| //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a transformation that attaches !callees metadata to |
| // indirect call sites. For a given call site, the metadata, if present, |
| // indicates the set of functions the call site could possibly target at |
| // run-time. This metadata is added to indirect call sites when the set of |
| // possible targets can be determined by analysis and is known to be small. The |
| // analysis driving the transformation is similar to constant propagation and |
| // makes uses of the generic sparse propagation solver. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/CalledValuePropagation.h" |
| #include "llvm/Analysis/SparsePropagation.h" |
| #include "llvm/Analysis/ValueLatticeUtils.h" |
| #include "llvm/IR/InstVisitor.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/Transforms/IPO.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "called-value-propagation" |
| |
| /// The maximum number of functions to track per lattice value. Once the number |
| /// of functions a call site can possibly target exceeds this threshold, it's |
| /// lattice value becomes overdefined. The number of possible lattice values is |
| /// bounded by Ch(F, M), where F is the number of functions in the module and M |
| /// is MaxFunctionsPerValue. As such, this value should be kept very small. We |
| /// likely can't do anything useful for call sites with a large number of |
| /// possible targets, anyway. |
| static cl::opt<unsigned> MaxFunctionsPerValue( |
| "cvp-max-functions-per-value", cl::Hidden, cl::init(4), |
| cl::desc("The maximum number of functions to track per lattice value")); |
| |
| namespace { |
| /// To enable interprocedural analysis, we assign LLVM values to the following |
| /// groups. The register group represents SSA registers, the return group |
| /// represents the return values of functions, and the memory group represents |
| /// in-memory values. An LLVM Value can technically be in more than one group. |
| /// It's necessary to distinguish these groups so we can, for example, track a |
| /// global variable separately from the value stored at its location. |
| enum class IPOGrouping { Register, Return, Memory }; |
| |
| /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. |
| using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; |
| |
| /// The lattice value type used by our custom lattice function. It holds the |
| /// lattice state, and a set of functions. |
| class CVPLatticeVal { |
| public: |
| /// The states of the lattice values. Only the FunctionSet state is |
| /// interesting. It indicates the set of functions to which an LLVM value may |
| /// refer. |
| enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; |
| |
| /// Comparator for sorting the functions set. We want to keep the order |
| /// deterministic for testing, etc. |
| struct Compare { |
| bool operator()(const Function *LHS, const Function *RHS) const { |
| return LHS->getName() < RHS->getName(); |
| } |
| }; |
| |
| CVPLatticeVal() : LatticeState(Undefined) {} |
| CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} |
| CVPLatticeVal(std::vector<Function *> &&Functions) |
| : LatticeState(FunctionSet), Functions(std::move(Functions)) { |
| assert(std::is_sorted(this->Functions.begin(), this->Functions.end(), |
| Compare())); |
| } |
| |
| /// Get a reference to the functions held by this lattice value. The number |
| /// of functions will be zero for states other than FunctionSet. |
| const std::vector<Function *> &getFunctions() const { |
| return Functions; |
| } |
| |
| /// Returns true if the lattice value is in the FunctionSet state. |
| bool isFunctionSet() const { return LatticeState == FunctionSet; } |
| |
| bool operator==(const CVPLatticeVal &RHS) const { |
| return LatticeState == RHS.LatticeState && Functions == RHS.Functions; |
| } |
| |
| bool operator!=(const CVPLatticeVal &RHS) const { |
| return LatticeState != RHS.LatticeState || Functions != RHS.Functions; |
| } |
| |
| private: |
| /// Holds the state this lattice value is in. |
| CVPLatticeStateTy LatticeState; |
| |
| /// Holds functions indicating the possible targets of call sites. This set |
| /// is empty for lattice values in the undefined, overdefined, and untracked |
| /// states. The maximum size of the set is controlled by |
| /// MaxFunctionsPerValue. Since most LLVM values are expected to be in |
| /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be |
| /// small and efficiently copyable. |
| // FIXME: This could be a TinyPtrVector and/or merge with LatticeState. |
| std::vector<Function *> Functions; |
| }; |
| |
| /// The custom lattice function used by the generic sparse propagation solver. |
| /// It handles merging lattice values and computing new lattice values for |
| /// constants, arguments, values returned from trackable functions, and values |
| /// located in trackable global variables. It also computes the lattice values |
| /// that change as a result of executing instructions. |
| class CVPLatticeFunc |
| : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { |
| public: |
| CVPLatticeFunc() |
| : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), |
| CVPLatticeVal(CVPLatticeVal::Overdefined), |
| CVPLatticeVal(CVPLatticeVal::Untracked)) {} |
| |
| /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. |
| CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { |
| switch (Key.getInt()) { |
| case IPOGrouping::Register: |
| if (isa<Instruction>(Key.getPointer())) { |
| return getUndefVal(); |
| } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { |
| if (canTrackArgumentsInterprocedurally(A->getParent())) |
| return getUndefVal(); |
| } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { |
| return computeConstant(C); |
| } |
| return getOverdefinedVal(); |
| case IPOGrouping::Memory: |
| case IPOGrouping::Return: |
| if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { |
| if (canTrackGlobalVariableInterprocedurally(GV)) |
| return computeConstant(GV->getInitializer()); |
| } else if (auto *F = cast<Function>(Key.getPointer())) |
| if (canTrackReturnsInterprocedurally(F)) |
| return getUndefVal(); |
| } |
| return getOverdefinedVal(); |
| } |
| |
| /// Merge the two given lattice values. The interesting cases are merging two |
| /// FunctionSet values and a FunctionSet value with an Undefined value. For |
| /// these cases, we simply union the function sets. If the size of the union |
| /// is greater than the maximum functions we track, the merged value is |
| /// overdefined. |
| CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { |
| if (X == getOverdefinedVal() || Y == getOverdefinedVal()) |
| return getOverdefinedVal(); |
| if (X == getUndefVal() && Y == getUndefVal()) |
| return getUndefVal(); |
| std::vector<Function *> Union; |
| std::set_union(X.getFunctions().begin(), X.getFunctions().end(), |
| Y.getFunctions().begin(), Y.getFunctions().end(), |
| std::back_inserter(Union), CVPLatticeVal::Compare{}); |
| if (Union.size() > MaxFunctionsPerValue) |
| return getOverdefinedVal(); |
| return CVPLatticeVal(std::move(Union)); |
| } |
| |
| /// Compute the lattice values that change as a result of executing the given |
| /// instruction. The changed values are stored in \p ChangedValues. We handle |
| /// just a few kinds of instructions since we're only propagating values that |
| /// can be called. |
| void ComputeInstructionState( |
| Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { |
| switch (I.getOpcode()) { |
| case Instruction::Call: |
| return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); |
| case Instruction::Invoke: |
| return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); |
| case Instruction::Load: |
| return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); |
| case Instruction::Ret: |
| return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); |
| case Instruction::Select: |
| return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); |
| case Instruction::Store: |
| return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); |
| default: |
| return visitInst(I, ChangedValues, SS); |
| } |
| } |
| |
| /// Print the given CVPLatticeVal to the specified stream. |
| void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { |
| if (LV == getUndefVal()) |
| OS << "Undefined "; |
| else if (LV == getOverdefinedVal()) |
| OS << "Overdefined"; |
| else if (LV == getUntrackedVal()) |
| OS << "Untracked "; |
| else |
| OS << "FunctionSet"; |
| } |
| |
| /// Print the given CVPLatticeKey to the specified stream. |
| void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { |
| if (Key.getInt() == IPOGrouping::Register) |
| OS << "<reg> "; |
| else if (Key.getInt() == IPOGrouping::Memory) |
| OS << "<mem> "; |
| else if (Key.getInt() == IPOGrouping::Return) |
| OS << "<ret> "; |
| if (isa<Function>(Key.getPointer())) |
| OS << Key.getPointer()->getName(); |
| else |
| OS << *Key.getPointer(); |
| } |
| |
| /// We collect a set of indirect calls when visiting call sites. This method |
| /// returns a reference to that set. |
| SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } |
| |
| private: |
| /// Holds the indirect calls we encounter during the analysis. We will attach |
| /// metadata to these calls after the analysis indicating the functions the |
| /// calls can possibly target. |
| SmallPtrSet<Instruction *, 32> IndirectCalls; |
| |
| /// Compute a new lattice value for the given constant. The constant, after |
| /// stripping any pointer casts, should be a Function. We ignore null |
| /// pointers as an optimization, since calling these values is undefined |
| /// behavior. |
| CVPLatticeVal computeConstant(Constant *C) { |
| if (isa<ConstantPointerNull>(C)) |
| return CVPLatticeVal(CVPLatticeVal::FunctionSet); |
| if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) |
| return CVPLatticeVal({F}); |
| return getOverdefinedVal(); |
| } |
| |
| /// Handle return instructions. The function's return state is the merge of |
| /// the returned value state and the function's return state. |
| void visitReturn(ReturnInst &I, |
| DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| Function *F = I.getParent()->getParent(); |
| if (F->getReturnType()->isVoidTy()) |
| return; |
| auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); |
| auto RetF = CVPLatticeKey(F, IPOGrouping::Return); |
| ChangedValues[RetF] = |
| MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); |
| } |
| |
| /// Handle call sites. The state of a called function's formal arguments is |
| /// the merge of the argument state with the call sites corresponding actual |
| /// argument state. The call site state is the merge of the call site state |
| /// with the returned value state of the called function. |
| void visitCallSite(CallSite CS, |
| DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| Function *F = CS.getCalledFunction(); |
| Instruction *I = CS.getInstruction(); |
| auto RegI = CVPLatticeKey(I, IPOGrouping::Register); |
| |
| // If this is an indirect call, save it so we can quickly revisit it when |
| // attaching metadata. |
| if (!F) |
| IndirectCalls.insert(I); |
| |
| // If we can't track the function's return values, there's nothing to do. |
| if (!F || !canTrackReturnsInterprocedurally(F)) { |
| // Void return, No need to create and update CVPLattice state as no one |
| // can use it. |
| if (I->getType()->isVoidTy()) |
| return; |
| ChangedValues[RegI] = getOverdefinedVal(); |
| return; |
| } |
| |
| // Inform the solver that the called function is executable, and perform |
| // the merges for the arguments and return value. |
| SS.MarkBlockExecutable(&F->front()); |
| auto RetF = CVPLatticeKey(F, IPOGrouping::Return); |
| for (Argument &A : F->args()) { |
| auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); |
| auto RegActual = |
| CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); |
| ChangedValues[RegFormal] = |
| MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); |
| } |
| |
| // Void return, No need to create and update CVPLattice state as no one can |
| // use it. |
| if (I->getType()->isVoidTy()) |
| return; |
| |
| ChangedValues[RegI] = |
| MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); |
| } |
| |
| /// Handle select instructions. The select instruction state is the merge the |
| /// true and false value states. |
| void visitSelect(SelectInst &I, |
| DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); |
| auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); |
| auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); |
| ChangedValues[RegI] = |
| MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); |
| } |
| |
| /// Handle load instructions. If the pointer operand of the load is a global |
| /// variable, we attempt to track the value. The loaded value state is the |
| /// merge of the loaded value state with the global variable state. |
| void visitLoad(LoadInst &I, |
| DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); |
| if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { |
| auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); |
| ChangedValues[RegI] = |
| MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); |
| } else { |
| ChangedValues[RegI] = getOverdefinedVal(); |
| } |
| } |
| |
| /// Handle store instructions. If the pointer operand of the store is a |
| /// global variable, we attempt to track the value. The global variable state |
| /// is the merge of the stored value state with the global variable state. |
| void visitStore(StoreInst &I, |
| DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); |
| if (!GV) |
| return; |
| auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); |
| auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); |
| ChangedValues[MemGV] = |
| MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); |
| } |
| |
| /// Handle all other instructions. All other instructions are marked |
| /// overdefined. |
| void visitInst(Instruction &I, |
| DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); |
| ChangedValues[RegI] = getOverdefinedVal(); |
| } |
| }; |
| } // namespace |
| |
| namespace llvm { |
| /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver |
| /// must translate between LatticeKeys and LLVM Values when adding Values to |
| /// its work list and inspecting the state of control-flow related values. |
| template <> struct LatticeKeyInfo<CVPLatticeKey> { |
| static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { |
| return Key.getPointer(); |
| } |
| static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { |
| return CVPLatticeKey(V, IPOGrouping::Register); |
| } |
| }; |
| } // namespace llvm |
| |
| static bool runCVP(Module &M) { |
| // Our custom lattice function and generic sparse propagation solver. |
| CVPLatticeFunc Lattice; |
| SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); |
| |
| // For each function in the module, if we can't track its arguments, let the |
| // generic solver assume it is executable. |
| for (Function &F : M) |
| if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) |
| Solver.MarkBlockExecutable(&F.front()); |
| |
| // Solver our custom lattice. In doing so, we will also build a set of |
| // indirect call sites. |
| Solver.Solve(); |
| |
| // Attach metadata to the indirect call sites that were collected indicating |
| // the set of functions they can possibly target. |
| bool Changed = false; |
| MDBuilder MDB(M.getContext()); |
| for (Instruction *C : Lattice.getIndirectCalls()) { |
| CallSite CS(C); |
| auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); |
| CVPLatticeVal LV = Solver.getExistingValueState(RegI); |
| if (!LV.isFunctionSet() || LV.getFunctions().empty()) |
| continue; |
| MDNode *Callees = MDB.createCallees(LV.getFunctions()); |
| C->setMetadata(LLVMContext::MD_callees, Callees); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| PreservedAnalyses CalledValuePropagationPass::run(Module &M, |
| ModuleAnalysisManager &) { |
| runCVP(M); |
| return PreservedAnalyses::all(); |
| } |
| |
| namespace { |
| class CalledValuePropagationLegacyPass : public ModulePass { |
| public: |
| static char ID; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesAll(); |
| } |
| |
| CalledValuePropagationLegacyPass() : ModulePass(ID) { |
| initializeCalledValuePropagationLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnModule(Module &M) override { |
| if (skipModule(M)) |
| return false; |
| return runCVP(M); |
| } |
| }; |
| } // namespace |
| |
| char CalledValuePropagationLegacyPass::ID = 0; |
| INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", |
| "Called Value Propagation", false, false) |
| |
| ModulePass *llvm::createCalledValuePropagationPass() { |
| return new CalledValuePropagationLegacyPass(); |
| } |