blob: e8c412ffe1d9aa81bcecd03c17f30a523afdfdd7 [file] [log] [blame]
// Copyright (c) 2018 The Khronos Group Inc.
// Copyright (c) 2018 Valve Corporation
// Copyright (c) 2018 LunarG Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "inst_bindless_check_pass.h"
#include "source/spirv_constant.h"
namespace spvtools {
namespace opt {
namespace {
// Input Operand Indices
constexpr int kSpvImageSampleImageIdInIdx = 0;
constexpr int kSpvSampledImageImageIdInIdx = 0;
constexpr int kSpvSampledImageSamplerIdInIdx = 1;
constexpr int kSpvImageSampledImageIdInIdx = 0;
constexpr int kSpvCopyObjectOperandIdInIdx = 0;
constexpr int kSpvLoadPtrIdInIdx = 0;
constexpr int kSpvAccessChainBaseIdInIdx = 0;
constexpr int kSpvAccessChainIndex0IdInIdx = 1;
constexpr int kSpvTypeArrayTypeIdInIdx = 0;
constexpr int kSpvTypeArrayLengthIdInIdx = 1;
constexpr int kSpvConstantValueInIdx = 0;
constexpr int kSpvVariableStorageClassInIdx = 0;
constexpr int kSpvTypePtrTypeIdInIdx = 1;
constexpr int kSpvTypeImageDim = 1;
constexpr int kSpvTypeImageDepth = 2;
constexpr int kSpvTypeImageArrayed = 3;
constexpr int kSpvTypeImageMS = 4;
constexpr int kSpvTypeImageSampled = 5;
} // namespace
void InstBindlessCheckPass::SetupInputBufferIds() {
if (input_buffer_id_ != 0) {
return;
}
AddStorageBufferExt();
if (!get_feature_mgr()->HasExtension(kSPV_KHR_physical_storage_buffer)) {
context()->AddExtension("SPV_KHR_physical_storage_buffer");
}
context()->AddCapability(spv::Capability::PhysicalStorageBufferAddresses);
Instruction* memory_model = get_module()->GetMemoryModel();
// TODO should this be just Physical64?
memory_model->SetInOperand(
0u, {uint32_t(spv::AddressingModel::PhysicalStorageBuffer64)});
analysis::DecorationManager* deco_mgr = get_decoration_mgr();
analysis::TypeManager* type_mgr = context()->get_type_mgr();
constexpr uint32_t width = 32u;
// declare the DescriptorSetData struct
analysis::Struct* desc_set_struct =
GetStruct({type_mgr->GetUIntType(), GetUintRuntimeArrayType(width)});
desc_set_type_id_ = type_mgr->GetTypeInstruction(desc_set_struct);
// By the Vulkan spec, a pre-existing struct containing a RuntimeArray
// must be a block, and will therefore be decorated with Block. Therefore
// the undecorated type returned here will not be pre-existing and can
// safely be decorated. Since this type is now decorated, it is out of
// sync with the TypeManager and therefore the TypeManager must be
// invalidated after this pass.
assert(context()->get_def_use_mgr()->NumUses(desc_set_type_id_) == 0 &&
"used struct type returned");
deco_mgr->AddDecoration(desc_set_type_id_, uint32_t(spv::Decoration::Block));
deco_mgr->AddMemberDecoration(desc_set_type_id_, 0,
uint32_t(spv::Decoration::Offset), 0);
deco_mgr->AddMemberDecoration(desc_set_type_id_, 1,
uint32_t(spv::Decoration::Offset), 4);
context()->AddDebug2Inst(
NewGlobalName(desc_set_type_id_, "DescriptorSetData"));
context()->AddDebug2Inst(NewMemberName(desc_set_type_id_, 0, "num_bindings"));
context()->AddDebug2Inst(NewMemberName(desc_set_type_id_, 1, "data"));
// declare buffer address reference to DescriptorSetData
desc_set_ptr_id_ = type_mgr->FindPointerToType(
desc_set_type_id_, spv::StorageClass::PhysicalStorageBuffer);
// runtime array of buffer addresses
analysis::Type* rarr_ty = GetArray(type_mgr->GetType(desc_set_ptr_id_),
kDebugInputBindlessMaxDescSets);
deco_mgr->AddDecorationVal(type_mgr->GetId(rarr_ty),
uint32_t(spv::Decoration::ArrayStride), 8u);
// declare the InputBuffer type, a struct wrapper around the runtime array
analysis::Struct* input_buffer_struct = GetStruct({rarr_ty});
input_buffer_struct_id_ = type_mgr->GetTypeInstruction(input_buffer_struct);
deco_mgr->AddDecoration(input_buffer_struct_id_,
uint32_t(spv::Decoration::Block));
deco_mgr->AddMemberDecoration(input_buffer_struct_id_, 0,
uint32_t(spv::Decoration::Offset), 0);
context()->AddDebug2Inst(
NewGlobalName(input_buffer_struct_id_, "InputBuffer"));
context()->AddDebug2Inst(
NewMemberName(input_buffer_struct_id_, 0, "desc_sets"));
input_buffer_ptr_id_ = type_mgr->FindPointerToType(
input_buffer_struct_id_, spv::StorageClass::StorageBuffer);
// declare the input_buffer global variable
input_buffer_id_ = TakeNextId();
const std::vector<Operand> var_operands = {
{spv_operand_type_t::SPV_OPERAND_TYPE_LITERAL_INTEGER,
{uint32_t(spv::StorageClass::StorageBuffer)}},
};
auto new_var_op = spvtools::MakeUnique<Instruction>(
context(), spv::Op::OpVariable, input_buffer_ptr_id_, input_buffer_id_,
var_operands);
context()->AddGlobalValue(std::move(new_var_op));
context()->AddDebug2Inst(NewGlobalName(input_buffer_id_, "input_buffer"));
deco_mgr->AddDecorationVal(
input_buffer_id_, uint32_t(spv::Decoration::DescriptorSet), desc_set_);
deco_mgr->AddDecorationVal(input_buffer_id_,
uint32_t(spv::Decoration::Binding),
GetInputBufferBinding());
if (get_module()->version() >= SPV_SPIRV_VERSION_WORD(1, 4)) {
// Add the new buffer to all entry points.
for (auto& entry : get_module()->entry_points()) {
entry.AddOperand({SPV_OPERAND_TYPE_ID, {input_buffer_id_}});
context()->AnalyzeUses(&entry);
}
}
}
// clang-format off
// GLSL:
// uint inst_bindless_read_binding_length(uint desc_set_idx, uint binding_idx)
// {
// if (desc_set_idx >= inst_bindless_input_buffer.desc_sets.length()) {
// return 0;
// }
//
// DescriptorSetData set_data = inst_bindless_input_buffer.desc_sets[desc_set_idx];
// uvec2 ptr_as_vec = uvec2(set_data);
// if ((ptr_as_vec.x == 0u) && (_ptr_as_vec.y == 0u))
// {
// return 0u;
// }
// uint num_bindings = set_data.num_bindings;
// if (binding_idx >= num_bindings) {
// return 0;
// }
// return set_data.data[binding_idx];
// }
// clang-format on
uint32_t InstBindlessCheckPass::GenDebugReadLengthFunctionId() {
if (read_length_func_id_ != 0) {
return read_length_func_id_;
}
SetupInputBufferIds();
const analysis::Integer* uint_type = GetInteger(32, false);
const std::vector<const analysis::Type*> param_types(2, uint_type);
const uint32_t func_id = TakeNextId();
std::unique_ptr<Function> func =
StartFunction(func_id, uint_type, param_types);
const std::vector<uint32_t> param_ids = AddParameters(*func, param_types);
// Create block
auto new_blk_ptr = MakeUnique<BasicBlock>(NewLabel(TakeNextId()));
InstructionBuilder builder(
context(), new_blk_ptr.get(),
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
Instruction* inst;
inst = builder.AddBinaryOp(
GetBoolId(), spv::Op::OpUGreaterThanEqual, param_ids[0],
builder.GetUintConstantId(kDebugInputBindlessMaxDescSets));
const uint32_t desc_cmp_id = inst->result_id();
uint32_t error_blk_id = TakeNextId();
uint32_t merge_blk_id = TakeNextId();
std::unique_ptr<Instruction> merge_label(NewLabel(merge_blk_id));
std::unique_ptr<Instruction> error_label(NewLabel(error_blk_id));
(void)builder.AddConditionalBranch(desc_cmp_id, error_blk_id, merge_blk_id,
merge_blk_id);
func->AddBasicBlock(std::move(new_blk_ptr));
// error return
new_blk_ptr = MakeUnique<BasicBlock>(std::move(error_label));
builder.SetInsertPoint(&*new_blk_ptr);
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue,
builder.GetUintConstantId(0));
func->AddBasicBlock(std::move(new_blk_ptr));
// check descriptor set table entry is non-null
new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
builder.SetInsertPoint(&*new_blk_ptr);
analysis::TypeManager* type_mgr = context()->get_type_mgr();
const uint32_t desc_set_ptr_ptr = type_mgr->FindPointerToType(
desc_set_ptr_id_, spv::StorageClass::StorageBuffer);
inst = builder.AddAccessChain(desc_set_ptr_ptr, input_buffer_id_,
{builder.GetUintConstantId(0), param_ids[0]});
const uint32_t set_access_chain_id = inst->result_id();
inst = builder.AddLoad(desc_set_ptr_id_, set_access_chain_id);
const uint32_t desc_set_ptr_id = inst->result_id();
inst =
builder.AddUnaryOp(GetVecUintId(2), spv::Op::OpBitcast, desc_set_ptr_id);
const uint32_t ptr_as_uvec_id = inst->result_id();
inst = builder.AddCompositeExtract(GetUintId(), ptr_as_uvec_id, {0});
const uint32_t uvec_x = inst->result_id();
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpIEqual, uvec_x,
builder.GetUintConstantId(0));
const uint32_t x_is_zero_id = inst->result_id();
inst = builder.AddCompositeExtract(GetUintId(), ptr_as_uvec_id, {1});
const uint32_t uvec_y = inst->result_id();
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpIEqual, uvec_y,
builder.GetUintConstantId(0));
const uint32_t y_is_zero_id = inst->result_id();
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpLogicalAnd, x_is_zero_id,
y_is_zero_id);
const uint32_t is_null_id = inst->result_id();
error_blk_id = TakeNextId();
merge_blk_id = TakeNextId();
merge_label = NewLabel(merge_blk_id);
error_label = NewLabel(error_blk_id);
(void)builder.AddConditionalBranch(is_null_id, error_blk_id, merge_blk_id,
merge_blk_id);
func->AddBasicBlock(std::move(new_blk_ptr));
// error return
new_blk_ptr = MakeUnique<BasicBlock>(std::move(error_label));
builder.SetInsertPoint(&*new_blk_ptr);
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue,
builder.GetUintConstantId(0));
func->AddBasicBlock(std::move(new_blk_ptr));
// check binding is in range
new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
builder.SetInsertPoint(&*new_blk_ptr);
const uint32_t uint_ptr = type_mgr->FindPointerToType(
GetUintId(), spv::StorageClass::PhysicalStorageBuffer);
inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id,
{builder.GetUintConstantId(0)});
const uint32_t binding_access_chain_id = inst->result_id();
inst = builder.AddLoad(GetUintId(), binding_access_chain_id, 8);
const uint32_t num_bindings_id = inst->result_id();
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpUGreaterThanEqual,
param_ids[1], num_bindings_id);
const uint32_t bindings_cmp_id = inst->result_id();
error_blk_id = TakeNextId();
merge_blk_id = TakeNextId();
merge_label = NewLabel(merge_blk_id);
error_label = NewLabel(error_blk_id);
(void)builder.AddConditionalBranch(bindings_cmp_id, error_blk_id,
merge_blk_id, merge_blk_id);
func->AddBasicBlock(std::move(new_blk_ptr));
// error return
new_blk_ptr = MakeUnique<BasicBlock>(std::move(error_label));
builder.SetInsertPoint(&*new_blk_ptr);
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue,
builder.GetUintConstantId(0));
func->AddBasicBlock(std::move(new_blk_ptr));
// read binding length
new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
builder.SetInsertPoint(&*new_blk_ptr);
inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id,
{{builder.GetUintConstantId(1), param_ids[1]}});
const uint32_t length_ac_id = inst->result_id();
inst = builder.AddLoad(GetUintId(), length_ac_id, sizeof(uint32_t));
const uint32_t length_id = inst->result_id();
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, length_id);
func->AddBasicBlock(std::move(new_blk_ptr));
func->SetFunctionEnd(EndFunction());
context()->AddFunction(std::move(func));
context()->AddDebug2Inst(NewGlobalName(func_id, "read_binding_length"));
read_length_func_id_ = func_id;
// Make sure this function doesn't get processed by
// InstrumentPass::InstProcessCallTreeFromRoots()
param2output_func_id_[2] = func_id;
return read_length_func_id_;
}
// clang-format off
// GLSL:
// result = inst_bindless_read_binding_length(desc_set_id, binding_id);
// clang-format on
uint32_t InstBindlessCheckPass::GenDebugReadLength(
uint32_t var_id, InstructionBuilder* builder) {
const uint32_t func_id = GenDebugReadLengthFunctionId();
const std::vector<uint32_t> args = {
builder->GetUintConstantId(var2desc_set_[var_id]),
builder->GetUintConstantId(var2binding_[var_id]),
};
return GenReadFunctionCall(func_id, args, builder);
}
// clang-format off
// GLSL:
// uint inst_bindless_read_desc_init(uint desc_set_idx, uint binding_idx, uint desc_idx)
// {
// if (desc_set_idx >= uint(inst_bindless_input_buffer.desc_sets.length()))
// {
// return 0u;
// }
// DescriptorSetData set_data = inst_bindless_input_buffer.desc_sets[desc_set_idx];
// uvec2 ptr_as_vec = uvec2(set_data)
// if ((ptr_as_vec .x == 0u) && (ptr_as_vec.y == 0u))
// {
// return 0u;
// }
// if (binding_idx >= set_data.num_bindings)
// {
// return 0u;
// }
// if (desc_idx >= set_data.data[binding_idx])
// {
// return 0u;
// }
// uint desc_records_start = set_data.data[set_data.num_bindings + binding_idx];
// return set_data.data[desc_records_start + desc_idx];
// }
// clang-format on
uint32_t InstBindlessCheckPass::GenDebugReadInitFunctionId() {
if (read_init_func_id_ != 0) {
return read_init_func_id_;
}
SetupInputBufferIds();
const analysis::Integer* uint_type = GetInteger(32, false);
const std::vector<const analysis::Type*> param_types(3, uint_type);
const uint32_t func_id = TakeNextId();
std::unique_ptr<Function> func =
StartFunction(func_id, uint_type, param_types);
const std::vector<uint32_t> param_ids = AddParameters(*func, param_types);
// Create block
auto new_blk_ptr = MakeUnique<BasicBlock>(NewLabel(TakeNextId()));
InstructionBuilder builder(
context(), new_blk_ptr.get(),
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
Instruction* inst;
inst = builder.AddBinaryOp(
GetBoolId(), spv::Op::OpUGreaterThanEqual, param_ids[0],
builder.GetUintConstantId(kDebugInputBindlessMaxDescSets));
const uint32_t desc_cmp_id = inst->result_id();
uint32_t error_blk_id = TakeNextId();
uint32_t merge_blk_id = TakeNextId();
std::unique_ptr<Instruction> merge_label(NewLabel(merge_blk_id));
std::unique_ptr<Instruction> error_label(NewLabel(error_blk_id));
(void)builder.AddConditionalBranch(desc_cmp_id, error_blk_id, merge_blk_id,
merge_blk_id);
func->AddBasicBlock(std::move(new_blk_ptr));
// error return
new_blk_ptr = MakeUnique<BasicBlock>(std::move(error_label));
builder.SetInsertPoint(&*new_blk_ptr);
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue,
builder.GetUintConstantId(0));
func->AddBasicBlock(std::move(new_blk_ptr));
// check descriptor set table entry is non-null
new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
builder.SetInsertPoint(&*new_blk_ptr);
analysis::TypeManager* type_mgr = context()->get_type_mgr();
const uint32_t desc_set_ptr_ptr = type_mgr->FindPointerToType(
desc_set_ptr_id_, spv::StorageClass::StorageBuffer);
inst = builder.AddAccessChain(desc_set_ptr_ptr, input_buffer_id_,
{builder.GetUintConstantId(0), param_ids[0]});
const uint32_t set_access_chain_id = inst->result_id();
inst = builder.AddLoad(desc_set_ptr_id_, set_access_chain_id);
const uint32_t desc_set_ptr_id = inst->result_id();
inst =
builder.AddUnaryOp(GetVecUintId(2), spv::Op::OpBitcast, desc_set_ptr_id);
const uint32_t ptr_as_uvec_id = inst->result_id();
inst = builder.AddCompositeExtract(GetUintId(), ptr_as_uvec_id, {0});
const uint32_t uvec_x = inst->result_id();
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpIEqual, uvec_x,
builder.GetUintConstantId(0));
const uint32_t x_is_zero_id = inst->result_id();
inst = builder.AddCompositeExtract(GetUintId(), ptr_as_uvec_id, {1});
const uint32_t uvec_y = inst->result_id();
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpIEqual, uvec_y,
builder.GetUintConstantId(0));
const uint32_t y_is_zero_id = inst->result_id();
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpLogicalAnd, x_is_zero_id,
y_is_zero_id);
const uint32_t is_null_id = inst->result_id();
error_blk_id = TakeNextId();
merge_blk_id = TakeNextId();
merge_label = NewLabel(merge_blk_id);
error_label = NewLabel(error_blk_id);
(void)builder.AddConditionalBranch(is_null_id, error_blk_id, merge_blk_id,
merge_blk_id);
func->AddBasicBlock(std::move(new_blk_ptr));
// error return
new_blk_ptr = MakeUnique<BasicBlock>(std::move(error_label));
builder.SetInsertPoint(&*new_blk_ptr);
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue,
builder.GetUintConstantId(0));
func->AddBasicBlock(std::move(new_blk_ptr));
// check binding is in range
new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
builder.SetInsertPoint(&*new_blk_ptr);
const uint32_t uint_ptr = type_mgr->FindPointerToType(
GetUintId(), spv::StorageClass::PhysicalStorageBuffer);
inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id,
{builder.GetUintConstantId(0)});
const uint32_t binding_access_chain_id = inst->result_id();
inst = builder.AddLoad(GetUintId(), binding_access_chain_id, 8);
const uint32_t num_bindings_id = inst->result_id();
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpUGreaterThanEqual,
param_ids[1], num_bindings_id);
const uint32_t bindings_cmp_id = inst->result_id();
error_blk_id = TakeNextId();
merge_blk_id = TakeNextId();
merge_label = NewLabel(merge_blk_id);
error_label = NewLabel(error_blk_id);
(void)builder.AddConditionalBranch(bindings_cmp_id, error_blk_id,
merge_blk_id, merge_blk_id);
func->AddBasicBlock(std::move(new_blk_ptr));
// error return
new_blk_ptr = MakeUnique<BasicBlock>(std::move(error_label));
builder.SetInsertPoint(&*new_blk_ptr);
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue,
builder.GetUintConstantId(0));
func->AddBasicBlock(std::move(new_blk_ptr));
// read binding length
new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
builder.SetInsertPoint(&*new_blk_ptr);
inst = builder.AddAccessChain(uint_ptr, desc_set_ptr_id,
{{builder.GetUintConstantId(1), param_ids[1]}});
const uint32_t length_ac_id = inst->result_id();
inst = builder.AddLoad(GetUintId(), length_ac_id, sizeof(uint32_t));
const uint32_t length_id = inst->result_id();
// Check descriptor index in bounds
inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpUGreaterThanEqual,
param_ids[2], length_id);
const uint32_t desc_idx_range_id = inst->result_id();
error_blk_id = TakeNextId();
merge_blk_id = TakeNextId();
merge_label = NewLabel(merge_blk_id);
error_label = NewLabel(error_blk_id);
(void)builder.AddConditionalBranch(desc_idx_range_id, error_blk_id,
merge_blk_id, merge_blk_id);
func->AddBasicBlock(std::move(new_blk_ptr));
// Error return
new_blk_ptr = MakeUnique<BasicBlock>(std::move(error_label));
builder.SetInsertPoint(&*new_blk_ptr);
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue,
builder.GetUintConstantId(0));
func->AddBasicBlock(std::move(new_blk_ptr));
// Read descriptor init status
new_blk_ptr = MakeUnique<BasicBlock>(std::move(merge_label));
builder.SetInsertPoint(&*new_blk_ptr);
inst = builder.AddIAdd(GetUintId(), num_bindings_id, param_ids[1]);
const uint32_t state_offset_id = inst->result_id();
inst =
builder.AddAccessChain(uint_ptr, desc_set_ptr_id,
{{builder.GetUintConstantId(1), state_offset_id}});
const uint32_t state_start_ac_id = inst->result_id();
inst = builder.AddLoad(GetUintId(), state_start_ac_id, sizeof(uint32_t));
const uint32_t state_start_id = inst->result_id();
inst = builder.AddIAdd(GetUintId(), state_start_id, param_ids[2]);
const uint32_t state_entry_id = inst->result_id();
// Note: length starts from the beginning of the buffer, not the beginning of
// the data array
inst =
builder.AddAccessChain(uint_ptr, desc_set_ptr_id,
{{builder.GetUintConstantId(1), state_entry_id}});
const uint32_t init_ac_id = inst->result_id();
inst = builder.AddLoad(GetUintId(), init_ac_id, sizeof(uint32_t));
const uint32_t init_status_id = inst->result_id();
(void)builder.AddUnaryOp(0, spv::Op::OpReturnValue, init_status_id);
func->AddBasicBlock(std::move(new_blk_ptr));
func->SetFunctionEnd(EndFunction());
context()->AddFunction(std::move(func));
context()->AddDebug2Inst(NewGlobalName(func_id, "read_desc_init"));
read_init_func_id_ = func_id;
// Make sure function doesn't get processed by
// InstrumentPass::InstProcessCallTreeFromRoots()
param2output_func_id_[3] = func_id;
return read_init_func_id_;
}
// clang-format off
// GLSL:
// result = inst_bindless_read_desc_init(desc_set_id, binding_id, desc_idx_id);
//
// clang-format on
uint32_t InstBindlessCheckPass::GenDebugReadInit(uint32_t var_id,
uint32_t desc_idx_id,
InstructionBuilder* builder) {
const uint32_t func_id = GenDebugReadInitFunctionId();
const std::vector<uint32_t> args = {
builder->GetUintConstantId(var2desc_set_[var_id]),
builder->GetUintConstantId(var2binding_[var_id]),
GenUintCastCode(desc_idx_id, builder)};
return GenReadFunctionCall(func_id, args, builder);
}
uint32_t InstBindlessCheckPass::CloneOriginalImage(
uint32_t old_image_id, InstructionBuilder* builder) {
Instruction* new_image_inst;
Instruction* old_image_inst = get_def_use_mgr()->GetDef(old_image_id);
if (old_image_inst->opcode() == spv::Op::OpLoad) {
new_image_inst = builder->AddLoad(
old_image_inst->type_id(),
old_image_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx));
} else if (old_image_inst->opcode() == spv::Op::OpSampledImage) {
uint32_t clone_id = CloneOriginalImage(
old_image_inst->GetSingleWordInOperand(kSpvSampledImageImageIdInIdx),
builder);
new_image_inst = builder->AddBinaryOp(
old_image_inst->type_id(), spv::Op::OpSampledImage, clone_id,
old_image_inst->GetSingleWordInOperand(kSpvSampledImageSamplerIdInIdx));
} else if (old_image_inst->opcode() == spv::Op::OpImage) {
uint32_t clone_id = CloneOriginalImage(
old_image_inst->GetSingleWordInOperand(kSpvImageSampledImageIdInIdx),
builder);
new_image_inst = builder->AddUnaryOp(old_image_inst->type_id(),
spv::Op::OpImage, clone_id);
} else {
assert(old_image_inst->opcode() == spv::Op::OpCopyObject &&
"expecting OpCopyObject");
uint32_t clone_id = CloneOriginalImage(
old_image_inst->GetSingleWordInOperand(kSpvCopyObjectOperandIdInIdx),
builder);
// Since we are cloning, no need to create new copy
new_image_inst = get_def_use_mgr()->GetDef(clone_id);
}
uid2offset_[new_image_inst->unique_id()] =
uid2offset_[old_image_inst->unique_id()];
uint32_t new_image_id = new_image_inst->result_id();
get_decoration_mgr()->CloneDecorations(old_image_id, new_image_id);
return new_image_id;
}
uint32_t InstBindlessCheckPass::CloneOriginalReference(
RefAnalysis* ref, InstructionBuilder* builder) {
// If original is image based, start by cloning descriptor load
uint32_t new_image_id = 0;
if (ref->desc_load_id != 0) {
uint32_t old_image_id =
ref->ref_inst->GetSingleWordInOperand(kSpvImageSampleImageIdInIdx);
new_image_id = CloneOriginalImage(old_image_id, builder);
}
// Clone original reference
std::unique_ptr<Instruction> new_ref_inst(ref->ref_inst->Clone(context()));
uint32_t ref_result_id = ref->ref_inst->result_id();
uint32_t new_ref_id = 0;
if (ref_result_id != 0) {
new_ref_id = TakeNextId();
new_ref_inst->SetResultId(new_ref_id);
}
// Update new ref with new image if created
if (new_image_id != 0)
new_ref_inst->SetInOperand(kSpvImageSampleImageIdInIdx, {new_image_id});
// Register new reference and add to new block
Instruction* added_inst = builder->AddInstruction(std::move(new_ref_inst));
uid2offset_[added_inst->unique_id()] =
uid2offset_[ref->ref_inst->unique_id()];
if (new_ref_id != 0)
get_decoration_mgr()->CloneDecorations(ref_result_id, new_ref_id);
return new_ref_id;
}
uint32_t InstBindlessCheckPass::GetImageId(Instruction* inst) {
switch (inst->opcode()) {
case spv::Op::OpImageSampleImplicitLod:
case spv::Op::OpImageSampleExplicitLod:
case spv::Op::OpImageSampleDrefImplicitLod:
case spv::Op::OpImageSampleDrefExplicitLod:
case spv::Op::OpImageSampleProjImplicitLod:
case spv::Op::OpImageSampleProjExplicitLod:
case spv::Op::OpImageSampleProjDrefImplicitLod:
case spv::Op::OpImageSampleProjDrefExplicitLod:
case spv::Op::OpImageGather:
case spv::Op::OpImageDrefGather:
case spv::Op::OpImageQueryLod:
case spv::Op::OpImageSparseSampleImplicitLod:
case spv::Op::OpImageSparseSampleExplicitLod:
case spv::Op::OpImageSparseSampleDrefImplicitLod:
case spv::Op::OpImageSparseSampleDrefExplicitLod:
case spv::Op::OpImageSparseSampleProjImplicitLod:
case spv::Op::OpImageSparseSampleProjExplicitLod:
case spv::Op::OpImageSparseSampleProjDrefImplicitLod:
case spv::Op::OpImageSparseSampleProjDrefExplicitLod:
case spv::Op::OpImageSparseGather:
case spv::Op::OpImageSparseDrefGather:
case spv::Op::OpImageFetch:
case spv::Op::OpImageRead:
case spv::Op::OpImageQueryFormat:
case spv::Op::OpImageQueryOrder:
case spv::Op::OpImageQuerySizeLod:
case spv::Op::OpImageQuerySize:
case spv::Op::OpImageQueryLevels:
case spv::Op::OpImageQuerySamples:
case spv::Op::OpImageSparseFetch:
case spv::Op::OpImageSparseRead:
case spv::Op::OpImageWrite:
return inst->GetSingleWordInOperand(kSpvImageSampleImageIdInIdx);
default:
break;
}
return 0;
}
Instruction* InstBindlessCheckPass::GetPointeeTypeInst(Instruction* ptr_inst) {
uint32_t pte_ty_id = GetPointeeTypeId(ptr_inst);
return get_def_use_mgr()->GetDef(pte_ty_id);
}
bool InstBindlessCheckPass::AnalyzeDescriptorReference(Instruction* ref_inst,
RefAnalysis* ref) {
ref->ref_inst = ref_inst;
if (ref_inst->opcode() == spv::Op::OpLoad ||
ref_inst->opcode() == spv::Op::OpStore) {
ref->desc_load_id = 0;
ref->ptr_id = ref_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx);
Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref->ptr_id);
if (ptr_inst->opcode() != spv::Op::OpAccessChain) return false;
ref->var_id = ptr_inst->GetSingleWordInOperand(kSpvAccessChainBaseIdInIdx);
Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id);
if (var_inst->opcode() != spv::Op::OpVariable) return false;
spv::StorageClass storage_class = spv::StorageClass(
var_inst->GetSingleWordInOperand(kSpvVariableStorageClassInIdx));
switch (storage_class) {
case spv::StorageClass::Uniform:
case spv::StorageClass::StorageBuffer:
break;
default:
return false;
break;
}
// Check for deprecated storage block form
if (storage_class == spv::StorageClass::Uniform) {
uint32_t var_ty_id = var_inst->type_id();
Instruction* var_ty_inst = get_def_use_mgr()->GetDef(var_ty_id);
uint32_t ptr_ty_id =
var_ty_inst->GetSingleWordInOperand(kSpvTypePtrTypeIdInIdx);
Instruction* ptr_ty_inst = get_def_use_mgr()->GetDef(ptr_ty_id);
spv::Op ptr_ty_op = ptr_ty_inst->opcode();
uint32_t block_ty_id =
(ptr_ty_op == spv::Op::OpTypeArray ||
ptr_ty_op == spv::Op::OpTypeRuntimeArray)
? ptr_ty_inst->GetSingleWordInOperand(kSpvTypeArrayTypeIdInIdx)
: ptr_ty_id;
assert(get_def_use_mgr()->GetDef(block_ty_id)->opcode() ==
spv::Op::OpTypeStruct &&
"unexpected block type");
bool block_found = get_decoration_mgr()->FindDecoration(
block_ty_id, uint32_t(spv::Decoration::Block),
[](const Instruction&) { return true; });
if (!block_found) {
// If block decoration not found, verify deprecated form of SSBO
bool buffer_block_found = get_decoration_mgr()->FindDecoration(
block_ty_id, uint32_t(spv::Decoration::BufferBlock),
[](const Instruction&) { return true; });
USE_ASSERT(buffer_block_found && "block decoration not found");
storage_class = spv::StorageClass::StorageBuffer;
}
}
ref->strg_class = uint32_t(storage_class);
Instruction* desc_type_inst = GetPointeeTypeInst(var_inst);
switch (desc_type_inst->opcode()) {
case spv::Op::OpTypeArray:
case spv::Op::OpTypeRuntimeArray:
// A load through a descriptor array will have at least 3 operands. We
// do not want to instrument loads of descriptors here which are part of
// an image-based reference.
if (ptr_inst->NumInOperands() < 3) return false;
ref->desc_idx_id =
ptr_inst->GetSingleWordInOperand(kSpvAccessChainIndex0IdInIdx);
break;
default:
break;
}
auto decos =
context()->get_decoration_mgr()->GetDecorationsFor(ref->var_id, false);
for (const auto& deco : decos) {
spv::Decoration d = spv::Decoration(deco->GetSingleWordInOperand(1u));
if (d == spv::Decoration::DescriptorSet) {
ref->set = deco->GetSingleWordInOperand(2u);
} else if (d == spv::Decoration::Binding) {
ref->binding = deco->GetSingleWordInOperand(2u);
}
}
return true;
}
// Reference is not load or store. If not an image-based reference, return.
ref->image_id = GetImageId(ref_inst);
if (ref->image_id == 0) return false;
// Search for descriptor load
uint32_t desc_load_id = ref->image_id;
Instruction* desc_load_inst;
for (;;) {
desc_load_inst = get_def_use_mgr()->GetDef(desc_load_id);
if (desc_load_inst->opcode() == spv::Op::OpSampledImage)
desc_load_id =
desc_load_inst->GetSingleWordInOperand(kSpvSampledImageImageIdInIdx);
else if (desc_load_inst->opcode() == spv::Op::OpImage)
desc_load_id =
desc_load_inst->GetSingleWordInOperand(kSpvImageSampledImageIdInIdx);
else if (desc_load_inst->opcode() == spv::Op::OpCopyObject)
desc_load_id =
desc_load_inst->GetSingleWordInOperand(kSpvCopyObjectOperandIdInIdx);
else
break;
}
if (desc_load_inst->opcode() != spv::Op::OpLoad) {
// TODO(greg-lunarg): Handle additional possibilities?
return false;
}
ref->desc_load_id = desc_load_id;
ref->ptr_id = desc_load_inst->GetSingleWordInOperand(kSpvLoadPtrIdInIdx);
Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref->ptr_id);
if (ptr_inst->opcode() == spv::Op::OpVariable) {
ref->desc_idx_id = 0;
ref->var_id = ref->ptr_id;
} else if (ptr_inst->opcode() == spv::Op::OpAccessChain) {
if (ptr_inst->NumInOperands() != 2) {
assert(false && "unexpected bindless index number");
return false;
}
ref->desc_idx_id =
ptr_inst->GetSingleWordInOperand(kSpvAccessChainIndex0IdInIdx);
ref->var_id = ptr_inst->GetSingleWordInOperand(kSpvAccessChainBaseIdInIdx);
Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id);
if (var_inst->opcode() != spv::Op::OpVariable) {
assert(false && "unexpected bindless base");
return false;
}
} else {
// TODO(greg-lunarg): Handle additional possibilities?
return false;
}
auto decos =
context()->get_decoration_mgr()->GetDecorationsFor(ref->var_id, false);
for (const auto& deco : decos) {
spv::Decoration d = spv::Decoration(deco->GetSingleWordInOperand(1u));
if (d == spv::Decoration::DescriptorSet) {
ref->set = deco->GetSingleWordInOperand(2u);
} else if (d == spv::Decoration::Binding) {
ref->binding = deco->GetSingleWordInOperand(2u);
}
}
return true;
}
uint32_t InstBindlessCheckPass::FindStride(uint32_t ty_id,
uint32_t stride_deco) {
uint32_t stride = 0xdeadbeef;
bool found = get_decoration_mgr()->FindDecoration(
ty_id, stride_deco, [&stride](const Instruction& deco_inst) {
stride = deco_inst.GetSingleWordInOperand(2u);
return true;
});
USE_ASSERT(found && "stride not found");
return stride;
}
uint32_t InstBindlessCheckPass::ByteSize(uint32_t ty_id, uint32_t matrix_stride,
bool col_major, bool in_matrix) {
analysis::TypeManager* type_mgr = context()->get_type_mgr();
const analysis::Type* sz_ty = type_mgr->GetType(ty_id);
if (sz_ty->kind() == analysis::Type::kPointer) {
// Assuming PhysicalStorageBuffer pointer
return 8;
}
if (sz_ty->kind() == analysis::Type::kMatrix) {
assert(matrix_stride != 0 && "missing matrix stride");
const analysis::Matrix* m_ty = sz_ty->AsMatrix();
if (col_major) {
return m_ty->element_count() * matrix_stride;
} else {
const analysis::Vector* v_ty = m_ty->element_type()->AsVector();
return v_ty->element_count() * matrix_stride;
}
}
uint32_t size = 1;
if (sz_ty->kind() == analysis::Type::kVector) {
const analysis::Vector* v_ty = sz_ty->AsVector();
size = v_ty->element_count();
const analysis::Type* comp_ty = v_ty->element_type();
// if vector in row major matrix, the vector is strided so return the
// number of bytes spanned by the vector
if (in_matrix && !col_major && matrix_stride > 0) {
uint32_t comp_ty_id = type_mgr->GetId(comp_ty);
return (size - 1) * matrix_stride + ByteSize(comp_ty_id, 0, false, false);
}
sz_ty = comp_ty;
}
switch (sz_ty->kind()) {
case analysis::Type::kFloat: {
const analysis::Float* f_ty = sz_ty->AsFloat();
size *= f_ty->width();
} break;
case analysis::Type::kInteger: {
const analysis::Integer* i_ty = sz_ty->AsInteger();
size *= i_ty->width();
} break;
default: { assert(false && "unexpected type"); } break;
}
size /= 8;
return size;
}
uint32_t InstBindlessCheckPass::GenLastByteIdx(RefAnalysis* ref,
InstructionBuilder* builder) {
// Find outermost buffer type and its access chain index
Instruction* var_inst = get_def_use_mgr()->GetDef(ref->var_id);
Instruction* desc_ty_inst = GetPointeeTypeInst(var_inst);
uint32_t buff_ty_id;
uint32_t ac_in_idx = 1;
switch (desc_ty_inst->opcode()) {
case spv::Op::OpTypeArray:
case spv::Op::OpTypeRuntimeArray:
buff_ty_id = desc_ty_inst->GetSingleWordInOperand(0);
++ac_in_idx;
break;
default:
assert(desc_ty_inst->opcode() == spv::Op::OpTypeStruct &&
"unexpected descriptor type");
buff_ty_id = desc_ty_inst->result_id();
break;
}
// Process remaining access chain indices
Instruction* ac_inst = get_def_use_mgr()->GetDef(ref->ptr_id);
uint32_t curr_ty_id = buff_ty_id;
uint32_t sum_id = 0u;
uint32_t matrix_stride = 0u;
bool col_major = false;
uint32_t matrix_stride_id = 0u;
bool in_matrix = false;
while (ac_in_idx < ac_inst->NumInOperands()) {
uint32_t curr_idx_id = ac_inst->GetSingleWordInOperand(ac_in_idx);
Instruction* curr_ty_inst = get_def_use_mgr()->GetDef(curr_ty_id);
uint32_t curr_offset_id = 0;
switch (curr_ty_inst->opcode()) {
case spv::Op::OpTypeArray:
case spv::Op::OpTypeRuntimeArray: {
// Get array stride and multiply by current index
uint32_t arr_stride =
FindStride(curr_ty_id, uint32_t(spv::Decoration::ArrayStride));
uint32_t arr_stride_id = builder->GetUintConstantId(arr_stride);
uint32_t curr_idx_32b_id = Gen32BitCvtCode(curr_idx_id, builder);
Instruction* curr_offset_inst = builder->AddBinaryOp(
GetUintId(), spv::Op::OpIMul, arr_stride_id, curr_idx_32b_id);
curr_offset_id = curr_offset_inst->result_id();
// Get element type for next step
curr_ty_id = curr_ty_inst->GetSingleWordInOperand(0);
} break;
case spv::Op::OpTypeMatrix: {
assert(matrix_stride != 0 && "missing matrix stride");
matrix_stride_id = builder->GetUintConstantId(matrix_stride);
uint32_t vec_ty_id = curr_ty_inst->GetSingleWordInOperand(0);
// If column major, multiply column index by matrix stride, otherwise
// by vector component size and save matrix stride for vector (row)
// index
uint32_t col_stride_id;
if (col_major) {
col_stride_id = matrix_stride_id;
} else {
Instruction* vec_ty_inst = get_def_use_mgr()->GetDef(vec_ty_id);
uint32_t comp_ty_id = vec_ty_inst->GetSingleWordInOperand(0u);
uint32_t col_stride = ByteSize(comp_ty_id, 0u, false, false);
col_stride_id = builder->GetUintConstantId(col_stride);
}
uint32_t curr_idx_32b_id = Gen32BitCvtCode(curr_idx_id, builder);
Instruction* curr_offset_inst = builder->AddBinaryOp(
GetUintId(), spv::Op::OpIMul, col_stride_id, curr_idx_32b_id);
curr_offset_id = curr_offset_inst->result_id();
// Get element type for next step
curr_ty_id = vec_ty_id;
in_matrix = true;
} break;
case spv::Op::OpTypeVector: {
// If inside a row major matrix type, multiply index by matrix stride,
// else multiply by component size
uint32_t comp_ty_id = curr_ty_inst->GetSingleWordInOperand(0u);
uint32_t curr_idx_32b_id = Gen32BitCvtCode(curr_idx_id, builder);
if (in_matrix && !col_major) {
Instruction* curr_offset_inst = builder->AddBinaryOp(
GetUintId(), spv::Op::OpIMul, matrix_stride_id, curr_idx_32b_id);
curr_offset_id = curr_offset_inst->result_id();
} else {
uint32_t comp_ty_sz = ByteSize(comp_ty_id, 0u, false, false);
uint32_t comp_ty_sz_id = builder->GetUintConstantId(comp_ty_sz);
Instruction* curr_offset_inst = builder->AddBinaryOp(
GetUintId(), spv::Op::OpIMul, comp_ty_sz_id, curr_idx_32b_id);
curr_offset_id = curr_offset_inst->result_id();
}
// Get element type for next step
curr_ty_id = comp_ty_id;
} break;
case spv::Op::OpTypeStruct: {
// Get buffer byte offset for the referenced member
Instruction* curr_idx_inst = get_def_use_mgr()->GetDef(curr_idx_id);
assert(curr_idx_inst->opcode() == spv::Op::OpConstant &&
"unexpected struct index");
uint32_t member_idx = curr_idx_inst->GetSingleWordInOperand(0);
uint32_t member_offset = 0xdeadbeef;
bool found = get_decoration_mgr()->FindDecoration(
curr_ty_id, uint32_t(spv::Decoration::Offset),
[&member_idx, &member_offset](const Instruction& deco_inst) {
if (deco_inst.GetSingleWordInOperand(1u) != member_idx)
return false;
member_offset = deco_inst.GetSingleWordInOperand(3u);
return true;
});
USE_ASSERT(found && "member offset not found");
curr_offset_id = builder->GetUintConstantId(member_offset);
// Look for matrix stride for this member if there is one. The matrix
// stride is not on the matrix type, but in a OpMemberDecorate on the
// enclosing struct type at the member index. If none found, reset
// stride to 0.
found = get_decoration_mgr()->FindDecoration(
curr_ty_id, uint32_t(spv::Decoration::MatrixStride),
[&member_idx, &matrix_stride](const Instruction& deco_inst) {
if (deco_inst.GetSingleWordInOperand(1u) != member_idx)
return false;
matrix_stride = deco_inst.GetSingleWordInOperand(3u);
return true;
});
if (!found) matrix_stride = 0;
// Look for column major decoration
found = get_decoration_mgr()->FindDecoration(
curr_ty_id, uint32_t(spv::Decoration::ColMajor),
[&member_idx, &col_major](const Instruction& deco_inst) {
if (deco_inst.GetSingleWordInOperand(1u) != member_idx)
return false;
col_major = true;
return true;
});
if (!found) col_major = false;
// Get element type for next step
curr_ty_id = curr_ty_inst->GetSingleWordInOperand(member_idx);
} break;
default: { assert(false && "unexpected non-composite type"); } break;
}
if (sum_id == 0)
sum_id = curr_offset_id;
else {
Instruction* sum_inst =
builder->AddIAdd(GetUintId(), sum_id, curr_offset_id);
sum_id = sum_inst->result_id();
}
++ac_in_idx;
}
// Add in offset of last byte of referenced object
uint32_t bsize = ByteSize(curr_ty_id, matrix_stride, col_major, in_matrix);
uint32_t last = bsize - 1;
uint32_t last_id = builder->GetUintConstantId(last);
Instruction* sum_inst = builder->AddIAdd(GetUintId(), sum_id, last_id);
return sum_inst->result_id();
}
void InstBindlessCheckPass::GenCheckCode(
uint32_t check_id, uint32_t error_id, uint32_t offset_id,
uint32_t length_id, uint32_t stage_idx, RefAnalysis* ref,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
BasicBlock* back_blk_ptr = &*new_blocks->back();
InstructionBuilder builder(
context(), back_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
// Gen conditional branch on check_id. Valid branch generates original
// reference. Invalid generates debug output and zero result (if needed).
uint32_t merge_blk_id = TakeNextId();
uint32_t valid_blk_id = TakeNextId();
uint32_t invalid_blk_id = TakeNextId();
std::unique_ptr<Instruction> merge_label(NewLabel(merge_blk_id));
std::unique_ptr<Instruction> valid_label(NewLabel(valid_blk_id));
std::unique_ptr<Instruction> invalid_label(NewLabel(invalid_blk_id));
(void)builder.AddConditionalBranch(
check_id, valid_blk_id, invalid_blk_id, merge_blk_id,
uint32_t(spv::SelectionControlMask::MaskNone));
// Gen valid bounds branch
std::unique_ptr<BasicBlock> new_blk_ptr(
new BasicBlock(std::move(valid_label)));
builder.SetInsertPoint(&*new_blk_ptr);
uint32_t new_ref_id = CloneOriginalReference(ref, &builder);
uint32_t null_id = 0;
uint32_t ref_type_id = ref->ref_inst->type_id();
(void)builder.AddBranch(merge_blk_id);
new_blocks->push_back(std::move(new_blk_ptr));
// Gen invalid block
new_blk_ptr.reset(new BasicBlock(std::move(invalid_label)));
builder.SetInsertPoint(&*new_blk_ptr);
const uint32_t u_set_id = builder.GetUintConstantId(ref->set);
const uint32_t u_binding_id = builder.GetUintConstantId(ref->binding);
const uint32_t u_index_id = GenUintCastCode(ref->desc_idx_id, &builder);
const uint32_t u_length_id = GenUintCastCode(length_id, &builder);
if (offset_id != 0) {
const uint32_t u_offset_id = GenUintCastCode(offset_id, &builder);
// Buffer OOB
GenDebugStreamWrite(uid2offset_[ref->ref_inst->unique_id()], stage_idx,
{error_id, u_set_id, u_binding_id, u_index_id,
u_offset_id, u_length_id},
&builder);
} else if (buffer_bounds_enabled_ || texel_buffer_enabled_) {
// Uninitialized Descriptor - Return additional unused zero so all error
// modes will use same debug stream write function
GenDebugStreamWrite(uid2offset_[ref->ref_inst->unique_id()], stage_idx,
{error_id, u_set_id, u_binding_id, u_index_id,
u_length_id, builder.GetUintConstantId(0)},
&builder);
} else {
// Uninitialized Descriptor - Normal error return
GenDebugStreamWrite(
uid2offset_[ref->ref_inst->unique_id()], stage_idx,
{error_id, u_set_id, u_binding_id, u_index_id, u_length_id}, &builder);
}
// Generate a ConstantNull, converting to uint64 if the type cannot be a null.
if (new_ref_id != 0) {
analysis::TypeManager* type_mgr = context()->get_type_mgr();
analysis::Type* ref_type = type_mgr->GetType(ref_type_id);
if (ref_type->AsPointer() != nullptr) {
context()->AddCapability(spv::Capability::Int64);
uint32_t null_u64_id = GetNullId(GetUint64Id());
Instruction* null_ptr_inst = builder.AddUnaryOp(
ref_type_id, spv::Op::OpConvertUToPtr, null_u64_id);
null_id = null_ptr_inst->result_id();
} else {
null_id = GetNullId(ref_type_id);
}
}
// Remember last invalid block id
uint32_t last_invalid_blk_id = new_blk_ptr->GetLabelInst()->result_id();
// Gen zero for invalid reference
(void)builder.AddBranch(merge_blk_id);
new_blocks->push_back(std::move(new_blk_ptr));
// Gen merge block
new_blk_ptr.reset(new BasicBlock(std::move(merge_label)));
builder.SetInsertPoint(&*new_blk_ptr);
// Gen phi of new reference and zero, if necessary, and replace the
// result id of the original reference with that of the Phi. Kill original
// reference.
if (new_ref_id != 0) {
Instruction* phi_inst = builder.AddPhi(
ref_type_id, {new_ref_id, valid_blk_id, null_id, last_invalid_blk_id});
context()->ReplaceAllUsesWith(ref->ref_inst->result_id(),
phi_inst->result_id());
}
new_blocks->push_back(std::move(new_blk_ptr));
context()->KillInst(ref->ref_inst);
}
void InstBindlessCheckPass::GenDescIdxCheckCode(
BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
// Look for reference through indexed descriptor. If found, analyze and
// save components. If not, return.
RefAnalysis ref;
if (!AnalyzeDescriptorReference(&*ref_inst_itr, &ref)) return;
Instruction* ptr_inst = get_def_use_mgr()->GetDef(ref.ptr_id);
if (ptr_inst->opcode() != spv::Op::OpAccessChain) return;
// If index and bound both compile-time constants and index < bound,
// return without changing
Instruction* var_inst = get_def_use_mgr()->GetDef(ref.var_id);
Instruction* desc_type_inst = GetPointeeTypeInst(var_inst);
uint32_t length_id = 0;
if (desc_type_inst->opcode() == spv::Op::OpTypeArray) {
length_id =
desc_type_inst->GetSingleWordInOperand(kSpvTypeArrayLengthIdInIdx);
Instruction* index_inst = get_def_use_mgr()->GetDef(ref.desc_idx_id);
Instruction* length_inst = get_def_use_mgr()->GetDef(length_id);
if (index_inst->opcode() == spv::Op::OpConstant &&
length_inst->opcode() == spv::Op::OpConstant &&
index_inst->GetSingleWordInOperand(kSpvConstantValueInIdx) <
length_inst->GetSingleWordInOperand(kSpvConstantValueInIdx))
return;
} else if (!desc_idx_enabled_ ||
desc_type_inst->opcode() != spv::Op::OpTypeRuntimeArray) {
return;
}
// Move original block's preceding instructions into first new block
std::unique_ptr<BasicBlock> new_blk_ptr;
MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr);
InstructionBuilder builder(
context(), &*new_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
new_blocks->push_back(std::move(new_blk_ptr));
uint32_t error_id = builder.GetUintConstantId(kInstErrorBindlessBounds);
// If length id not yet set, descriptor array is runtime size so
// generate load of length from stage's debug input buffer.
if (length_id == 0) {
assert(desc_type_inst->opcode() == spv::Op::OpTypeRuntimeArray &&
"unexpected bindless type");
length_id = GenDebugReadLength(ref.var_id, &builder);
}
// Generate full runtime bounds test code with true branch
// being full reference and false branch being debug output and zero
// for the referenced value.
uint32_t desc_idx_32b_id = Gen32BitCvtCode(ref.desc_idx_id, &builder);
uint32_t length_32b_id = Gen32BitCvtCode(length_id, &builder);
Instruction* ult_inst = builder.AddBinaryOp(GetBoolId(), spv::Op::OpULessThan,
desc_idx_32b_id, length_32b_id);
ref.desc_idx_id = desc_idx_32b_id;
GenCheckCode(ult_inst->result_id(), error_id, 0u, length_id, stage_idx, &ref,
new_blocks);
// Move original block's remaining code into remainder/merge block and add
// to new blocks
BasicBlock* back_blk_ptr = &*new_blocks->back();
MovePostludeCode(ref_block_itr, back_blk_ptr);
}
void InstBindlessCheckPass::GenDescInitCheckCode(
BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
// Look for reference through descriptor. If not, return.
RefAnalysis ref;
if (!AnalyzeDescriptorReference(&*ref_inst_itr, &ref)) return;
// Determine if we can only do initialization check
bool init_check = false;
if (ref.desc_load_id != 0 || !buffer_bounds_enabled_) {
init_check = true;
} else {
// For now, only do bounds check for non-aggregate types. Otherwise
// just do descriptor initialization check.
// TODO(greg-lunarg): Do bounds check for aggregate loads and stores
Instruction* ref_ptr_inst = get_def_use_mgr()->GetDef(ref.ptr_id);
Instruction* pte_type_inst = GetPointeeTypeInst(ref_ptr_inst);
spv::Op pte_type_op = pte_type_inst->opcode();
if (pte_type_op == spv::Op::OpTypeArray ||
pte_type_op == spv::Op::OpTypeRuntimeArray ||
pte_type_op == spv::Op::OpTypeStruct)
init_check = true;
}
// If initialization check and not enabled, return
if (init_check && !desc_init_enabled_) return;
// Move original block's preceding instructions into first new block
std::unique_ptr<BasicBlock> new_blk_ptr;
MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr);
InstructionBuilder builder(
context(), &*new_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
new_blocks->push_back(std::move(new_blk_ptr));
// If initialization check, use reference value of zero.
// Else use the index of the last byte referenced.
uint32_t ref_id = init_check ? builder.GetUintConstantId(0u)
: GenLastByteIdx(&ref, &builder);
// Read initialization/bounds from debug input buffer. If index id not yet
// set, binding is single descriptor, so set index to constant 0.
if (ref.desc_idx_id == 0) ref.desc_idx_id = builder.GetUintConstantId(0u);
uint32_t init_id = GenDebugReadInit(ref.var_id, ref.desc_idx_id, &builder);
// Generate runtime initialization/bounds test code with true branch
// being full reference and false branch being debug output and zero
// for the referenced value.
Instruction* ult_inst =
builder.AddBinaryOp(GetBoolId(), spv::Op::OpULessThan, ref_id, init_id);
uint32_t error =
init_check
? kInstErrorBindlessUninit
: (spv::StorageClass(ref.strg_class) == spv::StorageClass::Uniform
? kInstErrorBuffOOBUniform
: kInstErrorBuffOOBStorage);
uint32_t error_id = builder.GetUintConstantId(error);
GenCheckCode(ult_inst->result_id(), error_id, init_check ? 0 : ref_id,
init_check ? builder.GetUintConstantId(0u) : init_id, stage_idx,
&ref, new_blocks);
// Move original block's remaining code into remainder/merge block and add
// to new blocks
BasicBlock* back_blk_ptr = &*new_blocks->back();
MovePostludeCode(ref_block_itr, back_blk_ptr);
}
void InstBindlessCheckPass::GenTexBuffCheckCode(
BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
// Only process OpImageRead and OpImageWrite with no optional operands
Instruction* ref_inst = &*ref_inst_itr;
spv::Op op = ref_inst->opcode();
uint32_t num_in_oprnds = ref_inst->NumInOperands();
if (!((op == spv::Op::OpImageRead && num_in_oprnds == 2) ||
(op == spv::Op::OpImageFetch && num_in_oprnds == 2) ||
(op == spv::Op::OpImageWrite && num_in_oprnds == 3)))
return;
// Pull components from descriptor reference
RefAnalysis ref;
if (!AnalyzeDescriptorReference(ref_inst, &ref)) return;
// Only process if image is texel buffer
Instruction* image_inst = get_def_use_mgr()->GetDef(ref.image_id);
uint32_t image_ty_id = image_inst->type_id();
Instruction* image_ty_inst = get_def_use_mgr()->GetDef(image_ty_id);
if (spv::Dim(image_ty_inst->GetSingleWordInOperand(kSpvTypeImageDim)) !=
spv::Dim::Buffer) {
return;
}
if (image_ty_inst->GetSingleWordInOperand(kSpvTypeImageDepth) != 0) return;
if (image_ty_inst->GetSingleWordInOperand(kSpvTypeImageArrayed) != 0) return;
if (image_ty_inst->GetSingleWordInOperand(kSpvTypeImageMS) != 0) return;
// Enable ImageQuery Capability if not yet enabled
context()->AddCapability(spv::Capability::ImageQuery);
// Move original block's preceding instructions into first new block
std::unique_ptr<BasicBlock> new_blk_ptr;
MovePreludeCode(ref_inst_itr, ref_block_itr, &new_blk_ptr);
InstructionBuilder builder(
context(), &*new_blk_ptr,
IRContext::kAnalysisDefUse | IRContext::kAnalysisInstrToBlockMapping);
new_blocks->push_back(std::move(new_blk_ptr));
// Get texel coordinate
uint32_t coord_id =
GenUintCastCode(ref_inst->GetSingleWordInOperand(1), &builder);
// If index id not yet set, binding is single descriptor, so set index to
// constant 0.
if (ref.desc_idx_id == 0) ref.desc_idx_id = builder.GetUintConstantId(0u);
// Get texel buffer size.
Instruction* size_inst =
builder.AddUnaryOp(GetUintId(), spv::Op::OpImageQuerySize, ref.image_id);
uint32_t size_id = size_inst->result_id();
// Generate runtime initialization/bounds test code with true branch
// being full reference and false branch being debug output and zero
// for the referenced value.
Instruction* ult_inst =
builder.AddBinaryOp(GetBoolId(), spv::Op::OpULessThan, coord_id, size_id);
uint32_t error =
(image_ty_inst->GetSingleWordInOperand(kSpvTypeImageSampled) == 2)
? kInstErrorBuffOOBStorageTexel
: kInstErrorBuffOOBUniformTexel;
uint32_t error_id = builder.GetUintConstantId(error);
GenCheckCode(ult_inst->result_id(), error_id, coord_id, size_id, stage_idx,
&ref, new_blocks);
// Move original block's remaining code into remainder/merge block and add
// to new blocks
BasicBlock* back_blk_ptr = &*new_blocks->back();
MovePostludeCode(ref_block_itr, back_blk_ptr);
}
void InstBindlessCheckPass::InitializeInstBindlessCheck() {
// Initialize base class
InitializeInstrument();
// If runtime array length support or buffer bounds checking are enabled,
// create variable mappings. Length support is always enabled if descriptor
// init check is enabled.
if (desc_idx_enabled_ || buffer_bounds_enabled_ || texel_buffer_enabled_)
for (auto& anno : get_module()->annotations())
if (anno.opcode() == spv::Op::OpDecorate) {
if (spv::Decoration(anno.GetSingleWordInOperand(1u)) ==
spv::Decoration::DescriptorSet) {
var2desc_set_[anno.GetSingleWordInOperand(0u)] =
anno.GetSingleWordInOperand(2u);
} else if (spv::Decoration(anno.GetSingleWordInOperand(1u)) ==
spv::Decoration::Binding) {
var2binding_[anno.GetSingleWordInOperand(0u)] =
anno.GetSingleWordInOperand(2u);
}
}
}
Pass::Status InstBindlessCheckPass::ProcessImpl() {
// Perform bindless bounds check on each entry point function in module
InstProcessFunction pfn =
[this](BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr, uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
return GenDescIdxCheckCode(ref_inst_itr, ref_block_itr, stage_idx,
new_blocks);
};
bool modified = InstProcessEntryPointCallTree(pfn);
if (desc_init_enabled_ || buffer_bounds_enabled_) {
// Perform descriptor initialization and/or buffer bounds check on each
// entry point function in module
pfn = [this](BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr,
uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
return GenDescInitCheckCode(ref_inst_itr, ref_block_itr, stage_idx,
new_blocks);
};
modified |= InstProcessEntryPointCallTree(pfn);
}
if (texel_buffer_enabled_) {
// Perform texel buffer bounds check on each entry point function in
// module. Generate after descriptor bounds and initialization checks.
pfn = [this](BasicBlock::iterator ref_inst_itr,
UptrVectorIterator<BasicBlock> ref_block_itr,
uint32_t stage_idx,
std::vector<std::unique_ptr<BasicBlock>>* new_blocks) {
return GenTexBuffCheckCode(ref_inst_itr, ref_block_itr, stage_idx,
new_blocks);
};
modified |= InstProcessEntryPointCallTree(pfn);
}
return modified ? Status::SuccessWithChange : Status::SuccessWithoutChange;
}
Pass::Status InstBindlessCheckPass::Process() {
InitializeInstBindlessCheck();
return ProcessImpl();
}
} // namespace opt
} // namespace spvtools