| //===- HexagonBlockRanges.cpp ---------------------------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "HexagonBlockRanges.h" | 
 | #include "HexagonInstrInfo.h" | 
 | #include "HexagonSubtarget.h" | 
 | #include "llvm/ADT/BitVector.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
 | #include "llvm/MC/MCRegisterInfo.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <iterator> | 
 | #include <map> | 
 | #include <utility> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | #define DEBUG_TYPE "hbr" | 
 |  | 
 | bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const { | 
 |   // If A contains start(), or "this" contains A.start(), then overlap. | 
 |   IndexType S = start(), E = end(), AS = A.start(), AE = A.end(); | 
 |   if (AS == S) | 
 |     return true; | 
 |   bool SbAE = (S < AE) || (S == AE && A.TiedEnd);  // S-before-AE. | 
 |   bool ASbE = (AS < E) || (AS == E && TiedEnd);    // AS-before-E. | 
 |   if ((AS < S && SbAE) || (S < AS && ASbE)) | 
 |     return true; | 
 |   // Otherwise no overlap. | 
 |   return false; | 
 | } | 
 |  | 
 | bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const { | 
 |   if (start() <= A.start()) { | 
 |     // Treat "None" in the range end as equal to the range start. | 
 |     IndexType E = (end() != IndexType::None) ? end() : start(); | 
 |     IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start(); | 
 |     if (AE <= E) | 
 |       return true; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) { | 
 |   // Allow merging adjacent ranges. | 
 |   assert(end() == A.start() || overlaps(A)); | 
 |   IndexType AS = A.start(), AE = A.end(); | 
 |   if (AS < start() || start() == IndexType::None) | 
 |     setStart(AS); | 
 |   if (end() < AE || end() == IndexType::None) { | 
 |     setEnd(AE); | 
 |     TiedEnd = A.TiedEnd; | 
 |   } else { | 
 |     if (end() == AE) | 
 |       TiedEnd |= A.TiedEnd; | 
 |   } | 
 |   if (A.Fixed) | 
 |     Fixed = true; | 
 | } | 
 |  | 
 | void HexagonBlockRanges::RangeList::include(const RangeList &RL) { | 
 |   for (auto &R : RL) | 
 |     if (!is_contained(*this, R)) | 
 |       push_back(R); | 
 | } | 
 |  | 
 | // Merge all overlapping ranges in the list, so that all that remains | 
 | // is a list of disjoint ranges. | 
 | void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) { | 
 |   if (empty()) | 
 |     return; | 
 |  | 
 |   llvm::sort(begin(), end()); | 
 |   iterator Iter = begin(); | 
 |  | 
 |   while (Iter != end()-1) { | 
 |     iterator Next = std::next(Iter); | 
 |     // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start. | 
 |     // This allows merging dead ranges, but is not valid for live ranges. | 
 |     bool Merge = MergeAdjacent && (Iter->end() == Next->start()); | 
 |     if (Merge || Iter->overlaps(*Next)) { | 
 |       Iter->merge(*Next); | 
 |       erase(Next); | 
 |       continue; | 
 |     } | 
 |     ++Iter; | 
 |   } | 
 | } | 
 |  | 
 | // Compute a range A-B and add it to the list. | 
 | void HexagonBlockRanges::RangeList::addsub(const IndexRange &A, | 
 |       const IndexRange &B) { | 
 |   // Exclusion of non-overlapping ranges makes some checks simpler | 
 |   // later in this function. | 
 |   if (!A.overlaps(B)) { | 
 |     // A - B = A. | 
 |     add(A); | 
 |     return; | 
 |   } | 
 |  | 
 |   IndexType AS = A.start(), AE = A.end(); | 
 |   IndexType BS = B.start(), BE = B.end(); | 
 |  | 
 |   // If AE is None, then A is included in B, since A and B overlap. | 
 |   // The result of subtraction if empty, so just return. | 
 |   if (AE == IndexType::None) | 
 |     return; | 
 |  | 
 |   if (AS < BS) { | 
 |     // A starts before B. | 
 |     // AE cannot be None since A and B overlap. | 
 |     assert(AE != IndexType::None); | 
 |     // Add the part of A that extends on the "less" side of B. | 
 |     add(AS, BS, A.Fixed, false); | 
 |   } | 
 |  | 
 |   if (BE < AE) { | 
 |     // BE cannot be Exit here. | 
 |     if (BE == IndexType::None) | 
 |       add(BS, AE, A.Fixed, false); | 
 |     else | 
 |       add(BE, AE, A.Fixed, false); | 
 |   } | 
 | } | 
 |  | 
 | // Subtract a given range from each element in the list. | 
 | void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) { | 
 |   // Cannot assume that the list is unionized (i.e. contains only non- | 
 |   // overlapping ranges. | 
 |   RangeList T; | 
 |   for (iterator Next, I = begin(); I != end(); I = Next) { | 
 |     IndexRange &Rg = *I; | 
 |     if (Rg.overlaps(Range)) { | 
 |       T.addsub(Rg, Range); | 
 |       Next = this->erase(I); | 
 |     } else { | 
 |       Next = std::next(I); | 
 |     } | 
 |   } | 
 |   include(T); | 
 | } | 
 |  | 
 | HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B) | 
 |     : Block(B) { | 
 |   IndexType Idx = IndexType::First; | 
 |   First = Idx; | 
 |   for (auto &In : B) { | 
 |     if (In.isDebugInstr()) | 
 |       continue; | 
 |     assert(getIndex(&In) == IndexType::None && "Instruction already in map"); | 
 |     Map.insert(std::make_pair(Idx, &In)); | 
 |     ++Idx; | 
 |   } | 
 |   Last = B.empty() ? IndexType::None : unsigned(Idx)-1; | 
 | } | 
 |  | 
 | MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const { | 
 |   auto F = Map.find(Idx); | 
 |   return (F != Map.end()) ? F->second : nullptr; | 
 | } | 
 |  | 
 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex( | 
 |       MachineInstr *MI) const { | 
 |   for (auto &I : Map) | 
 |     if (I.second == MI) | 
 |       return I.first; | 
 |   return IndexType::None; | 
 | } | 
 |  | 
 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex( | 
 |       IndexType Idx) const { | 
 |   assert (Idx != IndexType::None); | 
 |   if (Idx == IndexType::Entry) | 
 |     return IndexType::None; | 
 |   if (Idx == IndexType::Exit) | 
 |     return Last; | 
 |   if (Idx == First) | 
 |     return IndexType::Entry; | 
 |   return unsigned(Idx)-1; | 
 | } | 
 |  | 
 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex( | 
 |       IndexType Idx) const { | 
 |   assert (Idx != IndexType::None); | 
 |   if (Idx == IndexType::Entry) | 
 |     return IndexType::First; | 
 |   if (Idx == IndexType::Exit || Idx == Last) | 
 |     return IndexType::None; | 
 |   return unsigned(Idx)+1; | 
 | } | 
 |  | 
 | void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI, | 
 |       MachineInstr *NewMI) { | 
 |   for (auto &I : Map) { | 
 |     if (I.second != OldMI) | 
 |       continue; | 
 |     if (NewMI != nullptr) | 
 |       I.second = NewMI; | 
 |     else | 
 |       Map.erase(I.first); | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf) | 
 |   : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()), | 
 |     TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()), | 
 |     Reserved(TRI.getReservedRegs(mf)) { | 
 |   // Consider all non-allocatable registers as reserved. | 
 |   for (const TargetRegisterClass *RC : TRI.regclasses()) { | 
 |     if (RC->isAllocatable()) | 
 |       continue; | 
 |     for (unsigned R : *RC) | 
 |       Reserved[R] = true; | 
 |   } | 
 | } | 
 |  | 
 | HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns( | 
 |       const MachineBasicBlock &B, const MachineRegisterInfo &MRI, | 
 |       const TargetRegisterInfo &TRI) { | 
 |   RegisterSet LiveIns; | 
 |   RegisterSet Tmp; | 
 |  | 
 |   for (auto I : B.liveins()) { | 
 |     MCSubRegIndexIterator S(I.PhysReg, &TRI); | 
 |     if (I.LaneMask.all() || (I.LaneMask.any() && !S.isValid())) { | 
 |       Tmp.insert({I.PhysReg, 0}); | 
 |       continue; | 
 |     } | 
 |     for (; S.isValid(); ++S) { | 
 |       unsigned SI = S.getSubRegIndex(); | 
 |       if ((I.LaneMask & TRI.getSubRegIndexLaneMask(SI)).any()) | 
 |         Tmp.insert({S.getSubReg(), 0}); | 
 |     } | 
 |   } | 
 |  | 
 |   for (auto R : Tmp) { | 
 |     if (!Reserved[R.Reg]) | 
 |       LiveIns.insert(R); | 
 |     for (auto S : expandToSubRegs(R, MRI, TRI)) | 
 |       if (!Reserved[S.Reg]) | 
 |         LiveIns.insert(S); | 
 |   } | 
 |   return LiveIns; | 
 | } | 
 |  | 
 | HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs( | 
 |       RegisterRef R, const MachineRegisterInfo &MRI, | 
 |       const TargetRegisterInfo &TRI) { | 
 |   RegisterSet SRs; | 
 |  | 
 |   if (R.Sub != 0) { | 
 |     SRs.insert(R); | 
 |     return SRs; | 
 |   } | 
 |  | 
 |   if (TargetRegisterInfo::isPhysicalRegister(R.Reg)) { | 
 |     MCSubRegIterator I(R.Reg, &TRI); | 
 |     if (!I.isValid()) | 
 |       SRs.insert({R.Reg, 0}); | 
 |     for (; I.isValid(); ++I) | 
 |       SRs.insert({*I, 0}); | 
 |   } else { | 
 |     assert(TargetRegisterInfo::isVirtualRegister(R.Reg)); | 
 |     auto &RC = *MRI.getRegClass(R.Reg); | 
 |     unsigned PReg = *RC.begin(); | 
 |     MCSubRegIndexIterator I(PReg, &TRI); | 
 |     if (!I.isValid()) | 
 |       SRs.insert({R.Reg, 0}); | 
 |     for (; I.isValid(); ++I) | 
 |       SRs.insert({R.Reg, I.getSubRegIndex()}); | 
 |   } | 
 |   return SRs; | 
 | } | 
 |  | 
 | void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap, | 
 |       RegToRangeMap &LiveMap) { | 
 |   std::map<RegisterRef,IndexType> LastDef, LastUse; | 
 |   RegisterSet LiveOnEntry; | 
 |   MachineBasicBlock &B = IndexMap.getBlock(); | 
 |   MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); | 
 |  | 
 |   for (auto R : getLiveIns(B, MRI, TRI)) | 
 |     LiveOnEntry.insert(R); | 
 |  | 
 |   for (auto R : LiveOnEntry) | 
 |     LastDef[R] = IndexType::Entry; | 
 |  | 
 |   auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void { | 
 |     auto LD = LastDef[R], LU = LastUse[R]; | 
 |     if (LD == IndexType::None) | 
 |       LD = IndexType::Entry; | 
 |     if (LU == IndexType::None) | 
 |       LU = IndexType::Exit; | 
 |     LiveMap[R].add(LD, LU, false, false); | 
 |     LastUse[R] = LastDef[R] = IndexType::None; | 
 |   }; | 
 |  | 
 |   RegisterSet Defs, Clobbers; | 
 |  | 
 |   for (auto &In : B) { | 
 |     if (In.isDebugInstr()) | 
 |       continue; | 
 |     IndexType Index = IndexMap.getIndex(&In); | 
 |     // Process uses first. | 
 |     for (auto &Op : In.operands()) { | 
 |       if (!Op.isReg() || !Op.isUse() || Op.isUndef()) | 
 |         continue; | 
 |       RegisterRef R = { Op.getReg(), Op.getSubReg() }; | 
 |       if (TargetRegisterInfo::isPhysicalRegister(R.Reg) && Reserved[R.Reg]) | 
 |         continue; | 
 |       bool IsKill = Op.isKill(); | 
 |       for (auto S : expandToSubRegs(R, MRI, TRI)) { | 
 |         LastUse[S] = Index; | 
 |         if (IsKill) | 
 |           closeRange(S); | 
 |       } | 
 |     } | 
 |     // Process defs and clobbers. | 
 |     Defs.clear(); | 
 |     Clobbers.clear(); | 
 |     for (auto &Op : In.operands()) { | 
 |       if (!Op.isReg() || !Op.isDef() || Op.isUndef()) | 
 |         continue; | 
 |       RegisterRef R = { Op.getReg(), Op.getSubReg() }; | 
 |       for (auto S : expandToSubRegs(R, MRI, TRI)) { | 
 |         if (TargetRegisterInfo::isPhysicalRegister(S.Reg) && Reserved[S.Reg]) | 
 |           continue; | 
 |         if (Op.isDead()) | 
 |           Clobbers.insert(S); | 
 |         else | 
 |           Defs.insert(S); | 
 |       } | 
 |     } | 
 |  | 
 |     for (auto &Op : In.operands()) { | 
 |       if (!Op.isRegMask()) | 
 |         continue; | 
 |       const uint32_t *BM = Op.getRegMask(); | 
 |       for (unsigned PR = 1, N = TRI.getNumRegs(); PR != N; ++PR) { | 
 |         // Skip registers that have subregisters. A register is preserved | 
 |         // iff its bit is set in the regmask, so if R1:0 was preserved, both | 
 |         // R1 and R0 would also be present. | 
 |         if (MCSubRegIterator(PR, &TRI, false).isValid()) | 
 |           continue; | 
 |         if (Reserved[PR]) | 
 |           continue; | 
 |         if (BM[PR/32] & (1u << (PR%32))) | 
 |           continue; | 
 |         RegisterRef R = { PR, 0 }; | 
 |         if (!Defs.count(R)) | 
 |           Clobbers.insert(R); | 
 |       } | 
 |     } | 
 |     // Defs and clobbers can overlap, e.g. | 
 |     // dead %d0 = COPY %5, implicit-def %r0, implicit-def %r1 | 
 |     for (RegisterRef R : Defs) | 
 |       Clobbers.erase(R); | 
 |  | 
 |     // Update maps for defs. | 
 |     for (RegisterRef S : Defs) { | 
 |       // Defs should already be expanded into subregs. | 
 |       assert(!TargetRegisterInfo::isPhysicalRegister(S.Reg) || | 
 |              !MCSubRegIterator(S.Reg, &TRI, false).isValid()); | 
 |       if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) | 
 |         closeRange(S); | 
 |       LastDef[S] = Index; | 
 |     } | 
 |     // Update maps for clobbers. | 
 |     for (RegisterRef S : Clobbers) { | 
 |       // Clobbers should already be expanded into subregs. | 
 |       assert(!TargetRegisterInfo::isPhysicalRegister(S.Reg) || | 
 |              !MCSubRegIterator(S.Reg, &TRI, false).isValid()); | 
 |       if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) | 
 |         closeRange(S); | 
 |       // Create a single-instruction range. | 
 |       LastDef[S] = LastUse[S] = Index; | 
 |       closeRange(S); | 
 |     } | 
 |   } | 
 |  | 
 |   // Collect live-on-exit. | 
 |   RegisterSet LiveOnExit; | 
 |   for (auto *SB : B.successors()) | 
 |     for (auto R : getLiveIns(*SB, MRI, TRI)) | 
 |       LiveOnExit.insert(R); | 
 |  | 
 |   for (auto R : LiveOnExit) | 
 |     LastUse[R] = IndexType::Exit; | 
 |  | 
 |   // Process remaining registers. | 
 |   RegisterSet Left; | 
 |   for (auto &I : LastUse) | 
 |     if (I.second != IndexType::None) | 
 |       Left.insert(I.first); | 
 |   for (auto &I : LastDef) | 
 |     if (I.second != IndexType::None) | 
 |       Left.insert(I.first); | 
 |   for (auto R : Left) | 
 |     closeRange(R); | 
 |  | 
 |   // Finalize the live ranges. | 
 |   for (auto &P : LiveMap) | 
 |     P.second.unionize(); | 
 | } | 
 |  | 
 | HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap( | 
 |       InstrIndexMap &IndexMap) { | 
 |   RegToRangeMap LiveMap; | 
 |   LLVM_DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n'); | 
 |   computeInitialLiveRanges(IndexMap, LiveMap); | 
 |   LLVM_DEBUG(dbgs() << __func__ << ": live map\n" | 
 |                     << PrintRangeMap(LiveMap, TRI) << '\n'); | 
 |   return LiveMap; | 
 | } | 
 |  | 
 | HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap( | 
 |       InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) { | 
 |   RegToRangeMap DeadMap; | 
 |  | 
 |   auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void { | 
 |     auto F = LiveMap.find(R); | 
 |     if (F == LiveMap.end() || F->second.empty()) { | 
 |       DeadMap[R].add(IndexType::Entry, IndexType::Exit, false, false); | 
 |       return; | 
 |     } | 
 |  | 
 |     RangeList &RL = F->second; | 
 |     RangeList::iterator A = RL.begin(), Z = RL.end()-1; | 
 |  | 
 |     // Try to create the initial range. | 
 |     if (A->start() != IndexType::Entry) { | 
 |       IndexType DE = IndexMap.getPrevIndex(A->start()); | 
 |       if (DE != IndexType::Entry) | 
 |         DeadMap[R].add(IndexType::Entry, DE, false, false); | 
 |     } | 
 |  | 
 |     while (A != Z) { | 
 |       // Creating a dead range that follows A.  Pay attention to empty | 
 |       // ranges (i.e. those ending with "None"). | 
 |       IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end(); | 
 |       IndexType DS = IndexMap.getNextIndex(AE); | 
 |       ++A; | 
 |       IndexType DE = IndexMap.getPrevIndex(A->start()); | 
 |       if (DS < DE) | 
 |         DeadMap[R].add(DS, DE, false, false); | 
 |     } | 
 |  | 
 |     // Try to create the final range. | 
 |     if (Z->end() != IndexType::Exit) { | 
 |       IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end(); | 
 |       IndexType DS = IndexMap.getNextIndex(ZE); | 
 |       if (DS < IndexType::Exit) | 
 |         DeadMap[R].add(DS, IndexType::Exit, false, false); | 
 |     } | 
 |   }; | 
 |  | 
 |   MachineFunction &MF = *IndexMap.getBlock().getParent(); | 
 |   auto &MRI = MF.getRegInfo(); | 
 |   unsigned NumRegs = TRI.getNumRegs(); | 
 |   BitVector Visited(NumRegs); | 
 |   for (unsigned R = 1; R < NumRegs; ++R) { | 
 |     for (auto S : expandToSubRegs({R,0}, MRI, TRI)) { | 
 |       if (Reserved[S.Reg] || Visited[S.Reg]) | 
 |         continue; | 
 |       addDeadRanges(S); | 
 |       Visited[S.Reg] = true; | 
 |     } | 
 |   } | 
 |   for (auto &P : LiveMap) | 
 |     if (TargetRegisterInfo::isVirtualRegister(P.first.Reg)) | 
 |       addDeadRanges(P.first); | 
 |  | 
 |   LLVM_DEBUG(dbgs() << __func__ << ": dead map\n" | 
 |                     << PrintRangeMap(DeadMap, TRI) << '\n'); | 
 |   return DeadMap; | 
 | } | 
 |  | 
 | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
 |                               HexagonBlockRanges::IndexType Idx) { | 
 |   if (Idx == HexagonBlockRanges::IndexType::None) | 
 |     return OS << '-'; | 
 |   if (Idx == HexagonBlockRanges::IndexType::Entry) | 
 |     return OS << 'n'; | 
 |   if (Idx == HexagonBlockRanges::IndexType::Exit) | 
 |     return OS << 'x'; | 
 |   return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1; | 
 | } | 
 |  | 
 | // A mapping to translate between instructions and their indices. | 
 | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
 |                               const HexagonBlockRanges::IndexRange &IR) { | 
 |   OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']'); | 
 |   if (IR.Fixed) | 
 |     OS << '!'; | 
 |   return OS; | 
 | } | 
 |  | 
 | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
 |                               const HexagonBlockRanges::RangeList &RL) { | 
 |   for (auto &R : RL) | 
 |     OS << R << " "; | 
 |   return OS; | 
 | } | 
 |  | 
 | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
 |                               const HexagonBlockRanges::InstrIndexMap &M) { | 
 |   for (auto &In : M.Block) { | 
 |     HexagonBlockRanges::IndexType Idx = M.getIndex(&In); | 
 |     OS << Idx << (Idx == M.Last ? ". " : "  ") << In; | 
 |   } | 
 |   return OS; | 
 | } | 
 |  | 
 | raw_ostream &llvm::operator<<(raw_ostream &OS, | 
 |                               const HexagonBlockRanges::PrintRangeMap &P) { | 
 |   for (auto &I : P.Map) { | 
 |     const HexagonBlockRanges::RangeList &RL = I.second; | 
 |     OS << printReg(I.first.Reg, &P.TRI, I.first.Sub) << " -> " << RL << "\n"; | 
 |   } | 
 |   return OS; | 
 | } |