blob: e297fb1f5d696fe9990f6f3dd1199d2948e9efdc [file] [log] [blame]
// Copyright (c) 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SOURCE_OPT_IR_CONTEXT_H_
#define SOURCE_OPT_IR_CONTEXT_H_
#include <algorithm>
#include <iostream>
#include <limits>
#include <map>
#include <memory>
#include <queue>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "source/assembly_grammar.h"
#include "source/opt/cfg.h"
#include "source/opt/constants.h"
#include "source/opt/decoration_manager.h"
#include "source/opt/def_use_manager.h"
#include "source/opt/dominator_analysis.h"
#include "source/opt/feature_manager.h"
#include "source/opt/fold.h"
#include "source/opt/loop_descriptor.h"
#include "source/opt/module.h"
#include "source/opt/register_pressure.h"
#include "source/opt/scalar_analysis.h"
#include "source/opt/struct_cfg_analysis.h"
#include "source/opt/type_manager.h"
#include "source/opt/value_number_table.h"
#include "source/util/make_unique.h"
namespace spvtools {
namespace opt {
class IRContext {
public:
// Available analyses.
//
// When adding a new analysis:
//
// 1. Enum values should be powers of 2. These are cast into uint32_t
// bitmasks, so we can have at most 31 analyses represented.
//
// 2. Make sure it gets invalidated or preserved by IRContext methods that add
// or remove IR elements (e.g., KillDef, KillInst, ReplaceAllUsesWith).
//
// 3. Add handling code in BuildInvalidAnalyses and InvalidateAnalyses
enum Analysis {
kAnalysisNone = 0 << 0,
kAnalysisBegin = 1 << 0,
kAnalysisDefUse = kAnalysisBegin,
kAnalysisInstrToBlockMapping = 1 << 1,
kAnalysisDecorations = 1 << 2,
kAnalysisCombinators = 1 << 3,
kAnalysisCFG = 1 << 4,
kAnalysisDominatorAnalysis = 1 << 5,
kAnalysisLoopAnalysis = 1 << 6,
kAnalysisNameMap = 1 << 7,
kAnalysisScalarEvolution = 1 << 8,
kAnalysisRegisterPressure = 1 << 9,
kAnalysisValueNumberTable = 1 << 10,
kAnalysisStructuredCFG = 1 << 11,
kAnalysisBuiltinVarId = 1 << 12,
kAnalysisIdToFuncMapping = 1 << 13,
kAnalysisConstants = 1 << 14,
kAnalysisTypes = 1 << 15,
kAnalysisEnd = 1 << 16
};
using ProcessFunction = std::function<bool(Function*)>;
friend inline Analysis operator|(Analysis lhs, Analysis rhs);
friend inline Analysis& operator|=(Analysis& lhs, Analysis rhs);
friend inline Analysis operator<<(Analysis a, int shift);
friend inline Analysis& operator<<=(Analysis& a, int shift);
// Creates an |IRContext| that contains an owned |Module|
IRContext(spv_target_env env, MessageConsumer c)
: syntax_context_(spvContextCreate(env)),
grammar_(syntax_context_),
unique_id_(0),
module_(new Module()),
consumer_(std::move(c)),
def_use_mgr_(nullptr),
valid_analyses_(kAnalysisNone),
constant_mgr_(nullptr),
type_mgr_(nullptr),
id_to_name_(nullptr),
max_id_bound_(kDefaultMaxIdBound),
preserve_bindings_(false),
preserve_spec_constants_(false) {
SetContextMessageConsumer(syntax_context_, consumer_);
module_->SetContext(this);
}
IRContext(spv_target_env env, std::unique_ptr<Module>&& m, MessageConsumer c)
: syntax_context_(spvContextCreate(env)),
grammar_(syntax_context_),
unique_id_(0),
module_(std::move(m)),
consumer_(std::move(c)),
def_use_mgr_(nullptr),
valid_analyses_(kAnalysisNone),
type_mgr_(nullptr),
id_to_name_(nullptr),
max_id_bound_(kDefaultMaxIdBound),
preserve_bindings_(false),
preserve_spec_constants_(false) {
SetContextMessageConsumer(syntax_context_, consumer_);
module_->SetContext(this);
InitializeCombinators();
}
~IRContext() { spvContextDestroy(syntax_context_); }
Module* module() const { return module_.get(); }
// Returns a vector of pointers to constant-creation instructions in this
// context.
inline std::vector<Instruction*> GetConstants();
inline std::vector<const Instruction*> GetConstants() const;
// Iterators for annotation instructions contained in this context.
inline Module::inst_iterator annotation_begin();
inline Module::inst_iterator annotation_end();
inline IteratorRange<Module::inst_iterator> annotations();
inline IteratorRange<Module::const_inst_iterator> annotations() const;
// Iterators for capabilities instructions contained in this module.
inline Module::inst_iterator capability_begin();
inline Module::inst_iterator capability_end();
inline IteratorRange<Module::inst_iterator> capabilities();
inline IteratorRange<Module::const_inst_iterator> capabilities() const;
// Iterators for types, constants and global variables instructions.
inline Module::inst_iterator types_values_begin();
inline Module::inst_iterator types_values_end();
inline IteratorRange<Module::inst_iterator> types_values();
inline IteratorRange<Module::const_inst_iterator> types_values() const;
// Iterators for extension instructions contained in this module.
inline Module::inst_iterator ext_inst_import_begin();
inline Module::inst_iterator ext_inst_import_end();
inline IteratorRange<Module::inst_iterator> ext_inst_imports();
inline IteratorRange<Module::const_inst_iterator> ext_inst_imports() const;
// There are several kinds of debug instructions, according to where they can
// appear in the logical layout of a module:
// - Section 7a: OpString, OpSourceExtension, OpSource, OpSourceContinued
// - Section 7b: OpName, OpMemberName
// - Section 7c: OpModuleProcessed
// - Mostly anywhere: OpLine and OpNoLine
//
// Iterators for debug 1 instructions (excluding OpLine & OpNoLine) contained
// in this module. These are for layout section 7a.
inline Module::inst_iterator debug1_begin();
inline Module::inst_iterator debug1_end();
inline IteratorRange<Module::inst_iterator> debugs1();
inline IteratorRange<Module::const_inst_iterator> debugs1() const;
// Iterators for debug 2 instructions (excluding OpLine & OpNoLine) contained
// in this module. These are for layout section 7b.
inline Module::inst_iterator debug2_begin();
inline Module::inst_iterator debug2_end();
inline IteratorRange<Module::inst_iterator> debugs2();
inline IteratorRange<Module::const_inst_iterator> debugs2() const;
// Iterators for debug 3 instructions (excluding OpLine & OpNoLine) contained
// in this module. These are for layout section 7c.
inline Module::inst_iterator debug3_begin();
inline Module::inst_iterator debug3_end();
inline IteratorRange<Module::inst_iterator> debugs3();
inline IteratorRange<Module::const_inst_iterator> debugs3() const;
// Clears all debug instructions (excluding OpLine & OpNoLine).
inline void debug_clear();
// Add |capability| to the module, if it is not already enabled.
inline void AddCapability(SpvCapability capability);
// Appends a capability instruction to this module.
inline void AddCapability(std::unique_ptr<Instruction>&& c);
// Appends an extension instruction to this module.
inline void AddExtension(const std::string& ext_name);
inline void AddExtension(std::unique_ptr<Instruction>&& e);
// Appends an extended instruction set instruction to this module.
inline void AddExtInstImport(std::unique_ptr<Instruction>&& e);
// Set the memory model for this module.
inline void SetMemoryModel(std::unique_ptr<Instruction>&& m);
// Appends an entry point instruction to this module.
inline void AddEntryPoint(std::unique_ptr<Instruction>&& e);
// Appends an execution mode instruction to this module.
inline void AddExecutionMode(std::unique_ptr<Instruction>&& e);
// Appends a debug 1 instruction (excluding OpLine & OpNoLine) to this module.
// "debug 1" instructions are the ones in layout section 7.a), see section
// 2.4 Logical Layout of a Module from the SPIR-V specification.
inline void AddDebug1Inst(std::unique_ptr<Instruction>&& d);
// Appends a debug 2 instruction (excluding OpLine & OpNoLine) to this module.
// "debug 2" instructions are the ones in layout section 7.b), see section
// 2.4 Logical Layout of a Module from the SPIR-V specification.
inline void AddDebug2Inst(std::unique_ptr<Instruction>&& d);
// Appends a debug 3 instruction (OpModuleProcessed) to this module.
// This is due to decision by the SPIR Working Group, pending publication.
inline void AddDebug3Inst(std::unique_ptr<Instruction>&& d);
// Appends an annotation instruction to this module.
inline void AddAnnotationInst(std::unique_ptr<Instruction>&& a);
// Appends a type-declaration instruction to this module.
inline void AddType(std::unique_ptr<Instruction>&& t);
// Appends a constant, global variable, or OpUndef instruction to this module.
inline void AddGlobalValue(std::unique_ptr<Instruction>&& v);
// Appends a function to this module.
inline void AddFunction(std::unique_ptr<Function>&& f);
// Returns a pointer to a def-use manager. If the def-use manager is
// invalid, it is rebuilt first.
analysis::DefUseManager* get_def_use_mgr() {
if (!AreAnalysesValid(kAnalysisDefUse)) {
BuildDefUseManager();
}
return def_use_mgr_.get();
}
// Returns a pointer to a value number table. If the liveness analysis is
// invalid, it is rebuilt first.
ValueNumberTable* GetValueNumberTable() {
if (!AreAnalysesValid(kAnalysisValueNumberTable)) {
BuildValueNumberTable();
}
return vn_table_.get();
}
// Returns a pointer to a StructuredCFGAnalysis. If the analysis is invalid,
// it is rebuilt first.
StructuredCFGAnalysis* GetStructuredCFGAnalysis() {
if (!AreAnalysesValid(kAnalysisStructuredCFG)) {
BuildStructuredCFGAnalysis();
}
return struct_cfg_analysis_.get();
}
// Returns a pointer to a liveness analysis. If the liveness analysis is
// invalid, it is rebuilt first.
LivenessAnalysis* GetLivenessAnalysis() {
if (!AreAnalysesValid(kAnalysisRegisterPressure)) {
BuildRegPressureAnalysis();
}
return reg_pressure_.get();
}
// Returns the basic block for instruction |instr|. Re-builds the instruction
// block map, if needed.
BasicBlock* get_instr_block(Instruction* instr) {
if (!AreAnalysesValid(kAnalysisInstrToBlockMapping)) {
BuildInstrToBlockMapping();
}
auto entry = instr_to_block_.find(instr);
return (entry != instr_to_block_.end()) ? entry->second : nullptr;
}
// Returns the basic block for |id|. Re-builds the instruction block map, if
// needed.
//
// |id| must be a registered definition.
BasicBlock* get_instr_block(uint32_t id) {
Instruction* def = get_def_use_mgr()->GetDef(id);
return get_instr_block(def);
}
// Sets the basic block for |inst|. Re-builds the mapping if it has become
// invalid.
void set_instr_block(Instruction* inst, BasicBlock* block) {
if (AreAnalysesValid(kAnalysisInstrToBlockMapping)) {
instr_to_block_[inst] = block;
}
}
// Returns a pointer the decoration manager. If the decoration manger is
// invalid, it is rebuilt first.
analysis::DecorationManager* get_decoration_mgr() {
if (!AreAnalysesValid(kAnalysisDecorations)) {
BuildDecorationManager();
}
return decoration_mgr_.get();
}
// Returns a pointer to the constant manager. If no constant manager has been
// created yet, it creates one. NOTE: Once created, the constant manager
// remains active and it is never re-built.
analysis::ConstantManager* get_constant_mgr() {
if (!AreAnalysesValid(kAnalysisConstants)) {
BuildConstantManager();
}
return constant_mgr_.get();
}
// Returns a pointer to the type manager. If no type manager has been created
// yet, it creates one. NOTE: Once created, the type manager remains active it
// is never re-built.
analysis::TypeManager* get_type_mgr() {
if (!AreAnalysesValid(kAnalysisTypes)) {
BuildTypeManager();
}
return type_mgr_.get();
}
// Returns a pointer to the scalar evolution analysis. If it is invalid it
// will be rebuilt first.
ScalarEvolutionAnalysis* GetScalarEvolutionAnalysis() {
if (!AreAnalysesValid(kAnalysisScalarEvolution)) {
BuildScalarEvolutionAnalysis();
}
return scalar_evolution_analysis_.get();
}
// Build the map from the ids to the OpName and OpMemberName instruction
// associated with it.
inline void BuildIdToNameMap();
// Returns a range of instrucions that contain all of the OpName and
// OpMemberNames associated with the given id.
inline IteratorRange<std::multimap<uint32_t, Instruction*>::iterator>
GetNames(uint32_t id);
// Sets the message consumer to the given |consumer|. |consumer| which will be
// invoked every time there is a message to be communicated to the outside.
void SetMessageConsumer(MessageConsumer c) { consumer_ = std::move(c); }
// Returns the reference to the message consumer for this pass.
const MessageConsumer& consumer() const { return consumer_; }
// Rebuilds the analyses in |set| that are invalid.
void BuildInvalidAnalyses(Analysis set);
// Invalidates all of the analyses except for those in |preserved_analyses|.
void InvalidateAnalysesExceptFor(Analysis preserved_analyses);
// Invalidates the analyses marked in |analyses_to_invalidate|.
void InvalidateAnalyses(Analysis analyses_to_invalidate);
// Deletes the instruction defining the given |id|. Returns true on
// success, false if the given |id| is not defined at all. This method also
// erases the name, decorations, and defintion of |id|.
//
// Pointers and iterators pointing to the deleted instructions become invalid.
// However other pointers and iterators are still valid.
bool KillDef(uint32_t id);
// Deletes the given instruction |inst|. This method erases the
// information of the given instruction's uses of its operands. If |inst|
// defines a result id, its name and decorations will also be deleted.
//
// Pointer and iterator pointing to the deleted instructions become invalid.
// However other pointers and iterators are still valid.
//
// Note that if an instruction is not in an instruction list, the memory may
// not be safe to delete, so the instruction is turned into a OpNop instead.
// This can happen with OpLabel.
//
// Returns a pointer to the instruction after |inst| or |nullptr| if no such
// instruction exists.
Instruction* KillInst(Instruction* inst);
// Returns true if all of the given analyses are valid.
bool AreAnalysesValid(Analysis set) { return (set & valid_analyses_) == set; }
// Replaces all uses of |before| id with |after| id. Returns true if any
// replacement happens. This method does not kill the definition of the
// |before| id. If |after| is the same as |before|, does nothing and returns
// false.
//
// |before| and |after| must be registered definitions in the DefUseManager.
bool ReplaceAllUsesWith(uint32_t before, uint32_t after);
// Replace all uses of |before| id with |after| id if those uses
// (instruction, operand pair) return true for |predicate|. Returns true if
// any replacement happens. This method does not kill the definition of the
// |before| id. If |after| is the same as |before|, does nothing and return
// false.
bool ReplaceAllUsesWithPredicate(
uint32_t before, uint32_t after,
const std::function<bool(Instruction*, uint32_t)>& predicate);
// Returns true if all of the analyses that are suppose to be valid are
// actually valid.
bool IsConsistent();
// The IRContext will look at the def and uses of |inst| and update any valid
// analyses will be updated accordingly.
inline void AnalyzeDefUse(Instruction* inst);
// Informs the IRContext that the uses of |inst| are going to change, and that
// is should forget everything it know about the current uses. Any valid
// analyses will be updated accordingly.
void ForgetUses(Instruction* inst);
// The IRContext will look at the uses of |inst| and update any valid analyses
// will be updated accordingly.
void AnalyzeUses(Instruction* inst);
// Kill all name and decorate ops targeting |id|.
void KillNamesAndDecorates(uint32_t id);
// Kill all name and decorate ops targeting the result id of |inst|.
void KillNamesAndDecorates(Instruction* inst);
// Returns the next unique id for use by an instruction.
inline uint32_t TakeNextUniqueId() {
assert(unique_id_ != std::numeric_limits<uint32_t>::max());
// Skip zero.
return ++unique_id_;
}
// Returns true if |inst| is a combinator in the current context.
// |combinator_ops_| is built if it has not been already.
inline bool IsCombinatorInstruction(const Instruction* inst) {
if (!AreAnalysesValid(kAnalysisCombinators)) {
InitializeCombinators();
}
const uint32_t kExtInstSetIdInIndx = 0;
const uint32_t kExtInstInstructionInIndx = 1;
if (inst->opcode() != SpvOpExtInst) {
return combinator_ops_[0].count(inst->opcode()) != 0;
} else {
uint32_t set = inst->GetSingleWordInOperand(kExtInstSetIdInIndx);
uint32_t op = inst->GetSingleWordInOperand(kExtInstInstructionInIndx);
return combinator_ops_[set].count(op) != 0;
}
}
// Returns a pointer to the CFG for all the functions in |module_|.
CFG* cfg() {
if (!AreAnalysesValid(kAnalysisCFG)) {
BuildCFG();
}
return cfg_.get();
}
// Gets the loop descriptor for function |f|.
LoopDescriptor* GetLoopDescriptor(const Function* f);
// Gets the dominator analysis for function |f|.
DominatorAnalysis* GetDominatorAnalysis(const Function* f);
// Gets the postdominator analysis for function |f|.
PostDominatorAnalysis* GetPostDominatorAnalysis(const Function* f);
// Remove the dominator tree of |f| from the cache.
inline void RemoveDominatorAnalysis(const Function* f) {
dominator_trees_.erase(f);
}
// Remove the postdominator tree of |f| from the cache.
inline void RemovePostDominatorAnalysis(const Function* f) {
post_dominator_trees_.erase(f);
}
// Return the next available SSA id and increment it. Returns 0 if the
// maximum SSA id has been reached.
inline uint32_t TakeNextId() {
uint32_t next_id = module()->TakeNextIdBound();
if (next_id == 0) {
if (consumer()) {
std::string message = "ID overflow. Try running compact-ids.";
consumer()(SPV_MSG_ERROR, "", {0, 0, 0}, message.c_str());
}
}
return next_id;
}
FeatureManager* get_feature_mgr() {
if (!feature_mgr_.get()) {
AnalyzeFeatures();
}
return feature_mgr_.get();
}
void ResetFeatureManager() { feature_mgr_.reset(nullptr); }
// Returns the grammar for this context.
const AssemblyGrammar& grammar() const { return grammar_; }
// If |inst| has not yet been analysed by the def-use manager, then analyse
// its definitions and uses.
inline void UpdateDefUse(Instruction* inst);
const InstructionFolder& get_instruction_folder() {
if (!inst_folder_) {
inst_folder_ = MakeUnique<InstructionFolder>(this);
}
return *inst_folder_;
}
uint32_t max_id_bound() const { return max_id_bound_; }
void set_max_id_bound(uint32_t new_bound) { max_id_bound_ = new_bound; }
bool preserve_bindings() const { return preserve_bindings_; }
void set_preserve_bindings(bool should_preserve_bindings) {
preserve_bindings_ = should_preserve_bindings;
}
bool preserve_spec_constants() const { return preserve_spec_constants_; }
void set_preserve_spec_constants(bool should_preserve_spec_constants) {
preserve_spec_constants_ = should_preserve_spec_constants;
}
// Return id of input variable only decorated with |builtin|, if in module.
// Create variable and return its id otherwise. If builtin not currently
// supported, return 0.
uint32_t GetBuiltinInputVarId(uint32_t builtin);
// Returns the function whose id is |id|, if one exists. Returns |nullptr|
// otherwise.
Function* GetFunction(uint32_t id) {
if (!AreAnalysesValid(kAnalysisIdToFuncMapping)) {
BuildIdToFuncMapping();
}
auto entry = id_to_func_.find(id);
return (entry != id_to_func_.end()) ? entry->second : nullptr;
}
Function* GetFunction(Instruction* inst) {
if (inst->opcode() != SpvOpFunction) {
return nullptr;
}
return GetFunction(inst->result_id());
}
// Add to |todo| all ids of functions called in |func|.
void AddCalls(const Function* func, std::queue<uint32_t>* todo);
// Applies |pfn| to every function in the call trees that are rooted at the
// entry points. Returns true if any call |pfn| returns true. By convention
// |pfn| should return true if it modified the module.
bool ProcessEntryPointCallTree(ProcessFunction& pfn);
// Applies |pfn| to every function in the call trees rooted at the entry
// points and exported functions. Returns true if any call |pfn| returns
// true. By convention |pfn| should return true if it modified the module.
bool ProcessReachableCallTree(ProcessFunction& pfn);
// Applies |pfn| to every function in the call trees rooted at the elements of
// |roots|. Returns true if any call to |pfn| returns true. By convention
// |pfn| should return true if it modified the module. After returning
// |roots| will be empty.
bool ProcessCallTreeFromRoots(ProcessFunction& pfn,
std::queue<uint32_t>* roots);
// Emmits a error message to the message consumer indicating the error
// described by |message| occurred in |inst|.
void EmitErrorMessage(std::string message, Instruction* inst);
private:
// Builds the def-use manager from scratch, even if it was already valid.
void BuildDefUseManager() {
def_use_mgr_ = MakeUnique<analysis::DefUseManager>(module());
valid_analyses_ = valid_analyses_ | kAnalysisDefUse;
}
// Builds the instruction-block map for the whole module.
void BuildInstrToBlockMapping() {
instr_to_block_.clear();
for (auto& fn : *module_) {
for (auto& block : fn) {
block.ForEachInst([this, &block](Instruction* inst) {
instr_to_block_[inst] = &block;
});
}
}
valid_analyses_ = valid_analyses_ | kAnalysisInstrToBlockMapping;
}
// Builds the instruction-function map for the whole module.
void BuildIdToFuncMapping() {
id_to_func_.clear();
for (auto& fn : *module_) {
id_to_func_[fn.result_id()] = &fn;
}
valid_analyses_ = valid_analyses_ | kAnalysisIdToFuncMapping;
}
void BuildDecorationManager() {
decoration_mgr_ = MakeUnique<analysis::DecorationManager>(module());
valid_analyses_ = valid_analyses_ | kAnalysisDecorations;
}
void BuildCFG() {
cfg_ = MakeUnique<CFG>(module());
valid_analyses_ = valid_analyses_ | kAnalysisCFG;
}
void BuildScalarEvolutionAnalysis() {
scalar_evolution_analysis_ = MakeUnique<ScalarEvolutionAnalysis>(this);
valid_analyses_ = valid_analyses_ | kAnalysisScalarEvolution;
}
// Builds the liveness analysis from scratch, even if it was already valid.
void BuildRegPressureAnalysis() {
reg_pressure_ = MakeUnique<LivenessAnalysis>(this);
valid_analyses_ = valid_analyses_ | kAnalysisRegisterPressure;
}
// Builds the value number table analysis from scratch, even if it was already
// valid.
void BuildValueNumberTable() {
vn_table_ = MakeUnique<ValueNumberTable>(this);
valid_analyses_ = valid_analyses_ | kAnalysisValueNumberTable;
}
// Builds the structured CFG analysis from scratch, even if it was already
// valid.
void BuildStructuredCFGAnalysis() {
struct_cfg_analysis_ = MakeUnique<StructuredCFGAnalysis>(this);
valid_analyses_ = valid_analyses_ | kAnalysisStructuredCFG;
}
// Builds the constant manager from scratch, even if it was already
// valid.
void BuildConstantManager() {
constant_mgr_ = MakeUnique<analysis::ConstantManager>(this);
valid_analyses_ = valid_analyses_ | kAnalysisConstants;
}
// Builds the type manager from scratch, even if it was already
// valid.
void BuildTypeManager() {
type_mgr_ = MakeUnique<analysis::TypeManager>(consumer(), this);
valid_analyses_ = valid_analyses_ | kAnalysisTypes;
}
// Removes all computed dominator and post-dominator trees. This will force
// the context to rebuild the trees on demand.
void ResetDominatorAnalysis() {
// Clear the cache.
dominator_trees_.clear();
post_dominator_trees_.clear();
valid_analyses_ = valid_analyses_ | kAnalysisDominatorAnalysis;
}
// Removes all computed loop descriptors.
void ResetLoopAnalysis() {
// Clear the cache.
loop_descriptors_.clear();
valid_analyses_ = valid_analyses_ | kAnalysisLoopAnalysis;
}
// Removes all computed loop descriptors.
void ResetBuiltinAnalysis() {
// Clear the cache.
builtin_var_id_map_.clear();
valid_analyses_ = valid_analyses_ | kAnalysisBuiltinVarId;
}
// Analyzes the features in the owned module. Builds the manager if required.
void AnalyzeFeatures() {
feature_mgr_ = MakeUnique<FeatureManager>(grammar_);
feature_mgr_->Analyze(module());
}
// Scans a module looking for it capabilities, and initializes combinator_ops_
// accordingly.
void InitializeCombinators();
// Add the combinator opcode for the given capability to combinator_ops_.
void AddCombinatorsForCapability(uint32_t capability);
// Add the combinator opcode for the given extension to combinator_ops_.
void AddCombinatorsForExtension(Instruction* extension);
// Remove |inst| from |id_to_name_| if it is in map.
void RemoveFromIdToName(const Instruction* inst);
// Returns true if it is suppose to be valid but it is incorrect. Returns
// true if the cfg is invalidated.
bool CheckCFG();
// Return id of input variable only decorated with |builtin|, if in module.
// Return 0 otherwise.
uint32_t FindBuiltinInputVar(uint32_t builtin);
// Add |var_id| to all entry points in module.
void AddVarToEntryPoints(uint32_t var_id);
// The SPIR-V syntax context containing grammar tables for opcodes and
// operands.
spv_context syntax_context_;
// Auxiliary object for querying SPIR-V grammar facts.
AssemblyGrammar grammar_;
// An unique identifier for instructions in |module_|. Can be used to order
// instructions in a container.
//
// This member is initialized to 0, but always issues this value plus one.
// Therefore, 0 is not a valid unique id for an instruction.
uint32_t unique_id_;
// The module being processed within this IR context.
std::unique_ptr<Module> module_;
// A message consumer for diagnostics.
MessageConsumer consumer_;
// The def-use manager for |module_|.
std::unique_ptr<analysis::DefUseManager> def_use_mgr_;
// The instruction decoration manager for |module_|.
std::unique_ptr<analysis::DecorationManager> decoration_mgr_;
std::unique_ptr<FeatureManager> feature_mgr_;
// A map from instructions to the basic block they belong to. This mapping is
// built on-demand when get_instr_block() is called.
//
// NOTE: Do not traverse this map. Ever. Use the function and basic block
// iterators to traverse instructions.
std::unordered_map<Instruction*, BasicBlock*> instr_to_block_;
// A map from ids to the function they define. This mapping is
// built on-demand when GetFunction() is called.
//
// NOTE: Do not traverse this map. Ever. Use the function and basic block
// iterators to traverse instructions.
std::unordered_map<uint32_t, Function*> id_to_func_;
// A bitset indicating which analyes are currently valid.
Analysis valid_analyses_;
// Opcodes of shader capability core executable instructions
// without side-effect.
std::unordered_map<uint32_t, std::unordered_set<uint32_t>> combinator_ops_;
// Opcodes of shader capability core executable instructions
// without side-effect.
std::unordered_map<uint32_t, uint32_t> builtin_var_id_map_;
// The CFG for all the functions in |module_|.
std::unique_ptr<CFG> cfg_;
// Each function in the module will create its own dominator tree. We cache
// the result so it doesn't need to be rebuilt each time.
std::map<const Function*, DominatorAnalysis> dominator_trees_;
std::map<const Function*, PostDominatorAnalysis> post_dominator_trees_;
// Cache of loop descriptors for each function.
std::unordered_map<const Function*, LoopDescriptor> loop_descriptors_;
// Constant manager for |module_|.
std::unique_ptr<analysis::ConstantManager> constant_mgr_;
// Type manager for |module_|.
std::unique_ptr<analysis::TypeManager> type_mgr_;
// A map from an id to its corresponding OpName and OpMemberName instructions.
std::unique_ptr<std::multimap<uint32_t, Instruction*>> id_to_name_;
// The cache scalar evolution analysis node.
std::unique_ptr<ScalarEvolutionAnalysis> scalar_evolution_analysis_;
// The liveness analysis |module_|.
std::unique_ptr<LivenessAnalysis> reg_pressure_;
std::unique_ptr<ValueNumberTable> vn_table_;
std::unique_ptr<InstructionFolder> inst_folder_;
std::unique_ptr<StructuredCFGAnalysis> struct_cfg_analysis_;
// The maximum legal value for the id bound.
uint32_t max_id_bound_;
// Whether all bindings within |module_| should be preserved.
bool preserve_bindings_;
// Whether all specialization constants within |module_|
// should be preserved.
bool preserve_spec_constants_;
};
inline IRContext::Analysis operator|(IRContext::Analysis lhs,
IRContext::Analysis rhs) {
return static_cast<IRContext::Analysis>(static_cast<int>(lhs) |
static_cast<int>(rhs));
}
inline IRContext::Analysis& operator|=(IRContext::Analysis& lhs,
IRContext::Analysis rhs) {
lhs = static_cast<IRContext::Analysis>(static_cast<int>(lhs) |
static_cast<int>(rhs));
return lhs;
}
inline IRContext::Analysis operator<<(IRContext::Analysis a, int shift) {
return static_cast<IRContext::Analysis>(static_cast<int>(a) << shift);
}
inline IRContext::Analysis& operator<<=(IRContext::Analysis& a, int shift) {
a = static_cast<IRContext::Analysis>(static_cast<int>(a) << shift);
return a;
}
std::vector<Instruction*> IRContext::GetConstants() {
return module()->GetConstants();
}
std::vector<const Instruction*> IRContext::GetConstants() const {
return ((const Module*)module())->GetConstants();
}
Module::inst_iterator IRContext::annotation_begin() {
return module()->annotation_begin();
}
Module::inst_iterator IRContext::annotation_end() {
return module()->annotation_end();
}
IteratorRange<Module::inst_iterator> IRContext::annotations() {
return module_->annotations();
}
IteratorRange<Module::const_inst_iterator> IRContext::annotations() const {
return ((const Module*)module_.get())->annotations();
}
Module::inst_iterator IRContext::capability_begin() {
return module()->capability_begin();
}
Module::inst_iterator IRContext::capability_end() {
return module()->capability_end();
}
IteratorRange<Module::inst_iterator> IRContext::capabilities() {
return module()->capabilities();
}
IteratorRange<Module::const_inst_iterator> IRContext::capabilities() const {
return ((const Module*)module())->capabilities();
}
Module::inst_iterator IRContext::types_values_begin() {
return module()->types_values_begin();
}
Module::inst_iterator IRContext::types_values_end() {
return module()->types_values_end();
}
IteratorRange<Module::inst_iterator> IRContext::types_values() {
return module()->types_values();
}
IteratorRange<Module::const_inst_iterator> IRContext::types_values() const {
return ((const Module*)module_.get())->types_values();
}
Module::inst_iterator IRContext::ext_inst_import_begin() {
return module()->ext_inst_import_begin();
}
Module::inst_iterator IRContext::ext_inst_import_end() {
return module()->ext_inst_import_end();
}
IteratorRange<Module::inst_iterator> IRContext::ext_inst_imports() {
return module()->ext_inst_imports();
}
IteratorRange<Module::const_inst_iterator> IRContext::ext_inst_imports() const {
return ((const Module*)module_.get())->ext_inst_imports();
}
Module::inst_iterator IRContext::debug1_begin() {
return module()->debug1_begin();
}
Module::inst_iterator IRContext::debug1_end() { return module()->debug1_end(); }
IteratorRange<Module::inst_iterator> IRContext::debugs1() {
return module()->debugs1();
}
IteratorRange<Module::const_inst_iterator> IRContext::debugs1() const {
return ((const Module*)module_.get())->debugs1();
}
Module::inst_iterator IRContext::debug2_begin() {
return module()->debug2_begin();
}
Module::inst_iterator IRContext::debug2_end() { return module()->debug2_end(); }
IteratorRange<Module::inst_iterator> IRContext::debugs2() {
return module()->debugs2();
}
IteratorRange<Module::const_inst_iterator> IRContext::debugs2() const {
return ((const Module*)module_.get())->debugs2();
}
Module::inst_iterator IRContext::debug3_begin() {
return module()->debug3_begin();
}
Module::inst_iterator IRContext::debug3_end() { return module()->debug3_end(); }
IteratorRange<Module::inst_iterator> IRContext::debugs3() {
return module()->debugs3();
}
IteratorRange<Module::const_inst_iterator> IRContext::debugs3() const {
return ((const Module*)module_.get())->debugs3();
}
void IRContext::debug_clear() { module_->debug_clear(); }
void IRContext::AddCapability(SpvCapability capability) {
if (!get_feature_mgr()->HasCapability(capability)) {
std::unique_ptr<Instruction> capability_inst(new Instruction(
this, SpvOpCapability, 0, 0,
{{SPV_OPERAND_TYPE_CAPABILITY, {static_cast<uint32_t>(capability)}}}));
AddCapability(std::move(capability_inst));
}
}
void IRContext::AddCapability(std::unique_ptr<Instruction>&& c) {
AddCombinatorsForCapability(c->GetSingleWordInOperand(0));
if (feature_mgr_ != nullptr) {
feature_mgr_->AddCapability(
static_cast<SpvCapability>(c->GetSingleWordInOperand(0)));
}
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->AnalyzeInstDefUse(c.get());
}
module()->AddCapability(std::move(c));
}
void IRContext::AddExtension(const std::string& ext_name) {
const auto num_chars = ext_name.size();
// Compute num words, accommodate the terminating null character.
const auto num_words = (num_chars + 1 + 3) / 4;
std::vector<uint32_t> ext_words(num_words, 0u);
std::memcpy(ext_words.data(), ext_name.data(), num_chars);
AddExtension(std::unique_ptr<Instruction>(
new Instruction(this, SpvOpExtension, 0u, 0u,
{{SPV_OPERAND_TYPE_LITERAL_STRING, ext_words}})));
}
void IRContext::AddExtension(std::unique_ptr<Instruction>&& e) {
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->AnalyzeInstDefUse(e.get());
}
if (feature_mgr_ != nullptr) {
feature_mgr_->AddExtension(&*e);
}
module()->AddExtension(std::move(e));
}
void IRContext::AddExtInstImport(std::unique_ptr<Instruction>&& e) {
AddCombinatorsForExtension(e.get());
module()->AddExtInstImport(std::move(e));
}
void IRContext::SetMemoryModel(std::unique_ptr<Instruction>&& m) {
module()->SetMemoryModel(std::move(m));
}
void IRContext::AddEntryPoint(std::unique_ptr<Instruction>&& e) {
module()->AddEntryPoint(std::move(e));
}
void IRContext::AddExecutionMode(std::unique_ptr<Instruction>&& e) {
module()->AddExecutionMode(std::move(e));
}
void IRContext::AddDebug1Inst(std::unique_ptr<Instruction>&& d) {
module()->AddDebug1Inst(std::move(d));
}
void IRContext::AddDebug2Inst(std::unique_ptr<Instruction>&& d) {
if (AreAnalysesValid(kAnalysisNameMap)) {
if (d->opcode() == SpvOpName || d->opcode() == SpvOpMemberName) {
id_to_name_->insert({d->result_id(), d.get()});
}
}
module()->AddDebug2Inst(std::move(d));
}
void IRContext::AddDebug3Inst(std::unique_ptr<Instruction>&& d) {
module()->AddDebug3Inst(std::move(d));
}
void IRContext::AddAnnotationInst(std::unique_ptr<Instruction>&& a) {
if (AreAnalysesValid(kAnalysisDecorations)) {
get_decoration_mgr()->AddDecoration(a.get());
}
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->AnalyzeInstDefUse(a.get());
}
module()->AddAnnotationInst(std::move(a));
}
void IRContext::AddType(std::unique_ptr<Instruction>&& t) {
module()->AddType(std::move(t));
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->AnalyzeInstDefUse(&*(--types_values_end()));
}
}
void IRContext::AddGlobalValue(std::unique_ptr<Instruction>&& v) {
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->AnalyzeInstDefUse(&*v);
}
module()->AddGlobalValue(std::move(v));
}
void IRContext::AddFunction(std::unique_ptr<Function>&& f) {
module()->AddFunction(std::move(f));
}
void IRContext::AnalyzeDefUse(Instruction* inst) {
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->AnalyzeInstDefUse(inst);
}
}
void IRContext::UpdateDefUse(Instruction* inst) {
if (AreAnalysesValid(kAnalysisDefUse)) {
get_def_use_mgr()->UpdateDefUse(inst);
}
}
void IRContext::BuildIdToNameMap() {
id_to_name_ = MakeUnique<std::multimap<uint32_t, Instruction*>>();
for (Instruction& debug_inst : debugs2()) {
if (debug_inst.opcode() == SpvOpMemberName ||
debug_inst.opcode() == SpvOpName) {
id_to_name_->insert({debug_inst.GetSingleWordInOperand(0), &debug_inst});
}
}
valid_analyses_ = valid_analyses_ | kAnalysisNameMap;
}
IteratorRange<std::multimap<uint32_t, Instruction*>::iterator>
IRContext::GetNames(uint32_t id) {
if (!AreAnalysesValid(kAnalysisNameMap)) {
BuildIdToNameMap();
}
auto result = id_to_name_->equal_range(id);
return make_range(std::move(result.first), std::move(result.second));
}
} // namespace opt
} // namespace spvtools
#endif // SOURCE_OPT_IR_CONTEXT_H_