| //===- Inliner.cpp - Code common to all inliners --------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the mechanics required to implement inlining without |
| // missing any calls and updating the call graph. The decisions of which calls |
| // are profitable to inline are implemented elsewhere. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/Inliner.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/CGSCCPassManager.h" |
| #include "llvm/Analysis/CallGraph.h" |
| #include "llvm/Analysis/InlineCost.h" |
| #include "llvm/Analysis/LazyCallGraph.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <functional> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "inline" |
| |
| STATISTIC(NumInlined, "Number of functions inlined"); |
| STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined"); |
| STATISTIC(NumDeleted, "Number of functions deleted because all callers found"); |
| STATISTIC(NumMergedAllocas, "Number of allocas merged together"); |
| |
| // This weirdly named statistic tracks the number of times that, when attempting |
| // to inline a function A into B, we analyze the callers of B in order to see |
| // if those would be more profitable and blocked inline steps. |
| STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed"); |
| |
| /// Flag to disable manual alloca merging. |
| /// |
| /// Merging of allocas was originally done as a stack-size saving technique |
| /// prior to LLVM's code generator having support for stack coloring based on |
| /// lifetime markers. It is now in the process of being removed. To experiment |
| /// with disabling it and relying fully on lifetime marker based stack |
| /// coloring, you can pass this flag to LLVM. |
| static cl::opt<bool> |
| DisableInlinedAllocaMerging("disable-inlined-alloca-merging", |
| cl::init(false), cl::Hidden); |
| |
| namespace { |
| |
| enum class InlinerFunctionImportStatsOpts { |
| No = 0, |
| Basic = 1, |
| Verbose = 2, |
| }; |
| |
| } // end anonymous namespace |
| |
| static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats( |
| "inliner-function-import-stats", |
| cl::init(InlinerFunctionImportStatsOpts::No), |
| cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic", |
| "basic statistics"), |
| clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose", |
| "printing of statistics for each inlined function")), |
| cl::Hidden, cl::desc("Enable inliner stats for imported functions")); |
| |
| LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {} |
| |
| LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime) |
| : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {} |
| |
| /// For this class, we declare that we require and preserve the call graph. |
| /// If the derived class implements this method, it should |
| /// always explicitly call the implementation here. |
| void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| getAAResultsAnalysisUsage(AU); |
| CallGraphSCCPass::getAnalysisUsage(AU); |
| } |
| |
| using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>; |
| |
| /// Look at all of the allocas that we inlined through this call site. If we |
| /// have already inlined other allocas through other calls into this function, |
| /// then we know that they have disjoint lifetimes and that we can merge them. |
| /// |
| /// There are many heuristics possible for merging these allocas, and the |
| /// different options have different tradeoffs. One thing that we *really* |
| /// don't want to hurt is SRoA: once inlining happens, often allocas are no |
| /// longer address taken and so they can be promoted. |
| /// |
| /// Our "solution" for that is to only merge allocas whose outermost type is an |
| /// array type. These are usually not promoted because someone is using a |
| /// variable index into them. These are also often the most important ones to |
| /// merge. |
| /// |
| /// A better solution would be to have real memory lifetime markers in the IR |
| /// and not have the inliner do any merging of allocas at all. This would |
| /// allow the backend to do proper stack slot coloring of all allocas that |
| /// *actually make it to the backend*, which is really what we want. |
| /// |
| /// Because we don't have this information, we do this simple and useful hack. |
| static void mergeInlinedArrayAllocas( |
| Function *Caller, InlineFunctionInfo &IFI, |
| InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) { |
| SmallPtrSet<AllocaInst *, 16> UsedAllocas; |
| |
| // When processing our SCC, check to see if CS was inlined from some other |
| // call site. For example, if we're processing "A" in this code: |
| // A() { B() } |
| // B() { x = alloca ... C() } |
| // C() { y = alloca ... } |
| // Assume that C was not inlined into B initially, and so we're processing A |
| // and decide to inline B into A. Doing this makes an alloca available for |
| // reuse and makes a callsite (C) available for inlining. When we process |
| // the C call site we don't want to do any alloca merging between X and Y |
| // because their scopes are not disjoint. We could make this smarter by |
| // keeping track of the inline history for each alloca in the |
| // InlinedArrayAllocas but this isn't likely to be a significant win. |
| if (InlineHistory != -1) // Only do merging for top-level call sites in SCC. |
| return; |
| |
| // Loop over all the allocas we have so far and see if they can be merged with |
| // a previously inlined alloca. If not, remember that we had it. |
| for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e; |
| ++AllocaNo) { |
| AllocaInst *AI = IFI.StaticAllocas[AllocaNo]; |
| |
| // Don't bother trying to merge array allocations (they will usually be |
| // canonicalized to be an allocation *of* an array), or allocations whose |
| // type is not itself an array (because we're afraid of pessimizing SRoA). |
| ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType()); |
| if (!ATy || AI->isArrayAllocation()) |
| continue; |
| |
| // Get the list of all available allocas for this array type. |
| std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy]; |
| |
| // Loop over the allocas in AllocasForType to see if we can reuse one. Note |
| // that we have to be careful not to reuse the same "available" alloca for |
| // multiple different allocas that we just inlined, we use the 'UsedAllocas' |
| // set to keep track of which "available" allocas are being used by this |
| // function. Also, AllocasForType can be empty of course! |
| bool MergedAwayAlloca = false; |
| for (AllocaInst *AvailableAlloca : AllocasForType) { |
| unsigned Align1 = AI->getAlignment(), |
| Align2 = AvailableAlloca->getAlignment(); |
| |
| // The available alloca has to be in the right function, not in some other |
| // function in this SCC. |
| if (AvailableAlloca->getParent() != AI->getParent()) |
| continue; |
| |
| // If the inlined function already uses this alloca then we can't reuse |
| // it. |
| if (!UsedAllocas.insert(AvailableAlloca).second) |
| continue; |
| |
| // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare |
| // success! |
| LLVM_DEBUG(dbgs() << " ***MERGED ALLOCA: " << *AI |
| << "\n\t\tINTO: " << *AvailableAlloca << '\n'); |
| |
| // Move affected dbg.declare calls immediately after the new alloca to |
| // avoid the situation when a dbg.declare precedes its alloca. |
| if (auto *L = LocalAsMetadata::getIfExists(AI)) |
| if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) |
| for (User *U : MDV->users()) |
| if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U)) |
| DDI->moveBefore(AvailableAlloca->getNextNode()); |
| |
| AI->replaceAllUsesWith(AvailableAlloca); |
| |
| if (Align1 != Align2) { |
| if (!Align1 || !Align2) { |
| const DataLayout &DL = Caller->getParent()->getDataLayout(); |
| unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType()); |
| |
| Align1 = Align1 ? Align1 : TypeAlign; |
| Align2 = Align2 ? Align2 : TypeAlign; |
| } |
| |
| if (Align1 > Align2) |
| AvailableAlloca->setAlignment(AI->getAlignment()); |
| } |
| |
| AI->eraseFromParent(); |
| MergedAwayAlloca = true; |
| ++NumMergedAllocas; |
| IFI.StaticAllocas[AllocaNo] = nullptr; |
| break; |
| } |
| |
| // If we already nuked the alloca, we're done with it. |
| if (MergedAwayAlloca) |
| continue; |
| |
| // If we were unable to merge away the alloca either because there are no |
| // allocas of the right type available or because we reused them all |
| // already, remember that this alloca came from an inlined function and mark |
| // it used so we don't reuse it for other allocas from this inline |
| // operation. |
| AllocasForType.push_back(AI); |
| UsedAllocas.insert(AI); |
| } |
| } |
| |
| /// If it is possible to inline the specified call site, |
| /// do so and update the CallGraph for this operation. |
| /// |
| /// This function also does some basic book-keeping to update the IR. The |
| /// InlinedArrayAllocas map keeps track of any allocas that are already |
| /// available from other functions inlined into the caller. If we are able to |
| /// inline this call site we attempt to reuse already available allocas or add |
| /// any new allocas to the set if not possible. |
| static bool InlineCallIfPossible( |
| CallSite CS, InlineFunctionInfo &IFI, |
| InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory, |
| bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter, |
| ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { |
| Function *Callee = CS.getCalledFunction(); |
| Function *Caller = CS.getCaller(); |
| |
| AAResults &AAR = AARGetter(*Callee); |
| |
| // Try to inline the function. Get the list of static allocas that were |
| // inlined. |
| if (!InlineFunction(CS, IFI, &AAR, InsertLifetime)) |
| return false; |
| |
| if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) |
| ImportedFunctionsStats.recordInline(*Caller, *Callee); |
| |
| AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee); |
| |
| if (!DisableInlinedAllocaMerging) |
| mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory); |
| |
| return true; |
| } |
| |
| /// Return true if inlining of CS can block the caller from being |
| /// inlined which is proved to be more beneficial. \p IC is the |
| /// estimated inline cost associated with callsite \p CS. |
| /// \p TotalSecondaryCost will be set to the estimated cost of inlining the |
| /// caller if \p CS is suppressed for inlining. |
| static bool |
| shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC, |
| int &TotalSecondaryCost, |
| function_ref<InlineCost(CallSite CS)> GetInlineCost) { |
| // For now we only handle local or inline functions. |
| if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage()) |
| return false; |
| // Try to detect the case where the current inlining candidate caller (call |
| // it B) is a static or linkonce-ODR function and is an inlining candidate |
| // elsewhere, and the current candidate callee (call it C) is large enough |
| // that inlining it into B would make B too big to inline later. In these |
| // circumstances it may be best not to inline C into B, but to inline B into |
| // its callers. |
| // |
| // This only applies to static and linkonce-ODR functions because those are |
| // expected to be available for inlining in the translation units where they |
| // are used. Thus we will always have the opportunity to make local inlining |
| // decisions. Importantly the linkonce-ODR linkage covers inline functions |
| // and templates in C++. |
| // |
| // FIXME: All of this logic should be sunk into getInlineCost. It relies on |
| // the internal implementation of the inline cost metrics rather than |
| // treating them as truly abstract units etc. |
| TotalSecondaryCost = 0; |
| // The candidate cost to be imposed upon the current function. |
| int CandidateCost = IC.getCost() - 1; |
| // This bool tracks what happens if we do NOT inline C into B. |
| bool callerWillBeRemoved = Caller->hasLocalLinkage(); |
| // This bool tracks what happens if we DO inline C into B. |
| bool inliningPreventsSomeOuterInline = false; |
| for (User *U : Caller->users()) { |
| CallSite CS2(U); |
| |
| // If this isn't a call to Caller (it could be some other sort |
| // of reference) skip it. Such references will prevent the caller |
| // from being removed. |
| if (!CS2 || CS2.getCalledFunction() != Caller) { |
| callerWillBeRemoved = false; |
| continue; |
| } |
| |
| InlineCost IC2 = GetInlineCost(CS2); |
| ++NumCallerCallersAnalyzed; |
| if (!IC2) { |
| callerWillBeRemoved = false; |
| continue; |
| } |
| if (IC2.isAlways()) |
| continue; |
| |
| // See if inlining of the original callsite would erase the cost delta of |
| // this callsite. We subtract off the penalty for the call instruction, |
| // which we would be deleting. |
| if (IC2.getCostDelta() <= CandidateCost) { |
| inliningPreventsSomeOuterInline = true; |
| TotalSecondaryCost += IC2.getCost(); |
| } |
| } |
| // If all outer calls to Caller would get inlined, the cost for the last |
| // one is set very low by getInlineCost, in anticipation that Caller will |
| // be removed entirely. We did not account for this above unless there |
| // is only one caller of Caller. |
| if (callerWillBeRemoved && !Caller->hasOneUse()) |
| TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus; |
| |
| if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost()) |
| return true; |
| |
| return false; |
| } |
| |
| /// Return the cost only if the inliner should attempt to inline at the given |
| /// CallSite. If we return the cost, we will emit an optimisation remark later |
| /// using that cost, so we won't do so from this function. |
| static Optional<InlineCost> |
| shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost, |
| OptimizationRemarkEmitter &ORE) { |
| using namespace ore; |
| |
| InlineCost IC = GetInlineCost(CS); |
| Instruction *Call = CS.getInstruction(); |
| Function *Callee = CS.getCalledFunction(); |
| Function *Caller = CS.getCaller(); |
| |
| if (IC.isAlways()) { |
| LLVM_DEBUG(dbgs() << " Inlining: cost=always" |
| << ", Call: " << *CS.getInstruction() << "\n"); |
| return IC; |
| } |
| |
| if (IC.isNever()) { |
| LLVM_DEBUG(dbgs() << " NOT Inlining: cost=never" |
| << ", Call: " << *CS.getInstruction() << "\n"); |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) |
| << NV("Callee", Callee) << " not inlined into " |
| << NV("Caller", Caller) |
| << " because it should never be inlined (cost=never)"; |
| }); |
| return None; |
| } |
| |
| if (!IC) { |
| LLVM_DEBUG(dbgs() << " NOT Inlining: cost=" << IC.getCost() |
| << ", thres=" << IC.getThreshold() |
| << ", Call: " << *CS.getInstruction() << "\n"); |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call) |
| << NV("Callee", Callee) << " not inlined into " |
| << NV("Caller", Caller) << " because too costly to inline (cost=" |
| << NV("Cost", IC.getCost()) |
| << ", threshold=" << NV("Threshold", IC.getThreshold()) << ")"; |
| }); |
| return None; |
| } |
| |
| int TotalSecondaryCost = 0; |
| if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) { |
| LLVM_DEBUG(dbgs() << " NOT Inlining: " << *CS.getInstruction() |
| << " Cost = " << IC.getCost() |
| << ", outer Cost = " << TotalSecondaryCost << '\n'); |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts", |
| Call) |
| << "Not inlining. Cost of inlining " << NV("Callee", Callee) |
| << " increases the cost of inlining " << NV("Caller", Caller) |
| << " in other contexts"; |
| }); |
| |
| // IC does not bool() to false, so get an InlineCost that will. |
| // This will not be inspected to make an error message. |
| return None; |
| } |
| |
| LLVM_DEBUG(dbgs() << " Inlining: cost=" << IC.getCost() |
| << ", thres=" << IC.getThreshold() |
| << ", Call: " << *CS.getInstruction() << '\n'); |
| return IC; |
| } |
| |
| /// Return true if the specified inline history ID |
| /// indicates an inline history that includes the specified function. |
| static bool InlineHistoryIncludes( |
| Function *F, int InlineHistoryID, |
| const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) { |
| while (InlineHistoryID != -1) { |
| assert(unsigned(InlineHistoryID) < InlineHistory.size() && |
| "Invalid inline history ID"); |
| if (InlineHistory[InlineHistoryID].first == F) |
| return true; |
| InlineHistoryID = InlineHistory[InlineHistoryID].second; |
| } |
| return false; |
| } |
| |
| bool LegacyInlinerBase::doInitialization(CallGraph &CG) { |
| if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) |
| ImportedFunctionsStats.setModuleInfo(CG.getModule()); |
| return false; // No changes to CallGraph. |
| } |
| |
| bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) { |
| if (skipSCC(SCC)) |
| return false; |
| return inlineCalls(SCC); |
| } |
| |
| static bool |
| inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG, |
| std::function<AssumptionCache &(Function &)> GetAssumptionCache, |
| ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI, |
| bool InsertLifetime, |
| function_ref<InlineCost(CallSite CS)> GetInlineCost, |
| function_ref<AAResults &(Function &)> AARGetter, |
| ImportedFunctionsInliningStatistics &ImportedFunctionsStats) { |
| SmallPtrSet<Function *, 8> SCCFunctions; |
| LLVM_DEBUG(dbgs() << "Inliner visiting SCC:"); |
| for (CallGraphNode *Node : SCC) { |
| Function *F = Node->getFunction(); |
| if (F) |
| SCCFunctions.insert(F); |
| LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE")); |
| } |
| |
| // Scan through and identify all call sites ahead of time so that we only |
| // inline call sites in the original functions, not call sites that result |
| // from inlining other functions. |
| SmallVector<std::pair<CallSite, int>, 16> CallSites; |
| |
| // When inlining a callee produces new call sites, we want to keep track of |
| // the fact that they were inlined from the callee. This allows us to avoid |
| // infinite inlining in some obscure cases. To represent this, we use an |
| // index into the InlineHistory vector. |
| SmallVector<std::pair<Function *, int>, 8> InlineHistory; |
| |
| for (CallGraphNode *Node : SCC) { |
| Function *F = Node->getFunction(); |
| if (!F || F->isDeclaration()) |
| continue; |
| |
| OptimizationRemarkEmitter ORE(F); |
| for (BasicBlock &BB : *F) |
| for (Instruction &I : BB) { |
| CallSite CS(cast<Value>(&I)); |
| // If this isn't a call, or it is a call to an intrinsic, it can |
| // never be inlined. |
| if (!CS || isa<IntrinsicInst>(I)) |
| continue; |
| |
| // If this is a direct call to an external function, we can never inline |
| // it. If it is an indirect call, inlining may resolve it to be a |
| // direct call, so we keep it. |
| if (Function *Callee = CS.getCalledFunction()) |
| if (Callee->isDeclaration()) { |
| using namespace ore; |
| |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) |
| << NV("Callee", Callee) << " will not be inlined into " |
| << NV("Caller", CS.getCaller()) |
| << " because its definition is unavailable" |
| << setIsVerbose(); |
| }); |
| continue; |
| } |
| |
| CallSites.push_back(std::make_pair(CS, -1)); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n"); |
| |
| // If there are no calls in this function, exit early. |
| if (CallSites.empty()) |
| return false; |
| |
| // Now that we have all of the call sites, move the ones to functions in the |
| // current SCC to the end of the list. |
| unsigned FirstCallInSCC = CallSites.size(); |
| for (unsigned i = 0; i < FirstCallInSCC; ++i) |
| if (Function *F = CallSites[i].first.getCalledFunction()) |
| if (SCCFunctions.count(F)) |
| std::swap(CallSites[i--], CallSites[--FirstCallInSCC]); |
| |
| InlinedArrayAllocasTy InlinedArrayAllocas; |
| InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI); |
| |
| // Now that we have all of the call sites, loop over them and inline them if |
| // it looks profitable to do so. |
| bool Changed = false; |
| bool LocalChange; |
| do { |
| LocalChange = false; |
| // Iterate over the outer loop because inlining functions can cause indirect |
| // calls to become direct calls. |
| // CallSites may be modified inside so ranged for loop can not be used. |
| for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) { |
| CallSite CS = CallSites[CSi].first; |
| |
| Function *Caller = CS.getCaller(); |
| Function *Callee = CS.getCalledFunction(); |
| |
| // We can only inline direct calls to non-declarations. |
| if (!Callee || Callee->isDeclaration()) |
| continue; |
| |
| Instruction *Instr = CS.getInstruction(); |
| |
| bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI); |
| |
| int InlineHistoryID; |
| if (!IsTriviallyDead) { |
| // If this call site was obtained by inlining another function, verify |
| // that the include path for the function did not include the callee |
| // itself. If so, we'd be recursively inlining the same function, |
| // which would provide the same callsites, which would cause us to |
| // infinitely inline. |
| InlineHistoryID = CallSites[CSi].second; |
| if (InlineHistoryID != -1 && |
| InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) |
| continue; |
| } |
| |
| // FIXME for new PM: because of the old PM we currently generate ORE and |
| // in turn BFI on demand. With the new PM, the ORE dependency should |
| // just become a regular analysis dependency. |
| OptimizationRemarkEmitter ORE(Caller); |
| |
| Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); |
| // If the policy determines that we should inline this function, |
| // delete the call instead. |
| if (!OIC) |
| continue; |
| |
| // If this call site is dead and it is to a readonly function, we should |
| // just delete the call instead of trying to inline it, regardless of |
| // size. This happens because IPSCCP propagates the result out of the |
| // call and then we're left with the dead call. |
| if (IsTriviallyDead) { |
| LLVM_DEBUG(dbgs() << " -> Deleting dead call: " << *Instr << "\n"); |
| // Update the call graph by deleting the edge from Callee to Caller. |
| CG[Caller]->removeCallEdgeFor(CS); |
| Instr->eraseFromParent(); |
| ++NumCallsDeleted; |
| } else { |
| // Get DebugLoc to report. CS will be invalid after Inliner. |
| DebugLoc DLoc = CS->getDebugLoc(); |
| BasicBlock *Block = CS.getParent(); |
| |
| // Attempt to inline the function. |
| using namespace ore; |
| |
| if (!InlineCallIfPossible(CS, InlineInfo, InlinedArrayAllocas, |
| InlineHistoryID, InsertLifetime, AARGetter, |
| ImportedFunctionsStats)) { |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, |
| Block) |
| << NV("Callee", Callee) << " will not be inlined into " |
| << NV("Caller", Caller); |
| }); |
| continue; |
| } |
| ++NumInlined; |
| |
| ORE.emit([&]() { |
| bool AlwaysInline = OIC->isAlways(); |
| StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined"; |
| OptimizationRemark R(DEBUG_TYPE, RemarkName, DLoc, Block); |
| R << NV("Callee", Callee) << " inlined into "; |
| R << NV("Caller", Caller); |
| if (AlwaysInline) |
| R << " with cost=always"; |
| else { |
| R << " with cost=" << NV("Cost", OIC->getCost()); |
| R << " (threshold=" << NV("Threshold", OIC->getThreshold()); |
| R << ")"; |
| } |
| return R; |
| }); |
| |
| // If inlining this function gave us any new call sites, throw them |
| // onto our worklist to process. They are useful inline candidates. |
| if (!InlineInfo.InlinedCalls.empty()) { |
| // Create a new inline history entry for this, so that we remember |
| // that these new callsites came about due to inlining Callee. |
| int NewHistoryID = InlineHistory.size(); |
| InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID)); |
| |
| for (Value *Ptr : InlineInfo.InlinedCalls) |
| CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID)); |
| } |
| } |
| |
| // If we inlined or deleted the last possible call site to the function, |
| // delete the function body now. |
| if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() && |
| // TODO: Can remove if in SCC now. |
| !SCCFunctions.count(Callee) && |
| // The function may be apparently dead, but if there are indirect |
| // callgraph references to the node, we cannot delete it yet, this |
| // could invalidate the CGSCC iterator. |
| CG[Callee]->getNumReferences() == 0) { |
| LLVM_DEBUG(dbgs() << " -> Deleting dead function: " |
| << Callee->getName() << "\n"); |
| CallGraphNode *CalleeNode = CG[Callee]; |
| |
| // Remove any call graph edges from the callee to its callees. |
| CalleeNode->removeAllCalledFunctions(); |
| |
| // Removing the node for callee from the call graph and delete it. |
| delete CG.removeFunctionFromModule(CalleeNode); |
| ++NumDeleted; |
| } |
| |
| // Remove this call site from the list. If possible, use |
| // swap/pop_back for efficiency, but do not use it if doing so would |
| // move a call site to a function in this SCC before the |
| // 'FirstCallInSCC' barrier. |
| if (SCC.isSingular()) { |
| CallSites[CSi] = CallSites.back(); |
| CallSites.pop_back(); |
| } else { |
| CallSites.erase(CallSites.begin() + CSi); |
| } |
| --CSi; |
| |
| Changed = true; |
| LocalChange = true; |
| } |
| } while (LocalChange); |
| |
| return Changed; |
| } |
| |
| bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) { |
| CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); |
| ACT = &getAnalysis<AssumptionCacheTracker>(); |
| PSI = getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); |
| auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { |
| return ACT->getAssumptionCache(F); |
| }; |
| return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime, |
| [this](CallSite CS) { return getInlineCost(CS); }, |
| LegacyAARGetter(*this), ImportedFunctionsStats); |
| } |
| |
| /// Remove now-dead linkonce functions at the end of |
| /// processing to avoid breaking the SCC traversal. |
| bool LegacyInlinerBase::doFinalization(CallGraph &CG) { |
| if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) |
| ImportedFunctionsStats.dump(InlinerFunctionImportStats == |
| InlinerFunctionImportStatsOpts::Verbose); |
| return removeDeadFunctions(CG); |
| } |
| |
| /// Remove dead functions that are not included in DNR (Do Not Remove) list. |
| bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG, |
| bool AlwaysInlineOnly) { |
| SmallVector<CallGraphNode *, 16> FunctionsToRemove; |
| SmallVector<Function *, 16> DeadFunctionsInComdats; |
| |
| auto RemoveCGN = [&](CallGraphNode *CGN) { |
| // Remove any call graph edges from the function to its callees. |
| CGN->removeAllCalledFunctions(); |
| |
| // Remove any edges from the external node to the function's call graph |
| // node. These edges might have been made irrelegant due to |
| // optimization of the program. |
| CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN); |
| |
| // Removing the node for callee from the call graph and delete it. |
| FunctionsToRemove.push_back(CGN); |
| }; |
| |
| // Scan for all of the functions, looking for ones that should now be removed |
| // from the program. Insert the dead ones in the FunctionsToRemove set. |
| for (const auto &I : CG) { |
| CallGraphNode *CGN = I.second.get(); |
| Function *F = CGN->getFunction(); |
| if (!F || F->isDeclaration()) |
| continue; |
| |
| // Handle the case when this function is called and we only want to care |
| // about always-inline functions. This is a bit of a hack to share code |
| // between here and the InlineAlways pass. |
| if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline)) |
| continue; |
| |
| // If the only remaining users of the function are dead constants, remove |
| // them. |
| F->removeDeadConstantUsers(); |
| |
| if (!F->isDefTriviallyDead()) |
| continue; |
| |
| // It is unsafe to drop a function with discardable linkage from a COMDAT |
| // without also dropping the other members of the COMDAT. |
| // The inliner doesn't visit non-function entities which are in COMDAT |
| // groups so it is unsafe to do so *unless* the linkage is local. |
| if (!F->hasLocalLinkage()) { |
| if (F->hasComdat()) { |
| DeadFunctionsInComdats.push_back(F); |
| continue; |
| } |
| } |
| |
| RemoveCGN(CGN); |
| } |
| if (!DeadFunctionsInComdats.empty()) { |
| // Filter out the functions whose comdats remain alive. |
| filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats); |
| // Remove the rest. |
| for (Function *F : DeadFunctionsInComdats) |
| RemoveCGN(CG[F]); |
| } |
| |
| if (FunctionsToRemove.empty()) |
| return false; |
| |
| // Now that we know which functions to delete, do so. We didn't want to do |
| // this inline, because that would invalidate our CallGraph::iterator |
| // objects. :( |
| // |
| // Note that it doesn't matter that we are iterating over a non-stable order |
| // here to do this, it doesn't matter which order the functions are deleted |
| // in. |
| array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end()); |
| FunctionsToRemove.erase( |
| std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()), |
| FunctionsToRemove.end()); |
| for (CallGraphNode *CGN : FunctionsToRemove) { |
| delete CG.removeFunctionFromModule(CGN); |
| ++NumDeleted; |
| } |
| return true; |
| } |
| |
| InlinerPass::~InlinerPass() { |
| if (ImportedFunctionsStats) { |
| assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No); |
| ImportedFunctionsStats->dump(InlinerFunctionImportStats == |
| InlinerFunctionImportStatsOpts::Verbose); |
| } |
| } |
| |
| PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC, |
| CGSCCAnalysisManager &AM, LazyCallGraph &CG, |
| CGSCCUpdateResult &UR) { |
| const ModuleAnalysisManager &MAM = |
| AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager(); |
| bool Changed = false; |
| |
| assert(InitialC.size() > 0 && "Cannot handle an empty SCC!"); |
| Module &M = *InitialC.begin()->getFunction().getParent(); |
| ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M); |
| |
| if (!ImportedFunctionsStats && |
| InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) { |
| ImportedFunctionsStats = |
| llvm::make_unique<ImportedFunctionsInliningStatistics>(); |
| ImportedFunctionsStats->setModuleInfo(M); |
| } |
| |
| // We use a single common worklist for calls across the entire SCC. We |
| // process these in-order and append new calls introduced during inlining to |
| // the end. |
| // |
| // Note that this particular order of processing is actually critical to |
| // avoid very bad behaviors. Consider *highly connected* call graphs where |
| // each function contains a small amonut of code and a couple of calls to |
| // other functions. Because the LLVM inliner is fundamentally a bottom-up |
| // inliner, it can handle gracefully the fact that these all appear to be |
| // reasonable inlining candidates as it will flatten things until they become |
| // too big to inline, and then move on and flatten another batch. |
| // |
| // However, when processing call edges *within* an SCC we cannot rely on this |
| // bottom-up behavior. As a consequence, with heavily connected *SCCs* of |
| // functions we can end up incrementally inlining N calls into each of |
| // N functions because each incremental inlining decision looks good and we |
| // don't have a topological ordering to prevent explosions. |
| // |
| // To compensate for this, we don't process transitive edges made immediate |
| // by inlining until we've done one pass of inlining across the entire SCC. |
| // Large, highly connected SCCs still lead to some amount of code bloat in |
| // this model, but it is uniformly spread across all the functions in the SCC |
| // and eventually they all become too large to inline, rather than |
| // incrementally maknig a single function grow in a super linear fashion. |
| SmallVector<std::pair<CallSite, int>, 16> Calls; |
| |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG) |
| .getManager(); |
| |
| // Populate the initial list of calls in this SCC. |
| for (auto &N : InitialC) { |
| auto &ORE = |
| FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction()); |
| // We want to generally process call sites top-down in order for |
| // simplifications stemming from replacing the call with the returned value |
| // after inlining to be visible to subsequent inlining decisions. |
| // FIXME: Using instructions sequence is a really bad way to do this. |
| // Instead we should do an actual RPO walk of the function body. |
| for (Instruction &I : instructions(N.getFunction())) |
| if (auto CS = CallSite(&I)) |
| if (Function *Callee = CS.getCalledFunction()) { |
| if (!Callee->isDeclaration()) |
| Calls.push_back({CS, -1}); |
| else if (!isa<IntrinsicInst>(I)) { |
| using namespace ore; |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I) |
| << NV("Callee", Callee) << " will not be inlined into " |
| << NV("Caller", CS.getCaller()) |
| << " because its definition is unavailable" |
| << setIsVerbose(); |
| }); |
| } |
| } |
| } |
| if (Calls.empty()) |
| return PreservedAnalyses::all(); |
| |
| // Capture updatable variables for the current SCC and RefSCC. |
| auto *C = &InitialC; |
| auto *RC = &C->getOuterRefSCC(); |
| |
| // When inlining a callee produces new call sites, we want to keep track of |
| // the fact that they were inlined from the callee. This allows us to avoid |
| // infinite inlining in some obscure cases. To represent this, we use an |
| // index into the InlineHistory vector. |
| SmallVector<std::pair<Function *, int>, 16> InlineHistory; |
| |
| // Track a set vector of inlined callees so that we can augment the caller |
| // with all of their edges in the call graph before pruning out the ones that |
| // got simplified away. |
| SmallSetVector<Function *, 4> InlinedCallees; |
| |
| // Track the dead functions to delete once finished with inlining calls. We |
| // defer deleting these to make it easier to handle the call graph updates. |
| SmallVector<Function *, 4> DeadFunctions; |
| |
| // Loop forward over all of the calls. Note that we cannot cache the size as |
| // inlining can introduce new calls that need to be processed. |
| for (int i = 0; i < (int)Calls.size(); ++i) { |
| // We expect the calls to typically be batched with sequences of calls that |
| // have the same caller, so we first set up some shared infrastructure for |
| // this caller. We also do any pruning we can at this layer on the caller |
| // alone. |
| Function &F = *Calls[i].first.getCaller(); |
| LazyCallGraph::Node &N = *CG.lookup(F); |
| if (CG.lookupSCC(N) != C) |
| continue; |
| if (F.hasFnAttribute(Attribute::OptimizeNone)) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"); |
| |
| // Get a FunctionAnalysisManager via a proxy for this particular node. We |
| // do this each time we visit a node as the SCC may have changed and as |
| // we're going to mutate this particular function we want to make sure the |
| // proxy is in place to forward any invalidation events. We can use the |
| // manager we get here for looking up results for functions other than this |
| // node however because those functions aren't going to be mutated by this |
| // pass. |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG) |
| .getManager(); |
| |
| // Get the remarks emission analysis for the caller. |
| auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| |
| std::function<AssumptionCache &(Function &)> GetAssumptionCache = |
| [&](Function &F) -> AssumptionCache & { |
| return FAM.getResult<AssumptionAnalysis>(F); |
| }; |
| auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { |
| return FAM.getResult<BlockFrequencyAnalysis>(F); |
| }; |
| |
| auto GetInlineCost = [&](CallSite CS) { |
| Function &Callee = *CS.getCalledFunction(); |
| auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee); |
| return getInlineCost(CS, Params, CalleeTTI, GetAssumptionCache, {GetBFI}, |
| PSI, &ORE); |
| }; |
| |
| // Now process as many calls as we have within this caller in the sequnece. |
| // We bail out as soon as the caller has to change so we can update the |
| // call graph and prepare the context of that new caller. |
| bool DidInline = false; |
| for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) { |
| int InlineHistoryID; |
| CallSite CS; |
| std::tie(CS, InlineHistoryID) = Calls[i]; |
| Function &Callee = *CS.getCalledFunction(); |
| |
| if (InlineHistoryID != -1 && |
| InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) |
| continue; |
| |
| // Check if this inlining may repeat breaking an SCC apart that has |
| // already been split once before. In that case, inlining here may |
| // trigger infinite inlining, much like is prevented within the inliner |
| // itself by the InlineHistory above, but spread across CGSCC iterations |
| // and thus hidden from the full inline history. |
| if (CG.lookupSCC(*CG.lookup(Callee)) == C && |
| UR.InlinedInternalEdges.count({&N, C})) { |
| LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node " |
| "previously split out of this SCC by inlining: " |
| << F.getName() << " -> " << Callee.getName() << "\n"); |
| continue; |
| } |
| |
| Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE); |
| // Check whether we want to inline this callsite. |
| if (!OIC) |
| continue; |
| |
| // Setup the data structure used to plumb customization into the |
| // `InlineFunction` routine. |
| InlineFunctionInfo IFI( |
| /*cg=*/nullptr, &GetAssumptionCache, PSI, |
| &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())), |
| &FAM.getResult<BlockFrequencyAnalysis>(Callee)); |
| |
| // Get DebugLoc to report. CS will be invalid after Inliner. |
| DebugLoc DLoc = CS->getDebugLoc(); |
| BasicBlock *Block = CS.getParent(); |
| |
| using namespace ore; |
| |
| if (!InlineFunction(CS, IFI)) { |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block) |
| << NV("Callee", &Callee) << " will not be inlined into " |
| << NV("Caller", &F); |
| }); |
| continue; |
| } |
| DidInline = true; |
| InlinedCallees.insert(&Callee); |
| |
| ORE.emit([&]() { |
| bool AlwaysInline = OIC->isAlways(); |
| StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined"; |
| OptimizationRemark R(DEBUG_TYPE, RemarkName, DLoc, Block); |
| R << NV("Callee", &Callee) << " inlined into "; |
| R << NV("Caller", &F); |
| if (AlwaysInline) |
| R << " with cost=always"; |
| else { |
| R << " with cost=" << NV("Cost", OIC->getCost()); |
| R << " (threshold=" << NV("Threshold", OIC->getThreshold()); |
| R << ")"; |
| } |
| return R; |
| }); |
| |
| // Add any new callsites to defined functions to the worklist. |
| if (!IFI.InlinedCallSites.empty()) { |
| int NewHistoryID = InlineHistory.size(); |
| InlineHistory.push_back({&Callee, InlineHistoryID}); |
| for (CallSite &CS : reverse(IFI.InlinedCallSites)) |
| if (Function *NewCallee = CS.getCalledFunction()) |
| if (!NewCallee->isDeclaration()) |
| Calls.push_back({CS, NewHistoryID}); |
| } |
| |
| if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) |
| ImportedFunctionsStats->recordInline(F, Callee); |
| |
| // Merge the attributes based on the inlining. |
| AttributeFuncs::mergeAttributesForInlining(F, Callee); |
| |
| // For local functions, check whether this makes the callee trivially |
| // dead. In that case, we can drop the body of the function eagerly |
| // which may reduce the number of callers of other functions to one, |
| // changing inline cost thresholds. |
| if (Callee.hasLocalLinkage()) { |
| // To check this we also need to nuke any dead constant uses (perhaps |
| // made dead by this operation on other functions). |
| Callee.removeDeadConstantUsers(); |
| if (Callee.use_empty() && !CG.isLibFunction(Callee)) { |
| Calls.erase( |
| std::remove_if(Calls.begin() + i + 1, Calls.end(), |
| [&Callee](const std::pair<CallSite, int> &Call) { |
| return Call.first.getCaller() == &Callee; |
| }), |
| Calls.end()); |
| // Clear the body and queue the function itself for deletion when we |
| // finish inlining and call graph updates. |
| // Note that after this point, it is an error to do anything other |
| // than use the callee's address or delete it. |
| Callee.dropAllReferences(); |
| assert(find(DeadFunctions, &Callee) == DeadFunctions.end() && |
| "Cannot put cause a function to become dead twice!"); |
| DeadFunctions.push_back(&Callee); |
| } |
| } |
| } |
| |
| // Back the call index up by one to put us in a good position to go around |
| // the outer loop. |
| --i; |
| |
| if (!DidInline) |
| continue; |
| Changed = true; |
| |
| // Add all the inlined callees' edges as ref edges to the caller. These are |
| // by definition trivial edges as we always have *some* transitive ref edge |
| // chain. While in some cases these edges are direct calls inside the |
| // callee, they have to be modeled in the inliner as reference edges as |
| // there may be a reference edge anywhere along the chain from the current |
| // caller to the callee that causes the whole thing to appear like |
| // a (transitive) reference edge that will require promotion to a call edge |
| // below. |
| for (Function *InlinedCallee : InlinedCallees) { |
| LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee); |
| for (LazyCallGraph::Edge &E : *CalleeN) |
| RC->insertTrivialRefEdge(N, E.getNode()); |
| } |
| |
| // At this point, since we have made changes we have at least removed |
| // a call instruction. However, in the process we do some incremental |
| // simplification of the surrounding code. This simplification can |
| // essentially do all of the same things as a function pass and we can |
| // re-use the exact same logic for updating the call graph to reflect the |
| // change. |
| LazyCallGraph::SCC *OldC = C; |
| C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR); |
| LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n"); |
| RC = &C->getOuterRefSCC(); |
| |
| // If this causes an SCC to split apart into multiple smaller SCCs, there |
| // is a subtle risk we need to prepare for. Other transformations may |
| // expose an "infinite inlining" opportunity later, and because of the SCC |
| // mutation, we will revisit this function and potentially re-inline. If we |
| // do, and that re-inlining also has the potentially to mutate the SCC |
| // structure, the infinite inlining problem can manifest through infinite |
| // SCC splits and merges. To avoid this, we capture the originating caller |
| // node and the SCC containing the call edge. This is a slight over |
| // approximation of the possible inlining decisions that must be avoided, |
| // but is relatively efficient to store. |
| // FIXME: This seems like a very heavyweight way of retaining the inline |
| // history, we should look for a more efficient way of tracking it. |
| if (C != OldC && llvm::any_of(InlinedCallees, [&](Function *Callee) { |
| return CG.lookupSCC(*CG.lookup(*Callee)) == OldC; |
| })) { |
| LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, " |
| "retaining this to avoid infinite inlining.\n"); |
| UR.InlinedInternalEdges.insert({&N, OldC}); |
| } |
| InlinedCallees.clear(); |
| } |
| |
| // Now that we've finished inlining all of the calls across this SCC, delete |
| // all of the trivially dead functions, updating the call graph and the CGSCC |
| // pass manager in the process. |
| // |
| // Note that this walks a pointer set which has non-deterministic order but |
| // that is OK as all we do is delete things and add pointers to unordered |
| // sets. |
| for (Function *DeadF : DeadFunctions) { |
| // Get the necessary information out of the call graph and nuke the |
| // function there. Also, cclear out any cached analyses. |
| auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF)); |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG) |
| .getManager(); |
| FAM.clear(*DeadF, DeadF->getName()); |
| AM.clear(DeadC, DeadC.getName()); |
| auto &DeadRC = DeadC.getOuterRefSCC(); |
| CG.removeDeadFunction(*DeadF); |
| |
| // Mark the relevant parts of the call graph as invalid so we don't visit |
| // them. |
| UR.InvalidatedSCCs.insert(&DeadC); |
| UR.InvalidatedRefSCCs.insert(&DeadRC); |
| |
| // And delete the actual function from the module. |
| M.getFunctionList().erase(DeadF); |
| } |
| |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| // Even if we change the IR, we update the core CGSCC data structures and so |
| // can preserve the proxy to the function analysis manager. |
| PreservedAnalyses PA; |
| PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); |
| return PA; |
| } |