| //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the LoopInfo class that is used to identify natural loops |
| // and determine the loop depth of various nodes of the CFG. Note that the |
| // loops identified may actually be several natural loops that share the same |
| // header node... not just a single natural loop. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/LoopIterator.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| // Always verify loopinfo if expensive checking is enabled. |
| #ifdef XDEBUG |
| static bool VerifyLoopInfo = true; |
| #else |
| static bool VerifyLoopInfo = false; |
| #endif |
| static cl::opt<bool,true> |
| VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), |
| cl::desc("Verify loop info (time consuming)")); |
| |
| char LoopInfo::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopInfo, "loops", "Natural Loop Information", true, true) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_END(LoopInfo, "loops", "Natural Loop Information", true, true) |
| |
| //===----------------------------------------------------------------------===// |
| // Loop implementation |
| // |
| |
| /// isLoopInvariant - Return true if the specified value is loop invariant |
| /// |
| bool Loop::isLoopInvariant(Value *V) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return !contains(I); |
| return true; // All non-instructions are loop invariant |
| } |
| |
| /// hasLoopInvariantOperands - Return true if all the operands of the |
| /// specified instruction are loop invariant. |
| bool Loop::hasLoopInvariantOperands(Instruction *I) const { |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (!isLoopInvariant(I->getOperand(i))) |
| return false; |
| |
| return true; |
| } |
| |
| /// makeLoopInvariant - If the given value is an instruciton inside of the |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant. |
| /// Return true if the value after any hoisting is loop invariant. This |
| /// function can be used as a slightly more aggressive replacement for |
| /// isLoopInvariant. |
| /// |
| /// If InsertPt is specified, it is the point to hoist instructions to. |
| /// If null, the terminator of the loop preheader is used. |
| /// |
| bool Loop::makeLoopInvariant(Value *V, bool &Changed, |
| Instruction *InsertPt) const { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| return makeLoopInvariant(I, Changed, InsertPt); |
| return true; // All non-instructions are loop-invariant. |
| } |
| |
| /// makeLoopInvariant - If the given instruction is inside of the |
| /// loop and it can be hoisted, do so to make it trivially loop-invariant. |
| /// Return true if the instruction after any hoisting is loop invariant. This |
| /// function can be used as a slightly more aggressive replacement for |
| /// isLoopInvariant. |
| /// |
| /// If InsertPt is specified, it is the point to hoist instructions to. |
| /// If null, the terminator of the loop preheader is used. |
| /// |
| bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, |
| Instruction *InsertPt) const { |
| // Test if the value is already loop-invariant. |
| if (isLoopInvariant(I)) |
| return true; |
| if (!I->isSafeToSpeculativelyExecute()) |
| return false; |
| if (I->mayReadFromMemory()) |
| return false; |
| // The landingpad instruction is immobile. |
| if (isa<LandingPadInst>(I)) |
| return false; |
| // Determine the insertion point, unless one was given. |
| if (!InsertPt) { |
| BasicBlock *Preheader = getLoopPreheader(); |
| // Without a preheader, hoisting is not feasible. |
| if (!Preheader) |
| return false; |
| InsertPt = Preheader->getTerminator(); |
| } |
| // Don't hoist instructions with loop-variant operands. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) |
| if (!makeLoopInvariant(I->getOperand(i), Changed, InsertPt)) |
| return false; |
| |
| // Hoist. |
| I->moveBefore(InsertPt); |
| Changed = true; |
| return true; |
| } |
| |
| /// getCanonicalInductionVariable - Check to see if the loop has a canonical |
| /// induction variable: an integer recurrence that starts at 0 and increments |
| /// by one each time through the loop. If so, return the phi node that |
| /// corresponds to it. |
| /// |
| /// The IndVarSimplify pass transforms loops to have a canonical induction |
| /// variable. |
| /// |
| PHINode *Loop::getCanonicalInductionVariable() const { |
| BasicBlock *H = getHeader(); |
| |
| BasicBlock *Incoming = 0, *Backedge = 0; |
| pred_iterator PI = pred_begin(H); |
| assert(PI != pred_end(H) && |
| "Loop must have at least one backedge!"); |
| Backedge = *PI++; |
| if (PI == pred_end(H)) return 0; // dead loop |
| Incoming = *PI++; |
| if (PI != pred_end(H)) return 0; // multiple backedges? |
| |
| if (contains(Incoming)) { |
| if (contains(Backedge)) |
| return 0; |
| std::swap(Incoming, Backedge); |
| } else if (!contains(Backedge)) |
| return 0; |
| |
| // Loop over all of the PHI nodes, looking for a canonical indvar. |
| for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| if (ConstantInt *CI = |
| dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) |
| if (CI->isNullValue()) |
| if (Instruction *Inc = |
| dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) |
| if (Inc->getOpcode() == Instruction::Add && |
| Inc->getOperand(0) == PN) |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) |
| if (CI->equalsInt(1)) |
| return PN; |
| } |
| return 0; |
| } |
| |
| /// getTripCount - Return a loop-invariant LLVM value indicating the number of |
| /// times the loop will be executed. Note that this means that the backedge |
| /// of the loop executes N-1 times. If the trip-count cannot be determined, |
| /// this returns null. |
| /// |
| /// The IndVarSimplify pass transforms loops to have a form that this |
| /// function easily understands. |
| /// |
| Value *Loop::getTripCount() const { |
| // Canonical loops will end with a 'cmp ne I, V', where I is the incremented |
| // canonical induction variable and V is the trip count of the loop. |
| PHINode *IV = getCanonicalInductionVariable(); |
| if (IV == 0 || IV->getNumIncomingValues() != 2) return 0; |
| |
| bool P0InLoop = contains(IV->getIncomingBlock(0)); |
| Value *Inc = IV->getIncomingValue(!P0InLoop); |
| BasicBlock *BackedgeBlock = IV->getIncomingBlock(!P0InLoop); |
| |
| if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator())) |
| if (BI->isConditional()) { |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { |
| if (ICI->getOperand(0) == Inc) { |
| if (BI->getSuccessor(0) == getHeader()) { |
| if (ICI->getPredicate() == ICmpInst::ICMP_NE) |
| return ICI->getOperand(1); |
| } else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) { |
| return ICI->getOperand(1); |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /// getSmallConstantTripCount - Returns the trip count of this loop as a |
| /// normal unsigned value, if possible. Returns 0 if the trip count is unknown |
| /// or not constant. Will also return 0 if the trip count is very large |
| /// (>= 2^32) |
| unsigned Loop::getSmallConstantTripCount() const { |
| Value* TripCount = this->getTripCount(); |
| if (TripCount) { |
| if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) { |
| // Guard against huge trip counts. |
| if (TripCountC->getValue().getActiveBits() <= 32) { |
| return (unsigned)TripCountC->getZExtValue(); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /// getSmallConstantTripMultiple - Returns the largest constant divisor of the |
| /// trip count of this loop as a normal unsigned value, if possible. This |
| /// means that the actual trip count is always a multiple of the returned |
| /// value (don't forget the trip count could very well be zero as well!). |
| /// |
| /// Returns 1 if the trip count is unknown or not guaranteed to be the |
| /// multiple of a constant (which is also the case if the trip count is simply |
| /// constant, use getSmallConstantTripCount for that case), Will also return 1 |
| /// if the trip count is very large (>= 2^32). |
| unsigned Loop::getSmallConstantTripMultiple() const { |
| Value* TripCount = this->getTripCount(); |
| // This will hold the ConstantInt result, if any |
| ConstantInt *Result = NULL; |
| if (TripCount) { |
| // See if the trip count is constant itself |
| Result = dyn_cast<ConstantInt>(TripCount); |
| // if not, see if it is a multiplication |
| if (!Result) |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) { |
| switch (BO->getOpcode()) { |
| case BinaryOperator::Mul: |
| Result = dyn_cast<ConstantInt>(BO->getOperand(1)); |
| break; |
| case BinaryOperator::Shl: |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) |
| if (CI->getValue().getActiveBits() <= 5) |
| return 1u << CI->getZExtValue(); |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| // Guard against huge trip counts. |
| if (Result && Result->getValue().getActiveBits() <= 32) { |
| return (unsigned)Result->getZExtValue(); |
| } else { |
| return 1; |
| } |
| } |
| |
| /// isLCSSAForm - Return true if the Loop is in LCSSA form |
| bool Loop::isLCSSAForm(DominatorTree &DT) const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallPtrSet<BasicBlock*, 16> LoopBBs(block_begin(), block_end()); |
| |
| for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) { |
| BasicBlock *BB = *BI; |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;++I) |
| for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| ++UI) { |
| User *U = *UI; |
| BasicBlock *UserBB = cast<Instruction>(U)->getParent(); |
| if (PHINode *P = dyn_cast<PHINode>(U)) |
| UserBB = P->getIncomingBlock(UI); |
| |
| // Check the current block, as a fast-path, before checking whether |
| // the use is anywhere in the loop. Most values are used in the same |
| // block they are defined in. Also, blocks not reachable from the |
| // entry are special; uses in them don't need to go through PHIs. |
| if (UserBB != BB && |
| !LoopBBs.count(UserBB) && |
| DT.isReachableFromEntry(UserBB)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /// isLoopSimplifyForm - Return true if the Loop is in the form that |
| /// the LoopSimplify form transforms loops to, which is sometimes called |
| /// normal form. |
| bool Loop::isLoopSimplifyForm() const { |
| // Normal-form loops have a preheader, a single backedge, and all of their |
| // exits have all their predecessors inside the loop. |
| return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); |
| } |
| |
| /// hasDedicatedExits - Return true if no exit block for the loop |
| /// has a predecessor that is outside the loop. |
| bool Loop::hasDedicatedExits() const { |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallPtrSet<BasicBlock *, 16> LoopBBs(block_begin(), block_end()); |
| // Each predecessor of each exit block of a normal loop is contained |
| // within the loop. |
| SmallVector<BasicBlock *, 4> ExitBlocks; |
| getExitBlocks(ExitBlocks); |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) |
| for (pred_iterator PI = pred_begin(ExitBlocks[i]), |
| PE = pred_end(ExitBlocks[i]); PI != PE; ++PI) |
| if (!LoopBBs.count(*PI)) |
| return false; |
| // All the requirements are met. |
| return true; |
| } |
| |
| /// getUniqueExitBlocks - Return all unique successor blocks of this loop. |
| /// These are the blocks _outside of the current loop_ which are branched to. |
| /// This assumes that loop exits are in canonical form. |
| /// |
| void |
| Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const { |
| assert(hasDedicatedExits() && |
| "getUniqueExitBlocks assumes the loop has canonical form exits!"); |
| |
| // Sort the blocks vector so that we can use binary search to do quick |
| // lookups. |
| SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end()); |
| std::sort(LoopBBs.begin(), LoopBBs.end()); |
| |
| SmallVector<BasicBlock *, 32> switchExitBlocks; |
| |
| for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI) { |
| |
| BasicBlock *current = *BI; |
| switchExitBlocks.clear(); |
| |
| for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I) { |
| // If block is inside the loop then it is not a exit block. |
| if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) |
| continue; |
| |
| pred_iterator PI = pred_begin(*I); |
| BasicBlock *firstPred = *PI; |
| |
| // If current basic block is this exit block's first predecessor |
| // then only insert exit block in to the output ExitBlocks vector. |
| // This ensures that same exit block is not inserted twice into |
| // ExitBlocks vector. |
| if (current != firstPred) |
| continue; |
| |
| // If a terminator has more then two successors, for example SwitchInst, |
| // then it is possible that there are multiple edges from current block |
| // to one exit block. |
| if (std::distance(succ_begin(current), succ_end(current)) <= 2) { |
| ExitBlocks.push_back(*I); |
| continue; |
| } |
| |
| // In case of multiple edges from current block to exit block, collect |
| // only one edge in ExitBlocks. Use switchExitBlocks to keep track of |
| // duplicate edges. |
| if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I) |
| == switchExitBlocks.end()) { |
| switchExitBlocks.push_back(*I); |
| ExitBlocks.push_back(*I); |
| } |
| } |
| } |
| } |
| |
| /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one |
| /// block, return that block. Otherwise return null. |
| BasicBlock *Loop::getUniqueExitBlock() const { |
| SmallVector<BasicBlock *, 8> UniqueExitBlocks; |
| getUniqueExitBlocks(UniqueExitBlocks); |
| if (UniqueExitBlocks.size() == 1) |
| return UniqueExitBlocks[0]; |
| return 0; |
| } |
| |
| void Loop::dump() const { |
| print(dbgs()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // UnloopUpdater implementation |
| // |
| |
| namespace { |
| /// Find the new parent loop for all blocks within the "unloop" whose last |
| /// backedges has just been removed. |
| class UnloopUpdater { |
| Loop *Unloop; |
| LoopInfo *LI; |
| |
| LoopBlocksDFS DFS; |
| |
| // Map unloop's immediate subloops to their nearest reachable parents. Nested |
| // loops within these subloops will not change parents. However, an immediate |
| // subloop's new parent will be the nearest loop reachable from either its own |
| // exits *or* any of its nested loop's exits. |
| DenseMap<Loop*, Loop*> SubloopParents; |
| |
| // Flag the presence of an irreducible backedge whose destination is a block |
| // directly contained by the original unloop. |
| bool FoundIB; |
| |
| public: |
| UnloopUpdater(Loop *UL, LoopInfo *LInfo) : |
| Unloop(UL), LI(LInfo), DFS(UL), FoundIB(false) {} |
| |
| void updateBlockParents(); |
| |
| void removeBlocksFromAncestors(); |
| |
| void updateSubloopParents(); |
| |
| protected: |
| Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); |
| }; |
| } // end anonymous namespace |
| |
| /// updateBlockParents - Update the parent loop for all blocks that are directly |
| /// contained within the original "unloop". |
| void UnloopUpdater::updateBlockParents() { |
| if (Unloop->getNumBlocks()) { |
| // Perform a post order CFG traversal of all blocks within this loop, |
| // propagating the nearest loop from sucessors to predecessors. |
| LoopBlocksTraversal Traversal(DFS, LI); |
| for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), |
| POE = Traversal.end(); POI != POE; ++POI) { |
| |
| Loop *L = LI->getLoopFor(*POI); |
| Loop *NL = getNearestLoop(*POI, L); |
| |
| if (NL != L) { |
| // For reducible loops, NL is now an ancestor of Unloop. |
| assert((NL != Unloop && (!NL || NL->contains(Unloop))) && |
| "uninitialized successor"); |
| LI->changeLoopFor(*POI, NL); |
| } |
| else { |
| // Or the current block is part of a subloop, in which case its parent |
| // is unchanged. |
| assert((FoundIB || Unloop->contains(L)) && "uninitialized successor"); |
| } |
| } |
| } |
| // Each irreducible loop within the unloop induces a round of iteration using |
| // the DFS result cached by Traversal. |
| bool Changed = FoundIB; |
| for (unsigned NIters = 0; Changed; ++NIters) { |
| assert(NIters < Unloop->getNumBlocks() && "runaway iterative algorithm"); |
| |
| // Iterate over the postorder list of blocks, propagating the nearest loop |
| // from successors to predecessors as before. |
| Changed = false; |
| for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), |
| POE = DFS.endPostorder(); POI != POE; ++POI) { |
| |
| Loop *L = LI->getLoopFor(*POI); |
| Loop *NL = getNearestLoop(*POI, L); |
| if (NL != L) { |
| assert(NL != Unloop && (!NL || NL->contains(Unloop)) && |
| "uninitialized successor"); |
| LI->changeLoopFor(*POI, NL); |
| Changed = true; |
| } |
| } |
| } |
| } |
| |
| /// removeBlocksFromAncestors - Remove unloop's blocks from all ancestors below |
| /// their new parents. |
| void UnloopUpdater::removeBlocksFromAncestors() { |
| // Remove unloop's blocks from all ancestors below their new parents. |
| for (Loop::block_iterator BI = Unloop->block_begin(), |
| BE = Unloop->block_end(); BI != BE; ++BI) { |
| Loop *NewParent = LI->getLoopFor(*BI); |
| // If this block is an immediate subloop, remove all blocks (including |
| // nested subloops) from ancestors below the new parent loop. |
| // Otherwise, if this block is in a nested subloop, skip it. |
| if (SubloopParents.count(NewParent)) |
| NewParent = SubloopParents[NewParent]; |
| else if (Unloop->contains(NewParent)) |
| continue; |
| |
| // Remove blocks from former Ancestors except Unloop itself which will be |
| // deleted. |
| for (Loop *OldParent = Unloop->getParentLoop(); OldParent != NewParent; |
| OldParent = OldParent->getParentLoop()) { |
| assert(OldParent && "new loop is not an ancestor of the original"); |
| OldParent->removeBlockFromLoop(*BI); |
| } |
| } |
| } |
| |
| /// updateSubloopParents - Update the parent loop for all subloops directly |
| /// nested within unloop. |
| void UnloopUpdater::updateSubloopParents() { |
| while (!Unloop->empty()) { |
| Loop *Subloop = *llvm::prior(Unloop->end()); |
| Unloop->removeChildLoop(llvm::prior(Unloop->end())); |
| |
| assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); |
| if (SubloopParents[Subloop]) |
| SubloopParents[Subloop]->addChildLoop(Subloop); |
| else |
| LI->addTopLevelLoop(Subloop); |
| } |
| } |
| |
| /// getNearestLoop - Return the nearest parent loop among this block's |
| /// successors. If a successor is a subloop header, consider its parent to be |
| /// the nearest parent of the subloop's exits. |
| /// |
| /// For subloop blocks, simply update SubloopParents and return NULL. |
| Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { |
| |
| // Initially for blocks directly contained by Unloop, NearLoop == Unloop and |
| // is considered uninitialized. |
| Loop *NearLoop = BBLoop; |
| |
| Loop *Subloop = 0; |
| if (NearLoop != Unloop && Unloop->contains(NearLoop)) { |
| Subloop = NearLoop; |
| // Find the subloop ancestor that is directly contained within Unloop. |
| while (Subloop->getParentLoop() != Unloop) { |
| Subloop = Subloop->getParentLoop(); |
| assert(Subloop && "subloop is not an ancestor of the original loop"); |
| } |
| // Get the current nearest parent of the Subloop exits, initially Unloop. |
| if (!SubloopParents.count(Subloop)) |
| SubloopParents[Subloop] = Unloop; |
| NearLoop = SubloopParents[Subloop]; |
| } |
| |
| succ_iterator I = succ_begin(BB), E = succ_end(BB); |
| if (I == E) { |
| assert(!Subloop && "subloop blocks must have a successor"); |
| NearLoop = 0; // unloop blocks may now exit the function. |
| } |
| for (; I != E; ++I) { |
| if (*I == BB) |
| continue; // self loops are uninteresting |
| |
| Loop *L = LI->getLoopFor(*I); |
| if (L == Unloop) { |
| // This successor has not been processed. This path must lead to an |
| // irreducible backedge. |
| assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); |
| FoundIB = true; |
| } |
| if (L != Unloop && Unloop->contains(L)) { |
| // Successor is in a subloop. |
| if (Subloop) |
| continue; // Branching within subloops. Ignore it. |
| |
| // BB branches from the original into a subloop header. |
| assert(L->getParentLoop() == Unloop && "cannot skip into nested loops"); |
| |
| // Get the current nearest parent of the Subloop's exits. |
| L = SubloopParents[L]; |
| // L could be Unloop if the only exit was an irreducible backedge. |
| } |
| if (L == Unloop) { |
| continue; |
| } |
| // Handle critical edges from Unloop into a sibling loop. |
| if (L && !L->contains(Unloop)) { |
| L = L->getParentLoop(); |
| } |
| // Remember the nearest parent loop among successors or subloop exits. |
| if (NearLoop == Unloop || !NearLoop || NearLoop->contains(L)) |
| NearLoop = L; |
| } |
| if (Subloop) { |
| SubloopParents[Subloop] = NearLoop; |
| return BBLoop; |
| } |
| return NearLoop; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoopInfo implementation |
| // |
| bool LoopInfo::runOnFunction(Function &) { |
| releaseMemory(); |
| LI.Calculate(getAnalysis<DominatorTree>().getBase()); // Update |
| return false; |
| } |
| |
| /// updateUnloop - The last backedge has been removed from a loop--now the |
| /// "unloop". Find a new parent for the blocks contained within unloop and |
| /// update the loop tree. We don't necessarily have valid dominators at this |
| /// point, but LoopInfo is still valid except for the removal of this loop. |
| /// |
| /// Note that Unloop may now be an empty loop. Calling Loop::getHeader without |
| /// checking first is illegal. |
| void LoopInfo::updateUnloop(Loop *Unloop) { |
| |
| // First handle the special case of no parent loop to simplify the algorithm. |
| if (!Unloop->getParentLoop()) { |
| // Since BBLoop had no parent, Unloop blocks are no longer in a loop. |
| for (Loop::block_iterator I = Unloop->block_begin(), |
| E = Unloop->block_end(); I != E; ++I) { |
| |
| // Don't reparent blocks in subloops. |
| if (getLoopFor(*I) != Unloop) |
| continue; |
| |
| // Blocks no longer have a parent but are still referenced by Unloop until |
| // the Unloop object is deleted. |
| LI.changeLoopFor(*I, 0); |
| } |
| |
| // Remove the loop from the top-level LoopInfo object. |
| for (LoopInfo::iterator I = LI.begin();; ++I) { |
| assert(I != LI.end() && "Couldn't find loop"); |
| if (*I == Unloop) { |
| LI.removeLoop(I); |
| break; |
| } |
| } |
| |
| // Move all of the subloops to the top-level. |
| while (!Unloop->empty()) |
| LI.addTopLevelLoop(Unloop->removeChildLoop(llvm::prior(Unloop->end()))); |
| |
| return; |
| } |
| |
| // Update the parent loop for all blocks within the loop. Blocks within |
| // subloops will not change parents. |
| UnloopUpdater Updater(Unloop, this); |
| Updater.updateBlockParents(); |
| |
| // Remove blocks from former ancestor loops. |
| Updater.removeBlocksFromAncestors(); |
| |
| // Add direct subloops as children in their new parent loop. |
| Updater.updateSubloopParents(); |
| |
| // Remove unloop from its parent loop. |
| Loop *ParentLoop = Unloop->getParentLoop(); |
| for (Loop::iterator I = ParentLoop->begin();; ++I) { |
| assert(I != ParentLoop->end() && "Couldn't find loop"); |
| if (*I == Unloop) { |
| ParentLoop->removeChildLoop(I); |
| break; |
| } |
| } |
| } |
| |
| void LoopInfo::verifyAnalysis() const { |
| // LoopInfo is a FunctionPass, but verifying every loop in the function |
| // each time verifyAnalysis is called is very expensive. The |
| // -verify-loop-info option can enable this. In order to perform some |
| // checking by default, LoopPass has been taught to call verifyLoop |
| // manually during loop pass sequences. |
| |
| if (!VerifyLoopInfo) return; |
| |
| DenseSet<const Loop*> Loops; |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); |
| (*I)->verifyLoopNest(&Loops); |
| } |
| |
| // Verify that blocks are mapped to valid loops. |
| // |
| // FIXME: With an up-to-date DFS (see LoopIterator.h) and DominatorTree, we |
| // could also verify that the blocks are still in the correct loops. |
| for (DenseMap<BasicBlock*, Loop*>::const_iterator I = LI.BBMap.begin(), |
| E = LI.BBMap.end(); I != E; ++I) { |
| assert(Loops.count(I->second) && "orphaned loop"); |
| assert(I->second->contains(I->first) && "orphaned block"); |
| } |
| } |
| |
| void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<DominatorTree>(); |
| } |
| |
| void LoopInfo::print(raw_ostream &OS, const Module*) const { |
| LI.print(OS); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LoopBlocksDFS implementation |
| // |
| |
| /// Traverse the loop blocks and store the DFS result. |
| /// Useful for clients that just want the final DFS result and don't need to |
| /// visit blocks during the initial traversal. |
| void LoopBlocksDFS::perform(LoopInfo *LI) { |
| LoopBlocksTraversal Traversal(*this, LI); |
| for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), |
| POE = Traversal.end(); POI != POE; ++POI) ; |
| } |