blob: e73e466026e1fb4144930d1a8dcf9c7fca2b698c [file] [log] [blame]
// Copyright (c) 2015-2016 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "source/val/validate.h"
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <vector>
#include "source/binary.h"
#include "source/diagnostic.h"
#include "source/enum_string_mapping.h"
#include "source/extensions.h"
#include "source/opcode.h"
#include "source/spirv_constant.h"
#include "source/spirv_endian.h"
#include "source/spirv_target_env.h"
#include "source/val/construct.h"
#include "source/val/instruction.h"
#include "source/val/validation_state.h"
#include "spirv-tools/libspirv.h"
namespace {
// TODO(issue 1950): The validator only returns a single message anyway, so no
// point in generating more than 1 warning.
static uint32_t kDefaultMaxNumOfWarnings = 1;
} // namespace
namespace spvtools {
namespace val {
namespace {
// Parses OpExtension instruction and registers extension.
void RegisterExtension(ValidationState_t& _,
const spv_parsed_instruction_t* inst) {
const std::string extension_str = spvtools::GetExtensionString(inst);
Extension extension;
if (!GetExtensionFromString(extension_str.c_str(), &extension)) {
// The error will be logged in the ProcessInstruction pass.
return;
}
_.RegisterExtension(extension);
}
// Parses the beginning of the module searching for OpExtension instructions.
// Registers extensions if recognized. Returns SPV_REQUESTED_TERMINATION
// once an instruction which is not spv::Op::OpCapability and
// spv::Op::OpExtension is encountered. According to the SPIR-V spec extensions
// are declared after capabilities and before everything else.
spv_result_t ProcessExtensions(void* user_data,
const spv_parsed_instruction_t* inst) {
const spv::Op opcode = static_cast<spv::Op>(inst->opcode);
if (opcode == spv::Op::OpCapability) return SPV_SUCCESS;
if (opcode == spv::Op::OpExtension) {
ValidationState_t& _ = *(reinterpret_cast<ValidationState_t*>(user_data));
RegisterExtension(_, inst);
return SPV_SUCCESS;
}
// OpExtension block is finished, requesting termination.
return SPV_REQUESTED_TERMINATION;
}
spv_result_t ProcessInstruction(void* user_data,
const spv_parsed_instruction_t* inst) {
ValidationState_t& _ = *(reinterpret_cast<ValidationState_t*>(user_data));
auto* instruction = _.AddOrderedInstruction(inst);
_.RegisterDebugInstruction(instruction);
return SPV_SUCCESS;
}
spv_result_t ValidateForwardDecls(ValidationState_t& _) {
if (_.unresolved_forward_id_count() == 0) return SPV_SUCCESS;
std::stringstream ss;
std::vector<uint32_t> ids = _.UnresolvedForwardIds();
std::transform(
std::begin(ids), std::end(ids),
std::ostream_iterator<std::string>(ss, " "),
bind(&ValidationState_t::getIdName, std::ref(_), std::placeholders::_1));
auto id_str = ss.str();
return _.diag(SPV_ERROR_INVALID_ID, nullptr)
<< "The following forward referenced IDs have not been defined:\n"
<< id_str.substr(0, id_str.size() - 1);
}
// Entry point validation. Based on 2.16.1 (Universal Validation Rules) of the
// SPIRV spec:
// * There is at least one OpEntryPoint instruction, unless the Linkage
// capability is being used.
// * No function can be targeted by both an OpEntryPoint instruction and an
// OpFunctionCall instruction.
//
// Additionally enforces that entry points for Vulkan should not have recursion.
spv_result_t ValidateEntryPoints(ValidationState_t& _) {
_.ComputeFunctionToEntryPointMapping();
_.ComputeRecursiveEntryPoints();
if (_.entry_points().empty() && !_.HasCapability(spv::Capability::Linkage)) {
return _.diag(SPV_ERROR_INVALID_BINARY, nullptr)
<< "No OpEntryPoint instruction was found. This is only allowed if "
"the Linkage capability is being used.";
}
for (const auto& entry_point : _.entry_points()) {
if (_.IsFunctionCallTarget(entry_point)) {
return _.diag(SPV_ERROR_INVALID_BINARY, _.FindDef(entry_point))
<< "A function (" << entry_point
<< ") may not be targeted by both an OpEntryPoint instruction and "
"an OpFunctionCall instruction.";
}
// For Vulkan, the static function-call graph for an entry point
// must not contain cycles.
if (spvIsVulkanEnv(_.context()->target_env)) {
if (_.recursive_entry_points().find(entry_point) !=
_.recursive_entry_points().end()) {
return _.diag(SPV_ERROR_INVALID_BINARY, _.FindDef(entry_point))
<< _.VkErrorID(4634)
<< "Entry points may not have a call graph with cycles.";
}
}
}
return SPV_SUCCESS;
}
spv_result_t ValidateBinaryUsingContextAndValidationState(
const spv_context_t& context, const uint32_t* words, const size_t num_words,
spv_diagnostic* pDiagnostic, ValidationState_t* vstate) {
auto binary = std::unique_ptr<spv_const_binary_t>(
new spv_const_binary_t{words, num_words});
spv_endianness_t endian;
spv_position_t position = {};
if (spvBinaryEndianness(binary.get(), &endian)) {
return DiagnosticStream(position, context.consumer, "",
SPV_ERROR_INVALID_BINARY)
<< "Invalid SPIR-V magic number.";
}
spv_header_t header;
if (spvBinaryHeaderGet(binary.get(), endian, &header)) {
return DiagnosticStream(position, context.consumer, "",
SPV_ERROR_INVALID_BINARY)
<< "Invalid SPIR-V header.";
}
if (header.version > spvVersionForTargetEnv(context.target_env)) {
return DiagnosticStream(position, context.consumer, "",
SPV_ERROR_WRONG_VERSION)
<< "Invalid SPIR-V binary version "
<< SPV_SPIRV_VERSION_MAJOR_PART(header.version) << "."
<< SPV_SPIRV_VERSION_MINOR_PART(header.version)
<< " for target environment "
<< spvTargetEnvDescription(context.target_env) << ".";
}
if (header.bound > vstate->options()->universal_limits_.max_id_bound) {
return DiagnosticStream(position, context.consumer, "",
SPV_ERROR_INVALID_BINARY)
<< "Invalid SPIR-V. The id bound is larger than the max id bound "
<< vstate->options()->universal_limits_.max_id_bound << ".";
}
// Look for OpExtension instructions and register extensions.
// This parse should not produce any error messages. Hijack the context and
// replace the message consumer so that we do not pollute any state in input
// consumer.
spv_context_t hijacked_context = context;
hijacked_context.consumer = [](spv_message_level_t, const char*,
const spv_position_t&, const char*) {};
spvBinaryParse(&hijacked_context, vstate, words, num_words,
/* parsed_header = */ nullptr, ProcessExtensions,
/* diagnostic = */ nullptr);
// Parse the module and perform inline validation checks. These checks do
// not require the knowledge of the whole module.
if (auto error = spvBinaryParse(&context, vstate, words, num_words,
/*parsed_header =*/nullptr,
ProcessInstruction, pDiagnostic)) {
return error;
}
bool has_mask_task_nv = false;
bool has_mask_task_ext = false;
std::vector<Instruction*> visited_entry_points;
for (auto& instruction : vstate->ordered_instructions()) {
{
// In order to do this work outside of Process Instruction we need to be
// able to, briefly, de-const the instruction.
Instruction* inst = const_cast<Instruction*>(&instruction);
if (inst->opcode() == spv::Op::OpEntryPoint) {
const auto entry_point = inst->GetOperandAs<uint32_t>(1);
const auto execution_model = inst->GetOperandAs<spv::ExecutionModel>(0);
const std::string desc_name = inst->GetOperandAs<std::string>(2);
ValidationState_t::EntryPointDescription desc;
desc.name = desc_name;
std::vector<uint32_t> interfaces;
for (size_t j = 3; j < inst->operands().size(); ++j)
desc.interfaces.push_back(inst->word(inst->operand(j).offset));
vstate->RegisterEntryPoint(entry_point, execution_model,
std::move(desc));
if (visited_entry_points.size() > 0) {
for (const Instruction* check_inst : visited_entry_points) {
const auto check_execution_model =
check_inst->GetOperandAs<spv::ExecutionModel>(0);
const std::string check_name =
check_inst->GetOperandAs<std::string>(2);
if (desc_name == check_name &&
execution_model == check_execution_model) {
return vstate->diag(SPV_ERROR_INVALID_DATA, inst)
<< "2 Entry points cannot share the same name and "
"ExecutionMode.";
}
}
}
visited_entry_points.push_back(inst);
has_mask_task_nv |= (execution_model == spv::ExecutionModel::TaskNV ||
execution_model == spv::ExecutionModel::MeshNV);
has_mask_task_ext |= (execution_model == spv::ExecutionModel::TaskEXT ||
execution_model == spv::ExecutionModel::MeshEXT);
}
if (inst->opcode() == spv::Op::OpFunctionCall) {
if (!vstate->in_function_body()) {
return vstate->diag(SPV_ERROR_INVALID_LAYOUT, &instruction)
<< "A FunctionCall must happen within a function body.";
}
const auto called_id = inst->GetOperandAs<uint32_t>(2);
vstate->AddFunctionCallTarget(called_id);
}
if (vstate->in_function_body()) {
inst->set_function(&(vstate->current_function()));
inst->set_block(vstate->current_function().current_block());
if (vstate->in_block() && spvOpcodeIsBlockTerminator(inst->opcode())) {
vstate->current_function().current_block()->set_terminator(inst);
}
}
if (auto error = IdPass(*vstate, inst)) return error;
}
if (auto error = CapabilityPass(*vstate, &instruction)) return error;
if (auto error = ModuleLayoutPass(*vstate, &instruction)) return error;
if (auto error = CfgPass(*vstate, &instruction)) return error;
if (auto error = InstructionPass(*vstate, &instruction)) return error;
// Now that all of the checks are done, update the state.
{
Instruction* inst = const_cast<Instruction*>(&instruction);
vstate->RegisterInstruction(inst);
if (inst->opcode() == spv::Op::OpTypeForwardPointer) {
vstate->RegisterForwardPointer(inst->GetOperandAs<uint32_t>(0));
}
}
}
if (!vstate->has_memory_model_specified())
return vstate->diag(SPV_ERROR_INVALID_LAYOUT, nullptr)
<< "Missing required OpMemoryModel instruction.";
if (vstate->in_function_body())
return vstate->diag(SPV_ERROR_INVALID_LAYOUT, nullptr)
<< "Missing OpFunctionEnd at end of module.";
if (vstate->HasCapability(spv::Capability::BindlessTextureNV) &&
!vstate->has_samplerimage_variable_address_mode_specified())
return vstate->diag(SPV_ERROR_INVALID_LAYOUT, nullptr)
<< "Missing required OpSamplerImageAddressingModeNV instruction.";
if (has_mask_task_ext && has_mask_task_nv)
return vstate->diag(SPV_ERROR_INVALID_LAYOUT, nullptr)
<< vstate->VkErrorID(7102)
<< "Module can't mix MeshEXT/TaskEXT with MeshNV/TaskNV Execution "
"Model.";
// Catch undefined forward references before performing further checks.
if (auto error = ValidateForwardDecls(*vstate)) return error;
// Calculate reachability after all the blocks are parsed, but early that it
// can be relied on in subsequent pases.
ReachabilityPass(*vstate);
// ID usage needs be handled in its own iteration of the instructions,
// between the two others. It depends on the first loop to have been
// finished, so that all instructions have been registered. And the following
// loop depends on all of the usage data being populated. Thus it cannot live
// in either of those iterations.
// It should also live after the forward declaration check, since it will
// have problems with missing forward declarations, but give less useful error
// messages.
for (size_t i = 0; i < vstate->ordered_instructions().size(); ++i) {
auto& instruction = vstate->ordered_instructions()[i];
if (auto error = UpdateIdUse(*vstate, &instruction)) return error;
}
// Validate individual opcodes.
for (size_t i = 0; i < vstate->ordered_instructions().size(); ++i) {
auto& instruction = vstate->ordered_instructions()[i];
// Keep these passes in the order they appear in the SPIR-V specification
// sections to maintain test consistency.
if (auto error = MiscPass(*vstate, &instruction)) return error;
if (auto error = DebugPass(*vstate, &instruction)) return error;
if (auto error = AnnotationPass(*vstate, &instruction)) return error;
if (auto error = ExtensionPass(*vstate, &instruction)) return error;
if (auto error = ModeSettingPass(*vstate, &instruction)) return error;
if (auto error = TypePass(*vstate, &instruction)) return error;
if (auto error = ConstantPass(*vstate, &instruction)) return error;
if (auto error = MemoryPass(*vstate, &instruction)) return error;
if (auto error = FunctionPass(*vstate, &instruction)) return error;
if (auto error = ImagePass(*vstate, &instruction)) return error;
if (auto error = ConversionPass(*vstate, &instruction)) return error;
if (auto error = CompositesPass(*vstate, &instruction)) return error;
if (auto error = ArithmeticsPass(*vstate, &instruction)) return error;
if (auto error = BitwisePass(*vstate, &instruction)) return error;
if (auto error = LogicalsPass(*vstate, &instruction)) return error;
if (auto error = ControlFlowPass(*vstate, &instruction)) return error;
if (auto error = DerivativesPass(*vstate, &instruction)) return error;
if (auto error = AtomicsPass(*vstate, &instruction)) return error;
if (auto error = PrimitivesPass(*vstate, &instruction)) return error;
if (auto error = BarriersPass(*vstate, &instruction)) return error;
// Group
// Device-Side Enqueue
// Pipe
if (auto error = NonUniformPass(*vstate, &instruction)) return error;
if (auto error = LiteralsPass(*vstate, &instruction)) return error;
if (auto error = RayQueryPass(*vstate, &instruction)) return error;
if (auto error = RayTracingPass(*vstate, &instruction)) return error;
if (auto error = RayReorderNVPass(*vstate, &instruction)) return error;
if (auto error = MeshShadingPass(*vstate, &instruction)) return error;
}
// Validate the preconditions involving adjacent instructions. e.g.
// spv::Op::OpPhi must only be preceded by spv::Op::OpLabel, spv::Op::OpPhi,
// or spv::Op::OpLine.
if (auto error = ValidateAdjacency(*vstate)) return error;
if (auto error = ValidateEntryPoints(*vstate)) return error;
// CFG checks are performed after the binary has been parsed
// and the CFGPass has collected information about the control flow
if (auto error = PerformCfgChecks(*vstate)) return error;
if (auto error = CheckIdDefinitionDominateUse(*vstate)) return error;
if (auto error = ValidateDecorations(*vstate)) return error;
if (auto error = ValidateInterfaces(*vstate)) return error;
// TODO(dsinclair): Restructure ValidateBuiltins so we can move into the
// for() above as it loops over all ordered_instructions internally.
if (auto error = ValidateBuiltIns(*vstate)) return error;
// These checks must be performed after individual opcode checks because
// those checks register the limitation checked here.
for (const auto& inst : vstate->ordered_instructions()) {
if (auto error = ValidateExecutionLimitations(*vstate, &inst)) return error;
if (auto error = ValidateSmallTypeUses(*vstate, &inst)) return error;
}
return SPV_SUCCESS;
}
} // namespace
spv_result_t ValidateBinaryAndKeepValidationState(
const spv_const_context context, spv_const_validator_options options,
const uint32_t* words, const size_t num_words, spv_diagnostic* pDiagnostic,
std::unique_ptr<ValidationState_t>* vstate) {
spv_context_t hijack_context = *context;
if (pDiagnostic) {
*pDiagnostic = nullptr;
UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic);
}
vstate->reset(new ValidationState_t(&hijack_context, options, words,
num_words, kDefaultMaxNumOfWarnings));
return ValidateBinaryUsingContextAndValidationState(
hijack_context, words, num_words, pDiagnostic, vstate->get());
}
} // namespace val
} // namespace spvtools
spv_result_t spvValidate(const spv_const_context context,
const spv_const_binary binary,
spv_diagnostic* pDiagnostic) {
return spvValidateBinary(context, binary->code, binary->wordCount,
pDiagnostic);
}
spv_result_t spvValidateBinary(const spv_const_context context,
const uint32_t* words, const size_t num_words,
spv_diagnostic* pDiagnostic) {
spv_context_t hijack_context = *context;
if (pDiagnostic) {
*pDiagnostic = nullptr;
spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic);
}
// This interface is used for default command line options.
spv_validator_options default_options = spvValidatorOptionsCreate();
// Create the ValidationState using the context and default options.
spvtools::val::ValidationState_t vstate(&hijack_context, default_options,
words, num_words,
kDefaultMaxNumOfWarnings);
spv_result_t result =
spvtools::val::ValidateBinaryUsingContextAndValidationState(
hijack_context, words, num_words, pDiagnostic, &vstate);
spvValidatorOptionsDestroy(default_options);
return result;
}
spv_result_t spvValidateWithOptions(const spv_const_context context,
spv_const_validator_options options,
const spv_const_binary binary,
spv_diagnostic* pDiagnostic) {
spv_context_t hijack_context = *context;
if (pDiagnostic) {
*pDiagnostic = nullptr;
spvtools::UseDiagnosticAsMessageConsumer(&hijack_context, pDiagnostic);
}
// Create the ValidationState using the context.
spvtools::val::ValidationState_t vstate(&hijack_context, options,
binary->code, binary->wordCount,
kDefaultMaxNumOfWarnings);
return spvtools::val::ValidateBinaryUsingContextAndValidationState(
hijack_context, binary->code, binary->wordCount, pDiagnostic, &vstate);
}