can simplify the |
| // construction of store groups in the presence of write-after-write (WAW) |
| // dependences. |
| // |
| // E.g., for the WAW dependence: A[i] = a; // (1) |
| // A[i] = b; // (2) |
| // A[i + 1] = c; // (3) |
| // |
| // We will first create a store group with (3) and (2). (1) can't be added to |
| // this group because it and (2) are dependent. However, (1) can be grouped |
| // with other accesses that may precede it in program order. Note that a |
| // bottom-up order does not imply that WAW dependences should not be checked. |
| void InterleavedAccessInfo::analyzeInterleaving( |
| bool EnablePredicatedInterleavedMemAccesses) { |
| LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); |
| const ValueToValueMap &Strides = LAI->getSymbolicStrides(); |
| |
| // Holds all accesses with a constant stride. |
| MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; |
| collectConstStrideAccesses(AccessStrideInfo, Strides); |
| |
| if (AccessStrideInfo.empty()) |
| return; |
| |
| // Collect the dependences in the loop. |
| collectDependences(); |
| |
| // Holds all interleaved store groups temporarily. |
| SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; |
| // Holds all interleaved load groups temporarily. |
| SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; |
| |
| // Search in bottom-up program order for pairs of accesses (A and B) that can |
| // form interleaved load or store groups. In the algorithm below, access A |
| // precedes access B in program order. We initialize a group for B in the |
| // outer loop of the algorithm, and then in the inner loop, we attempt to |
| // insert each A into B's group if: |
| // |
| // 1. A and B have the same stride, |
| // 2. A and B have the same memory object size, and |
| // 3. A belongs in B's group according to its distance from B. |
| // |
| // Special care is taken to ensure group formation will not break any |
| // dependences. |
| for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); |
| BI != E; ++BI) { |
| Instruction *B = BI->first; |
| StrideDescriptor DesB = BI->second; |
| |
| // Initialize a group for B if it has an allowable stride. Even if we don't |
| // create a group for B, we continue with the bottom-up algorithm to ensure |
| // we don't break any of B's dependences. |
| InterleaveGroup<Instruction> *Group = nullptr; |
| if (isStrided(DesB.Stride) && |
| (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { |
| Group = getInterleaveGroup(B); |
| if (!Group) { |
| LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B |
| << '\n'); |
| Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); |
| } |
| if (B->mayWriteToMemory()) |
| StoreGroups.insert(Group); |
| else |
| LoadGroups.insert(Group); |
| } |
| |
| for (auto AI = std::next(BI); AI != E; ++AI) { |
| Instruction *A = AI->first; |
| StrideDescriptor DesA = AI->second; |
| |
| // Our code motion strategy implies that we can't have dependences |
| // between accesses in an interleaved group and other accesses located |
| // between the first and last member of the group. Note that this also |
| // means that a group can't have more than one member at a given offset. |
| // The accesses in a group can have dependences with other accesses, but |
| // we must ensure we don't extend the boundaries of the group such that |
| // we encompass those dependent accesses. |
| // |
| // For example, assume we have the sequence of accesses shown below in a |
| // stride-2 loop: |
| // |
| // (1, 2) is a group | A[i] = a; // (1) |
| // | A[i-1] = b; // (2) | |
| // A[i-3] = c; // (3) |
| // A[i] = d; // (4) | (2, 4) is not a group |
| // |
| // Because accesses (2) and (3) are dependent, we can group (2) with (1) |
| // but not with (4). If we did, the dependent access (3) would be within |
| // the boundaries of the (2, 4) group. |
| if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { |
| // If a dependence exists and A is already in a group, we know that A |
| // must be a store since A precedes B and WAR dependences are allowed. |
| // Thus, A would be sunk below B. We release A's group to prevent this |
| // illegal code motion. A will then be free to form another group with |
| // instructions that precede it. |
| if (isInterleaved(A)) { |
| InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); |
| |
| LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " |
| "dependence between " << *A << " and "<< *B << '\n'); |
| |
| StoreGroups.remove(StoreGroup); |
| releaseGroup(StoreGroup); |
| } |
| |
| // If a dependence exists and A is not already in a group (or it was |
| // and we just released it), B might be hoisted above A (if B is a |
| // load) or another store might be sunk below A (if B is a store). In |
| // either case, we can't add additional instructions to B's group. B |
| // will only form a group with instructions that it precedes. |
| break; |
| } |
| |
| // At this point, we've checked for illegal code motion. If either A or B |
| // isn't strided, there's nothing left to do. |
| if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) |
| continue; |
| |
| // Ignore A if it's already in a group or isn't the same kind of memory |
| // operation as B. |
| // Note that mayReadFromMemory() isn't mutually exclusive to |
| // mayWriteToMemory in the case of atomic loads. We shouldn't see those |
| // here, canVectorizeMemory() should have returned false - except for the |
| // case we asked for optimization remarks. |
| if (isInterleaved(A) || |
| (A->mayReadFromMemory() != B->mayReadFromMemory()) || |
| (A->mayWriteToMemory() != B->mayWriteToMemory())) |
| continue; |
| |
| // Check rules 1 and 2. Ignore A if its stride or size is different from |
| // that of B. |
| if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) |
| continue; |
| |
| // Ignore A if the memory object of A and B don't belong to the same |
| // address space |
| if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) |
| continue; |
| |
| // Calculate the distance from A to B. |
| const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( |
| PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); |
| if (!DistToB) |
| continue; |
| int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); |
| |
| // Check rule 3. Ignore A if its distance to B is not a multiple of the |
| // size. |
| if (DistanceToB % static_cast<int64_t>(DesB.Size)) |
| continue; |
| |
| // All members of a predicated interleave-group must have the same predicate, |
| // and currently must reside in the same BB. |
| BasicBlock *BlockA = A->getParent(); |
| BasicBlock *BlockB = B->getParent(); |
| if ((isPredicated(BlockA) || isPredicated(BlockB)) && |
| (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) |
| continue; |
| |
| // The index of A is the index of B plus A's distance to B in multiples |
| // of the size. |
| int IndexA = |
| Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); |
| |
| // Try to insert A into B's group. |
| if (Group->insertMember(A, IndexA, DesA.Alignment)) { |
| LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' |
| << " into the interleave group with" << *B |
| << '\n'); |
| InterleaveGroupMap[A] = Group; |
| |
| // Set the first load in program order as the insert position. |
| if (A->mayReadFromMemory()) |
| Group->setInsertPos(A); |
| } |
| } // Iteration over A accesses. |
| } // Iteration over B accesses. |
| |
| auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, |
| int Index, |
| std::string FirstOrLast) -> bool { |
| Instruction *Member = Group->getMember(Index); |
| assert(Member && "Group member does not exist"); |
| Value *MemberPtr = getLoadStorePointerOperand(Member); |
| Type *AccessTy = getLoadStoreType(Member); |
| if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides, |
| /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0)) |
| return false; |
| LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " |
| << FirstOrLast |
| << " group member potentially pointer-wrapping.\n"); |
| releaseGroup(Group); |
| return true; |
| }; |
| |
| // Remove interleaved groups with gaps whose memory |
| // accesses may wrap around. We have to revisit the getPtrStride analysis, |
| // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does |
| // not check wrapping (see documentation there). |
| // FORNOW we use Assume=false; |
| // TODO: Change to Assume=true but making sure we don't exceed the threshold |
| // of runtime SCEV assumptions checks (thereby potentially failing to |
| // vectorize altogether). |
| // Additional optional optimizations: |
| // TODO: If we are peeling the loop and we know that the first pointer doesn't |
| // wrap then we can deduce that all pointers in the group don't wrap. |
| // This means that we can forcefully peel the loop in order to only have to |
| // check the first pointer for no-wrap. When we'll change to use Assume=true |
| // we'll only need at most one runtime check per interleaved group. |
| for (auto *Group : LoadGroups) { |
| // Case 1: A full group. Can Skip the checks; For full groups, if the wide |
| // load would wrap around the address space we would do a memory access at |
| // nullptr even without the transformation. |
| if (Group->getNumMembers() == Group->getFactor()) |
| continue; |
| |
| // Case 2: If first and last members of the group don't wrap this implies |
| // that all the pointers in the group don't wrap. |
| // So we check only group member 0 (which is always guaranteed to exist), |
| // and group member Factor - 1; If the latter doesn't exist we rely on |
| // peeling (if it is a non-reversed accsess -- see Case 3). |
| if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) |
| continue; |
| if (Group->getMember(Group->getFactor() - 1)) |
| InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, |
| std::string("last")); |
| else { |
| // Case 3: A non-reversed interleaved load group with gaps: We need |
| // to execute at least one scalar epilogue iteration. This will ensure |
| // we don't speculatively access memory out-of-bounds. We only need |
| // to look for a member at index factor - 1, since every group must have |
| // a member at index zero. |
| if (Group->isReverse()) { |
| LLVM_DEBUG( |
| dbgs() << "LV: Invalidate candidate interleaved group due to " |
| "a reverse access with gaps.\n"); |
| releaseGroup(Group); |
| continue; |
| } |
| LLVM_DEBUG( |
| dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); |
| RequiresScalarEpilogue = true; |
| } |
| } |
| |
| for (auto *Group : StoreGroups) { |
| // Case 1: A full group. Can Skip the checks; For full groups, if the wide |
| // store would wrap around the address space we would do a memory access at |
| // nullptr even without the transformation. |
| if (Group->getNumMembers() == Group->getFactor()) |
| continue; |
| |
| // Interleave-store-group with gaps is implemented using masked wide store. |
| // Remove interleaved store groups with gaps if |
| // masked-interleaved-accesses are not enabled by the target. |
| if (!EnablePredicatedInterleavedMemAccesses) { |
| LLVM_DEBUG( |
| dbgs() << "LV: Invalidate candidate interleaved store group due " |
| "to gaps.\n"); |
| releaseGroup(Group); |
| continue; |
| } |
| |
| // Case 2: If first and last members of the group don't wrap this implies |
| // that all the pointers in the group don't wrap. |
| // So we check only group member 0 (which is always guaranteed to exist), |
| // and the last group member. Case 3 (scalar epilog) is not relevant for |
| // stores with gaps, which are implemented with masked-store (rather than |
| // speculative access, as in loads). |
| if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first"))) |
| continue; |
| for (int Index = Group->getFactor() - 1; Index > 0; Index--) |
| if (Group->getMember(Index)) { |
| InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last")); |
| break; |
| } |
| } |
| } |
| |
| void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { |
| // If no group had triggered the requirement to create an epilogue loop, |
| // there is nothing to do. |
| if (!requiresScalarEpilogue()) |
| return; |
| |
| bool ReleasedGroup = false; |
| // Release groups requiring scalar epilogues. Note that this also removes them |
| // from InterleaveGroups. |
| for (auto *Group : make_early_inc_range(InterleaveGroups)) { |
| if (!Group->requiresScalarEpilogue()) |
| continue; |
| LLVM_DEBUG( |
| dbgs() |
| << "LV: Invalidate candidate interleaved group due to gaps that " |
| "require a scalar epilogue (not allowed under optsize) and cannot " |
| "be masked (not enabled). \n"); |
| releaseGroup(Group); |
| ReleasedGroup = true; |
| } |
| assert(ReleasedGroup && "At least one group must be invalidated, as a " |
| "scalar epilogue was required"); |
| (void)ReleasedGroup; |
| RequiresScalarEpilogue = false; |
| } |
| |
| template <typename InstT> |
| void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { |
| llvm_unreachable("addMetadata can only be used for Instruction"); |
| } |
| |
| namespace llvm { |
| template <> |
| void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { |
| SmallVector<Value *, 4> VL; |
| std::transform(Members.begin(), Members.end(), std::back_inserter(VL), |
| [](std::pair<int, Instruction *> p) { return p.second; }); |
| propagateMetadata(NewInst, VL); |
| } |
| } |
| |
| std::string VFABI::mangleTLIVectorName(StringRef VectorName, |
| StringRef ScalarName, unsigned numArgs, |
| ElementCount VF) { |
| SmallString<256> Buffer; |
| llvm::raw_svector_ostream Out(Buffer); |
| Out << "_ZGV" << VFABI::_LLVM_ << "N"; |
| if (VF.isScalable()) |
| Out << 'x'; |
| else |
| Out << VF.getFixedValue(); |
| for (unsigned I = 0; I < numArgs; ++I) |
| Out << "v"; |
| Out << "_" << ScalarName << "(" << VectorName << ")"; |
| return std::string(Out.str()); |
| } |
| |
| void VFABI::getVectorVariantNames( |
| const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) { |
| const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString(); |
| if (S.empty()) |
| return; |
| |
| SmallVector<StringRef, 8> ListAttr; |
| S.split(ListAttr, ","); |
| |
| for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) { |
| #ifndef NDEBUG |
| LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n"); |
| std::optional<VFInfo> Info = |
| VFABI::tryDemangleForVFABI(S, *(CI.getModule())); |
| assert(Info && "Invalid name for a VFABI variant."); |
| assert(CI.getModule()->getFunction(Info->VectorName) && |
| "Vector function is missing."); |
| #endif |
| VariantMappings.push_back(std::string(S)); |
| } |
| } |
| |
| bool VFShape::hasValidParameterList() const { |
| for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; |
| ++Pos) { |
| assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); |
| |
| switch (Parameters[Pos].ParamKind) { |
| default: // Nothing to check. |
| break; |
| case VFParamKind::OMP_Linear: |
| case VFParamKind::OMP_LinearRef: |
| case VFParamKind::OMP_LinearVal: |
| case VFParamKind::OMP_LinearUVal: |
| // Compile time linear steps must be non-zero. |
| if (Parameters[Pos].LinearStepOrPos == 0) |
| return false; |
| break; |
| case VFParamKind::OMP_LinearPos: |
| case VFParamKind::OMP_LinearRefPos: |
| case VFParamKind::OMP_LinearValPos: |
| case VFParamKind::OMP_LinearUValPos: |
| // The runtime linear step must be referring to some other |
| // parameters in the signature. |
| if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) |
| return false; |
| // The linear step parameter must be marked as uniform. |
| if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != |
| VFParamKind::OMP_Uniform) |
| return false; |
| // The linear step parameter can't point at itself. |
| if (Parameters[Pos].LinearStepOrPos == int(Pos)) |
| return false; |
| break; |
| case VFParamKind::GlobalPredicate: |
| // The global predicate must be the unique. Can be placed anywhere in the |
| // signature. |
| for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) |
| if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) |
| return false; |
| break; |
| } |
| } |
| return true; |
| } |