| // Copyright (c) 2017 Google Inc. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "source/opt/cfg.h" |
| |
| #include <memory> |
| #include <utility> |
| |
| #include "source/cfa.h" |
| #include "source/opt/ir_builder.h" |
| #include "source/opt/ir_context.h" |
| #include "source/opt/module.h" |
| |
| namespace spvtools { |
| namespace opt { |
| namespace { |
| |
| using cbb_ptr = const opt::BasicBlock*; |
| |
| // Universal Limit of ResultID + 1 |
| constexpr int kMaxResultId = 0x400000; |
| |
| } // namespace |
| |
| CFG::CFG(Module* module) |
| : module_(module), |
| pseudo_entry_block_(std::unique_ptr<Instruction>( |
| new Instruction(module->context(), spv::Op::OpLabel, 0, 0, {}))), |
| pseudo_exit_block_(std::unique_ptr<Instruction>(new Instruction( |
| module->context(), spv::Op::OpLabel, 0, kMaxResultId, {}))) { |
| for (auto& fn : *module) { |
| for (auto& blk : fn) { |
| RegisterBlock(&blk); |
| } |
| } |
| } |
| |
| void CFG::AddEdges(BasicBlock* blk) { |
| uint32_t blk_id = blk->id(); |
| // Force the creation of an entry, not all basic block have predecessors |
| // (such as the entry blocks and some unreachables). |
| label2preds_[blk_id]; |
| const auto* const_blk = blk; |
| const_blk->ForEachSuccessorLabel( |
| [blk_id, this](const uint32_t succ_id) { AddEdge(blk_id, succ_id); }); |
| } |
| |
| void CFG::RemoveNonExistingEdges(uint32_t blk_id) { |
| std::vector<uint32_t> updated_pred_list; |
| for (uint32_t id : preds(blk_id)) { |
| const BasicBlock* pred_blk = block(id); |
| bool has_branch = false; |
| pred_blk->ForEachSuccessorLabel([&has_branch, blk_id](uint32_t succ) { |
| if (succ == blk_id) { |
| has_branch = true; |
| } |
| }); |
| if (has_branch) updated_pred_list.push_back(id); |
| } |
| |
| label2preds_.at(blk_id) = std::move(updated_pred_list); |
| } |
| |
| void CFG::ComputeStructuredOrder(Function* func, BasicBlock* root, |
| std::list<BasicBlock*>* order) { |
| ComputeStructuredOrder(func, root, nullptr, order); |
| } |
| |
| void CFG::ComputeStructuredOrder(Function* func, BasicBlock* root, |
| BasicBlock* end, |
| std::list<BasicBlock*>* order) { |
| assert(module_->context()->get_feature_mgr()->HasCapability( |
| spv::Capability::Shader) && |
| "This only works on structured control flow"); |
| |
| // Compute structured successors and do DFS. |
| ComputeStructuredSuccessors(func); |
| auto ignore_block = [](cbb_ptr) {}; |
| auto terminal = [end](cbb_ptr bb) { return bb == end; }; |
| |
| auto get_structured_successors = [this](const BasicBlock* b) { |
| return &(block2structured_succs_[b]); |
| }; |
| |
| // TODO(greg-lunarg): Get rid of const_cast by making moving const |
| // out of the cfa.h prototypes and into the invoking code. |
| auto post_order = [&](cbb_ptr b) { |
| order->push_front(const_cast<BasicBlock*>(b)); |
| }; |
| CFA<BasicBlock>::DepthFirstTraversal(root, get_structured_successors, |
| ignore_block, post_order, terminal); |
| } |
| |
| void CFG::ForEachBlockInPostOrder(BasicBlock* bb, |
| const std::function<void(BasicBlock*)>& f) { |
| std::vector<BasicBlock*> po; |
| std::unordered_set<BasicBlock*> seen; |
| ComputePostOrderTraversal(bb, &po, &seen); |
| |
| for (BasicBlock* current_bb : po) { |
| if (!IsPseudoExitBlock(current_bb) && !IsPseudoEntryBlock(current_bb)) { |
| f(current_bb); |
| } |
| } |
| } |
| |
| void CFG::ForEachBlockInReversePostOrder( |
| BasicBlock* bb, const std::function<void(BasicBlock*)>& f) { |
| WhileEachBlockInReversePostOrder(bb, [f](BasicBlock* b) { |
| f(b); |
| return true; |
| }); |
| } |
| |
| bool CFG::WhileEachBlockInReversePostOrder( |
| BasicBlock* bb, const std::function<bool(BasicBlock*)>& f) { |
| std::vector<BasicBlock*> po; |
| std::unordered_set<BasicBlock*> seen; |
| ComputePostOrderTraversal(bb, &po, &seen); |
| |
| for (auto current_bb = po.rbegin(); current_bb != po.rend(); ++current_bb) { |
| if (!IsPseudoExitBlock(*current_bb) && !IsPseudoEntryBlock(*current_bb)) { |
| if (!f(*current_bb)) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void CFG::ComputeStructuredSuccessors(Function* func) { |
| block2structured_succs_.clear(); |
| for (auto& blk : *func) { |
| // If no predecessors in function, make successor to pseudo entry. |
| if (label2preds_[blk.id()].size() == 0) |
| block2structured_succs_[&pseudo_entry_block_].push_back(&blk); |
| |
| // If header, make merge block first successor and continue block second |
| // successor if there is one. |
| uint32_t mbid = blk.MergeBlockIdIfAny(); |
| if (mbid != 0) { |
| block2structured_succs_[&blk].push_back(block(mbid)); |
| uint32_t cbid = blk.ContinueBlockIdIfAny(); |
| if (cbid != 0) { |
| block2structured_succs_[&blk].push_back(block(cbid)); |
| } |
| } |
| |
| // Add true successors. |
| const auto& const_blk = blk; |
| const_blk.ForEachSuccessorLabel([&blk, this](const uint32_t sbid) { |
| block2structured_succs_[&blk].push_back(block(sbid)); |
| }); |
| } |
| } |
| |
| void CFG::ComputePostOrderTraversal(BasicBlock* bb, |
| std::vector<BasicBlock*>* order, |
| std::unordered_set<BasicBlock*>* seen) { |
| std::vector<BasicBlock*> stack; |
| stack.push_back(bb); |
| while (!stack.empty()) { |
| bb = stack.back(); |
| seen->insert(bb); |
| static_cast<const BasicBlock*>(bb)->WhileEachSuccessorLabel( |
| [&seen, &stack, this](const uint32_t sbid) { |
| BasicBlock* succ_bb = id2block_[sbid]; |
| if (!seen->count(succ_bb)) { |
| stack.push_back(succ_bb); |
| return false; |
| } |
| return true; |
| }); |
| if (stack.back() == bb) { |
| order->push_back(bb); |
| stack.pop_back(); |
| } |
| } |
| } |
| |
| BasicBlock* CFG::SplitLoopHeader(BasicBlock* bb) { |
| assert(bb->GetLoopMergeInst() && "Expecting bb to be the header of a loop."); |
| |
| Function* fn = bb->GetParent(); |
| IRContext* context = module_->context(); |
| |
| // Get the new header id up front. If we are out of ids, then we cannot split |
| // the loop. |
| uint32_t new_header_id = context->TakeNextId(); |
| if (new_header_id == 0) { |
| return nullptr; |
| } |
| |
| // Find the insertion point for the new bb. |
| Function::iterator header_it = std::find_if( |
| fn->begin(), fn->end(), |
| [bb](BasicBlock& block_in_func) { return &block_in_func == bb; }); |
| assert(header_it != fn->end()); |
| |
| const std::vector<uint32_t>& pred = preds(bb->id()); |
| // Find the back edge |
| BasicBlock* latch_block = nullptr; |
| Function::iterator latch_block_iter = header_it; |
| for (; latch_block_iter != fn->end(); ++latch_block_iter) { |
| // If blocks are in the proper order, then the only branch that appears |
| // after the header is the latch. |
| if (std::find(pred.begin(), pred.end(), latch_block_iter->id()) != |
| pred.end()) { |
| break; |
| } |
| } |
| assert(latch_block_iter != fn->end() && "Could not find the latch."); |
| latch_block = &*latch_block_iter; |
| |
| RemoveSuccessorEdges(bb); |
| |
| // Create the new header bb basic bb. |
| // Leave the phi instructions behind. |
| auto iter = bb->begin(); |
| while (iter->opcode() == spv::Op::OpPhi) { |
| ++iter; |
| } |
| |
| BasicBlock* new_header = bb->SplitBasicBlock(context, new_header_id, iter); |
| context->AnalyzeDefUse(new_header->GetLabelInst()); |
| |
| // Update cfg |
| RegisterBlock(new_header); |
| |
| // Update bb mappings. |
| context->set_instr_block(new_header->GetLabelInst(), new_header); |
| new_header->ForEachInst([new_header, context](Instruction* inst) { |
| context->set_instr_block(inst, new_header); |
| }); |
| |
| // If |bb| was the latch block, the branch back to the header is not in |
| // |new_header|. |
| if (latch_block == bb) { |
| if (new_header->ContinueBlockId() == bb->id()) { |
| new_header->GetLoopMergeInst()->SetInOperand(1, {new_header_id}); |
| } |
| latch_block = new_header; |
| } |
| |
| // Adjust the OpPhi instructions as needed. |
| bb->ForEachPhiInst([latch_block, bb, new_header, context](Instruction* phi) { |
| std::vector<uint32_t> preheader_phi_ops; |
| std::vector<Operand> header_phi_ops; |
| |
| // Identify where the original inputs to original OpPhi belong: header or |
| // preheader. |
| for (uint32_t i = 0; i < phi->NumInOperands(); i += 2) { |
| uint32_t def_id = phi->GetSingleWordInOperand(i); |
| uint32_t branch_id = phi->GetSingleWordInOperand(i + 1); |
| if (branch_id == latch_block->id()) { |
| header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {def_id}}); |
| header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {branch_id}}); |
| } else { |
| preheader_phi_ops.push_back(def_id); |
| preheader_phi_ops.push_back(branch_id); |
| } |
| } |
| |
| // Create a phi instruction if and only if the preheader_phi_ops has more |
| // than one pair. |
| if (preheader_phi_ops.size() > 2) { |
| InstructionBuilder builder( |
| context, &*bb->begin(), |
| IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); |
| |
| Instruction* new_phi = builder.AddPhi(phi->type_id(), preheader_phi_ops); |
| |
| // Add the OpPhi to the header bb. |
| header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {new_phi->result_id()}}); |
| header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {bb->id()}}); |
| } else { |
| // An OpPhi with a single entry is just a copy. In this case use the same |
| // instruction in the new header. |
| header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {preheader_phi_ops[0]}}); |
| header_phi_ops.push_back({SPV_OPERAND_TYPE_ID, {bb->id()}}); |
| } |
| |
| phi->RemoveFromList(); |
| std::unique_ptr<Instruction> phi_owner(phi); |
| phi->SetInOperands(std::move(header_phi_ops)); |
| new_header->begin()->InsertBefore(std::move(phi_owner)); |
| context->set_instr_block(phi, new_header); |
| context->AnalyzeUses(phi); |
| }); |
| |
| // Add a branch to the new header. |
| InstructionBuilder branch_builder( |
| context, bb, |
| IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping); |
| bb->AddInstruction( |
| MakeUnique<Instruction>(context, spv::Op::OpBranch, 0, 0, |
| std::initializer_list<Operand>{ |
| {SPV_OPERAND_TYPE_ID, {new_header->id()}}})); |
| context->AnalyzeUses(bb->terminator()); |
| context->set_instr_block(bb->terminator(), bb); |
| label2preds_[new_header->id()].push_back(bb->id()); |
| |
| // Update the latch to branch to the new header. |
| latch_block->ForEachSuccessorLabel([bb, new_header_id](uint32_t* id) { |
| if (*id == bb->id()) { |
| *id = new_header_id; |
| } |
| }); |
| Instruction* latch_branch = latch_block->terminator(); |
| context->AnalyzeUses(latch_branch); |
| label2preds_[new_header->id()].push_back(latch_block->id()); |
| |
| auto& block_preds = label2preds_[bb->id()]; |
| auto latch_pos = |
| std::find(block_preds.begin(), block_preds.end(), latch_block->id()); |
| assert(latch_pos != block_preds.end() && "The cfg was invalid."); |
| block_preds.erase(latch_pos); |
| |
| // Update the loop descriptors |
| if (context->AreAnalysesValid(IRContext::kAnalysisLoopAnalysis)) { |
| LoopDescriptor* loop_desc = context->GetLoopDescriptor(bb->GetParent()); |
| Loop* loop = (*loop_desc)[bb->id()]; |
| |
| loop->AddBasicBlock(new_header_id); |
| loop->SetHeaderBlock(new_header); |
| loop_desc->SetBasicBlockToLoop(new_header_id, loop); |
| |
| loop->RemoveBasicBlock(bb->id()); |
| loop->SetPreHeaderBlock(bb); |
| |
| Loop* parent_loop = loop->GetParent(); |
| if (parent_loop != nullptr) { |
| parent_loop->AddBasicBlock(bb->id()); |
| loop_desc->SetBasicBlockToLoop(bb->id(), parent_loop); |
| } else { |
| loop_desc->SetBasicBlockToLoop(bb->id(), nullptr); |
| } |
| } |
| return new_header; |
| } |
| |
| } // namespace opt |
| } // namespace spvtools |