| //===--------------------- Scheduler.cpp ------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // A scheduler for processor resource units and processor resource groups. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Scheduler.h" |
| #include "Support.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| namespace mca { |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "llvm-mca" |
| |
| uint64_t ResourceState::selectNextInSequence() { |
| assert(isReady()); |
| uint64_t Next = getNextInSequence(); |
| while (!isSubResourceReady(Next)) { |
| updateNextInSequence(); |
| Next = getNextInSequence(); |
| } |
| return Next; |
| } |
| |
| #ifndef NDEBUG |
| void ResourceState::dump() const { |
| dbgs() << "MASK: " << ResourceMask << ", SIZE_MASK: " << ResourceSizeMask |
| << ", NEXT: " << NextInSequenceMask << ", RDYMASK: " << ReadyMask |
| << ", BufferSize=" << BufferSize |
| << ", AvailableSlots=" << AvailableSlots |
| << ", Reserved=" << Unavailable << '\n'; |
| } |
| #endif |
| |
| void ResourceManager::initialize(const llvm::MCSchedModel &SM) { |
| computeProcResourceMasks(SM, ProcResID2Mask); |
| for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) |
| addResource(*SM.getProcResource(I), I, ProcResID2Mask[I]); |
| } |
| |
| // Adds a new resource state in Resources, as well as a new descriptor in |
| // ResourceDescriptor. Map 'Resources' allows to quickly obtain ResourceState |
| // objects from resource mask identifiers. |
| void ResourceManager::addResource(const MCProcResourceDesc &Desc, |
| unsigned Index, uint64_t Mask) { |
| assert(Resources.find(Mask) == Resources.end() && "Resource already added!"); |
| Resources[Mask] = llvm::make_unique<ResourceState>(Desc, Index, Mask); |
| } |
| |
| // Returns the actual resource consumed by this Use. |
| // First, is the primary resource ID. |
| // Second, is the specific sub-resource ID. |
| std::pair<uint64_t, uint64_t> ResourceManager::selectPipe(uint64_t ResourceID) { |
| ResourceState &RS = *Resources[ResourceID]; |
| uint64_t SubResourceID = RS.selectNextInSequence(); |
| if (RS.isAResourceGroup()) |
| return selectPipe(SubResourceID); |
| return std::pair<uint64_t, uint64_t>(ResourceID, SubResourceID); |
| } |
| |
| void ResourceState::removeFromNextInSequence(uint64_t ID) { |
| assert(NextInSequenceMask); |
| assert(countPopulation(ID) == 1); |
| if (ID > getNextInSequence()) |
| RemovedFromNextInSequence |= ID; |
| NextInSequenceMask = NextInSequenceMask & (~ID); |
| if (!NextInSequenceMask) { |
| NextInSequenceMask = ResourceSizeMask; |
| assert(NextInSequenceMask != RemovedFromNextInSequence); |
| NextInSequenceMask ^= RemovedFromNextInSequence; |
| RemovedFromNextInSequence = 0; |
| } |
| } |
| |
| void ResourceManager::use(ResourceRef RR) { |
| // Mark the sub-resource referenced by RR as used. |
| ResourceState &RS = *Resources[RR.first]; |
| RS.markSubResourceAsUsed(RR.second); |
| // If there are still available units in RR.first, |
| // then we are done. |
| if (RS.isReady()) |
| return; |
| |
| // Notify to other resources that RR.first is no longer available. |
| for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) { |
| ResourceState &Current = *Res.second.get(); |
| if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first) |
| continue; |
| |
| if (Current.containsResource(RR.first)) { |
| Current.markSubResourceAsUsed(RR.first); |
| Current.removeFromNextInSequence(RR.first); |
| } |
| } |
| } |
| |
| void ResourceManager::release(ResourceRef RR) { |
| ResourceState &RS = *Resources[RR.first]; |
| bool WasFullyUsed = !RS.isReady(); |
| RS.releaseSubResource(RR.second); |
| if (!WasFullyUsed) |
| return; |
| |
| for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) { |
| ResourceState &Current = *Res.second.get(); |
| if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first) |
| continue; |
| |
| if (Current.containsResource(RR.first)) |
| Current.releaseSubResource(RR.first); |
| } |
| } |
| |
| ResourceStateEvent |
| ResourceManager::canBeDispatched(ArrayRef<uint64_t> Buffers) const { |
| ResourceStateEvent Result = ResourceStateEvent::RS_BUFFER_AVAILABLE; |
| for (uint64_t Buffer : Buffers) { |
| Result = isBufferAvailable(Buffer); |
| if (Result != ResourceStateEvent::RS_BUFFER_AVAILABLE) |
| break; |
| } |
| return Result; |
| } |
| |
| void ResourceManager::reserveBuffers(ArrayRef<uint64_t> Buffers) { |
| for (const uint64_t R : Buffers) { |
| reserveBuffer(R); |
| ResourceState &Resource = *Resources[R]; |
| if (Resource.isADispatchHazard()) { |
| assert(!Resource.isReserved()); |
| Resource.setReserved(); |
| } |
| } |
| } |
| |
| void ResourceManager::releaseBuffers(ArrayRef<uint64_t> Buffers) { |
| for (const uint64_t R : Buffers) |
| releaseBuffer(R); |
| } |
| |
| bool ResourceManager::canBeIssued(const InstrDesc &Desc) const { |
| return std::all_of(Desc.Resources.begin(), Desc.Resources.end(), |
| [&](const std::pair<uint64_t, const ResourceUsage> &E) { |
| unsigned NumUnits = |
| E.second.isReserved() ? 0U : E.second.NumUnits; |
| return isReady(E.first, NumUnits); |
| }); |
| } |
| |
| // Returns true if all resources are in-order, and there is at least one |
| // resource which is a dispatch hazard (BufferSize = 0). |
| bool ResourceManager::mustIssueImmediately(const InstrDesc &Desc) { |
| if (!canBeIssued(Desc)) |
| return false; |
| bool AllInOrderResources = all_of(Desc.Buffers, [&](uint64_t BufferMask) { |
| const ResourceState &Resource = *Resources[BufferMask]; |
| return Resource.isInOrder() || Resource.isADispatchHazard(); |
| }); |
| if (!AllInOrderResources) |
| return false; |
| |
| return any_of(Desc.Buffers, [&](uint64_t BufferMask) { |
| return Resources[BufferMask]->isADispatchHazard(); |
| }); |
| } |
| |
| void ResourceManager::issueInstruction( |
| const InstrDesc &Desc, |
| SmallVectorImpl<std::pair<ResourceRef, double>> &Pipes) { |
| for (const std::pair<uint64_t, ResourceUsage> &R : Desc.Resources) { |
| const CycleSegment &CS = R.second.CS; |
| if (!CS.size()) { |
| releaseResource(R.first); |
| continue; |
| } |
| |
| assert(CS.begin() == 0 && "Invalid {Start, End} cycles!"); |
| if (!R.second.isReserved()) { |
| ResourceRef Pipe = selectPipe(R.first); |
| use(Pipe); |
| BusyResources[Pipe] += CS.size(); |
| // Replace the resource mask with a valid processor resource index. |
| const ResourceState &RS = *Resources[Pipe.first]; |
| Pipe.first = RS.getProcResourceID(); |
| Pipes.emplace_back( |
| std::pair<ResourceRef, double>(Pipe, static_cast<double>(CS.size()))); |
| } else { |
| assert((countPopulation(R.first) > 1) && "Expected a group!"); |
| // Mark this group as reserved. |
| assert(R.second.isReserved()); |
| reserveResource(R.first); |
| BusyResources[ResourceRef(R.first, R.first)] += CS.size(); |
| } |
| } |
| } |
| |
| void ResourceManager::cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed) { |
| for (std::pair<ResourceRef, unsigned> &BR : BusyResources) { |
| if (BR.second) |
| BR.second--; |
| if (!BR.second) { |
| // Release this resource. |
| const ResourceRef &RR = BR.first; |
| |
| if (countPopulation(RR.first) == 1) |
| release(RR); |
| |
| releaseResource(RR.first); |
| ResourcesFreed.push_back(RR); |
| } |
| } |
| |
| for (const ResourceRef &RF : ResourcesFreed) |
| BusyResources.erase(RF); |
| } |
| |
| #ifndef NDEBUG |
| void Scheduler::dump() const { |
| dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n'; |
| dbgs() << "[SCHEDULER]: ReadyQueue size is: " << ReadyQueue.size() << '\n'; |
| dbgs() << "[SCHEDULER]: IssuedQueue size is: " << IssuedQueue.size() << '\n'; |
| Resources->dump(); |
| } |
| #endif |
| |
| bool Scheduler::canBeDispatched(const InstRef &IR, |
| HWStallEvent::GenericEventType &Event) const { |
| Event = HWStallEvent::Invalid; |
| const InstrDesc &Desc = IR.getInstruction()->getDesc(); |
| |
| if (Desc.MayLoad && LSU->isLQFull()) |
| Event = HWStallEvent::LoadQueueFull; |
| else if (Desc.MayStore && LSU->isSQFull()) |
| Event = HWStallEvent::StoreQueueFull; |
| else { |
| switch (Resources->canBeDispatched(Desc.Buffers)) { |
| default: |
| return true; |
| case ResourceStateEvent::RS_BUFFER_UNAVAILABLE: |
| Event = HWStallEvent::SchedulerQueueFull; |
| break; |
| case ResourceStateEvent::RS_RESERVED: |
| Event = HWStallEvent::DispatchGroupStall; |
| } |
| } |
| |
| return false; |
| } |
| |
| void Scheduler::issueInstructionImpl( |
| InstRef &IR, |
| SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) { |
| Instruction *IS = IR.getInstruction(); |
| const InstrDesc &D = IS->getDesc(); |
| |
| // Issue the instruction and collect all the consumed resources |
| // into a vector. That vector is then used to notify the listener. |
| Resources->issueInstruction(D, UsedResources); |
| |
| // Notify the instruction that it started executing. |
| // This updates the internal state of each write. |
| IS->execute(); |
| |
| if (IS->isExecuting()) |
| IssuedQueue[IR.getSourceIndex()] = IS; |
| } |
| |
| // Release the buffered resources and issue the instruction. |
| void Scheduler::issueInstruction( |
| InstRef &IR, |
| SmallVectorImpl<std::pair<ResourceRef, double>> &UsedResources) { |
| const InstrDesc &Desc = IR.getInstruction()->getDesc(); |
| releaseBuffers(Desc.Buffers); |
| issueInstructionImpl(IR, UsedResources); |
| } |
| |
| void Scheduler::promoteToReadyQueue(SmallVectorImpl<InstRef> &Ready) { |
| // Scan the set of waiting instructions and promote them to the |
| // ready queue if operands are all ready. |
| for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) { |
| const unsigned IID = I->first; |
| Instruction *IS = I->second; |
| |
| // Check if this instruction is now ready. In case, force |
| // a transition in state using method 'update()'. |
| if (!IS->isReady()) |
| IS->update(); |
| |
| const InstrDesc &Desc = IS->getDesc(); |
| bool IsMemOp = Desc.MayLoad || Desc.MayStore; |
| if (!IS->isReady() || (IsMemOp && !LSU->isReady({IID, IS}))) { |
| ++I; |
| continue; |
| } |
| |
| Ready.emplace_back(IID, IS); |
| ReadyQueue[IID] = IS; |
| auto ToRemove = I; |
| ++I; |
| WaitQueue.erase(ToRemove); |
| } |
| } |
| |
| InstRef Scheduler::select() { |
| // Find the oldest ready-to-issue instruction in the ReadyQueue. |
| auto It = std::find_if(ReadyQueue.begin(), ReadyQueue.end(), |
| [&](const QueueEntryTy &Entry) { |
| const InstrDesc &D = Entry.second->getDesc(); |
| return Resources->canBeIssued(D); |
| }); |
| |
| if (It == ReadyQueue.end()) |
| return {0, nullptr}; |
| |
| // We want to prioritize older instructions over younger instructions to |
| // minimize the pressure on the reorder buffer. We also want to |
| // rank higher the instructions with more users to better expose ILP. |
| |
| // Compute a rank value based on the age of an instruction (i.e. its source |
| // index) and its number of users. The lower the rank value, the better. |
| int Rank = It->first - It->second->getNumUsers(); |
| for (auto I = It, E = ReadyQueue.end(); I != E; ++I) { |
| int CurrentRank = I->first - I->second->getNumUsers(); |
| if (CurrentRank < Rank) { |
| const InstrDesc &D = I->second->getDesc(); |
| if (Resources->canBeIssued(D)) |
| It = I; |
| } |
| } |
| |
| // We found an instruction to issue. |
| InstRef IR(It->first, It->second); |
| ReadyQueue.erase(It); |
| return IR; |
| } |
| |
| void Scheduler::updatePendingQueue(SmallVectorImpl<InstRef> &Ready) { |
| // Notify to instructions in the pending queue that a new cycle just |
| // started. |
| for (QueueEntryTy Entry : WaitQueue) |
| Entry.second->cycleEvent(); |
| promoteToReadyQueue(Ready); |
| } |
| |
| void Scheduler::updateIssuedQueue(SmallVectorImpl<InstRef> &Executed) { |
| for (auto I = IssuedQueue.begin(), E = IssuedQueue.end(); I != E;) { |
| const QueueEntryTy Entry = *I; |
| Instruction *IS = Entry.second; |
| IS->cycleEvent(); |
| if (IS->isExecuted()) { |
| Executed.push_back({Entry.first, Entry.second}); |
| auto ToRemove = I; |
| ++I; |
| IssuedQueue.erase(ToRemove); |
| } else { |
| LLVM_DEBUG(dbgs() << "[SCHEDULER]: Instruction #" << Entry.first |
| << " is still executing.\n"); |
| ++I; |
| } |
| } |
| } |
| |
| void Scheduler::onInstructionExecuted(const InstRef &IR) { |
| LSU->onInstructionExecuted(IR); |
| } |
| |
| void Scheduler::reclaimSimulatedResources(SmallVectorImpl<ResourceRef> &Freed) { |
| Resources->cycleEvent(Freed); |
| } |
| |
| bool Scheduler::reserveResources(InstRef &IR) { |
| // If necessary, reserve queue entries in the load-store unit (LSU). |
| const bool Reserved = LSU->reserve(IR); |
| if (!IR.getInstruction()->isReady() || (Reserved && !LSU->isReady(IR))) { |
| LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR << " to the Wait Queue\n"); |
| WaitQueue[IR.getSourceIndex()] = IR.getInstruction(); |
| return false; |
| } |
| return true; |
| } |
| |
| bool Scheduler::issueImmediately(InstRef &IR) { |
| const InstrDesc &Desc = IR.getInstruction()->getDesc(); |
| if (!Desc.isZeroLatency() && !Resources->mustIssueImmediately(Desc)) { |
| LLVM_DEBUG(dbgs() << "[SCHEDULER] Adding #" << IR |
| << " to the Ready Queue\n"); |
| ReadyQueue[IR.getSourceIndex()] = IR.getInstruction(); |
| return false; |
| } |
| return true; |
| } |
| |
| } // namespace mca |