| //===- ConstantRange.cpp - ConstantRange implementation -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Represent a range of possible values that may occur when the program is run |
| // for an integral value. This keeps track of a lower and upper bound for the |
| // constant, which MAY wrap around the end of the numeric range. To do this, it |
| // keeps track of a [lower, upper) bound, which specifies an interval just like |
| // STL iterators. When used with boolean values, the following are important |
| // ranges (other integral ranges use min/max values for special range values): |
| // |
| // [F, F) = {} = Empty set |
| // [T, F) = {T} |
| // [F, T) = {F} |
| // [T, T) = {F, T} = Full set |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/Config/llvm-config.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| |
| using namespace llvm; |
| |
| ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) |
| : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), |
| Upper(Lower) {} |
| |
| ConstantRange::ConstantRange(APInt V) |
| : Lower(std::move(V)), Upper(Lower + 1) {} |
| |
| ConstantRange::ConstantRange(APInt L, APInt U) |
| : Lower(std::move(L)), Upper(std::move(U)) { |
| assert(Lower.getBitWidth() == Upper.getBitWidth() && |
| "ConstantRange with unequal bit widths"); |
| assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && |
| "Lower == Upper, but they aren't min or max value!"); |
| } |
| |
| ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, |
| const ConstantRange &CR) { |
| if (CR.isEmptySet()) |
| return CR; |
| |
| uint32_t W = CR.getBitWidth(); |
| switch (Pred) { |
| default: |
| llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); |
| case CmpInst::ICMP_EQ: |
| return CR; |
| case CmpInst::ICMP_NE: |
| if (CR.isSingleElement()) |
| return ConstantRange(CR.getUpper(), CR.getLower()); |
| return ConstantRange(W); |
| case CmpInst::ICMP_ULT: { |
| APInt UMax(CR.getUnsignedMax()); |
| if (UMax.isMinValue()) |
| return ConstantRange(W, /* empty */ false); |
| return ConstantRange(APInt::getMinValue(W), std::move(UMax)); |
| } |
| case CmpInst::ICMP_SLT: { |
| APInt SMax(CR.getSignedMax()); |
| if (SMax.isMinSignedValue()) |
| return ConstantRange(W, /* empty */ false); |
| return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); |
| } |
| case CmpInst::ICMP_ULE: { |
| APInt UMax(CR.getUnsignedMax()); |
| if (UMax.isMaxValue()) |
| return ConstantRange(W); |
| return ConstantRange(APInt::getMinValue(W), std::move(UMax) + 1); |
| } |
| case CmpInst::ICMP_SLE: { |
| APInt SMax(CR.getSignedMax()); |
| if (SMax.isMaxSignedValue()) |
| return ConstantRange(W); |
| return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax) + 1); |
| } |
| case CmpInst::ICMP_UGT: { |
| APInt UMin(CR.getUnsignedMin()); |
| if (UMin.isMaxValue()) |
| return ConstantRange(W, /* empty */ false); |
| return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W)); |
| } |
| case CmpInst::ICMP_SGT: { |
| APInt SMin(CR.getSignedMin()); |
| if (SMin.isMaxSignedValue()) |
| return ConstantRange(W, /* empty */ false); |
| return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); |
| } |
| case CmpInst::ICMP_UGE: { |
| APInt UMin(CR.getUnsignedMin()); |
| if (UMin.isMinValue()) |
| return ConstantRange(W); |
| return ConstantRange(std::move(UMin), APInt::getNullValue(W)); |
| } |
| case CmpInst::ICMP_SGE: { |
| APInt SMin(CR.getSignedMin()); |
| if (SMin.isMinSignedValue()) |
| return ConstantRange(W); |
| return ConstantRange(std::move(SMin), APInt::getSignedMinValue(W)); |
| } |
| } |
| } |
| |
| ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, |
| const ConstantRange &CR) { |
| // Follows from De-Morgan's laws: |
| // |
| // ~(~A union ~B) == A intersect B. |
| // |
| return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) |
| .inverse(); |
| } |
| |
| ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, |
| const APInt &C) { |
| // Computes the exact range that is equal to both the constant ranges returned |
| // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true |
| // when RHS is a singleton such as an APInt and so the assert is valid. |
| // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion |
| // returns [0,4) but makeSatisfyICmpRegion returns [0,2). |
| // |
| assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); |
| return makeAllowedICmpRegion(Pred, C); |
| } |
| |
| bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, |
| APInt &RHS) const { |
| bool Success = false; |
| |
| if (isFullSet() || isEmptySet()) { |
| Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; |
| RHS = APInt(getBitWidth(), 0); |
| Success = true; |
| } else if (auto *OnlyElt = getSingleElement()) { |
| Pred = CmpInst::ICMP_EQ; |
| RHS = *OnlyElt; |
| Success = true; |
| } else if (auto *OnlyMissingElt = getSingleMissingElement()) { |
| Pred = CmpInst::ICMP_NE; |
| RHS = *OnlyMissingElt; |
| Success = true; |
| } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { |
| Pred = |
| getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; |
| RHS = getUpper(); |
| Success = true; |
| } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { |
| Pred = |
| getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; |
| RHS = getLower(); |
| Success = true; |
| } |
| |
| assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && |
| "Bad result!"); |
| |
| return Success; |
| } |
| |
| ConstantRange |
| ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, |
| const ConstantRange &Other, |
| unsigned NoWrapKind) { |
| using OBO = OverflowingBinaryOperator; |
| |
| // Computes the intersection of CR0 and CR1. It is different from |
| // intersectWith in that the ConstantRange returned will only contain elements |
| // in both CR0 and CR1 (i.e. SubsetIntersect(X, Y) is a *subset*, proper or |
| // not, of both X and Y). |
| auto SubsetIntersect = |
| [](const ConstantRange &CR0, const ConstantRange &CR1) { |
| return CR0.inverse().unionWith(CR1.inverse()).inverse(); |
| }; |
| |
| assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); |
| |
| assert((NoWrapKind == OBO::NoSignedWrap || |
| NoWrapKind == OBO::NoUnsignedWrap || |
| NoWrapKind == (OBO::NoUnsignedWrap | OBO::NoSignedWrap)) && |
| "NoWrapKind invalid!"); |
| |
| unsigned BitWidth = Other.getBitWidth(); |
| ConstantRange Result(BitWidth); |
| |
| switch (BinOp) { |
| default: |
| // Conservative answer: empty set |
| return ConstantRange(BitWidth, false); |
| |
| case Instruction::Add: |
| if (auto *C = Other.getSingleElement()) |
| if (C->isNullValue()) |
| // Full set: nothing signed / unsigned wraps when added to 0. |
| return ConstantRange(BitWidth); |
| if (NoWrapKind & OBO::NoUnsignedWrap) |
| Result = |
| SubsetIntersect(Result, ConstantRange(APInt::getNullValue(BitWidth), |
| -Other.getUnsignedMax())); |
| if (NoWrapKind & OBO::NoSignedWrap) { |
| const APInt &SignedMin = Other.getSignedMin(); |
| const APInt &SignedMax = Other.getSignedMax(); |
| if (SignedMax.isStrictlyPositive()) |
| Result = SubsetIntersect( |
| Result, |
| ConstantRange(APInt::getSignedMinValue(BitWidth), |
| APInt::getSignedMinValue(BitWidth) - SignedMax)); |
| if (SignedMin.isNegative()) |
| Result = SubsetIntersect( |
| Result, |
| ConstantRange(APInt::getSignedMinValue(BitWidth) - SignedMin, |
| APInt::getSignedMinValue(BitWidth))); |
| } |
| return Result; |
| |
| case Instruction::Sub: |
| if (auto *C = Other.getSingleElement()) |
| if (C->isNullValue()) |
| // Full set: nothing signed / unsigned wraps when subtracting 0. |
| return ConstantRange(BitWidth); |
| if (NoWrapKind & OBO::NoUnsignedWrap) |
| Result = |
| SubsetIntersect(Result, ConstantRange(Other.getUnsignedMax(), |
| APInt::getMinValue(BitWidth))); |
| if (NoWrapKind & OBO::NoSignedWrap) { |
| const APInt &SignedMin = Other.getSignedMin(); |
| const APInt &SignedMax = Other.getSignedMax(); |
| if (SignedMax.isStrictlyPositive()) |
| Result = SubsetIntersect( |
| Result, |
| ConstantRange(APInt::getSignedMinValue(BitWidth) + SignedMax, |
| APInt::getSignedMinValue(BitWidth))); |
| if (SignedMin.isNegative()) |
| Result = SubsetIntersect( |
| Result, |
| ConstantRange(APInt::getSignedMinValue(BitWidth), |
| APInt::getSignedMinValue(BitWidth) + SignedMin)); |
| } |
| return Result; |
| case Instruction::Mul: { |
| if (NoWrapKind == (OBO::NoSignedWrap | OBO::NoUnsignedWrap)) { |
| return SubsetIntersect( |
| makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoSignedWrap), |
| makeGuaranteedNoWrapRegion(BinOp, Other, OBO::NoUnsignedWrap)); |
| } |
| |
| // Equivalent to calling makeGuaranteedNoWrapRegion() on [V, V+1). |
| const bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; |
| const auto makeSingleValueRegion = [Unsigned, |
| BitWidth](APInt V) -> ConstantRange { |
| // Handle special case for 0, -1 and 1. See the last for reason why we |
| // specialize -1 and 1. |
| if (V == 0 || V.isOneValue()) |
| return ConstantRange(BitWidth, true); |
| |
| APInt MinValue, MaxValue; |
| if (Unsigned) { |
| MinValue = APInt::getMinValue(BitWidth); |
| MaxValue = APInt::getMaxValue(BitWidth); |
| } else { |
| MinValue = APInt::getSignedMinValue(BitWidth); |
| MaxValue = APInt::getSignedMaxValue(BitWidth); |
| } |
| // e.g. Returning [-127, 127], represented as [-127, -128). |
| if (!Unsigned && V.isAllOnesValue()) |
| return ConstantRange(-MaxValue, MinValue); |
| |
| APInt Lower, Upper; |
| if (!Unsigned && V.isNegative()) { |
| Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); |
| Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); |
| } else if (Unsigned) { |
| Lower = APIntOps::RoundingUDiv(MinValue, V, APInt::Rounding::UP); |
| Upper = APIntOps::RoundingUDiv(MaxValue, V, APInt::Rounding::DOWN); |
| } else { |
| Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); |
| Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); |
| } |
| if (Unsigned) { |
| Lower = Lower.zextOrSelf(BitWidth); |
| Upper = Upper.zextOrSelf(BitWidth); |
| } else { |
| Lower = Lower.sextOrSelf(BitWidth); |
| Upper = Upper.sextOrSelf(BitWidth); |
| } |
| // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1). |
| // Upper + 1 is guanranteed not to overflow, because |divisor| > 1. 0, -1, |
| // and 1 are already handled as special cases. |
| return ConstantRange(Lower, Upper + 1); |
| }; |
| |
| if (Unsigned) |
| return makeSingleValueRegion(Other.getUnsignedMax()); |
| |
| return SubsetIntersect(makeSingleValueRegion(Other.getSignedMin()), |
| makeSingleValueRegion(Other.getSignedMax())); |
| } |
| } |
| } |
| |
| bool ConstantRange::isFullSet() const { |
| return Lower == Upper && Lower.isMaxValue(); |
| } |
| |
| bool ConstantRange::isEmptySet() const { |
| return Lower == Upper && Lower.isMinValue(); |
| } |
| |
| bool ConstantRange::isWrappedSet() const { |
| return Lower.ugt(Upper); |
| } |
| |
| bool ConstantRange::isSignWrappedSet() const { |
| return contains(APInt::getSignedMaxValue(getBitWidth())) && |
| contains(APInt::getSignedMinValue(getBitWidth())); |
| } |
| |
| APInt ConstantRange::getSetSize() const { |
| if (isFullSet()) |
| return APInt::getOneBitSet(getBitWidth()+1, getBitWidth()); |
| |
| // This is also correct for wrapped sets. |
| return (Upper - Lower).zext(getBitWidth()+1); |
| } |
| |
| bool |
| ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { |
| assert(getBitWidth() == Other.getBitWidth()); |
| if (isFullSet()) |
| return false; |
| if (Other.isFullSet()) |
| return true; |
| return (Upper - Lower).ult(Other.Upper - Other.Lower); |
| } |
| |
| bool |
| ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { |
| assert(MaxSize && "MaxSize can't be 0."); |
| // If this a full set, we need special handling to avoid needing an extra bit |
| // to represent the size. |
| if (isFullSet()) |
| return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); |
| |
| return (Upper - Lower).ugt(MaxSize); |
| } |
| |
| APInt ConstantRange::getUnsignedMax() const { |
| if (isFullSet() || isWrappedSet()) |
| return APInt::getMaxValue(getBitWidth()); |
| return getUpper() - 1; |
| } |
| |
| APInt ConstantRange::getUnsignedMin() const { |
| if (isFullSet() || (isWrappedSet() && !getUpper().isNullValue())) |
| return APInt::getMinValue(getBitWidth()); |
| return getLower(); |
| } |
| |
| APInt ConstantRange::getSignedMax() const { |
| if (isFullSet() || Lower.sgt(Upper)) |
| return APInt::getSignedMaxValue(getBitWidth()); |
| return getUpper() - 1; |
| } |
| |
| APInt ConstantRange::getSignedMin() const { |
| if (isFullSet() || (Lower.sgt(Upper) && !getUpper().isMinSignedValue())) |
| return APInt::getSignedMinValue(getBitWidth()); |
| return getLower(); |
| } |
| |
| bool ConstantRange::contains(const APInt &V) const { |
| if (Lower == Upper) |
| return isFullSet(); |
| |
| if (!isWrappedSet()) |
| return Lower.ule(V) && V.ult(Upper); |
| return Lower.ule(V) || V.ult(Upper); |
| } |
| |
| bool ConstantRange::contains(const ConstantRange &Other) const { |
| if (isFullSet() || Other.isEmptySet()) return true; |
| if (isEmptySet() || Other.isFullSet()) return false; |
| |
| if (!isWrappedSet()) { |
| if (Other.isWrappedSet()) |
| return false; |
| |
| return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); |
| } |
| |
| if (!Other.isWrappedSet()) |
| return Other.getUpper().ule(Upper) || |
| Lower.ule(Other.getLower()); |
| |
| return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); |
| } |
| |
| ConstantRange ConstantRange::subtract(const APInt &Val) const { |
| assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); |
| // If the set is empty or full, don't modify the endpoints. |
| if (Lower == Upper) |
| return *this; |
| return ConstantRange(Lower - Val, Upper - Val); |
| } |
| |
| ConstantRange ConstantRange::difference(const ConstantRange &CR) const { |
| return intersectWith(CR.inverse()); |
| } |
| |
| ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { |
| assert(getBitWidth() == CR.getBitWidth() && |
| "ConstantRange types don't agree!"); |
| |
| // Handle common cases. |
| if ( isEmptySet() || CR.isFullSet()) return *this; |
| if (CR.isEmptySet() || isFullSet()) return CR; |
| |
| if (!isWrappedSet() && CR.isWrappedSet()) |
| return CR.intersectWith(*this); |
| |
| if (!isWrappedSet() && !CR.isWrappedSet()) { |
| if (Lower.ult(CR.Lower)) { |
| if (Upper.ule(CR.Lower)) |
| return ConstantRange(getBitWidth(), false); |
| |
| if (Upper.ult(CR.Upper)) |
| return ConstantRange(CR.Lower, Upper); |
| |
| return CR; |
| } |
| if (Upper.ult(CR.Upper)) |
| return *this; |
| |
| if (Lower.ult(CR.Upper)) |
| return ConstantRange(Lower, CR.Upper); |
| |
| return ConstantRange(getBitWidth(), false); |
| } |
| |
| if (isWrappedSet() && !CR.isWrappedSet()) { |
| if (CR.Lower.ult(Upper)) { |
| if (CR.Upper.ult(Upper)) |
| return CR; |
| |
| if (CR.Upper.ule(Lower)) |
| return ConstantRange(CR.Lower, Upper); |
| |
| if (isSizeStrictlySmallerThan(CR)) |
| return *this; |
| return CR; |
| } |
| if (CR.Lower.ult(Lower)) { |
| if (CR.Upper.ule(Lower)) |
| return ConstantRange(getBitWidth(), false); |
| |
| return ConstantRange(Lower, CR.Upper); |
| } |
| return CR; |
| } |
| |
| if (CR.Upper.ult(Upper)) { |
| if (CR.Lower.ult(Upper)) { |
| if (isSizeStrictlySmallerThan(CR)) |
| return *this; |
| return CR; |
| } |
| |
| if (CR.Lower.ult(Lower)) |
| return ConstantRange(Lower, CR.Upper); |
| |
| return CR; |
| } |
| if (CR.Upper.ule(Lower)) { |
| if (CR.Lower.ult(Lower)) |
| return *this; |
| |
| return ConstantRange(CR.Lower, Upper); |
| } |
| if (isSizeStrictlySmallerThan(CR)) |
| return *this; |
| return CR; |
| } |
| |
| ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { |
| assert(getBitWidth() == CR.getBitWidth() && |
| "ConstantRange types don't agree!"); |
| |
| if ( isFullSet() || CR.isEmptySet()) return *this; |
| if (CR.isFullSet() || isEmptySet()) return CR; |
| |
| if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this); |
| |
| if (!isWrappedSet() && !CR.isWrappedSet()) { |
| if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) { |
| // If the two ranges are disjoint, find the smaller gap and bridge it. |
| APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; |
| if (d1.ult(d2)) |
| return ConstantRange(Lower, CR.Upper); |
| return ConstantRange(CR.Lower, Upper); |
| } |
| |
| APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; |
| APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; |
| |
| if (L.isNullValue() && U.isNullValue()) |
| return ConstantRange(getBitWidth()); |
| |
| return ConstantRange(std::move(L), std::move(U)); |
| } |
| |
| if (!CR.isWrappedSet()) { |
| // ------U L----- and ------U L----- : this |
| // L--U L--U : CR |
| if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) |
| return *this; |
| |
| // ------U L----- : this |
| // L---------U : CR |
| if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) |
| return ConstantRange(getBitWidth()); |
| |
| // ----U L---- : this |
| // L---U : CR |
| // <d1> <d2> |
| if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) { |
| APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper; |
| if (d1.ult(d2)) |
| return ConstantRange(Lower, CR.Upper); |
| return ConstantRange(CR.Lower, Upper); |
| } |
| |
| // ----U L----- : this |
| // L----U : CR |
| if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper)) |
| return ConstantRange(CR.Lower, Upper); |
| |
| // ------U L---- : this |
| // L-----U : CR |
| assert(CR.Lower.ult(Upper) && CR.Upper.ult(Lower) && |
| "ConstantRange::unionWith missed a case with one range wrapped"); |
| return ConstantRange(Lower, CR.Upper); |
| } |
| |
| // ------U L---- and ------U L---- : this |
| // -U L----------- and ------------U L : CR |
| if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) |
| return ConstantRange(getBitWidth()); |
| |
| APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; |
| APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; |
| |
| return ConstantRange(std::move(L), std::move(U)); |
| } |
| |
| ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, |
| uint32_t ResultBitWidth) const { |
| switch (CastOp) { |
| default: |
| llvm_unreachable("unsupported cast type"); |
| case Instruction::Trunc: |
| return truncate(ResultBitWidth); |
| case Instruction::SExt: |
| return signExtend(ResultBitWidth); |
| case Instruction::ZExt: |
| return zeroExtend(ResultBitWidth); |
| case Instruction::BitCast: |
| return *this; |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| if (getBitWidth() == ResultBitWidth) |
| return *this; |
| else |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| case Instruction::UIToFP: { |
| // TODO: use input range if available |
| auto BW = getBitWidth(); |
| APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth); |
| APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth); |
| return ConstantRange(std::move(Min), std::move(Max)); |
| } |
| case Instruction::SIToFP: { |
| // TODO: use input range if available |
| auto BW = getBitWidth(); |
| APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth); |
| APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth); |
| return ConstantRange(std::move(SMin), std::move(SMax)); |
| } |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::IntToPtr: |
| case Instruction::PtrToInt: |
| case Instruction::AddrSpaceCast: |
| // Conservatively return full set. |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| }; |
| } |
| |
| ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { |
| if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); |
| |
| unsigned SrcTySize = getBitWidth(); |
| assert(SrcTySize < DstTySize && "Not a value extension"); |
| if (isFullSet() || isWrappedSet()) { |
| // Change into [0, 1 << src bit width) |
| APInt LowerExt(DstTySize, 0); |
| if (!Upper) // special case: [X, 0) -- not really wrapping around |
| LowerExt = Lower.zext(DstTySize); |
| return ConstantRange(std::move(LowerExt), |
| APInt::getOneBitSet(DstTySize, SrcTySize)); |
| } |
| |
| return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); |
| } |
| |
| ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { |
| if (isEmptySet()) return ConstantRange(DstTySize, /*isFullSet=*/false); |
| |
| unsigned SrcTySize = getBitWidth(); |
| assert(SrcTySize < DstTySize && "Not a value extension"); |
| |
| // special case: [X, INT_MIN) -- not really wrapping around |
| if (Upper.isMinSignedValue()) |
| return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); |
| |
| if (isFullSet() || isSignWrappedSet()) { |
| return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), |
| APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); |
| } |
| |
| return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); |
| } |
| |
| ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { |
| assert(getBitWidth() > DstTySize && "Not a value truncation"); |
| if (isEmptySet()) |
| return ConstantRange(DstTySize, /*isFullSet=*/false); |
| if (isFullSet()) |
| return ConstantRange(DstTySize, /*isFullSet=*/true); |
| |
| APInt LowerDiv(Lower), UpperDiv(Upper); |
| ConstantRange Union(DstTySize, /*isFullSet=*/false); |
| |
| // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] |
| // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and |
| // then we do the union with [MaxValue, Upper) |
| if (isWrappedSet()) { |
| // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole |
| // truncated range. |
| if (Upper.getActiveBits() > DstTySize || |
| Upper.countTrailingOnes() == DstTySize) |
| return ConstantRange(DstTySize, /*isFullSet=*/true); |
| |
| Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); |
| UpperDiv.setAllBits(); |
| |
| // Union covers the MaxValue case, so return if the remaining range is just |
| // MaxValue(DstTy). |
| if (LowerDiv == UpperDiv) |
| return Union; |
| } |
| |
| // Chop off the most significant bits that are past the destination bitwidth. |
| if (LowerDiv.getActiveBits() > DstTySize) { |
| // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. |
| APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); |
| LowerDiv -= Adjust; |
| UpperDiv -= Adjust; |
| } |
| |
| unsigned UpperDivWidth = UpperDiv.getActiveBits(); |
| if (UpperDivWidth <= DstTySize) |
| return ConstantRange(LowerDiv.trunc(DstTySize), |
| UpperDiv.trunc(DstTySize)).unionWith(Union); |
| |
| // The truncated value wraps around. Check if we can do better than fullset. |
| if (UpperDivWidth == DstTySize + 1) { |
| // Clear the MSB so that UpperDiv wraps around. |
| UpperDiv.clearBit(DstTySize); |
| if (UpperDiv.ult(LowerDiv)) |
| return ConstantRange(LowerDiv.trunc(DstTySize), |
| UpperDiv.trunc(DstTySize)).unionWith(Union); |
| } |
| |
| return ConstantRange(DstTySize, /*isFullSet=*/true); |
| } |
| |
| ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { |
| unsigned SrcTySize = getBitWidth(); |
| if (SrcTySize > DstTySize) |
| return truncate(DstTySize); |
| if (SrcTySize < DstTySize) |
| return zeroExtend(DstTySize); |
| return *this; |
| } |
| |
| ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { |
| unsigned SrcTySize = getBitWidth(); |
| if (SrcTySize > DstTySize) |
| return truncate(DstTySize); |
| if (SrcTySize < DstTySize) |
| return signExtend(DstTySize); |
| return *this; |
| } |
| |
| ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, |
| const ConstantRange &Other) const { |
| assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); |
| |
| switch (BinOp) { |
| case Instruction::Add: |
| return add(Other); |
| case Instruction::Sub: |
| return sub(Other); |
| case Instruction::Mul: |
| return multiply(Other); |
| case Instruction::UDiv: |
| return udiv(Other); |
| case Instruction::Shl: |
| return shl(Other); |
| case Instruction::LShr: |
| return lshr(Other); |
| case Instruction::AShr: |
| return ashr(Other); |
| case Instruction::And: |
| return binaryAnd(Other); |
| case Instruction::Or: |
| return binaryOr(Other); |
| // Note: floating point operations applied to abstract ranges are just |
| // ideal integer operations with a lossy representation |
| case Instruction::FAdd: |
| return add(Other); |
| case Instruction::FSub: |
| return sub(Other); |
| case Instruction::FMul: |
| return multiply(Other); |
| default: |
| // Conservatively return full set. |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| } |
| } |
| |
| ConstantRange |
| ConstantRange::add(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| if (isFullSet() || Other.isFullSet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| APInt NewLower = getLower() + Other.getLower(); |
| APInt NewUpper = getUpper() + Other.getUpper() - 1; |
| if (NewLower == NewUpper) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); |
| if (X.isSizeStrictlySmallerThan(*this) || |
| X.isSizeStrictlySmallerThan(Other)) |
| // We've wrapped, therefore, full set. |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return X; |
| } |
| |
| ConstantRange ConstantRange::addWithNoSignedWrap(const APInt &Other) const { |
| // Calculate the subset of this range such that "X + Other" is |
| // guaranteed not to wrap (overflow) for all X in this subset. |
| // makeGuaranteedNoWrapRegion will produce an exact NSW range since we are |
| // passing a single element range. |
| auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(BinaryOperator::Add, |
| ConstantRange(Other), |
| OverflowingBinaryOperator::NoSignedWrap); |
| auto NSWConstrainedRange = intersectWith(NSWRange); |
| |
| return NSWConstrainedRange.add(ConstantRange(Other)); |
| } |
| |
| ConstantRange |
| ConstantRange::sub(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| if (isFullSet() || Other.isFullSet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| APInt NewLower = getLower() - Other.getUpper() + 1; |
| APInt NewUpper = getUpper() - Other.getLower(); |
| if (NewLower == NewUpper) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); |
| if (X.isSizeStrictlySmallerThan(*this) || |
| X.isSizeStrictlySmallerThan(Other)) |
| // We've wrapped, therefore, full set. |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return X; |
| } |
| |
| ConstantRange |
| ConstantRange::multiply(const ConstantRange &Other) const { |
| // TODO: If either operand is a single element and the multiply is known to |
| // be non-wrapping, round the result min and max value to the appropriate |
| // multiple of that element. If wrapping is possible, at least adjust the |
| // range according to the greatest power-of-two factor of the single element. |
| |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| // Multiplication is signedness-independent. However different ranges can be |
| // obtained depending on how the input ranges are treated. These different |
| // ranges are all conservatively correct, but one might be better than the |
| // other. We calculate two ranges; one treating the inputs as unsigned |
| // and the other signed, then return the smallest of these ranges. |
| |
| // Unsigned range first. |
| APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); |
| APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); |
| APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); |
| APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); |
| |
| ConstantRange Result_zext = ConstantRange(this_min * Other_min, |
| this_max * Other_max + 1); |
| ConstantRange UR = Result_zext.truncate(getBitWidth()); |
| |
| // If the unsigned range doesn't wrap, and isn't negative then it's a range |
| // from one positive number to another which is as good as we can generate. |
| // In this case, skip the extra work of generating signed ranges which aren't |
| // going to be better than this range. |
| if (!UR.isWrappedSet() && |
| (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) |
| return UR; |
| |
| // Now the signed range. Because we could be dealing with negative numbers |
| // here, the lower bound is the smallest of the cartesian product of the |
| // lower and upper ranges; for example: |
| // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. |
| // Similarly for the upper bound, swapping min for max. |
| |
| this_min = getSignedMin().sext(getBitWidth() * 2); |
| this_max = getSignedMax().sext(getBitWidth() * 2); |
| Other_min = Other.getSignedMin().sext(getBitWidth() * 2); |
| Other_max = Other.getSignedMax().sext(getBitWidth() * 2); |
| |
| auto L = {this_min * Other_min, this_min * Other_max, |
| this_max * Other_min, this_max * Other_max}; |
| auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; |
| ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); |
| ConstantRange SR = Result_sext.truncate(getBitWidth()); |
| |
| return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; |
| } |
| |
| ConstantRange |
| ConstantRange::smax(const ConstantRange &Other) const { |
| // X smax Y is: range(smax(X_smin, Y_smin), |
| // smax(X_smax, Y_smax)) |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); |
| APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; |
| if (NewU == NewL) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(std::move(NewL), std::move(NewU)); |
| } |
| |
| ConstantRange |
| ConstantRange::umax(const ConstantRange &Other) const { |
| // X umax Y is: range(umax(X_umin, Y_umin), |
| // umax(X_umax, Y_umax)) |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); |
| APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; |
| if (NewU == NewL) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(std::move(NewL), std::move(NewU)); |
| } |
| |
| ConstantRange |
| ConstantRange::smin(const ConstantRange &Other) const { |
| // X smin Y is: range(smin(X_smin, Y_smin), |
| // smin(X_smax, Y_smax)) |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); |
| APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; |
| if (NewU == NewL) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(std::move(NewL), std::move(NewU)); |
| } |
| |
| ConstantRange |
| ConstantRange::umin(const ConstantRange &Other) const { |
| // X umin Y is: range(umin(X_umin, Y_umin), |
| // umin(X_umax, Y_umax)) |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); |
| APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; |
| if (NewU == NewL) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(std::move(NewL), std::move(NewU)); |
| } |
| |
| ConstantRange |
| ConstantRange::udiv(const ConstantRange &RHS) const { |
| if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| if (RHS.isFullSet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); |
| |
| APInt RHS_umin = RHS.getUnsignedMin(); |
| if (RHS_umin.isNullValue()) { |
| // We want the lowest value in RHS excluding zero. Usually that would be 1 |
| // except for a range in the form of [X, 1) in which case it would be X. |
| if (RHS.getUpper() == 1) |
| RHS_umin = RHS.getLower(); |
| else |
| RHS_umin = 1; |
| } |
| |
| APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; |
| |
| // If the LHS is Full and the RHS is a wrapped interval containing 1 then |
| // this could occur. |
| if (Lower == Upper) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| return ConstantRange(std::move(Lower), std::move(Upper)); |
| } |
| |
| ConstantRange |
| ConstantRange::binaryAnd(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| // TODO: replace this with something less conservative |
| |
| APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); |
| if (umin.isAllOnesValue()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(umin) + 1); |
| } |
| |
| ConstantRange |
| ConstantRange::binaryOr(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| // TODO: replace this with something less conservative |
| |
| APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); |
| if (umax.isNullValue()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(std::move(umax), APInt::getNullValue(getBitWidth())); |
| } |
| |
| ConstantRange |
| ConstantRange::shl(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| APInt max = getUnsignedMax(); |
| APInt Other_umax = Other.getUnsignedMax(); |
| |
| // there's overflow! |
| if (Other_umax.uge(max.countLeadingZeros())) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| // FIXME: implement the other tricky cases |
| |
| APInt min = getUnsignedMin(); |
| min <<= Other.getUnsignedMin(); |
| max <<= Other_umax; |
| |
| return ConstantRange(std::move(min), std::move(max) + 1); |
| } |
| |
| ConstantRange |
| ConstantRange::lshr(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; |
| APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); |
| if (min == max) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| return ConstantRange(std::move(min), std::move(max)); |
| } |
| |
| ConstantRange |
| ConstantRange::ashr(const ConstantRange &Other) const { |
| if (isEmptySet() || Other.isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| |
| // May straddle zero, so handle both positive and negative cases. |
| // 'PosMax' is the upper bound of the result of the ashr |
| // operation, when Upper of the LHS of ashr is a non-negative. |
| // number. Since ashr of a non-negative number will result in a |
| // smaller number, the Upper value of LHS is shifted right with |
| // the minimum value of 'Other' instead of the maximum value. |
| APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; |
| |
| // 'PosMin' is the lower bound of the result of the ashr |
| // operation, when Lower of the LHS is a non-negative number. |
| // Since ashr of a non-negative number will result in a smaller |
| // number, the Lower value of LHS is shifted right with the |
| // maximum value of 'Other'. |
| APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); |
| |
| // 'NegMax' is the upper bound of the result of the ashr |
| // operation, when Upper of the LHS of ashr is a negative number. |
| // Since 'ashr' of a negative number will result in a bigger |
| // number, the Upper value of LHS is shifted right with the |
| // maximum value of 'Other'. |
| APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; |
| |
| // 'NegMin' is the lower bound of the result of the ashr |
| // operation, when Lower of the LHS of ashr is a negative number. |
| // Since 'ashr' of a negative number will result in a bigger |
| // number, the Lower value of LHS is shifted right with the |
| // minimum value of 'Other'. |
| APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); |
| |
| APInt max, min; |
| if (getSignedMin().isNonNegative()) { |
| // Upper and Lower of LHS are non-negative. |
| min = PosMin; |
| max = PosMax; |
| } else if (getSignedMax().isNegative()) { |
| // Upper and Lower of LHS are negative. |
| min = NegMin; |
| max = NegMax; |
| } else { |
| // Upper is non-negative and Lower is negative. |
| min = NegMin; |
| max = PosMax; |
| } |
| if (min == max) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| |
| return ConstantRange(std::move(min), std::move(max)); |
| } |
| |
| ConstantRange ConstantRange::inverse() const { |
| if (isFullSet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/false); |
| if (isEmptySet()) |
| return ConstantRange(getBitWidth(), /*isFullSet=*/true); |
| return ConstantRange(Upper, Lower); |
| } |
| |
| void ConstantRange::print(raw_ostream &OS) const { |
| if (isFullSet()) |
| OS << "full-set"; |
| else if (isEmptySet()) |
| OS << "empty-set"; |
| else |
| OS << "[" << Lower << "," << Upper << ")"; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void ConstantRange::dump() const { |
| print(dbgs()); |
| } |
| #endif |
| |
| ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { |
| const unsigned NumRanges = Ranges.getNumOperands() / 2; |
| assert(NumRanges >= 1 && "Must have at least one range!"); |
| assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); |
| |
| auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); |
| auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); |
| |
| ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); |
| |
| for (unsigned i = 1; i < NumRanges; ++i) { |
| auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); |
| auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); |
| |
| // Note: unionWith will potentially create a range that contains values not |
| // contained in any of the original N ranges. |
| CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); |
| } |
| |
| return CR; |
| } |