| //===-- X86AsmBackend.cpp - X86 Assembler Backend -------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/MC/MCAsmBackend.h" |
| #include "MCTargetDesc/X86BaseInfo.h" |
| #include "MCTargetDesc/X86FixupKinds.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/MC/MCAssembler.h" |
| #include "llvm/MC/MCELFObjectWriter.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCFixupKindInfo.h" |
| #include "llvm/MC/MCMachObjectWriter.h" |
| #include "llvm/MC/MCObjectWriter.h" |
| #include "llvm/MC/MCSectionCOFF.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/Object/MachOFormat.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ELF.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| // Option to allow disabling arithmetic relaxation to workaround PR9807, which |
| // is useful when running bitwise comparison experiments on Darwin. We should be |
| // able to remove this once PR9807 is resolved. |
| static cl::opt<bool> |
| MCDisableArithRelaxation("mc-x86-disable-arith-relaxation", |
| cl::desc("Disable relaxation of arithmetic instruction for X86")); |
| |
| static unsigned getFixupKindLog2Size(unsigned Kind) { |
| switch (Kind) { |
| default: assert(0 && "invalid fixup kind!"); |
| case FK_PCRel_1: |
| case FK_Data_1: return 0; |
| case FK_PCRel_2: |
| case FK_Data_2: return 1; |
| case FK_PCRel_4: |
| case X86::reloc_riprel_4byte: |
| case X86::reloc_riprel_4byte_movq_load: |
| case X86::reloc_signed_4byte: |
| case X86::reloc_global_offset_table: |
| case FK_Data_4: return 2; |
| case FK_PCRel_8: |
| case FK_Data_8: return 3; |
| } |
| } |
| |
| namespace { |
| |
| class X86ELFObjectWriter : public MCELFObjectTargetWriter { |
| public: |
| X86ELFObjectWriter(bool is64Bit, Triple::OSType OSType, uint16_t EMachine, |
| bool HasRelocationAddend) |
| : MCELFObjectTargetWriter(is64Bit, OSType, EMachine, HasRelocationAddend) {} |
| }; |
| |
| class X86AsmBackend : public MCAsmBackend { |
| public: |
| X86AsmBackend(const Target &T) |
| : MCAsmBackend() {} |
| |
| unsigned getNumFixupKinds() const { |
| return X86::NumTargetFixupKinds; |
| } |
| |
| const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const { |
| const static MCFixupKindInfo Infos[X86::NumTargetFixupKinds] = { |
| { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }, |
| { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel}, |
| { "reloc_signed_4byte", 0, 4 * 8, 0}, |
| { "reloc_global_offset_table", 0, 4 * 8, 0} |
| }; |
| |
| if (Kind < FirstTargetFixupKind) |
| return MCAsmBackend::getFixupKindInfo(Kind); |
| |
| assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && |
| "Invalid kind!"); |
| return Infos[Kind - FirstTargetFixupKind]; |
| } |
| |
| void ApplyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize, |
| uint64_t Value) const { |
| unsigned Size = 1 << getFixupKindLog2Size(Fixup.getKind()); |
| |
| assert(Fixup.getOffset() + Size <= DataSize && |
| "Invalid fixup offset!"); |
| |
| // Check that uppper bits are either all zeros or all ones. |
| // Specifically ignore overflow/underflow as long as the leakage is |
| // limited to the lower bits. This is to remain compatible with |
| // other assemblers. |
| assert(isIntN(Size * 8 + 1, Value) && |
| "Value does not fit in the Fixup field"); |
| |
| for (unsigned i = 0; i != Size; ++i) |
| Data[Fixup.getOffset() + i] = uint8_t(Value >> (i * 8)); |
| } |
| |
| bool MayNeedRelaxation(const MCInst &Inst) const; |
| |
| void RelaxInstruction(const MCInst &Inst, MCInst &Res) const; |
| |
| bool WriteNopData(uint64_t Count, MCObjectWriter *OW) const; |
| }; |
| } // end anonymous namespace |
| |
| static unsigned getRelaxedOpcodeBranch(unsigned Op) { |
| switch (Op) { |
| default: |
| return Op; |
| |
| case X86::JAE_1: return X86::JAE_4; |
| case X86::JA_1: return X86::JA_4; |
| case X86::JBE_1: return X86::JBE_4; |
| case X86::JB_1: return X86::JB_4; |
| case X86::JE_1: return X86::JE_4; |
| case X86::JGE_1: return X86::JGE_4; |
| case X86::JG_1: return X86::JG_4; |
| case X86::JLE_1: return X86::JLE_4; |
| case X86::JL_1: return X86::JL_4; |
| case X86::JMP_1: return X86::JMP_4; |
| case X86::JNE_1: return X86::JNE_4; |
| case X86::JNO_1: return X86::JNO_4; |
| case X86::JNP_1: return X86::JNP_4; |
| case X86::JNS_1: return X86::JNS_4; |
| case X86::JO_1: return X86::JO_4; |
| case X86::JP_1: return X86::JP_4; |
| case X86::JS_1: return X86::JS_4; |
| } |
| } |
| |
| static unsigned getRelaxedOpcodeArith(unsigned Op) { |
| switch (Op) { |
| default: |
| return Op; |
| |
| // IMUL |
| case X86::IMUL16rri8: return X86::IMUL16rri; |
| case X86::IMUL16rmi8: return X86::IMUL16rmi; |
| case X86::IMUL32rri8: return X86::IMUL32rri; |
| case X86::IMUL32rmi8: return X86::IMUL32rmi; |
| case X86::IMUL64rri8: return X86::IMUL64rri32; |
| case X86::IMUL64rmi8: return X86::IMUL64rmi32; |
| |
| // AND |
| case X86::AND16ri8: return X86::AND16ri; |
| case X86::AND16mi8: return X86::AND16mi; |
| case X86::AND32ri8: return X86::AND32ri; |
| case X86::AND32mi8: return X86::AND32mi; |
| case X86::AND64ri8: return X86::AND64ri32; |
| case X86::AND64mi8: return X86::AND64mi32; |
| |
| // OR |
| case X86::OR16ri8: return X86::OR16ri; |
| case X86::OR16mi8: return X86::OR16mi; |
| case X86::OR32ri8: return X86::OR32ri; |
| case X86::OR32mi8: return X86::OR32mi; |
| case X86::OR64ri8: return X86::OR64ri32; |
| case X86::OR64mi8: return X86::OR64mi32; |
| |
| // XOR |
| case X86::XOR16ri8: return X86::XOR16ri; |
| case X86::XOR16mi8: return X86::XOR16mi; |
| case X86::XOR32ri8: return X86::XOR32ri; |
| case X86::XOR32mi8: return X86::XOR32mi; |
| case X86::XOR64ri8: return X86::XOR64ri32; |
| case X86::XOR64mi8: return X86::XOR64mi32; |
| |
| // ADD |
| case X86::ADD16ri8: return X86::ADD16ri; |
| case X86::ADD16mi8: return X86::ADD16mi; |
| case X86::ADD32ri8: return X86::ADD32ri; |
| case X86::ADD32mi8: return X86::ADD32mi; |
| case X86::ADD64ri8: return X86::ADD64ri32; |
| case X86::ADD64mi8: return X86::ADD64mi32; |
| |
| // SUB |
| case X86::SUB16ri8: return X86::SUB16ri; |
| case X86::SUB16mi8: return X86::SUB16mi; |
| case X86::SUB32ri8: return X86::SUB32ri; |
| case X86::SUB32mi8: return X86::SUB32mi; |
| case X86::SUB64ri8: return X86::SUB64ri32; |
| case X86::SUB64mi8: return X86::SUB64mi32; |
| |
| // CMP |
| case X86::CMP16ri8: return X86::CMP16ri; |
| case X86::CMP16mi8: return X86::CMP16mi; |
| case X86::CMP32ri8: return X86::CMP32ri; |
| case X86::CMP32mi8: return X86::CMP32mi; |
| case X86::CMP64ri8: return X86::CMP64ri32; |
| case X86::CMP64mi8: return X86::CMP64mi32; |
| |
| // PUSH |
| case X86::PUSHi8: return X86::PUSHi32; |
| case X86::PUSHi16: return X86::PUSHi32; |
| case X86::PUSH64i8: return X86::PUSH64i32; |
| case X86::PUSH64i16: return X86::PUSH64i32; |
| } |
| } |
| |
| static unsigned getRelaxedOpcode(unsigned Op) { |
| unsigned R = getRelaxedOpcodeArith(Op); |
| if (R != Op) |
| return R; |
| return getRelaxedOpcodeBranch(Op); |
| } |
| |
| bool X86AsmBackend::MayNeedRelaxation(const MCInst &Inst) const { |
| // Branches can always be relaxed. |
| if (getRelaxedOpcodeBranch(Inst.getOpcode()) != Inst.getOpcode()) |
| return true; |
| |
| if (MCDisableArithRelaxation) |
| return false; |
| |
| // Check if this instruction is ever relaxable. |
| if (getRelaxedOpcodeArith(Inst.getOpcode()) == Inst.getOpcode()) |
| return false; |
| |
| |
| // Check if it has an expression and is not RIP relative. |
| bool hasExp = false; |
| bool hasRIP = false; |
| for (unsigned i = 0; i < Inst.getNumOperands(); ++i) { |
| const MCOperand &Op = Inst.getOperand(i); |
| if (Op.isExpr()) |
| hasExp = true; |
| |
| if (Op.isReg() && Op.getReg() == X86::RIP) |
| hasRIP = true; |
| } |
| |
| // FIXME: Why exactly do we need the !hasRIP? Is it just a limitation on |
| // how we do relaxations? |
| return hasExp && !hasRIP; |
| } |
| |
| // FIXME: Can tblgen help at all here to verify there aren't other instructions |
| // we can relax? |
| void X86AsmBackend::RelaxInstruction(const MCInst &Inst, MCInst &Res) const { |
| // The only relaxations X86 does is from a 1byte pcrel to a 4byte pcrel. |
| unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); |
| |
| if (RelaxedOp == Inst.getOpcode()) { |
| SmallString<256> Tmp; |
| raw_svector_ostream OS(Tmp); |
| Inst.dump_pretty(OS); |
| OS << "\n"; |
| report_fatal_error("unexpected instruction to relax: " + OS.str()); |
| } |
| |
| Res = Inst; |
| Res.setOpcode(RelaxedOp); |
| } |
| |
| /// WriteNopData - Write optimal nops to the output file for the \arg Count |
| /// bytes. This returns the number of bytes written. It may return 0 if |
| /// the \arg Count is more than the maximum optimal nops. |
| bool X86AsmBackend::WriteNopData(uint64_t Count, MCObjectWriter *OW) const { |
| static const uint8_t Nops[10][10] = { |
| // nop |
| {0x90}, |
| // xchg %ax,%ax |
| {0x66, 0x90}, |
| // nopl (%[re]ax) |
| {0x0f, 0x1f, 0x00}, |
| // nopl 0(%[re]ax) |
| {0x0f, 0x1f, 0x40, 0x00}, |
| // nopl 0(%[re]ax,%[re]ax,1) |
| {0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| // nopw 0(%[re]ax,%[re]ax,1) |
| {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00}, |
| // nopl 0L(%[re]ax) |
| {0x0f, 0x1f, 0x80, 0x00, 0x00, 0x00, 0x00}, |
| // nopl 0L(%[re]ax,%[re]ax,1) |
| {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| // nopw 0L(%[re]ax,%[re]ax,1) |
| {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| // nopw %cs:0L(%[re]ax,%[re]ax,1) |
| {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}, |
| }; |
| |
| // Write an optimal sequence for the first 15 bytes. |
| const uint64_t OptimalCount = (Count < 16) ? Count : 15; |
| const uint64_t Prefixes = OptimalCount <= 10 ? 0 : OptimalCount - 10; |
| for (uint64_t i = 0, e = Prefixes; i != e; i++) |
| OW->Write8(0x66); |
| const uint64_t Rest = OptimalCount - Prefixes; |
| for (uint64_t i = 0, e = Rest; i != e; i++) |
| OW->Write8(Nops[Rest - 1][i]); |
| |
| // Finish with single byte nops. |
| for (uint64_t i = OptimalCount, e = Count; i != e; ++i) |
| OW->Write8(0x90); |
| |
| return true; |
| } |
| |
| /* *** */ |
| |
| namespace { |
| class ELFX86AsmBackend : public X86AsmBackend { |
| public: |
| Triple::OSType OSType; |
| ELFX86AsmBackend(const Target &T, Triple::OSType _OSType) |
| : X86AsmBackend(T), OSType(_OSType) { |
| HasReliableSymbolDifference = true; |
| } |
| |
| virtual bool doesSectionRequireSymbols(const MCSection &Section) const { |
| const MCSectionELF &ES = static_cast<const MCSectionELF&>(Section); |
| return ES.getFlags() & ELF::SHF_MERGE; |
| } |
| }; |
| |
| class ELFX86_32AsmBackend : public ELFX86AsmBackend { |
| public: |
| ELFX86_32AsmBackend(const Target &T, Triple::OSType OSType) |
| : ELFX86AsmBackend(T, OSType) {} |
| |
| MCObjectWriter *createObjectWriter(raw_ostream &OS) const { |
| return createELFObjectWriter(createELFObjectTargetWriter(), |
| OS, /*IsLittleEndian*/ true); |
| } |
| |
| MCELFObjectTargetWriter *createELFObjectTargetWriter() const { |
| return new X86ELFObjectWriter(false, OSType, ELF::EM_386, false); |
| } |
| }; |
| |
| class ELFX86_64AsmBackend : public ELFX86AsmBackend { |
| public: |
| ELFX86_64AsmBackend(const Target &T, Triple::OSType OSType) |
| : ELFX86AsmBackend(T, OSType) {} |
| |
| MCObjectWriter *createObjectWriter(raw_ostream &OS) const { |
| return createELFObjectWriter(createELFObjectTargetWriter(), |
| OS, /*IsLittleEndian*/ true); |
| } |
| |
| MCELFObjectTargetWriter *createELFObjectTargetWriter() const { |
| return new X86ELFObjectWriter(true, OSType, ELF::EM_X86_64, true); |
| } |
| }; |
| |
| class WindowsX86AsmBackend : public X86AsmBackend { |
| bool Is64Bit; |
| |
| public: |
| WindowsX86AsmBackend(const Target &T, bool is64Bit) |
| : X86AsmBackend(T) |
| , Is64Bit(is64Bit) { |
| } |
| |
| MCObjectWriter *createObjectWriter(raw_ostream &OS) const { |
| return createWinCOFFObjectWriter(OS, Is64Bit); |
| } |
| }; |
| |
| class DarwinX86AsmBackend : public X86AsmBackend { |
| public: |
| DarwinX86AsmBackend(const Target &T) |
| : X86AsmBackend(T) { } |
| }; |
| |
| class DarwinX86_32AsmBackend : public DarwinX86AsmBackend { |
| public: |
| DarwinX86_32AsmBackend(const Target &T) |
| : DarwinX86AsmBackend(T) {} |
| |
| MCObjectWriter *createObjectWriter(raw_ostream &OS) const { |
| return createX86MachObjectWriter(OS, /*Is64Bit=*/false, |
| object::mach::CTM_i386, |
| object::mach::CSX86_ALL); |
| } |
| }; |
| |
| class DarwinX86_64AsmBackend : public DarwinX86AsmBackend { |
| public: |
| DarwinX86_64AsmBackend(const Target &T) |
| : DarwinX86AsmBackend(T) { |
| HasReliableSymbolDifference = true; |
| } |
| |
| MCObjectWriter *createObjectWriter(raw_ostream &OS) const { |
| return createX86MachObjectWriter(OS, /*Is64Bit=*/true, |
| object::mach::CTM_x86_64, |
| object::mach::CSX86_ALL); |
| } |
| |
| virtual bool doesSectionRequireSymbols(const MCSection &Section) const { |
| // Temporary labels in the string literals sections require symbols. The |
| // issue is that the x86_64 relocation format does not allow symbol + |
| // offset, and so the linker does not have enough information to resolve the |
| // access to the appropriate atom unless an external relocation is used. For |
| // non-cstring sections, we expect the compiler to use a non-temporary label |
| // for anything that could have an addend pointing outside the symbol. |
| // |
| // See <rdar://problem/4765733>. |
| const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); |
| return SMO.getType() == MCSectionMachO::S_CSTRING_LITERALS; |
| } |
| |
| virtual bool isSectionAtomizable(const MCSection &Section) const { |
| const MCSectionMachO &SMO = static_cast<const MCSectionMachO&>(Section); |
| // Fixed sized data sections are uniqued, they cannot be diced into atoms. |
| switch (SMO.getType()) { |
| default: |
| return true; |
| |
| case MCSectionMachO::S_4BYTE_LITERALS: |
| case MCSectionMachO::S_8BYTE_LITERALS: |
| case MCSectionMachO::S_16BYTE_LITERALS: |
| case MCSectionMachO::S_LITERAL_POINTERS: |
| case MCSectionMachO::S_NON_LAZY_SYMBOL_POINTERS: |
| case MCSectionMachO::S_LAZY_SYMBOL_POINTERS: |
| case MCSectionMachO::S_MOD_INIT_FUNC_POINTERS: |
| case MCSectionMachO::S_MOD_TERM_FUNC_POINTERS: |
| case MCSectionMachO::S_INTERPOSING: |
| return false; |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T, StringRef TT) { |
| Triple TheTriple(TT); |
| |
| if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) |
| return new DarwinX86_32AsmBackend(T); |
| |
| if (TheTriple.isOSWindows()) |
| return new WindowsX86AsmBackend(T, false); |
| |
| return new ELFX86_32AsmBackend(T, TheTriple.getOS()); |
| } |
| |
| MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T, StringRef TT) { |
| Triple TheTriple(TT); |
| |
| if (TheTriple.isOSDarwin() || TheTriple.getEnvironment() == Triple::MachO) |
| return new DarwinX86_64AsmBackend(T); |
| |
| if (TheTriple.isOSWindows()) |
| return new WindowsX86AsmBackend(T, true); |
| |
| return new ELFX86_64AsmBackend(T, TheTriple.getOS()); |
| } |