| // Copyright 2016 The SwiftShader Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "LLVMReactor.hpp" |
| |
| #include "CPUID.hpp" |
| #include "Debug.hpp" |
| #include "EmulatedIntrinsics.hpp" |
| #include "LLVMReactorDebugInfo.hpp" |
| #include "Print.hpp" |
| #include "Reactor.hpp" |
| #include "x86.hpp" |
| |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Transforms/Coroutines.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/Scalar.h" |
| |
| #include <fstream> |
| #include <iostream> |
| #include <mutex> |
| #include <numeric> |
| #include <thread> |
| #include <unordered_map> |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| # include <xmmintrin.h> |
| #endif |
| |
| #include <math.h> |
| |
| #if defined(__x86_64__) && defined(_WIN32) |
| extern "C" void X86CompilationCallback() |
| { |
| UNIMPLEMENTED_NO_BUG("X86CompilationCallback"); |
| } |
| #endif |
| |
| #if !LLVM_ENABLE_THREADS |
| # error "LLVM_ENABLE_THREADS needs to be enabled" |
| #endif |
| |
| #if LLVM_VERSION_MAJOR < 11 |
| namespace llvm { |
| using FixedVectorType = VectorType; |
| } // namespace llvm |
| #endif |
| |
| namespace { |
| |
| // Used to automatically invoke llvm_shutdown() when driver is unloaded |
| llvm::llvm_shutdown_obj llvmShutdownObj; |
| |
| // This has to be a raw pointer because glibc 2.17 doesn't support __cxa_thread_atexit_impl |
| // for destructing objects at exit. See crbug.com/1074222 |
| thread_local rr::JITBuilder *jit = nullptr; |
| |
| // Default configuration settings. Must be accessed under mutex lock. |
| std::mutex defaultConfigLock; |
| rr::Config &defaultConfig() |
| { |
| // This uses a static in a function to avoid the cost of a global static |
| // initializer. See http://neugierig.org/software/chromium/notes/2011/08/static-initializers.html |
| static rr::Config config = rr::Config::Edit() |
| .add(rr::Optimization::Pass::ScalarReplAggregates) |
| .add(rr::Optimization::Pass::InstructionCombining) |
| .apply({}); |
| return config; |
| } |
| |
| llvm::Value *lowerPAVG(llvm::Value *x, llvm::Value *y) |
| { |
| llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); |
| |
| llvm::VectorType *extTy = |
| llvm::VectorType::getExtendedElementVectorType(ty); |
| x = jit->builder->CreateZExt(x, extTy); |
| y = jit->builder->CreateZExt(y, extTy); |
| |
| // (x + y + 1) >> 1 |
| llvm::Constant *one = llvm::ConstantInt::get(extTy, 1); |
| llvm::Value *res = jit->builder->CreateAdd(x, y); |
| res = jit->builder->CreateAdd(res, one); |
| res = jit->builder->CreateLShr(res, one); |
| return jit->builder->CreateTrunc(res, ty); |
| } |
| |
| llvm::Value *lowerPMINMAX(llvm::Value *x, llvm::Value *y, |
| llvm::ICmpInst::Predicate pred) |
| { |
| return jit->builder->CreateSelect(jit->builder->CreateICmp(pred, x, y), x, y); |
| } |
| |
| llvm::Value *lowerPCMP(llvm::ICmpInst::Predicate pred, llvm::Value *x, |
| llvm::Value *y, llvm::Type *dstTy) |
| { |
| return jit->builder->CreateSExt(jit->builder->CreateICmp(pred, x, y), dstTy, ""); |
| } |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| llvm::Value *lowerPMOV(llvm::Value *op, llvm::Type *dstType, bool sext) |
| { |
| llvm::VectorType *srcTy = llvm::cast<llvm::VectorType>(op->getType()); |
| llvm::FixedVectorType *dstTy = llvm::cast<llvm::FixedVectorType>(dstType); |
| |
| llvm::Value *undef = llvm::UndefValue::get(srcTy); |
| llvm::SmallVector<uint32_t, 16> mask(dstTy->getNumElements()); |
| std::iota(mask.begin(), mask.end(), 0); |
| llvm::Value *v = jit->builder->CreateShuffleVector(op, undef, mask); |
| |
| return sext ? jit->builder->CreateSExt(v, dstTy) |
| : jit->builder->CreateZExt(v, dstTy); |
| } |
| |
| llvm::Value *lowerPABS(llvm::Value *v) |
| { |
| llvm::Value *zero = llvm::Constant::getNullValue(v->getType()); |
| llvm::Value *cmp = jit->builder->CreateICmp(llvm::ICmpInst::ICMP_SGT, v, zero); |
| llvm::Value *neg = jit->builder->CreateNeg(v); |
| return jit->builder->CreateSelect(cmp, v, neg); |
| } |
| #endif // defined(__i386__) || defined(__x86_64__) |
| |
| #if !defined(__i386__) && !defined(__x86_64__) |
| llvm::Value *lowerPFMINMAX(llvm::Value *x, llvm::Value *y, |
| llvm::FCmpInst::Predicate pred) |
| { |
| return jit->builder->CreateSelect(jit->builder->CreateFCmp(pred, x, y), x, y); |
| } |
| |
| llvm::Value *lowerRound(llvm::Value *x) |
| { |
| llvm::Function *nearbyint = llvm::Intrinsic::getDeclaration( |
| jit->module.get(), llvm::Intrinsic::nearbyint, { x->getType() }); |
| return jit->builder->CreateCall(nearbyint, { x }); |
| } |
| |
| llvm::Value *lowerRoundInt(llvm::Value *x, llvm::Type *ty) |
| { |
| return jit->builder->CreateFPToSI(lowerRound(x), ty); |
| } |
| |
| llvm::Value *lowerFloor(llvm::Value *x) |
| { |
| llvm::Function *floor = llvm::Intrinsic::getDeclaration( |
| jit->module.get(), llvm::Intrinsic::floor, { x->getType() }); |
| return jit->builder->CreateCall(floor, { x }); |
| } |
| |
| llvm::Value *lowerTrunc(llvm::Value *x) |
| { |
| llvm::Function *trunc = llvm::Intrinsic::getDeclaration( |
| jit->module.get(), llvm::Intrinsic::trunc, { x->getType() }); |
| return jit->builder->CreateCall(trunc, { x }); |
| } |
| |
| llvm::Value *lowerSQRT(llvm::Value *x) |
| { |
| llvm::Function *sqrt = llvm::Intrinsic::getDeclaration( |
| jit->module.get(), llvm::Intrinsic::sqrt, { x->getType() }); |
| return jit->builder->CreateCall(sqrt, { x }); |
| } |
| |
| llvm::Value *lowerRCP(llvm::Value *x) |
| { |
| llvm::Type *ty = x->getType(); |
| llvm::Constant *one; |
| if(llvm::FixedVectorType *vectorTy = llvm::dyn_cast<llvm::FixedVectorType>(ty)) |
| { |
| one = llvm::ConstantVector::getSplat( |
| # if LLVM_VERSION_MAJOR >= 11 |
| vectorTy->getElementCount(), |
| # else |
| vectorTy->getNumElements(), |
| # endif |
| llvm::ConstantFP::get(vectorTy->getElementType(), 1)); |
| } |
| else |
| { |
| one = llvm::ConstantFP::get(ty, 1); |
| } |
| return jit->builder->CreateFDiv(one, x); |
| } |
| |
| llvm::Value *lowerRSQRT(llvm::Value *x) |
| { |
| return lowerRCP(lowerSQRT(x)); |
| } |
| |
| llvm::Value *lowerVectorShl(llvm::Value *x, uint64_t scalarY) |
| { |
| llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); |
| llvm::Value *y = llvm::ConstantVector::getSplat( |
| # if LLVM_VERSION_MAJOR >= 11 |
| ty->getElementCount(), |
| # else |
| ty->getNumElements(), |
| # endif |
| llvm::ConstantInt::get(ty->getElementType(), scalarY)); |
| return jit->builder->CreateShl(x, y); |
| } |
| |
| llvm::Value *lowerVectorAShr(llvm::Value *x, uint64_t scalarY) |
| { |
| llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); |
| llvm::Value *y = llvm::ConstantVector::getSplat( |
| # if LLVM_VERSION_MAJOR >= 11 |
| ty->getElementCount(), |
| # else |
| ty->getNumElements(), |
| # endif |
| llvm::ConstantInt::get(ty->getElementType(), scalarY)); |
| return jit->builder->CreateAShr(x, y); |
| } |
| |
| llvm::Value *lowerVectorLShr(llvm::Value *x, uint64_t scalarY) |
| { |
| llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); |
| llvm::Value *y = llvm::ConstantVector::getSplat( |
| # if LLVM_VERSION_MAJOR >= 11 |
| ty->getElementCount(), |
| # else |
| ty->getNumElements(), |
| # endif |
| llvm::ConstantInt::get(ty->getElementType(), scalarY)); |
| return jit->builder->CreateLShr(x, y); |
| } |
| |
| llvm::Value *lowerMulAdd(llvm::Value *x, llvm::Value *y) |
| { |
| llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); |
| llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty); |
| |
| llvm::Value *extX = jit->builder->CreateSExt(x, extTy); |
| llvm::Value *extY = jit->builder->CreateSExt(y, extTy); |
| llvm::Value *mult = jit->builder->CreateMul(extX, extY); |
| |
| llvm::Value *undef = llvm::UndefValue::get(extTy); |
| |
| llvm::SmallVector<uint32_t, 16> evenIdx; |
| llvm::SmallVector<uint32_t, 16> oddIdx; |
| for(uint64_t i = 0, n = ty->getNumElements(); i < n; i += 2) |
| { |
| evenIdx.push_back(i); |
| oddIdx.push_back(i + 1); |
| } |
| |
| llvm::Value *lhs = jit->builder->CreateShuffleVector(mult, undef, evenIdx); |
| llvm::Value *rhs = jit->builder->CreateShuffleVector(mult, undef, oddIdx); |
| return jit->builder->CreateAdd(lhs, rhs); |
| } |
| |
| llvm::Value *lowerPack(llvm::Value *x, llvm::Value *y, bool isSigned) |
| { |
| llvm::FixedVectorType *srcTy = llvm::cast<llvm::FixedVectorType>(x->getType()); |
| llvm::VectorType *dstTy = llvm::VectorType::getTruncatedElementVectorType(srcTy); |
| |
| llvm::IntegerType *dstElemTy = |
| llvm::cast<llvm::IntegerType>(dstTy->getElementType()); |
| |
| uint64_t truncNumBits = dstElemTy->getIntegerBitWidth(); |
| ASSERT_MSG(truncNumBits < 64, "shift 64 must be handled separately. truncNumBits: %d", int(truncNumBits)); |
| llvm::Constant *max, *min; |
| if(isSigned) |
| { |
| max = llvm::ConstantInt::get(srcTy, (1LL << (truncNumBits - 1)) - 1, true); |
| min = llvm::ConstantInt::get(srcTy, (-1LL << (truncNumBits - 1)), true); |
| } |
| else |
| { |
| max = llvm::ConstantInt::get(srcTy, (1ULL << truncNumBits) - 1, false); |
| min = llvm::ConstantInt::get(srcTy, 0, false); |
| } |
| |
| x = lowerPMINMAX(x, min, llvm::ICmpInst::ICMP_SGT); |
| x = lowerPMINMAX(x, max, llvm::ICmpInst::ICMP_SLT); |
| y = lowerPMINMAX(y, min, llvm::ICmpInst::ICMP_SGT); |
| y = lowerPMINMAX(y, max, llvm::ICmpInst::ICMP_SLT); |
| |
| x = jit->builder->CreateTrunc(x, dstTy); |
| y = jit->builder->CreateTrunc(y, dstTy); |
| |
| llvm::SmallVector<uint32_t, 16> index(srcTy->getNumElements() * 2); |
| std::iota(index.begin(), index.end(), 0); |
| |
| return jit->builder->CreateShuffleVector(x, y, index); |
| } |
| |
| llvm::Value *lowerSignMask(llvm::Value *x, llvm::Type *retTy) |
| { |
| llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); |
| llvm::Constant *zero = llvm::ConstantInt::get(ty, 0); |
| llvm::Value *cmp = jit->builder->CreateICmpSLT(x, zero); |
| |
| llvm::Value *ret = jit->builder->CreateZExt( |
| jit->builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy); |
| for(uint64_t i = 1, n = ty->getNumElements(); i < n; ++i) |
| { |
| llvm::Value *elem = jit->builder->CreateZExt( |
| jit->builder->CreateExtractElement(cmp, i), retTy); |
| ret = jit->builder->CreateOr(ret, jit->builder->CreateShl(elem, i)); |
| } |
| return ret; |
| } |
| |
| llvm::Value *lowerFPSignMask(llvm::Value *x, llvm::Type *retTy) |
| { |
| llvm::FixedVectorType *ty = llvm::cast<llvm::FixedVectorType>(x->getType()); |
| llvm::Constant *zero = llvm::ConstantFP::get(ty, 0); |
| llvm::Value *cmp = jit->builder->CreateFCmpULT(x, zero); |
| |
| llvm::Value *ret = jit->builder->CreateZExt( |
| jit->builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy); |
| for(uint64_t i = 1, n = ty->getNumElements(); i < n; ++i) |
| { |
| llvm::Value *elem = jit->builder->CreateZExt( |
| jit->builder->CreateExtractElement(cmp, i), retTy); |
| ret = jit->builder->CreateOr(ret, jit->builder->CreateShl(elem, i)); |
| } |
| return ret; |
| } |
| #endif // !defined(__i386__) && !defined(__x86_64__) |
| |
| llvm::Value *lowerPUADDSAT(llvm::Value *x, llvm::Value *y) |
| { |
| return jit->builder->CreateBinaryIntrinsic(llvm::Intrinsic::uadd_sat, x, y); |
| } |
| |
| llvm::Value *lowerPSADDSAT(llvm::Value *x, llvm::Value *y) |
| { |
| return jit->builder->CreateBinaryIntrinsic(llvm::Intrinsic::sadd_sat, x, y); |
| } |
| |
| llvm::Value *lowerPUSUBSAT(llvm::Value *x, llvm::Value *y) |
| { |
| return jit->builder->CreateBinaryIntrinsic(llvm::Intrinsic::usub_sat, x, y); |
| } |
| |
| llvm::Value *lowerPSSUBSAT(llvm::Value *x, llvm::Value *y) |
| { |
| return jit->builder->CreateBinaryIntrinsic(llvm::Intrinsic::ssub_sat, x, y); |
| } |
| |
| llvm::Value *lowerMulHigh(llvm::Value *x, llvm::Value *y, bool sext) |
| { |
| llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); |
| llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty); |
| |
| llvm::Value *extX, *extY; |
| if(sext) |
| { |
| extX = jit->builder->CreateSExt(x, extTy); |
| extY = jit->builder->CreateSExt(y, extTy); |
| } |
| else |
| { |
| extX = jit->builder->CreateZExt(x, extTy); |
| extY = jit->builder->CreateZExt(y, extTy); |
| } |
| |
| llvm::Value *mult = jit->builder->CreateMul(extX, extY); |
| |
| llvm::IntegerType *intTy = llvm::cast<llvm::IntegerType>(ty->getElementType()); |
| llvm::Value *mulh = jit->builder->CreateAShr(mult, intTy->getBitWidth()); |
| return jit->builder->CreateTrunc(mulh, ty); |
| } |
| |
| } // namespace |
| |
| namespace rr { |
| |
| std::string BackendName() |
| { |
| return std::string("LLVM ") + LLVM_VERSION_STRING; |
| } |
| |
| const Capabilities Caps = { |
| true, // CoroutinesSupported |
| }; |
| |
| // The abstract Type* types are implemented as LLVM types, except that |
| // 64-bit vectors are emulated using 128-bit ones to avoid use of MMX in x86 |
| // and VFP in ARM, and eliminate the overhead of converting them to explicit |
| // 128-bit ones. LLVM types are pointers, so we can represent emulated types |
| // as abstract pointers with small enum values. |
| enum InternalType : uintptr_t |
| { |
| // Emulated types: |
| Type_v2i32, |
| Type_v4i16, |
| Type_v2i16, |
| Type_v8i8, |
| Type_v4i8, |
| Type_v2f32, |
| EmulatedTypeCount, |
| // Returned by asInternalType() to indicate that the abstract Type* |
| // should be interpreted as LLVM type pointer: |
| Type_LLVM |
| }; |
| |
| inline InternalType asInternalType(Type *type) |
| { |
| InternalType t = static_cast<InternalType>(reinterpret_cast<uintptr_t>(type)); |
| return (t < EmulatedTypeCount) ? t : Type_LLVM; |
| } |
| |
| llvm::Type *T(Type *t) |
| { |
| // Use 128-bit vectors to implement logically shorter ones. |
| switch(asInternalType(t)) |
| { |
| case Type_v2i32: return T(Int4::type()); |
| case Type_v4i16: return T(Short8::type()); |
| case Type_v2i16: return T(Short8::type()); |
| case Type_v8i8: return T(Byte16::type()); |
| case Type_v4i8: return T(Byte16::type()); |
| case Type_v2f32: return T(Float4::type()); |
| case Type_LLVM: return reinterpret_cast<llvm::Type *>(t); |
| default: |
| UNREACHABLE("asInternalType(t): %d", int(asInternalType(t))); |
| return nullptr; |
| } |
| } |
| |
| Type *T(InternalType t) |
| { |
| return reinterpret_cast<Type *>(t); |
| } |
| |
| inline const std::vector<llvm::Type *> &T(const std::vector<Type *> &t) |
| { |
| return reinterpret_cast<const std::vector<llvm::Type *> &>(t); |
| } |
| |
| inline llvm::BasicBlock *B(BasicBlock *t) |
| { |
| return reinterpret_cast<llvm::BasicBlock *>(t); |
| } |
| |
| inline BasicBlock *B(llvm::BasicBlock *t) |
| { |
| return reinterpret_cast<BasicBlock *>(t); |
| } |
| |
| static size_t typeSize(Type *type) |
| { |
| switch(asInternalType(type)) |
| { |
| case Type_v2i32: return 8; |
| case Type_v4i16: return 8; |
| case Type_v2i16: return 4; |
| case Type_v8i8: return 8; |
| case Type_v4i8: return 4; |
| case Type_v2f32: return 8; |
| case Type_LLVM: |
| { |
| llvm::Type *t = T(type); |
| |
| if(t->isPointerTy()) |
| { |
| return sizeof(void *); |
| } |
| |
| // At this point we should only have LLVM 'primitive' types. |
| unsigned int bits = t->getPrimitiveSizeInBits(); |
| ASSERT_MSG(bits != 0, "bits: %d", int(bits)); |
| |
| // TODO(capn): Booleans are 1 bit integers in LLVM's SSA type system, |
| // but are typically stored as one byte. The DataLayout structure should |
| // be used here and many other places if this assumption fails. |
| return (bits + 7) / 8; |
| } |
| break; |
| default: |
| UNREACHABLE("asInternalType(type): %d", int(asInternalType(type))); |
| return 0; |
| } |
| } |
| |
| static unsigned int elementCount(Type *type) |
| { |
| switch(asInternalType(type)) |
| { |
| case Type_v2i32: return 2; |
| case Type_v4i16: return 4; |
| case Type_v2i16: return 2; |
| case Type_v8i8: return 8; |
| case Type_v4i8: return 4; |
| case Type_v2f32: return 2; |
| case Type_LLVM: return llvm::cast<llvm::FixedVectorType>(T(type))->getNumElements(); |
| default: |
| UNREACHABLE("asInternalType(type): %d", int(asInternalType(type))); |
| return 0; |
| } |
| } |
| |
| static llvm::Function *createFunction(const char *name, llvm::Type *retTy, const std::vector<llvm::Type *> ¶ms) |
| { |
| llvm::FunctionType *functionType = llvm::FunctionType::get(retTy, params, false); |
| auto func = llvm::Function::Create(functionType, llvm::GlobalValue::InternalLinkage, name, jit->module.get()); |
| |
| func->setLinkage(llvm::GlobalValue::ExternalLinkage); |
| func->setDoesNotThrow(); |
| func->setCallingConv(llvm::CallingConv::C); |
| |
| if(__has_feature(memory_sanitizer)) |
| { |
| func->addFnAttr(llvm::Attribute::SanitizeMemory); |
| } |
| |
| return func; |
| } |
| |
| Nucleus::Nucleus() |
| { |
| #if !__has_feature(memory_sanitizer) |
| // thread_local variables in shared libraries are initialized at load-time, |
| // but this is not observed by MemorySanitizer if the loader itself was not |
| // instrumented, leading to false-positive uninitialized variable errors. |
| ASSERT(jit == nullptr); |
| ASSERT(Variable::unmaterializedVariables == nullptr); |
| #endif |
| |
| jit = new JITBuilder(Nucleus::getDefaultConfig()); |
| Variable::unmaterializedVariables = new Variable::UnmaterializedVariables(); |
| } |
| |
| Nucleus::~Nucleus() |
| { |
| delete Variable::unmaterializedVariables; |
| Variable::unmaterializedVariables = nullptr; |
| |
| delete jit; |
| jit = nullptr; |
| } |
| |
| void Nucleus::setDefaultConfig(const Config &cfg) |
| { |
| std::unique_lock<std::mutex> lock(::defaultConfigLock); |
| ::defaultConfig() = cfg; |
| } |
| |
| void Nucleus::adjustDefaultConfig(const Config::Edit &cfgEdit) |
| { |
| std::unique_lock<std::mutex> lock(::defaultConfigLock); |
| auto &config = ::defaultConfig(); |
| config = cfgEdit.apply(config); |
| } |
| |
| Config Nucleus::getDefaultConfig() |
| { |
| std::unique_lock<std::mutex> lock(::defaultConfigLock); |
| return ::defaultConfig(); |
| } |
| |
| std::shared_ptr<Routine> Nucleus::acquireRoutine(const char *name, const Config::Edit &cfgEdit /* = Config::Edit::None */) |
| { |
| if(jit->builder->GetInsertBlock()->empty() || !jit->builder->GetInsertBlock()->back().isTerminator()) |
| { |
| llvm::Type *type = jit->function->getReturnType(); |
| |
| if(type->isVoidTy()) |
| { |
| createRetVoid(); |
| } |
| else |
| { |
| createRet(V(llvm::UndefValue::get(type))); |
| } |
| } |
| |
| std::shared_ptr<Routine> routine; |
| |
| auto acquire = [&](rr::JITBuilder *jit) { |
| // ::jit is thread-local, so when this is executed on a separate thread (see JIT_IN_SEPARATE_THREAD) |
| // it needs to only use the jit variable passed in as an argument. |
| |
| auto cfg = cfgEdit.apply(jit->config); |
| |
| #ifdef ENABLE_RR_DEBUG_INFO |
| if(jit->debugInfo != nullptr) |
| { |
| jit->debugInfo->Finalize(); |
| } |
| #endif // ENABLE_RR_DEBUG_INFO |
| |
| if(false) |
| { |
| std::error_code error; |
| llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-unopt.txt", error); |
| jit->module->print(file, 0); |
| } |
| |
| #if defined(ENABLE_RR_LLVM_IR_VERIFICATION) || !defined(NDEBUG) |
| { |
| llvm::legacy::PassManager pm; |
| pm.add(llvm::createVerifierPass()); |
| pm.run(*jit->module); |
| } |
| #endif // defined(ENABLE_RR_LLVM_IR_VERIFICATION) || !defined(NDEBUG) |
| |
| jit->optimize(cfg); |
| |
| if(false) |
| { |
| std::error_code error; |
| llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-opt.txt", error); |
| jit->module->print(file, 0); |
| } |
| |
| routine = jit->acquireRoutine(name, &jit->function, 1, cfg); |
| }; |
| |
| #ifdef JIT_IN_SEPARATE_THREAD |
| // Perform optimizations and codegen in a separate thread to avoid stack overflow. |
| // FIXME(b/149829034): This is not a long-term solution. Reactor has no control |
| // over the threading and stack sizes of its users, so this should be addressed |
| // at a higher level instead. |
| std::thread thread(acquire, jit); |
| thread.join(); |
| #else |
| acquire(jit); |
| #endif |
| |
| return routine; |
| } |
| |
| Value *Nucleus::allocateStackVariable(Type *type, int arraySize) |
| { |
| // Need to allocate it in the entry block for mem2reg to work |
| llvm::BasicBlock &entryBlock = jit->function->getEntryBlock(); |
| |
| llvm::Instruction *declaration; |
| |
| #if LLVM_VERSION_MAJOR >= 11 |
| auto align = jit->module->getDataLayout().getPrefTypeAlign(T(type)); |
| #else |
| auto align = llvm::MaybeAlign(jit->module->getDataLayout().getPrefTypeAlignment(T(type))); |
| #endif |
| |
| if(arraySize) |
| { |
| Value *size = (sizeof(size_t) == 8) ? Nucleus::createConstantLong(arraySize) : Nucleus::createConstantInt(arraySize); |
| declaration = new llvm::AllocaInst(T(type), 0, V(size), align); |
| } |
| else |
| { |
| declaration = new llvm::AllocaInst(T(type), 0, (llvm::Value *)nullptr, align); |
| } |
| |
| entryBlock.getInstList().push_front(declaration); |
| |
| return V(declaration); |
| } |
| |
| BasicBlock *Nucleus::createBasicBlock() |
| { |
| return B(llvm::BasicBlock::Create(*jit->context, "", jit->function)); |
| } |
| |
| BasicBlock *Nucleus::getInsertBlock() |
| { |
| return B(jit->builder->GetInsertBlock()); |
| } |
| |
| void Nucleus::setInsertBlock(BasicBlock *basicBlock) |
| { |
| // assert(jit->builder->GetInsertBlock()->back().isTerminator()); |
| |
| jit->builder->SetInsertPoint(B(basicBlock)); |
| } |
| |
| void Nucleus::createFunction(Type *ReturnType, const std::vector<Type *> &Params) |
| { |
| jit->function = rr::createFunction("", T(ReturnType), T(Params)); |
| |
| #ifdef ENABLE_RR_DEBUG_INFO |
| jit->debugInfo = std::make_unique<DebugInfo>(jit->builder.get(), jit->context.get(), jit->module.get(), jit->function); |
| #endif // ENABLE_RR_DEBUG_INFO |
| |
| jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "", jit->function)); |
| } |
| |
| Value *Nucleus::getArgument(unsigned int index) |
| { |
| llvm::Function::arg_iterator args = jit->function->arg_begin(); |
| |
| while(index) |
| { |
| args++; |
| index--; |
| } |
| |
| return V(&*args); |
| } |
| |
| void Nucleus::createRetVoid() |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| ASSERT_MSG(jit->function->getReturnType() == T(Void::type()), "Return type mismatch"); |
| |
| // Code generated after this point is unreachable, so any variables |
| // being read can safely return an undefined value. We have to avoid |
| // materializing variables after the terminator ret instruction. |
| Variable::killUnmaterialized(); |
| |
| jit->builder->CreateRetVoid(); |
| } |
| |
| void Nucleus::createRet(Value *v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| ASSERT_MSG(jit->function->getReturnType() == V(v)->getType(), "Return type mismatch"); |
| |
| // Code generated after this point is unreachable, so any variables |
| // being read can safely return an undefined value. We have to avoid |
| // materializing variables after the terminator ret instruction. |
| Variable::killUnmaterialized(); |
| |
| jit->builder->CreateRet(V(v)); |
| } |
| |
| void Nucleus::createBr(BasicBlock *dest) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Variable::materializeAll(); |
| |
| jit->builder->CreateBr(B(dest)); |
| } |
| |
| void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Variable::materializeAll(); |
| jit->builder->CreateCondBr(V(cond), B(ifTrue), B(ifFalse)); |
| } |
| |
| Value *Nucleus::createAdd(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAdd(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createSub(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateSub(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createMul(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateMul(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createUDiv(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateUDiv(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createSDiv(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateSDiv(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFAdd(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFAdd(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFSub(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFSub(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFMul(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFMul(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFDiv(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFDiv(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createURem(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateURem(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createSRem(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateSRem(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFRem(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFRem(V(lhs), V(rhs))); |
| } |
| |
| RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs) |
| { |
| return RValue<Float4>(Nucleus::createFRem(lhs.value(), rhs.value())); |
| } |
| |
| Value *Nucleus::createShl(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateShl(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createLShr(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateLShr(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createAShr(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAShr(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createAnd(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAnd(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createOr(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateOr(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createXor(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateXor(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createNeg(Value *v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateNeg(V(v))); |
| } |
| |
| Value *Nucleus::createFNeg(Value *v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFNeg(V(v))); |
| } |
| |
| Value *Nucleus::createNot(Value *v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateNot(V(v))); |
| } |
| |
| Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int alignment, bool atomic, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| switch(asInternalType(type)) |
| { |
| case Type_v2i32: |
| case Type_v4i16: |
| case Type_v8i8: |
| case Type_v2f32: |
| return createBitCast( |
| createInsertElement( |
| V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::type()), 2, false))), |
| createLoad(createBitCast(ptr, Pointer<Long>::type()), Long::type(), isVolatile, alignment, atomic, memoryOrder), |
| 0), |
| type); |
| case Type_v2i16: |
| case Type_v4i8: |
| if(alignment != 0) // Not a local variable (all vectors are 128-bit). |
| { |
| Value *u = V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::type()), 2, false))); |
| Value *i = createLoad(createBitCast(ptr, Pointer<Int>::type()), Int::type(), isVolatile, alignment, atomic, memoryOrder); |
| i = createZExt(i, Long::type()); |
| Value *v = createInsertElement(u, i, 0); |
| return createBitCast(v, type); |
| } |
| // Fallthrough to non-emulated case. |
| case Type_LLVM: |
| { |
| auto elTy = T(type); |
| ASSERT(V(ptr)->getType()->getContainedType(0) == elTy); |
| |
| if(!atomic) |
| { |
| return V(jit->builder->CreateAlignedLoad(V(ptr), llvm::MaybeAlign(alignment), isVolatile)); |
| } |
| else if(elTy->isIntegerTy() || elTy->isPointerTy()) |
| { |
| // Integers and pointers can be atomically loaded by setting |
| // the ordering constraint on the load instruction. |
| auto load = jit->builder->CreateAlignedLoad(V(ptr), llvm::MaybeAlign(alignment), isVolatile); |
| load->setAtomic(atomicOrdering(atomic, memoryOrder)); |
| return V(load); |
| } |
| else if(elTy->isFloatTy() || elTy->isDoubleTy()) |
| { |
| // LLVM claims to support atomic loads of float types as |
| // above, but certain backends cannot deal with this. |
| // Load as an integer and bitcast. See b/136037244. |
| auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); |
| auto elAsIntTy = llvm::IntegerType::get(*jit->context, size * 8); |
| auto ptrCast = jit->builder->CreatePointerCast(V(ptr), elAsIntTy->getPointerTo()); |
| auto load = jit->builder->CreateAlignedLoad(ptrCast, llvm::MaybeAlign(alignment), isVolatile); |
| load->setAtomic(atomicOrdering(atomic, memoryOrder)); |
| auto loadCast = jit->builder->CreateBitCast(load, elTy); |
| return V(loadCast); |
| } |
| else |
| { |
| // More exotic types require falling back to the extern: |
| // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) |
| auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); |
| auto intTy = llvm::IntegerType::get(*jit->context, sizeof(int) * 8); |
| auto i8Ty = llvm::Type::getInt8Ty(*jit->context); |
| auto i8PtrTy = i8Ty->getPointerTo(); |
| auto voidTy = llvm::Type::getVoidTy(*jit->context); |
| auto funcTy = llvm::FunctionType::get(voidTy, { sizetTy, i8PtrTy, i8PtrTy, intTy }, false); |
| auto func = jit->module->getOrInsertFunction("__atomic_load", funcTy); |
| auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); |
| auto out = allocateStackVariable(type); |
| jit->builder->CreateCall(func, { |
| llvm::ConstantInt::get(sizetTy, size), |
| jit->builder->CreatePointerCast(V(ptr), i8PtrTy), |
| jit->builder->CreatePointerCast(V(out), i8PtrTy), |
| llvm::ConstantInt::get(intTy, uint64_t(atomicOrdering(true, memoryOrder))), |
| }); |
| return V(jit->builder->CreateLoad(V(out))); |
| } |
| } |
| default: |
| UNREACHABLE("asInternalType(type): %d", int(asInternalType(type))); |
| return nullptr; |
| } |
| } |
| |
| Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int alignment, bool atomic, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| switch(asInternalType(type)) |
| { |
| case Type_v2i32: |
| case Type_v4i16: |
| case Type_v8i8: |
| case Type_v2f32: |
| createStore( |
| createExtractElement( |
| createBitCast(value, T(llvm::VectorType::get(T(Long::type()), 2, false))), Long::type(), 0), |
| createBitCast(ptr, Pointer<Long>::type()), |
| Long::type(), isVolatile, alignment, atomic, memoryOrder); |
| return value; |
| case Type_v2i16: |
| case Type_v4i8: |
| if(alignment != 0) // Not a local variable (all vectors are 128-bit). |
| { |
| createStore( |
| createExtractElement(createBitCast(value, Int4::type()), Int::type(), 0), |
| createBitCast(ptr, Pointer<Int>::type()), |
| Int::type(), isVolatile, alignment, atomic, memoryOrder); |
| return value; |
| } |
| // Fallthrough to non-emulated case. |
| case Type_LLVM: |
| { |
| auto elTy = T(type); |
| ASSERT(V(ptr)->getType()->getContainedType(0) == elTy); |
| |
| if(__has_feature(memory_sanitizer) && !REACTOR_ENABLE_MEMORY_SANITIZER_INSTRUMENTATION) |
| { |
| // Mark all memory writes as initialized by calling __msan_unpoison |
| // void __msan_unpoison(const volatile void *a, size_t size) |
| auto voidTy = llvm::Type::getVoidTy(*jit->context); |
| auto i8Ty = llvm::Type::getInt8Ty(*jit->context); |
| auto voidPtrTy = i8Ty->getPointerTo(); |
| auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); |
| auto funcTy = llvm::FunctionType::get(voidTy, { voidPtrTy, sizetTy }, false); |
| auto func = jit->module->getOrInsertFunction("__msan_unpoison", funcTy); |
| auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); |
| |
| jit->builder->CreateCall(func, { jit->builder->CreatePointerCast(V(ptr), voidPtrTy), |
| llvm::ConstantInt::get(sizetTy, size) }); |
| } |
| |
| if(!atomic) |
| { |
| jit->builder->CreateAlignedStore(V(value), V(ptr), llvm::MaybeAlign(alignment), isVolatile); |
| } |
| else if(elTy->isIntegerTy() || elTy->isPointerTy()) |
| { |
| // Integers and pointers can be atomically stored by setting |
| // the ordering constraint on the store instruction. |
| auto store = jit->builder->CreateAlignedStore(V(value), V(ptr), llvm::MaybeAlign(alignment), isVolatile); |
| store->setAtomic(atomicOrdering(atomic, memoryOrder)); |
| } |
| else if(elTy->isFloatTy() || elTy->isDoubleTy()) |
| { |
| // LLVM claims to support atomic stores of float types as |
| // above, but certain backends cannot deal with this. |
| // Store as an bitcast integer. See b/136037244. |
| auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); |
| auto elAsIntTy = llvm::IntegerType::get(*jit->context, size * 8); |
| auto valCast = jit->builder->CreateBitCast(V(value), elAsIntTy); |
| auto ptrCast = jit->builder->CreatePointerCast(V(ptr), elAsIntTy->getPointerTo()); |
| auto store = jit->builder->CreateAlignedStore(valCast, ptrCast, llvm::MaybeAlign(alignment), isVolatile); |
| store->setAtomic(atomicOrdering(atomic, memoryOrder)); |
| } |
| else |
| { |
| // More exotic types require falling back to the extern: |
| // void __atomic_store(size_t size, void *ptr, void *val, int ordering) |
| auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); |
| auto intTy = llvm::IntegerType::get(*jit->context, sizeof(int) * 8); |
| auto i8Ty = llvm::Type::getInt8Ty(*jit->context); |
| auto i8PtrTy = i8Ty->getPointerTo(); |
| auto voidTy = llvm::Type::getVoidTy(*jit->context); |
| auto funcTy = llvm::FunctionType::get(voidTy, { sizetTy, i8PtrTy, i8PtrTy, intTy }, false); |
| auto func = jit->module->getOrInsertFunction("__atomic_store", funcTy); |
| auto size = jit->module->getDataLayout().getTypeStoreSize(elTy); |
| auto copy = allocateStackVariable(type); |
| jit->builder->CreateStore(V(value), V(copy)); |
| jit->builder->CreateCall(func, { |
| llvm::ConstantInt::get(sizetTy, size), |
| jit->builder->CreatePointerCast(V(ptr), i8PtrTy), |
| jit->builder->CreatePointerCast(V(copy), i8PtrTy), |
| llvm::ConstantInt::get(intTy, uint64_t(atomicOrdering(true, memoryOrder))), |
| }); |
| } |
| |
| return value; |
| } |
| default: |
| UNREACHABLE("asInternalType(type): %d", int(asInternalType(type))); |
| return nullptr; |
| } |
| } |
| |
| Value *Nucleus::createMaskedLoad(Value *ptr, Type *elTy, Value *mask, unsigned int alignment, bool zeroMaskedLanes) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| ASSERT(V(ptr)->getType()->isPointerTy()); |
| ASSERT(V(mask)->getType()->isVectorTy()); |
| |
| auto numEls = llvm::cast<llvm::FixedVectorType>(V(mask)->getType())->getNumElements(); |
| auto i1Ty = llvm::Type::getInt1Ty(*jit->context); |
| auto i32Ty = llvm::Type::getInt32Ty(*jit->context); |
| auto elVecTy = llvm::VectorType::get(T(elTy), numEls, false); |
| auto elVecPtrTy = elVecTy->getPointerTo(); |
| auto i8Mask = jit->builder->CreateIntCast(V(mask), llvm::VectorType::get(i1Ty, numEls, false), false); // vec<int, int, ...> -> vec<bool, bool, ...> |
| auto passthrough = zeroMaskedLanes ? llvm::Constant::getNullValue(elVecTy) : llvm::UndefValue::get(elVecTy); |
| auto align = llvm::ConstantInt::get(i32Ty, alignment); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::masked_load, { elVecTy, elVecPtrTy }); |
| return V(jit->builder->CreateCall(func, { V(ptr), align, i8Mask, passthrough })); |
| } |
| |
| void Nucleus::createMaskedStore(Value *ptr, Value *val, Value *mask, unsigned int alignment) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| ASSERT(V(ptr)->getType()->isPointerTy()); |
| ASSERT(V(val)->getType()->isVectorTy()); |
| ASSERT(V(mask)->getType()->isVectorTy()); |
| |
| auto numEls = llvm::cast<llvm::FixedVectorType>(V(mask)->getType())->getNumElements(); |
| auto i1Ty = llvm::Type::getInt1Ty(*jit->context); |
| auto i32Ty = llvm::Type::getInt32Ty(*jit->context); |
| auto elVecTy = V(val)->getType(); |
| auto elVecPtrTy = elVecTy->getPointerTo(); |
| auto i1Mask = jit->builder->CreateIntCast(V(mask), llvm::VectorType::get(i1Ty, numEls, false), false); // vec<int, int, ...> -> vec<bool, bool, ...> |
| auto align = llvm::ConstantInt::get(i32Ty, alignment); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::masked_store, { elVecTy, elVecPtrTy }); |
| jit->builder->CreateCall(func, { V(val), V(ptr), align, i1Mask }); |
| |
| if(__has_feature(memory_sanitizer) && !REACTOR_ENABLE_MEMORY_SANITIZER_INSTRUMENTATION) |
| { |
| // Mark memory writes as initialized by calling __msan_unpoison |
| // void __msan_unpoison(const volatile void *a, size_t size) |
| auto voidTy = llvm::Type::getVoidTy(*jit->context); |
| auto voidPtrTy = voidTy->getPointerTo(); |
| auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); |
| auto funcTy = llvm::FunctionType::get(voidTy, { voidPtrTy, sizetTy }, false); |
| auto func = jit->module->getOrInsertFunction("__msan_unpoison", funcTy); |
| auto size = jit->module->getDataLayout().getTypeStoreSize(llvm::cast<llvm::VectorType>(elVecTy)->getElementType()); |
| |
| for(unsigned i = 0; i < numEls; i++) |
| { |
| // Check mask for this element |
| auto idx = llvm::ConstantInt::get(i32Ty, i); |
| auto thenBlock = llvm::BasicBlock::Create(*jit->context, "", jit->function); |
| auto mergeBlock = llvm::BasicBlock::Create(*jit->context, "", jit->function); |
| jit->builder->CreateCondBr(jit->builder->CreateExtractElement(i1Mask, idx), thenBlock, mergeBlock); |
| jit->builder->SetInsertPoint(thenBlock); |
| |
| // Insert __msan_unpoison call in conditional block |
| auto elPtr = jit->builder->CreateGEP(V(ptr), idx); |
| jit->builder->CreateCall(func, { jit->builder->CreatePointerCast(elPtr, voidPtrTy), |
| llvm::ConstantInt::get(sizetTy, size) }); |
| |
| jit->builder->CreateBr(mergeBlock); |
| jit->builder->SetInsertPoint(mergeBlock); |
| } |
| } |
| } |
| |
| static llvm::Value *createGather(llvm::Value *base, llvm::Type *elTy, llvm::Value *offsets, llvm::Value *mask, unsigned int alignment, bool zeroMaskedLanes) |
| { |
| ASSERT(base->getType()->isPointerTy()); |
| ASSERT(offsets->getType()->isVectorTy()); |
| ASSERT(mask->getType()->isVectorTy()); |
| |
| auto numEls = llvm::cast<llvm::FixedVectorType>(mask->getType())->getNumElements(); |
| auto i1Ty = llvm::Type::getInt1Ty(*jit->context); |
| auto i32Ty = llvm::Type::getInt32Ty(*jit->context); |
| auto i8Ty = llvm::Type::getInt8Ty(*jit->context); |
| auto i8PtrTy = i8Ty->getPointerTo(); |
| auto elPtrTy = elTy->getPointerTo(); |
| auto elVecTy = llvm::VectorType::get(elTy, numEls, false); |
| auto elPtrVecTy = llvm::VectorType::get(elPtrTy, numEls, false); |
| auto i8Base = jit->builder->CreatePointerCast(base, i8PtrTy); |
| auto i8Ptrs = jit->builder->CreateGEP(i8Base, offsets); |
| auto elPtrs = jit->builder->CreatePointerCast(i8Ptrs, elPtrVecTy); |
| auto i1Mask = jit->builder->CreateIntCast(mask, llvm::VectorType::get(i1Ty, numEls, false), false); // vec<int, int, ...> -> vec<bool, bool, ...> |
| auto passthrough = zeroMaskedLanes ? llvm::Constant::getNullValue(elVecTy) : llvm::UndefValue::get(elVecTy); |
| |
| if(!__has_feature(memory_sanitizer)) |
| { |
| auto align = llvm::ConstantInt::get(i32Ty, alignment); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::masked_gather, { elVecTy, elPtrVecTy }); |
| return jit->builder->CreateCall(func, { elPtrs, align, i1Mask, passthrough }); |
| } |
| else // __has_feature(memory_sanitizer) |
| { |
| // MemorySanitizer currently does not support instrumenting llvm::Intrinsic::masked_gather |
| // Work around it by emulating gather with element-wise loads. |
| // TODO(b/172238865): Remove when supported by MemorySanitizer. |
| |
| Value *result = Nucleus::allocateStackVariable(T(elVecTy)); |
| Nucleus::createStore(V(passthrough), result, T(elVecTy)); |
| |
| for(unsigned i = 0; i < numEls; i++) |
| { |
| // Check mask for this element |
| Value *elementMask = Nucleus::createExtractElement(V(i1Mask), T(i1Ty), i); |
| |
| If(RValue<Bool>(elementMask)) |
| { |
| Value *elPtr = Nucleus::createExtractElement(V(elPtrs), T(elPtrTy), i); |
| Value *el = Nucleus::createLoad(elPtr, T(elTy), /*isVolatile */ false, alignment, /* atomic */ false, std::memory_order_relaxed); |
| |
| Value *v = Nucleus::createLoad(result, T(elVecTy)); |
| v = Nucleus::createInsertElement(v, el, i); |
| Nucleus::createStore(v, result, T(elVecTy)); |
| } |
| } |
| |
| return V(Nucleus::createLoad(result, T(elVecTy))); |
| } |
| } |
| |
| RValue<Float4> Gather(RValue<Pointer<Float>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */) |
| { |
| return As<Float4>(V(createGather(V(base.value()), T(Float::type()), V(offsets.value()), V(mask.value()), alignment, zeroMaskedLanes))); |
| } |
| |
| RValue<Int4> Gather(RValue<Pointer<Int>> base, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment, bool zeroMaskedLanes /* = false */) |
| { |
| return As<Int4>(V(createGather(V(base.value()), T(Int::type()), V(offsets.value()), V(mask.value()), alignment, zeroMaskedLanes))); |
| } |
| |
| static void createScatter(llvm::Value *base, llvm::Value *val, llvm::Value *offsets, llvm::Value *mask, unsigned int alignment) |
| { |
| ASSERT(base->getType()->isPointerTy()); |
| ASSERT(val->getType()->isVectorTy()); |
| ASSERT(offsets->getType()->isVectorTy()); |
| ASSERT(mask->getType()->isVectorTy()); |
| |
| auto numEls = llvm::cast<llvm::FixedVectorType>(mask->getType())->getNumElements(); |
| auto i1Ty = llvm::Type::getInt1Ty(*jit->context); |
| auto i32Ty = llvm::Type::getInt32Ty(*jit->context); |
| auto i8Ty = llvm::Type::getInt8Ty(*jit->context); |
| auto i8PtrTy = i8Ty->getPointerTo(); |
| auto elVecTy = val->getType(); |
| auto elTy = llvm::cast<llvm::VectorType>(elVecTy)->getElementType(); |
| auto elPtrTy = elTy->getPointerTo(); |
| auto elPtrVecTy = llvm::VectorType::get(elPtrTy, numEls, false); |
| |
| auto i8Base = jit->builder->CreatePointerCast(base, i8PtrTy); |
| auto i8Ptrs = jit->builder->CreateGEP(i8Base, offsets); |
| auto elPtrs = jit->builder->CreatePointerCast(i8Ptrs, elPtrVecTy); |
| auto i1Mask = jit->builder->CreateIntCast(mask, llvm::VectorType::get(i1Ty, numEls, false), false); // vec<int, int, ...> -> vec<bool, bool, ...> |
| |
| if(!__has_feature(memory_sanitizer)) |
| { |
| auto align = llvm::ConstantInt::get(i32Ty, alignment); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::masked_scatter, { elVecTy, elPtrVecTy }); |
| jit->builder->CreateCall(func, { val, elPtrs, align, i1Mask }); |
| } |
| else // __has_feature(memory_sanitizer) |
| { |
| // MemorySanitizer currently does not support instrumenting llvm::Intrinsic::masked_scatter |
| // Work around it by emulating scatter with element-wise stores. |
| // TODO(b/172238865): Remove when supported by MemorySanitizer. |
| |
| for(unsigned i = 0; i < numEls; i++) |
| { |
| // Check mask for this element |
| auto idx = llvm::ConstantInt::get(i32Ty, i); |
| auto thenBlock = llvm::BasicBlock::Create(*jit->context, "", jit->function); |
| auto mergeBlock = llvm::BasicBlock::Create(*jit->context, "", jit->function); |
| jit->builder->CreateCondBr(jit->builder->CreateExtractElement(i1Mask, idx), thenBlock, mergeBlock); |
| jit->builder->SetInsertPoint(thenBlock); |
| |
| auto el = jit->builder->CreateExtractElement(val, idx); |
| auto elPtr = jit->builder->CreateExtractElement(elPtrs, idx); |
| Nucleus::createStore(V(el), V(elPtr), T(elTy), /*isVolatile */ false, alignment, /* atomic */ false, std::memory_order_relaxed); |
| |
| jit->builder->CreateBr(mergeBlock); |
| jit->builder->SetInsertPoint(mergeBlock); |
| } |
| } |
| } |
| |
| void Scatter(RValue<Pointer<Float>> base, RValue<Float4> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment) |
| { |
| return createScatter(V(base.value()), V(val.value()), V(offsets.value()), V(mask.value()), alignment); |
| } |
| |
| void Scatter(RValue<Pointer<Int>> base, RValue<Int4> val, RValue<Int4> offsets, RValue<Int4> mask, unsigned int alignment) |
| { |
| return createScatter(V(base.value()), V(val.value()), V(offsets.value()), V(mask.value()), alignment); |
| } |
| |
| void Nucleus::createFence(std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| jit->builder->CreateFence(atomicOrdering(true, memoryOrder)); |
| } |
| |
| Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| ASSERT(V(ptr)->getType()->getContainedType(0) == T(type)); |
| if(sizeof(void *) == 8) |
| { |
| // LLVM manual: "When indexing into an array, pointer or vector, |
| // integers of any width are allowed, and they are not required to |
| // be constant. These integers are treated as signed values where |
| // relevant." |
| // |
| // Thus if we want indexes to be treated as unsigned we have to |
| // zero-extend them ourselves. |
| // |
| // Note that this is not because we want to address anywhere near |
| // 4 GB of data. Instead this is important for performance because |
| // x86 supports automatic zero-extending of 32-bit registers to |
| // 64-bit. Thus when indexing into an array using a uint32 is |
| // actually faster than an int32. |
| index = unsignedIndex ? createZExt(index, Long::type()) : createSExt(index, Long::type()); |
| } |
| |
| // For non-emulated types we can rely on LLVM's GEP to calculate the |
| // effective address correctly. |
| if(asInternalType(type) == Type_LLVM) |
| { |
| return V(jit->builder->CreateGEP(V(ptr), V(index))); |
| } |
| |
| // For emulated types we have to multiply the index by the intended |
| // type size ourselves to obain the byte offset. |
| index = (sizeof(void *) == 8) ? createMul(index, createConstantLong((int64_t)typeSize(type))) : createMul(index, createConstantInt((int)typeSize(type))); |
| |
| // Cast to a byte pointer, apply the byte offset, and cast back to the |
| // original pointer type. |
| return createBitCast( |
| V(jit->builder->CreateGEP(V(createBitCast(ptr, T(llvm::PointerType::get(T(Byte::type()), 0)))), V(index))), |
| T(llvm::PointerType::get(T(type), 0))); |
| } |
| |
| Value *Nucleus::createAtomicAdd(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Add, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicSub(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Sub, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicAnd(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::And, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicOr(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Or, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicXor(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Xor, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicMin(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Min, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicMax(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Max, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicUMin(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::UMin, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicUMax(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::UMax, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicExchange(Value *ptr, Value *value, std::memory_order memoryOrder) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, V(ptr), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrder))); |
| } |
| |
| Value *Nucleus::createAtomicCompareExchange(Value *ptr, Value *value, Value *compare, std::memory_order memoryOrderEqual, std::memory_order memoryOrderUnequal) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // Note: AtomicCmpXchgInstruction returns a 2-member struct containing {result, success-flag}, not the result directly. |
| return V(jit->builder->CreateExtractValue( |
| jit->builder->CreateAtomicCmpXchg(V(ptr), V(compare), V(value), |
| #if LLVM_VERSION_MAJOR >= 11 |
| llvm::MaybeAlign(), |
| #endif |
| atomicOrdering(true, memoryOrderEqual), |
| atomicOrdering(true, memoryOrderUnequal)), |
| llvm::ArrayRef<unsigned>(0u))); |
| } |
| |
| Value *Nucleus::createTrunc(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateTrunc(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createZExt(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateZExt(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createSExt(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateSExt(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createFPToUI(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFPToUI(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createFPToSI(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFPToSI(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createSIToFP(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateSIToFP(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createFPTrunc(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFPTrunc(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createFPExt(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFPExt(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createBitCast(Value *v, Type *destType) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need |
| // support for casting between scalars and wide vectors. Emulate them by writing to the stack and |
| // reading back as the destination type. |
| if(!V(v)->getType()->isVectorTy() && T(destType)->isVectorTy()) |
| { |
| Value *readAddress = allocateStackVariable(destType); |
| Value *writeAddress = createBitCast(readAddress, T(llvm::PointerType::get(V(v)->getType(), 0))); |
| createStore(v, writeAddress, T(V(v)->getType())); |
| return createLoad(readAddress, destType); |
| } |
| else if(V(v)->getType()->isVectorTy() && !T(destType)->isVectorTy()) |
| { |
| Value *writeAddress = allocateStackVariable(T(V(v)->getType())); |
| createStore(v, writeAddress, T(V(v)->getType())); |
| Value *readAddress = createBitCast(writeAddress, T(llvm::PointerType::get(T(destType), 0))); |
| return createLoad(readAddress, destType); |
| } |
| |
| return V(jit->builder->CreateBitCast(V(v), T(destType))); |
| } |
| |
| Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpEQ(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpNE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpNE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpUGT(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpUGE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpULT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpULT(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpULE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpULE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpSGT(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpSGE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpSLT(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateICmpSLE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpOEQ(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpOGT(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpOGE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpOLT(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpOLE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpONE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpORD(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpUNO(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpUEQ(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpUGT(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpUGE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpULT(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpULE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateFCmpUNE(V(lhs), V(rhs))); |
| } |
| |
| Value *Nucleus::createExtractElement(Value *vector, Type *type, int index) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| ASSERT(V(vector)->getType()->getContainedType(0) == T(type)); |
| return V(jit->builder->CreateExtractElement(V(vector), V(createConstantInt(index)))); |
| } |
| |
| Value *Nucleus::createInsertElement(Value *vector, Value *element, int index) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateInsertElement(V(vector), V(element), V(createConstantInt(index)))); |
| } |
| |
| Value *Nucleus::createShuffleVector(Value *v1, Value *v2, const int *select) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| |
| int size = llvm::cast<llvm::FixedVectorType>(V(v1)->getType())->getNumElements(); |
| const int maxSize = 16; |
| llvm::Constant *swizzle[maxSize]; |
| ASSERT(size <= maxSize); |
| |
| for(int i = 0; i < size; i++) |
| { |
| swizzle[i] = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*jit->context), select[i]); |
| } |
| |
| llvm::Value *shuffle = llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant *>(swizzle, size)); |
| |
| return V(jit->builder->CreateShuffleVector(V(v1), V(v2), shuffle)); |
| } |
| |
| Value *Nucleus::createSelect(Value *c, Value *ifTrue, Value *ifFalse) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(jit->builder->CreateSelect(V(c), V(ifTrue), V(ifFalse))); |
| } |
| |
| SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return reinterpret_cast<SwitchCases *>(jit->builder->CreateSwitch(V(control), B(defaultBranch), numCases)); |
| } |
| |
| void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| llvm::SwitchInst *sw = reinterpret_cast<llvm::SwitchInst *>(switchCases); |
| sw->addCase(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*jit->context), label, true), B(branch)); |
| } |
| |
| void Nucleus::createUnreachable() |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| jit->builder->CreateUnreachable(); |
| } |
| |
| Type *Nucleus::getType(Value *value) |
| { |
| return T(V(value)->getType()); |
| } |
| |
| Type *Nucleus::getContainedType(Type *vectorType) |
| { |
| return T(T(vectorType)->getContainedType(0)); |
| } |
| |
| Type *Nucleus::getPointerType(Type *ElementType) |
| { |
| return T(llvm::PointerType::get(T(ElementType), 0)); |
| } |
| |
| static llvm::Type *getNaturalIntType() |
| { |
| return llvm::Type::getIntNTy(*jit->context, sizeof(int) * 8); |
| } |
| |
| Type *Nucleus::getPrintfStorageType(Type *valueType) |
| { |
| llvm::Type *valueTy = T(valueType); |
| if(valueTy->isIntegerTy()) |
| { |
| return T(getNaturalIntType()); |
| } |
| if(valueTy->isFloatTy()) |
| { |
| return T(llvm::Type::getDoubleTy(*jit->context)); |
| } |
| |
| UNIMPLEMENTED_NO_BUG("getPrintfStorageType: add more cases as needed"); |
| return {}; |
| } |
| |
| Value *Nucleus::createNullValue(Type *Ty) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::Constant::getNullValue(T(Ty))); |
| } |
| |
| Value *Nucleus::createConstantLong(int64_t i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantInt::get(llvm::Type::getInt64Ty(*jit->context), i, true)); |
| } |
| |
| Value *Nucleus::createConstantInt(int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*jit->context), i, true)); |
| } |
| |
| Value *Nucleus::createConstantInt(unsigned int i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*jit->context), i, false)); |
| } |
| |
| Value *Nucleus::createConstantBool(bool b) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantInt::get(llvm::Type::getInt1Ty(*jit->context), b)); |
| } |
| |
| Value *Nucleus::createConstantByte(signed char i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*jit->context), i, true)); |
| } |
| |
| Value *Nucleus::createConstantByte(unsigned char i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*jit->context), i, false)); |
| } |
| |
| Value *Nucleus::createConstantShort(short i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*jit->context), i, true)); |
| } |
| |
| Value *Nucleus::createConstantShort(unsigned short i) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*jit->context), i, false)); |
| } |
| |
| Value *Nucleus::createConstantFloat(float x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantFP::get(T(Float::type()), x)); |
| } |
| |
| Value *Nucleus::createNullPointer(Type *Ty) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return V(llvm::ConstantPointerNull::get(llvm::PointerType::get(T(Ty), 0))); |
| } |
| |
| Value *Nucleus::createConstantVector(const int64_t *constants, Type *type) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| ASSERT(llvm::isa<llvm::VectorType>(T(type))); |
| const int numConstants = elementCount(type); // Number of provided constants for the (emulated) type. |
| const int numElements = llvm::cast<llvm::FixedVectorType>(T(type))->getNumElements(); // Number of elements of the underlying vector type. |
| ASSERT(numElements <= 16 && numConstants <= numElements); |
| llvm::Constant *constantVector[16]; |
| |
| for(int i = 0; i < numElements; i++) |
| { |
| constantVector[i] = llvm::ConstantInt::get(T(type)->getContainedType(0), constants[i % numConstants]); |
| } |
| |
| return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant *>(constantVector, numElements))); |
| } |
| |
| Value *Nucleus::createConstantVector(const double *constants, Type *type) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| ASSERT(llvm::isa<llvm::VectorType>(T(type))); |
| const int numConstants = elementCount(type); // Number of provided constants for the (emulated) type. |
| const int numElements = llvm::cast<llvm::FixedVectorType>(T(type))->getNumElements(); // Number of elements of the underlying vector type. |
| ASSERT(numElements <= 8 && numConstants <= numElements); |
| llvm::Constant *constantVector[8]; |
| |
| for(int i = 0; i < numElements; i++) |
| { |
| constantVector[i] = llvm::ConstantFP::get(T(type)->getContainedType(0), constants[i % numConstants]); |
| } |
| |
| return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant *>(constantVector, numElements))); |
| } |
| |
| Value *Nucleus::createConstantString(const char *v) |
| { |
| // NOTE: Do not call RR_DEBUG_INFO_UPDATE_LOC() here to avoid recursion when called from rr::Printv |
| auto ptr = jit->builder->CreateGlobalStringPtr(v); |
| return V(ptr); |
| } |
| |
| void Nucleus::setOptimizerCallback(OptimizerCallback *callback) |
| { |
| // The LLVM backend does not produce optimizer reports. |
| (void)callback; |
| } |
| |
| Type *Void::type() |
| { |
| return T(llvm::Type::getVoidTy(*jit->context)); |
| } |
| |
| Type *Bool::type() |
| { |
| return T(llvm::Type::getInt1Ty(*jit->context)); |
| } |
| |
| Type *Byte::type() |
| { |
| return T(llvm::Type::getInt8Ty(*jit->context)); |
| } |
| |
| Type *SByte::type() |
| { |
| return T(llvm::Type::getInt8Ty(*jit->context)); |
| } |
| |
| Type *Short::type() |
| { |
| return T(llvm::Type::getInt16Ty(*jit->context)); |
| } |
| |
| Type *UShort::type() |
| { |
| return T(llvm::Type::getInt16Ty(*jit->context)); |
| } |
| |
| Type *Byte4::type() |
| { |
| return T(Type_v4i8); |
| } |
| |
| Type *SByte4::type() |
| { |
| return T(Type_v4i8); |
| } |
| |
| RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::paddusb(x, y); |
| #else |
| return As<Byte8>(V(lowerPUADDSAT(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psubusb(x, y); |
| #else |
| return As<Byte8>(V(lowerPUSUBSAT(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<Int> SignMask(RValue<Byte8> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmovmskb(x); |
| #else |
| return As<Int>(V(lowerSignMask(V(x.value()), T(Int::type())))); |
| #endif |
| } |
| |
| // RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y) |
| // { |
| //#if defined(__i386__) || defined(__x86_64__) |
| // return x86::pcmpgtb(x, y); // FIXME: Signedness |
| //#else |
| // return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Byte8::type())))); |
| //#endif |
| // } |
| |
| RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pcmpeqb(x, y); |
| #else |
| return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Byte8::type())))); |
| #endif |
| } |
| |
| Type *Byte8::type() |
| { |
| return T(Type_v8i8); |
| } |
| |
| RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::paddsb(x, y); |
| #else |
| return As<SByte8>(V(lowerPSADDSAT(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psubsb(x, y); |
| #else |
| return As<SByte8>(V(lowerPSSUBSAT(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<Int> SignMask(RValue<SByte8> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmovmskb(As<Byte8>(x)); |
| #else |
| return As<Int>(V(lowerSignMask(V(x.value()), T(Int::type())))); |
| #endif |
| } |
| |
| RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pcmpgtb(x, y); |
| #else |
| return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Byte8::type())))); |
| #endif |
| } |
| |
| RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pcmpeqb(As<Byte8>(x), As<Byte8>(y)); |
| #else |
| return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Byte8::type())))); |
| #endif |
| } |
| |
| Type *SByte8::type() |
| { |
| return T(Type_v8i8); |
| } |
| |
| Type *Byte16::type() |
| { |
| return T(llvm::VectorType::get(T(Byte::type()), 16, false)); |
| } |
| |
| Type *SByte16::type() |
| { |
| return T(llvm::VectorType::get(T(SByte::type()), 16, false)); |
| } |
| |
| Type *Short2::type() |
| { |
| return T(Type_v2i16); |
| } |
| |
| Type *UShort2::type() |
| { |
| return T(Type_v2i16); |
| } |
| |
| Short4::Short4(RValue<Int4> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| int select[8] = { 0, 2, 4, 6, 0, 2, 4, 6 }; |
| Value *short8 = Nucleus::createBitCast(cast.value(), Short8::type()); |
| |
| Value *packed = Nucleus::createShuffleVector(short8, short8, select); |
| Value *short4 = As<Short4>(Int2(As<Int4>(packed))).value(); |
| |
| storeValue(short4); |
| } |
| |
| // Short4::Short4(RValue<Float> cast) |
| // { |
| // } |
| |
| Short4::Short4(RValue<Float4> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Int4 v4i32 = Int4(cast); |
| #if defined(__i386__) || defined(__x86_64__) |
| v4i32 = As<Int4>(x86::packssdw(v4i32, v4i32)); |
| #else |
| Value *v = v4i32.loadValue(); |
| v4i32 = As<Int4>(V(lowerPack(V(v), V(v), true))); |
| #endif |
| |
| storeValue(As<Short4>(Int2(v4i32)).value()); |
| } |
| |
| RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| // return RValue<Short4>(Nucleus::createShl(lhs.value(), rhs.value())); |
| |
| return x86::psllw(lhs, rhs); |
| #else |
| return As<Short4>(V(lowerVectorShl(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psraw(lhs, rhs); |
| #else |
| return As<Short4>(V(lowerVectorAShr(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmaxsw(x, y); |
| #else |
| return RValue<Short4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SGT))); |
| #endif |
| } |
| |
| RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pminsw(x, y); |
| #else |
| return RValue<Short4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SLT))); |
| #endif |
| } |
| |
| RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::paddsw(x, y); |
| #else |
| return As<Short4>(V(lowerPSADDSAT(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psubsw(x, y); |
| #else |
| return As<Short4>(V(lowerPSSUBSAT(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmulhw(x, y); |
| #else |
| return As<Short4>(V(lowerMulHigh(V(x.value()), V(y.value()), true))); |
| #endif |
| } |
| |
| RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmaddwd(x, y); |
| #else |
| return As<Int2>(V(lowerMulAdd(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| auto result = x86::packsswb(x, y); |
| #else |
| auto result = V(lowerPack(V(x.value()), V(y.value()), true)); |
| #endif |
| return As<SByte8>(Swizzle(As<Int4>(result), 0x0202)); |
| } |
| |
| RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| auto result = x86::packuswb(x, y); |
| #else |
| auto result = V(lowerPack(V(x.value()), V(y.value()), false)); |
| #endif |
| return As<Byte8>(Swizzle(As<Int4>(result), 0x0202)); |
| } |
| |
| RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pcmpgtw(x, y); |
| #else |
| return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Short4::type())))); |
| #endif |
| } |
| |
| RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pcmpeqw(x, y); |
| #else |
| return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Short4::type())))); |
| #endif |
| } |
| |
| Type *Short4::type() |
| { |
| return T(Type_v4i16); |
| } |
| |
| UShort4::UShort4(RValue<Float4> cast, bool saturate) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| if(saturate) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| Int4 int4(Min(cast, Float4(0xFFFF))); // packusdw takes care of 0x0000 saturation |
| *this = As<Short4>(PackUnsigned(int4, int4)); |
| } |
| else |
| #endif |
| { |
| *this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000)))); |
| } |
| } |
| else |
| { |
| *this = Short4(Int4(cast)); |
| } |
| } |
| |
| RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| // return RValue<Short4>(Nucleus::createShl(lhs.value(), rhs.value())); |
| |
| return As<UShort4>(x86::psllw(As<Short4>(lhs), rhs)); |
| #else |
| return As<UShort4>(V(lowerVectorShl(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| // return RValue<Short4>(Nucleus::createLShr(lhs.value(), rhs.value())); |
| |
| return x86::psrlw(lhs, rhs); |
| #else |
| return As<UShort4>(V(lowerVectorLShr(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UShort4>(Max(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)); |
| } |
| |
| RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UShort4>(Min(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)); |
| } |
| |
| RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::paddusw(x, y); |
| #else |
| return As<UShort4>(V(lowerPUADDSAT(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psubusw(x, y); |
| #else |
| return As<UShort4>(V(lowerPUSUBSAT(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmulhuw(x, y); |
| #else |
| return As<UShort4>(V(lowerMulHigh(V(x.value()), V(y.value()), false))); |
| #endif |
| } |
| |
| RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pavgw(x, y); |
| #else |
| return As<UShort4>(V(lowerPAVG(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| Type *UShort4::type() |
| { |
| return T(Type_v4i16); |
| } |
| |
| RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psllw(lhs, rhs); |
| #else |
| return As<Short8>(V(lowerVectorShl(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psraw(lhs, rhs); |
| #else |
| return As<Short8>(V(lowerVectorAShr(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmaddwd(x, y); |
| #else |
| return As<Int4>(V(lowerMulAdd(V(x.value()), V(y.value())))); |
| #endif |
| } |
| |
| RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmulhw(x, y); |
| #else |
| return As<Short8>(V(lowerMulHigh(V(x.value()), V(y.value()), true))); |
| #endif |
| } |
| |
| Type *Short8::type() |
| { |
| return T(llvm::VectorType::get(T(Short::type()), 8, false)); |
| } |
| |
| RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return As<UShort8>(x86::psllw(As<Short8>(lhs), rhs)); |
| #else |
| return As<UShort8>(V(lowerVectorShl(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psrlw(lhs, rhs); // FIXME: Fallback required |
| #else |
| return As<UShort8>(V(lowerVectorLShr(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pmulhuw(x, y); |
| #else |
| return As<UShort8>(V(lowerMulHigh(V(x.value()), V(y.value()), false))); |
| #endif |
| } |
| |
| Type *UShort8::type() |
| { |
| return T(llvm::VectorType::get(T(UShort::type()), 8, false)); |
| } |
| |
| RValue<Int> operator++(Int &val, int) // Post-increment |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| RValue<Int> res = val; |
| |
| Value *inc = Nucleus::createAdd(res.value(), Nucleus::createConstantInt(1)); |
| val.storeValue(inc); |
| |
| return res; |
| } |
| |
| const Int &operator++(Int &val) // Pre-increment |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1)); |
| val.storeValue(inc); |
| |
| return val; |
| } |
| |
| RValue<Int> operator--(Int &val, int) // Post-decrement |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| RValue<Int> res = val; |
| |
| Value *inc = Nucleus::createSub(res.value(), Nucleus::createConstantInt(1)); |
| val.storeValue(inc); |
| |
| return res; |
| } |
| |
| const Int &operator--(Int &val) // Pre-decrement |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1)); |
| val.storeValue(inc); |
| |
| return val; |
| } |
| |
| RValue<Int> RoundInt(RValue<Float> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::cvtss2si(cast); |
| #else |
| return RValue<Int>(V(lowerRoundInt(V(cast.value()), T(Int::type())))); |
| #endif |
| } |
| |
| Type *Int::type() |
| { |
| return T(llvm::Type::getInt32Ty(*jit->context)); |
| } |
| |
| Type *Long::type() |
| { |
| return T(llvm::Type::getInt64Ty(*jit->context)); |
| } |
| |
| UInt::UInt(RValue<Float> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *integer = Nucleus::createFPToUI(cast.value(), UInt::type()); |
| storeValue(integer); |
| } |
| |
| RValue<UInt> operator++(UInt &val, int) // Post-increment |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| RValue<UInt> res = val; |
| |
| Value *inc = Nucleus::createAdd(res.value(), Nucleus::createConstantInt(1)); |
| val.storeValue(inc); |
| |
| return res; |
| } |
| |
| const UInt &operator++(UInt &val) // Pre-increment |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1)); |
| val.storeValue(inc); |
| |
| return val; |
| } |
| |
| RValue<UInt> operator--(UInt &val, int) // Post-decrement |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| RValue<UInt> res = val; |
| |
| Value *inc = Nucleus::createSub(res.value(), Nucleus::createConstantInt(1)); |
| val.storeValue(inc); |
| |
| return res; |
| } |
| |
| const UInt &operator--(UInt &val) // Pre-decrement |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1)); |
| val.storeValue(inc); |
| |
| return val; |
| } |
| |
| // RValue<UInt> RoundUInt(RValue<Float> cast) |
| // { |
| //#if defined(__i386__) || defined(__x86_64__) |
| // return x86::cvtss2si(val); // FIXME: Unsigned |
| //#else |
| // return IfThenElse(cast > 0.0f, Int(cast + 0.5f), Int(cast - 0.5f)); |
| //#endif |
| // } |
| |
| Type *UInt::type() |
| { |
| return T(llvm::Type::getInt32Ty(*jit->context)); |
| } |
| |
| // Int2::Int2(RValue<Int> cast) |
| // { |
| // Value *extend = Nucleus::createZExt(cast.value(), Long::type()); |
| // Value *vector = Nucleus::createBitCast(extend, Int2::type()); |
| // |
| // int shuffle[2] = {0, 0}; |
| // Value *replicate = Nucleus::createShuffleVector(vector, vector, shuffle); |
| // |
| // storeValue(replicate); |
| // } |
| |
| RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| // return RValue<Int2>(Nucleus::createShl(lhs.value(), rhs.value())); |
| |
| return x86::pslld(lhs, rhs); |
| #else |
| return As<Int2>(V(lowerVectorShl(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| // return RValue<Int2>(Nucleus::createAShr(lhs.value(), rhs.value())); |
| |
| return x86::psrad(lhs, rhs); |
| #else |
| return As<Int2>(V(lowerVectorAShr(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| Type *Int2::type() |
| { |
| return T(Type_v2i32); |
| } |
| |
| RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| // return RValue<UInt2>(Nucleus::createShl(lhs.value(), rhs.value())); |
| |
| return As<UInt2>(x86::pslld(As<Int2>(lhs), rhs)); |
| #else |
| return As<UInt2>(V(lowerVectorShl(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| // return RValue<UInt2>(Nucleus::createLShr(lhs.value(), rhs.value())); |
| |
| return x86::psrld(lhs, rhs); |
| #else |
| return As<UInt2>(V(lowerVectorLShr(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| Type *UInt2::type() |
| { |
| return T(Type_v2i32); |
| } |
| |
| Int4::Int4(RValue<Byte4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| *this = x86::pmovzxbd(As<Byte16>(cast)); |
| } |
| else |
| #endif |
| { |
| int swizzle[16] = { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 }; |
| Value *a = Nucleus::createBitCast(cast.value(), Byte16::type()); |
| Value *b = Nucleus::createShuffleVector(a, Nucleus::createNullValue(Byte16::type()), swizzle); |
| |
| int swizzle2[8] = { 0, 8, 1, 9, 2, 10, 3, 11 }; |
| Value *c = Nucleus::createBitCast(b, Short8::type()); |
| Value *d = Nucleus::createShuffleVector(c, Nucleus::createNullValue(Short8::type()), swizzle2); |
| |
| *this = As<Int4>(d); |
| } |
| } |
| |
| Int4::Int4(RValue<SByte4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| *this = x86::pmovsxbd(As<SByte16>(cast)); |
| } |
| else |
| #endif |
| { |
| int swizzle[16] = { 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 }; |
| Value *a = Nucleus::createBitCast(cast.value(), Byte16::type()); |
| Value *b = Nucleus::createShuffleVector(a, a, swizzle); |
| |
| int swizzle2[8] = { 0, 0, 1, 1, 2, 2, 3, 3 }; |
| Value *c = Nucleus::createBitCast(b, Short8::type()); |
| Value *d = Nucleus::createShuffleVector(c, c, swizzle2); |
| |
| *this = As<Int4>(d) >> 24; |
| } |
| } |
| |
| Int4::Int4(RValue<Short4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| *this = x86::pmovsxwd(As<Short8>(cast)); |
| } |
| else |
| #endif |
| { |
| int swizzle[8] = { 0, 0, 1, 1, 2, 2, 3, 3 }; |
| Value *c = Nucleus::createShuffleVector(cast.value(), cast.value(), swizzle); |
| *this = As<Int4>(c) >> 16; |
| } |
| } |
| |
| Int4::Int4(RValue<UShort4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| *this = x86::pmovzxwd(As<UShort8>(cast)); |
| } |
| else |
| #endif |
| { |
| int swizzle[8] = { 0, 8, 1, 9, 2, 10, 3, 11 }; |
| Value *c = Nucleus::createShuffleVector(cast.value(), Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle); |
| *this = As<Int4>(c); |
| } |
| } |
| |
| Int4::Int4(RValue<Int> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = loadValue(); |
| Value *insert = Nucleus::createInsertElement(vector, rhs.value(), 0); |
| |
| int swizzle[4] = { 0, 0, 0, 0 }; |
| Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::pslld(lhs, rhs); |
| #else |
| return As<Int4>(V(lowerVectorShl(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psrad(lhs, rhs); |
| #else |
| return As<Int4>(V(lowerVectorAShr(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLT(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGT(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::pmaxsd(x, y); |
| } |
| else |
| #endif |
| { |
| RValue<Int4> greater = CmpNLE(x, y); |
| return (x & greater) | (y & ~greater); |
| } |
| } |
| |
| RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::pminsd(x, y); |
| } |
| else |
| #endif |
| { |
| RValue<Int4> less = CmpLT(x, y); |
| return (x & less) | (y & ~less); |
| } |
| } |
| |
| RValue<Int4> RoundInt(RValue<Float4> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::cvtps2dq(cast); |
| #else |
| return As<Int4>(V(lowerRoundInt(V(cast.value()), T(Int4::type())))); |
| #endif |
| } |
| |
| RValue<Int4> RoundIntClamped(RValue<Float4> cast) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| // cvtps2dq produces 0x80000000, a negative value, for input larger than |
| // 2147483520.0, so clamp to 2147483520. Values less than -2147483520.0 |
| // saturate to 0x80000000. |
| return x86::cvtps2dq(Min(cast, Float4(0x7FFFFF80))); |
| #else |
| // ARM saturates to the largest positive or negative integer. Unit tests |
| // verify that lowerRoundInt() behaves as desired. |
| return As<Int4>(V(lowerRoundInt(V(cast.value()), T(Int4::type())))); |
| #endif |
| } |
| |
| RValue<Int4> MulHigh(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq. |
| return As<Int4>(V(lowerMulHigh(V(x.value()), V(y.value()), true))); |
| } |
| |
| RValue<UInt4> MulHigh(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // TODO: For x86, build an intrinsics version of this which uses shuffles + pmuludq. |
| return As<UInt4>(V(lowerMulHigh(V(x.value()), V(y.value()), false))); |
| } |
| |
| RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::packssdw(x, y); |
| #else |
| return As<Short8>(V(lowerPack(V(x.value()), V(y.value()), true))); |
| #endif |
| } |
| |
| RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::packusdw(x, y); |
| #else |
| return As<UShort8>(V(lowerPack(V(x.value()), V(y.value()), false))); |
| #endif |
| } |
| |
| RValue<Int> SignMask(RValue<Int4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::movmskps(As<Float4>(x)); |
| #else |
| return As<Int>(V(lowerSignMask(V(x.value()), T(Int::type())))); |
| #endif |
| } |
| |
| Type *Int4::type() |
| { |
| return T(llvm::VectorType::get(T(Int::type()), 4, false)); |
| } |
| |
| UInt4::UInt4(RValue<Float4> cast) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *xyzw = Nucleus::createFPToUI(cast.value(), UInt4::type()); |
| storeValue(xyzw); |
| } |
| |
| UInt4::UInt4(RValue<UInt> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = loadValue(); |
| Value *insert = Nucleus::createInsertElement(vector, rhs.value(), 0); |
| |
| int swizzle[4] = { 0, 0, 0, 0 }; |
| Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return As<UInt4>(x86::pslld(As<Int4>(lhs), rhs)); |
| #else |
| return As<UInt4>(V(lowerVectorShl(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::psrld(lhs, rhs); |
| #else |
| return As<UInt4>(V(lowerVectorLShr(V(lhs.value()), rhs))); |
| #endif |
| } |
| |
| RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULT(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGT(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::pmaxud(x, y); |
| } |
| else |
| #endif |
| { |
| RValue<UInt4> greater = CmpNLE(x, y); |
| return (x & greater) | (y & ~greater); |
| } |
| } |
| |
| RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::pminud(x, y); |
| } |
| else |
| #endif |
| { |
| RValue<UInt4> less = CmpLT(x, y); |
| return (x & less) | (y & ~less); |
| } |
| } |
| |
| Type *UInt4::type() |
| { |
| return T(llvm::VectorType::get(T(UInt::type()), 4, false)); |
| } |
| |
| Type *Half::type() |
| { |
| return T(llvm::Type::getInt16Ty(*jit->context)); |
| } |
| |
| RValue<Float> Rcp_pp(RValue<Float> x, bool exactAtPow2) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(exactAtPow2) |
| { |
| // rcpss uses a piecewise-linear approximation which minimizes the relative error |
| // but is not exact at power-of-two values. Rectify by multiplying by the inverse. |
| return x86::rcpss(x) * Float(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); |
| } |
| return x86::rcpss(x); |
| #else |
| return As<Float>(V(lowerRCP(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float> RcpSqrt_pp(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::rsqrtss(x); |
| #else |
| return As<Float>(V(lowerRSQRT(V(x.value())))); |
| #endif |
| } |
| |
| bool HasRcpApprox() |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| RValue<Float4> RcpApprox(RValue<Float4> x, bool exactAtPow2) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| if(exactAtPow2) |
| { |
| // rcpps uses a piecewise-linear approximation which minimizes the relative error |
| // but is not exact at power-of-two values. Rectify by multiplying by the inverse. |
| return x86::rcpps(x) * Float4(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); |
| } |
| return x86::rcpps(x); |
| #else |
| UNREACHABLE("RValue<Float4> RcpApprox() not available on this platform"); |
| return { 0.0f }; |
| #endif |
| } |
| |
| RValue<Float> RcpApprox(RValue<Float> x, bool exactAtPow2) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| if(exactAtPow2) |
| { |
| // rcpss uses a piecewise-linear approximation which minimizes the relative error |
| // but is not exact at power-of-two values. Rectify by multiplying by the inverse. |
| return x86::rcpss(x) * Float(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); |
| } |
| return x86::rcpss(x); |
| #else |
| UNREACHABLE("RValue<Float4> RcpApprox() not available on this platform"); |
| return { 0.0f }; |
| #endif |
| } |
| |
| bool HasRcpSqrtApprox() |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| RValue<Float4> RcpSqrtApprox(RValue<Float4> x) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::rsqrtps(x); |
| #else |
| UNREACHABLE("RValue<Float4> RcpSqrtApprox() not available on this platform"); |
| return { 0.0f }; |
| #endif |
| } |
| |
| RValue<Float> RcpSqrtApprox(RValue<Float> x) |
| { |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::rsqrtss(x); |
| #else |
| UNREACHABLE("RValue<Float4> RcpSqrtApprox() not available on this platform"); |
| return { 0.0f }; |
| #endif |
| } |
| |
| RValue<Float> Sqrt(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::sqrtss(x); |
| #else |
| return As<Float>(V(lowerSQRT(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float> Round(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::roundss(x, 0); |
| } |
| else |
| { |
| return Float4(Round(Float4(x))).x; |
| } |
| #else |
| return RValue<Float>(V(lowerRound(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float> Trunc(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::roundss(x, 3); |
| } |
| else |
| { |
| return Float(Int(x)); // Rounded toward zero |
| } |
| #else |
| return RValue<Float>(V(lowerTrunc(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float> Frac(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x - x86::floorss(x); |
| } |
| else |
| { |
| return Float4(Frac(Float4(x))).x; |
| } |
| #else |
| // x - floor(x) can be 1.0 for very small negative x. |
| // Clamp against the value just below 1.0. |
| return Min(x - Floor(x), As<Float>(Int(0x3F7FFFFF))); |
| #endif |
| } |
| |
| RValue<Float> Floor(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::floorss(x); |
| } |
| else |
| { |
| return Float4(Floor(Float4(x))).x; |
| } |
| #else |
| return RValue<Float>(V(lowerFloor(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float> Ceil(RValue<Float> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::ceilss(x); |
| } |
| else |
| #endif |
| { |
| return Float4(Ceil(Float4(x))).x; |
| } |
| } |
| |
| Type *Float::type() |
| { |
| return T(llvm::Type::getFloatTy(*jit->context)); |
| } |
| |
| Type *Float2::type() |
| { |
| return T(Type_v2f32); |
| } |
| |
| RValue<Float> Exp2(RValue<Float> v) |
| { |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::exp2, { T(Float::type()) }); |
| return RValue<Float>(V(jit->builder->CreateCall(func, V(v.value())))); |
| } |
| |
| RValue<Float> Log2(RValue<Float> v) |
| { |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::log2, { T(Float::type()) }); |
| return RValue<Float>(V(jit->builder->CreateCall(func, V(v.value())))); |
| } |
| |
| Float4::Float4(RValue<Float> rhs) |
| : XYZW(this) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Value *vector = loadValue(); |
| Value *insert = Nucleus::createInsertElement(vector, rhs.value(), 0); |
| |
| int swizzle[4] = { 0, 0, 0, 0 }; |
| Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle); |
| |
| storeValue(replicate); |
| } |
| |
| RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::maxps(x, y); |
| #else |
| return As<Float4>(V(lowerPFMINMAX(V(x.value()), V(y.value()), llvm::FCmpInst::FCMP_OGT))); |
| #endif |
| } |
| |
| RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::minps(x, y); |
| #else |
| return As<Float4>(V(lowerPFMINMAX(V(x.value()), V(y.value()), llvm::FCmpInst::FCMP_OLT))); |
| #endif |
| } |
| |
| RValue<Float4> Rcp_pp(RValue<Float4> x, bool exactAtPow2) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(exactAtPow2) |
| { |
| // rcpps uses a piecewise-linear approximation which minimizes the relative error |
| // but is not exact at power-of-two values. Rectify by multiplying by the inverse. |
| return x86::rcpps(x) * Float4(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); |
| } |
| return x86::rcpps(x); |
| #else |
| return As<Float4>(V(lowerRCP(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float4> RcpSqrt_pp(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::rsqrtps(x); |
| #else |
| return As<Float4>(V(lowerRSQRT(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float4> Sqrt(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::sqrtps(x); |
| #else |
| return As<Float4>(V(lowerSQRT(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Int> SignMask(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| return x86::movmskps(x); |
| #else |
| return As<Int>(V(lowerFPSignMask(V(x.value()), T(Int::type())))); |
| #endif |
| } |
| |
| RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // return As<Int4>(x86::cmpeqps(x, y)); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOEQ(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // return As<Int4>(x86::cmpltps(x, y)); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLT(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // return As<Int4>(x86::cmpleps(x, y)); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // return As<Int4>(x86::cmpneqps(x, y)); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpONE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // return As<Int4>(x86::cmpnltps(x, y)); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // return As<Int4>(x86::cmpnleps(x, y)); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGT(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpUEQ(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpUEQ(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpULT(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpULT(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpULE(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpULE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpUNEQ(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpUNE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpUNLT(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpUGE(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Int4> CmpUNLE(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpUGT(x.value(), y.value()), Int4::type())); |
| } |
| |
| RValue<Float4> Round(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::roundps(x, 0); |
| } |
| else |
| { |
| return Float4(RoundInt(x)); |
| } |
| #else |
| return RValue<Float4>(V(lowerRound(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float4> Trunc(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::roundps(x, 3); |
| } |
| else |
| { |
| return Float4(Int4(x)); |
| } |
| #else |
| return RValue<Float4>(V(lowerTrunc(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float4> Frac(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Float4 frc; |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| frc = x - x86::floorps(x); |
| } |
| else |
| { |
| frc = x - Float4(Int4(x)); // Signed fractional part. |
| |
| frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1.0f))); // Add 1.0 if negative. |
| } |
| #else |
| frc = x - Floor(x); |
| #endif |
| |
| // x - floor(x) can be 1.0 for very small negative x. |
| // Clamp against the value just below 1.0. |
| return Min(frc, As<Float4>(Int4(0x3F7FFFFF))); |
| } |
| |
| RValue<Float4> Floor(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::floorps(x); |
| } |
| else |
| { |
| return x - Frac(x); |
| } |
| #else |
| return RValue<Float4>(V(lowerFloor(V(x.value())))); |
| #endif |
| } |
| |
| RValue<Float4> Ceil(RValue<Float4> x) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| #if defined(__i386__) || defined(__x86_64__) |
| if(CPUID::supportsSSE4_1()) |
| { |
| return x86::ceilps(x); |
| } |
| else |
| #endif |
| { |
| return -Floor(-x); |
| } |
| } |
| |
| RValue<Float4> Sin(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::sin, { V(v.value())->getType() }); |
| return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); |
| } |
| |
| RValue<Float4> Cos(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::cos, { V(v.value())->getType() }); |
| return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); |
| } |
| |
| RValue<Float4> Tan(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return Sin(v) / Cos(v); |
| } |
| |
| static RValue<Float4> TransformFloat4PerElement(RValue<Float4> v, const char *name) |
| { |
| auto funcTy = llvm::FunctionType::get(T(Float::type()), llvm::ArrayRef<llvm::Type *>(T(Float::type())), false); |
| auto func = jit->module->getOrInsertFunction(name, funcTy); |
| llvm::Value *out = llvm::UndefValue::get(T(Float4::type())); |
| for(uint64_t i = 0; i < 4; i++) |
| { |
| auto el = jit->builder->CreateCall(func, V(Nucleus::createExtractElement(v.value(), Float::type(), i))); |
| out = V(Nucleus::createInsertElement(V(out), V(el), i)); |
| } |
| return RValue<Float4>(V(out)); |
| } |
| |
| RValue<Float4> Asin(RValue<Float4> v, Precision p) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return TransformFloat4PerElement(v, "asinf"); |
| } |
| |
| RValue<Float4> Acos(RValue<Float4> v, Precision p) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return TransformFloat4PerElement(v, "acosf"); |
| } |
| |
| RValue<Float4> Atan(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return TransformFloat4PerElement(v, "atanf"); |
| } |
| |
| RValue<Float4> Sinh(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return emulated::Sinh(v); |
| } |
| |
| RValue<Float4> Cosh(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return emulated::Cosh(v); |
| } |
| |
| RValue<Float4> Tanh(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return TransformFloat4PerElement(v, "tanhf"); |
| } |
| |
| RValue<Float4> Asinh(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return TransformFloat4PerElement(v, "asinhf"); |
| } |
| |
| RValue<Float4> Acosh(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return TransformFloat4PerElement(v, "acoshf"); |
| } |
| |
| RValue<Float4> Atanh(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| return TransformFloat4PerElement(v, "atanhf"); |
| } |
| |
| RValue<Float4> Atan2(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| llvm::SmallVector<llvm::Type *, 2> paramTys; |
| paramTys.push_back(T(Float::type())); |
| paramTys.push_back(T(Float::type())); |
| auto funcTy = llvm::FunctionType::get(T(Float::type()), paramTys, false); |
| auto func = jit->module->getOrInsertFunction("atan2f", funcTy); |
| llvm::Value *out = llvm::UndefValue::get(T(Float4::type())); |
| for(uint64_t i = 0; i < 4; i++) |
| { |
| auto el = jit->builder->CreateCall(func, { V(Nucleus::createExtractElement(x.value(), Float::type(), i)), |
| V(Nucleus::createExtractElement(y.value(), Float::type(), i)) }); |
| out = V(Nucleus::createInsertElement(V(out), V(el), i)); |
| } |
| return RValue<Float4>(V(out)); |
| } |
| |
| RValue<Float4> Pow(RValue<Float4> x, RValue<Float4> y) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::pow, { T(Float4::type()) }); |
| return RValue<Float4>(V(jit->builder->CreateCall(func, { V(x.value()), V(y.value()) }))); |
| } |
| |
| RValue<Float4> Exp(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::exp, { T(Float4::type()) }); |
| return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); |
| } |
| |
| RValue<Float4> Log(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::log, { T(Float4::type()) }); |
| return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); |
| } |
| |
| RValue<Float4> Exp2(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::exp2, { T(Float4::type()) }); |
| return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); |
| } |
| |
| RValue<Float4> Log2(RValue<Float4> v) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::log2, { T(Float4::type()) }); |
| return RValue<Float4>(V(jit->builder->CreateCall(func, V(v.value())))); |
| } |
| |
| RValue<UInt> Ctlz(RValue<UInt> v, bool isZeroUndef) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::ctlz, { T(UInt::type()) }); |
| return RValue<UInt>(V(jit->builder->CreateCall(func, { V(v.value()), |
| isZeroUndef ? llvm::ConstantInt::getTrue(*jit->context) : llvm::ConstantInt::getFalse(*jit->context) }))); |
| } |
| |
| RValue<UInt4> Ctlz(RValue<UInt4> v, bool isZeroUndef) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::ctlz, { T(UInt4::type()) }); |
| return RValue<UInt4>(V(jit->builder->CreateCall(func, { V(v.value()), |
| isZeroUndef ? llvm::ConstantInt::getTrue(*jit->context) : llvm::ConstantInt::getFalse(*jit->context) }))); |
| } |
| |
| RValue<UInt> Cttz(RValue<UInt> v, bool isZeroUndef) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::cttz, { T(UInt::type()) }); |
| return RValue<UInt>(V(jit->builder->CreateCall(func, { V(v.value()), |
| isZeroUndef ? llvm::ConstantInt::getTrue(*jit->context) : llvm::ConstantInt::getFalse(*jit->context) }))); |
| } |
| |
| RValue<UInt4> Cttz(RValue<UInt4> v, bool isZeroUndef) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto func = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::cttz, { T(UInt4::type()) }); |
| return RValue<UInt4>(V(jit->builder->CreateCall(func, { V(v.value()), |
| isZeroUndef ? llvm::ConstantInt::getTrue(*jit->context) : llvm::ConstantInt::getFalse(*jit->context) }))); |
| } |
| |
| RValue<Int> MinAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder) |
| { |
| return RValue<Int>(Nucleus::createAtomicMin(x.value(), y.value(), memoryOrder)); |
| } |
| |
| RValue<UInt> MinAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder) |
| { |
| return RValue<UInt>(Nucleus::createAtomicUMin(x.value(), y.value(), memoryOrder)); |
| } |
| |
| RValue<Int> MaxAtomic(RValue<Pointer<Int>> x, RValue<Int> y, std::memory_order memoryOrder) |
| { |
| return RValue<Int>(Nucleus::createAtomicMax(x.value(), y.value(), memoryOrder)); |
| } |
| |
| RValue<UInt> MaxAtomic(RValue<Pointer<UInt>> x, RValue<UInt> y, std::memory_order memoryOrder) |
| { |
| return RValue<UInt>(Nucleus::createAtomicUMax(x.value(), y.value(), memoryOrder)); |
| } |
| |
| Type *Float4::type() |
| { |
| return T(llvm::VectorType::get(T(Float::type()), 4, false)); |
| } |
| |
| RValue<Long> Ticks() |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| llvm::Function *rdtsc = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::readcyclecounter); |
| |
| return RValue<Long>(V(jit->builder->CreateCall(rdtsc))); |
| } |
| |
| RValue<Pointer<Byte>> ConstantPointer(void const *ptr) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| // Note: this should work for 32-bit pointers as well because 'inttoptr' |
| // is defined to truncate (and zero extend) if necessary. |
| auto ptrAsInt = llvm::ConstantInt::get(llvm::Type::getInt64Ty(*jit->context), reinterpret_cast<uintptr_t>(ptr)); |
| return RValue<Pointer<Byte>>(V(jit->builder->CreateIntToPtr(ptrAsInt, T(Pointer<Byte>::type())))); |
| } |
| |
| RValue<Pointer<Byte>> ConstantData(void const *data, size_t size) |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| auto str = ::std::string(reinterpret_cast<const char *>(data), size); |
| auto ptr = jit->builder->CreateGlobalStringPtr(str); |
| return RValue<Pointer<Byte>>(V(ptr)); |
| } |
| |
| Value *Call(RValue<Pointer<Byte>> fptr, Type *retTy, std::initializer_list<Value *> args, std::initializer_list<Type *> argTys) |
| { |
| // If this is a MemorySanitizer build, but Reactor routine instrumentation is not enabled, |
| // mark all call arguments as initialized by calling __msan_unpoison_param(). |
| if(__has_feature(memory_sanitizer) && !REACTOR_ENABLE_MEMORY_SANITIZER_INSTRUMENTATION) |
| { |
| // void __msan_unpoison_param(size_t n) |
| auto voidTy = llvm::Type::getVoidTy(*jit->context); |
| auto sizetTy = llvm::IntegerType::get(*jit->context, sizeof(size_t) * 8); |
| auto funcTy = llvm::FunctionType::get(voidTy, { sizetTy }, false); |
| auto func = jit->module->getOrInsertFunction("__msan_unpoison_param", funcTy); |
| |
| jit->builder->CreateCall(func, { llvm::ConstantInt::get(sizetTy, args.size()) }); |
| } |
| |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| llvm::SmallVector<llvm::Type *, 8> paramTys; |
| for(auto ty : argTys) { paramTys.push_back(T(ty)); } |
| auto funcTy = llvm::FunctionType::get(T(retTy), paramTys, false); |
| |
| auto funcPtrTy = funcTy->getPointerTo(); |
| auto funcPtr = jit->builder->CreatePointerCast(V(fptr.value()), funcPtrTy); |
| |
| llvm::SmallVector<llvm::Value *, 8> arguments; |
| for(auto arg : args) { arguments.push_back(V(arg)); } |
| return V(jit->builder->CreateCall(funcTy, funcPtr, arguments)); |
| } |
| |
| void Breakpoint() |
| { |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| llvm::Function *debugtrap = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::debugtrap); |
| |
| jit->builder->CreateCall(debugtrap); |
| } |
| |
| } // namespace rr |
| |
| namespace rr { |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| namespace x86 { |
| |
| // Differs from IRBuilder<>::CreateUnaryIntrinsic() in that it only accepts native instruction intrinsics which have |
| // implicit types, such as 'x86_sse_rcp_ps' operating on v4f32, while 'sqrt' requires explicitly specifying the operand type. |
| static Value *createInstruction(llvm::Intrinsic::ID id, Value *x) |
| { |
| llvm::Function *intrinsic = llvm::Intrinsic::getDeclaration(jit->module.get(), id); |
| |
| return V(jit->builder->CreateCall(intrinsic, V(x))); |
| } |
| |
| // Differs from IRBuilder<>::CreateBinaryIntrinsic() in that it only accepts native instruction intrinsics which have |
| // implicit types, such as 'x86_sse_max_ps' operating on v4f32, while 'sadd_sat' requires explicitly specifying the operand types. |
| static Value *createInstruction(llvm::Intrinsic::ID id, Value *x, Value *y) |
| { |
| llvm::Function *intrinsic = llvm::Intrinsic::getDeclaration(jit->module.get(), id); |
| |
| return V(jit->builder->CreateCall(intrinsic, { V(x), V(y) })); |
| } |
| |
| RValue<Int> cvtss2si(RValue<Float> val) |
| { |
| Float4 vector; |
| vector.x = val; |
| |
| return RValue<Int>(createInstruction(llvm::Intrinsic::x86_sse_cvtss2si, RValue<Float4>(vector).value())); |
| } |
| |
| RValue<Int4> cvtps2dq(RValue<Float4> val) |
| { |
| return RValue<Int4>(createInstruction(llvm::Intrinsic::x86_sse2_cvtps2dq, val.value())); |
| } |
| |
| RValue<Float> rcpss(RValue<Float> val) |
| { |
| Value *undef = V(llvm::UndefValue::get(T(Float4::type()))); |
| |
| // TODO(b/172238865): MemorySanitizer does not support the rcpss instruction, |
| // which makes it look at the entire 128-bit input operand for undefined bits. |
| // Use zero-initialized values instead. |
| if(__has_feature(memory_sanitizer)) |
| { |
| undef = Float4(0).loadValue(); |
| } |
| |
| Value *vector = Nucleus::createInsertElement(undef, val.value(), 0); |
| |
| return RValue<Float>(Nucleus::createExtractElement(createInstruction(llvm::Intrinsic::x86_sse_rcp_ss, vector), Float::type(), 0)); |
| } |
| |
| RValue<Float> sqrtss(RValue<Float> val) |
| { |
| return RValue<Float>(V(jit->builder->CreateUnaryIntrinsic(llvm::Intrinsic::sqrt, V(val.value())))); |
| } |
| |
| RValue<Float> rsqrtss(RValue<Float> val) |
| { |
| Value *undef = V(llvm::UndefValue::get(T(Float4::type()))); |
| |
| // TODO(b/172238865): MemorySanitizer does not support the rsqrtss instruction, |
| // which makes it look at the entire 128-bit input operand for undefined bits. |
| // Use zero-initialized values instead. |
| if(__has_feature(memory_sanitizer)) |
| { |
| undef = Float4(0).loadValue(); |
| } |
| |
| Value *vector = Nucleus::createInsertElement(undef, val.value(), 0); |
| |
| return RValue<Float>(Nucleus::createExtractElement(createInstruction(llvm::Intrinsic::x86_sse_rsqrt_ss, vector), Float::type(), 0)); |
| } |
| |
| RValue<Float4> rcpps(RValue<Float4> val) |
| { |
| return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse_rcp_ps, val.value())); |
| } |
| |
| RValue<Float4> sqrtps(RValue<Float4> val) |
| { |
| return RValue<Float4>(V(jit->builder->CreateUnaryIntrinsic(llvm::Intrinsic::sqrt, V(val.value())))); |
| } |
| |
| RValue<Float4> rsqrtps(RValue<Float4> val) |
| { |
| return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse_rsqrt_ps, val.value())); |
| } |
| |
| RValue<Float4> maxps(RValue<Float4> x, RValue<Float4> y) |
| { |
| return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse_max_ps, x.value(), y.value())); |
| } |
| |
| RValue<Float4> minps(RValue<Float4> x, RValue<Float4> y) |
| { |
| return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse_min_ps, x.value(), y.value())); |
| } |
| |
| RValue<Float> roundss(RValue<Float> val, unsigned char imm) |
| { |
| llvm::Function *roundss = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::x86_sse41_round_ss); |
| |
| Value *undef = V(llvm::UndefValue::get(T(Float4::type()))); |
| |
| // TODO(b/172238865): MemorySanitizer does not support the roundss instruction, |
| // which makes it look at the entire 128-bit input operands for undefined bits. |
| // Use zero-initialized values instead. |
| if(__has_feature(memory_sanitizer)) |
| { |
| undef = Float4(0).loadValue(); |
| } |
| |
| Value *vector = Nucleus::createInsertElement(undef, val.value(), 0); |
| |
| return RValue<Float>(Nucleus::createExtractElement(V(jit->builder->CreateCall(roundss, { V(undef), V(vector), V(Nucleus::createConstantInt(imm)) })), Float::type(), 0)); |
| } |
| |
| RValue<Float> floorss(RValue<Float> val) |
| { |
| return roundss(val, 1); |
| } |
| |
| RValue<Float> ceilss(RValue<Float> val) |
| { |
| return roundss(val, 2); |
| } |
| |
| RValue<Float4> roundps(RValue<Float4> val, unsigned char imm) |
| { |
| return RValue<Float4>(createInstruction(llvm::Intrinsic::x86_sse41_round_ps, val.value(), Nucleus::createConstantInt(imm))); |
| } |
| |
| RValue<Float4> floorps(RValue<Float4> val) |
| { |
| return roundps(val, 1); |
| } |
| |
| RValue<Float4> ceilps(RValue<Float4> val) |
| { |
| return roundps(val, 2); |
| } |
| |
| RValue<Int4> pabsd(RValue<Int4> x) |
| { |
| return RValue<Int4>(V(lowerPABS(V(x.value())))); |
| } |
| |
| RValue<Short4> paddsw(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Short4>(V(lowerPSADDSAT(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<Short4> psubsw(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Short4>(V(lowerPSSUBSAT(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<UShort4> paddusw(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| return As<UShort4>(V(lowerPUADDSAT(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<UShort4> psubusw(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| return As<UShort4>(V(lowerPUSUBSAT(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<SByte8> paddsb(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| return As<SByte8>(V(lowerPSADDSAT(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<SByte8> psubsb(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| return As<SByte8>(V(lowerPSSUBSAT(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<Byte8> paddusb(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| return As<Byte8>(V(lowerPUADDSAT(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<Byte8> psubusb(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| return As<Byte8>(V(lowerPUSUBSAT(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<UShort4> pavgw(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| return As<UShort4>(V(lowerPAVG(V(x.value()), V(y.value())))); |
| } |
| |
| RValue<Short4> pmaxsw(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Short4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SGT))); |
| } |
| |
| RValue<Short4> pminsw(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Short4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SLT))); |
| } |
| |
| RValue<Short4> pcmpgtw(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Short4::type())))); |
| } |
| |
| RValue<Short4> pcmpeqw(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Short4::type())))); |
| } |
| |
| RValue<Byte8> pcmpgtb(RValue<SByte8> x, RValue<SByte8> y) |
| { |
| return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value()), V(y.value()), T(Byte8::type())))); |
| } |
| |
| RValue<Byte8> pcmpeqb(RValue<Byte8> x, RValue<Byte8> y) |
| { |
| return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value()), V(y.value()), T(Byte8::type())))); |
| } |
| |
| RValue<Short4> packssdw(RValue<Int2> x, RValue<Int2> y) |
| { |
| return As<Short4>(createInstruction(llvm::Intrinsic::x86_sse2_packssdw_128, x.value(), y.value())); |
| } |
| |
| RValue<Short8> packssdw(RValue<Int4> x, RValue<Int4> y) |
| { |
| return RValue<Short8>(createInstruction(llvm::Intrinsic::x86_sse2_packssdw_128, x.value(), y.value())); |
| } |
| |
| RValue<SByte8> packsswb(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<SByte8>(createInstruction(llvm::Intrinsic::x86_sse2_packsswb_128, x.value(), y.value())); |
| } |
| |
| RValue<Byte8> packuswb(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Byte8>(createInstruction(llvm::Intrinsic::x86_sse2_packuswb_128, x.value(), y.value())); |
| } |
| |
| RValue<UShort8> packusdw(RValue<Int4> x, RValue<Int4> y) |
| { |
| if(CPUID::supportsSSE4_1()) |
| { |
| return RValue<UShort8>(createInstruction(llvm::Intrinsic::x86_sse41_packusdw, x.value(), y.value())); |
| } |
| else |
| { |
| RValue<Int4> bx = (x & ~(x >> 31)) - Int4(0x8000); |
| RValue<Int4> by = (y & ~(y >> 31)) - Int4(0x8000); |
| |
| return As<UShort8>(packssdw(bx, by) + Short8(0x8000u)); |
| } |
| } |
| |
| RValue<UShort4> psrlw(RValue<UShort4> x, unsigned char y) |
| { |
| return As<UShort4>(createInstruction(llvm::Intrinsic::x86_sse2_psrli_w, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<UShort8> psrlw(RValue<UShort8> x, unsigned char y) |
| { |
| return RValue<UShort8>(createInstruction(llvm::Intrinsic::x86_sse2_psrli_w, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Short4> psraw(RValue<Short4> x, unsigned char y) |
| { |
| return As<Short4>(createInstruction(llvm::Intrinsic::x86_sse2_psrai_w, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Short8> psraw(RValue<Short8> x, unsigned char y) |
| { |
| return RValue<Short8>(createInstruction(llvm::Intrinsic::x86_sse2_psrai_w, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Short4> psllw(RValue<Short4> x, unsigned char y) |
| { |
| return As<Short4>(createInstruction(llvm::Intrinsic::x86_sse2_pslli_w, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Short8> psllw(RValue<Short8> x, unsigned char y) |
| { |
| return RValue<Short8>(createInstruction(llvm::Intrinsic::x86_sse2_pslli_w, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Int2> pslld(RValue<Int2> x, unsigned char y) |
| { |
| return As<Int2>(createInstruction(llvm::Intrinsic::x86_sse2_pslli_d, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Int4> pslld(RValue<Int4> x, unsigned char y) |
| { |
| return RValue<Int4>(createInstruction(llvm::Intrinsic::x86_sse2_pslli_d, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Int2> psrad(RValue<Int2> x, unsigned char y) |
| { |
| return As<Int2>(createInstruction(llvm::Intrinsic::x86_sse2_psrai_d, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Int4> psrad(RValue<Int4> x, unsigned char y) |
| { |
| return RValue<Int4>(createInstruction(llvm::Intrinsic::x86_sse2_psrai_d, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<UInt2> psrld(RValue<UInt2> x, unsigned char y) |
| { |
| return As<UInt2>(createInstruction(llvm::Intrinsic::x86_sse2_psrli_d, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<UInt4> psrld(RValue<UInt4> x, unsigned char y) |
| { |
| return RValue<UInt4>(createInstruction(llvm::Intrinsic::x86_sse2_psrli_d, x.value(), Nucleus::createConstantInt(y))); |
| } |
| |
| RValue<Int4> pmaxsd(RValue<Int4> x, RValue<Int4> y) |
| { |
| return RValue<Int4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SGT))); |
| } |
| |
| RValue<Int4> pminsd(RValue<Int4> x, RValue<Int4> y) |
| { |
| return RValue<Int4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_SLT))); |
| } |
| |
| RValue<UInt4> pmaxud(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| return RValue<UInt4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_UGT))); |
| } |
| |
| RValue<UInt4> pminud(RValue<UInt4> x, RValue<UInt4> y) |
| { |
| return RValue<UInt4>(V(lowerPMINMAX(V(x.value()), V(y.value()), llvm::ICmpInst::ICMP_ULT))); |
| } |
| |
| RValue<Short4> pmulhw(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Short4>(createInstruction(llvm::Intrinsic::x86_sse2_pmulh_w, x.value(), y.value())); |
| } |
| |
| RValue<UShort4> pmulhuw(RValue<UShort4> x, RValue<UShort4> y) |
| { |
| return As<UShort4>(createInstruction(llvm::Intrinsic::x86_sse2_pmulhu_w, x.value(), y.value())); |
| } |
| |
| RValue<Int2> pmaddwd(RValue<Short4> x, RValue<Short4> y) |
| { |
| return As<Int2>(createInstruction(llvm::Intrinsic::x86_sse2_pmadd_wd, x.value(), y.value())); |
| } |
| |
| RValue<Short8> pmulhw(RValue<Short8> x, RValue<Short8> y) |
| { |
| return RValue<Short8>(createInstruction(llvm::Intrinsic::x86_sse2_pmulh_w, x.value(), y.value())); |
| } |
| |
| RValue<UShort8> pmulhuw(RValue<UShort8> x, RValue<UShort8> y) |
| { |
| return RValue<UShort8>(createInstruction(llvm::Intrinsic::x86_sse2_pmulhu_w, x.value(), y.value())); |
| } |
| |
| RValue<Int4> pmaddwd(RValue<Short8> x, RValue<Short8> y) |
| { |
| return RValue<Int4>(createInstruction(llvm::Intrinsic::x86_sse2_pmadd_wd, x.value(), y.value())); |
| } |
| |
| RValue<Int> movmskps(RValue<Float4> x) |
| { |
| Value *v = x.value(); |
| |
| // TODO(b/172238865): MemorySanitizer does not support movmsk instructions, |
| // which makes it look at the entire 128-bit input for undefined bits. Mask off |
| // just the sign bits to avoid false positives. |
| if(__has_feature(memory_sanitizer)) |
| { |
| v = As<Float4>(As<Int4>(v) & Int4(0x80000000u)).value(); |
| } |
| |
| return RValue<Int>(createInstruction(llvm::Intrinsic::x86_sse_movmsk_ps, v)); |
| } |
| |
| RValue<Int> pmovmskb(RValue<Byte8> x) |
| { |
| Value *v = x.value(); |
| |
| // TODO(b/172238865): MemorySanitizer does not support movmsk instructions, |
| // which makes it look at the entire 128-bit input for undefined bits. Mask off |
| // just the sign bits in the lower 64-bit vector to avoid false positives. |
| if(__has_feature(memory_sanitizer)) |
| { |
| v = As<Byte16>(As<Int4>(v) & Int4(0x80808080u, 0x80808080u, 0, 0)).value(); |
| } |
| |
| return RValue<Int>(createInstruction(llvm::Intrinsic::x86_sse2_pmovmskb_128, v)) & 0xFF; |
| } |
| |
| RValue<Int4> pmovzxbd(RValue<Byte16> x) |
| { |
| return RValue<Int4>(V(lowerPMOV(V(x.value()), T(Int4::type()), false))); |
| } |
| |
| RValue<Int4> pmovsxbd(RValue<SByte16> x) |
| { |
| return RValue<Int4>(V(lowerPMOV(V(x.value()), T(Int4::type()), true))); |
| } |
| |
| RValue<Int4> pmovzxwd(RValue<UShort8> x) |
| { |
| return RValue<Int4>(V(lowerPMOV(V(x.value()), T(Int4::type()), false))); |
| } |
| |
| RValue<Int4> pmovsxwd(RValue<Short8> x) |
| { |
| return RValue<Int4>(V(lowerPMOV(V(x.value()), T(Int4::type()), true))); |
| } |
| |
| } // namespace x86 |
| #endif // defined(__i386__) || defined(__x86_64__) |
| |
| #ifdef ENABLE_RR_PRINT |
| void VPrintf(const std::vector<Value *> &vals) |
| { |
| auto i32Ty = llvm::Type::getInt32Ty(*jit->context); |
| auto i8PtrTy = llvm::Type::getInt8PtrTy(*jit->context); |
| auto funcTy = llvm::FunctionType::get(i32Ty, { i8PtrTy }, true); |
| auto func = jit->module->getOrInsertFunction("rr::DebugPrintf", funcTy); |
| jit->builder->CreateCall(func, V(vals)); |
| } |
| #endif // ENABLE_RR_PRINT |
| |
| void Nop() |
| { |
| auto voidTy = llvm::Type::getVoidTy(*jit->context); |
| auto funcTy = llvm::FunctionType::get(voidTy, {}, false); |
| auto func = jit->module->getOrInsertFunction("nop", funcTy); |
| jit->builder->CreateCall(func); |
| } |
| |
| void EmitDebugLocation() |
| { |
| #ifdef ENABLE_RR_DEBUG_INFO |
| if(jit->debugInfo != nullptr) |
| { |
| jit->debugInfo->EmitLocation(); |
| } |
| #endif // ENABLE_RR_DEBUG_INFO |
| } |
| |
| void EmitDebugVariable(Value *value) |
| { |
| #ifdef ENABLE_RR_DEBUG_INFO |
| if(jit->debugInfo != nullptr) |
| { |
| jit->debugInfo->EmitVariable(value); |
| } |
| #endif // ENABLE_RR_DEBUG_INFO |
| } |
| |
| void FlushDebug() |
| { |
| #ifdef ENABLE_RR_DEBUG_INFO |
| if(jit->debugInfo != nullptr) |
| { |
| jit->debugInfo->Flush(); |
| } |
| #endif // ENABLE_RR_DEBUG_INFO |
| } |
| |
| } // namespace rr |
| |
| // ------------------------------ Coroutines ------------------------------ |
| |
| namespace { |
| |
| // Magic values retuned by llvm.coro.suspend. |
| // See: https://llvm.org/docs/Coroutines.html#llvm-coro-suspend-intrinsic |
| enum SuspendAction |
| { |
| SuspendActionSuspend = -1, |
| SuspendActionResume = 0, |
| SuspendActionDestroy = 1 |
| }; |
| |
| void promoteFunctionToCoroutine() |
| { |
| ASSERT(jit->coroutine.id == nullptr); |
| |
| // Types |
| auto voidTy = llvm::Type::getVoidTy(*jit->context); |
| auto i1Ty = llvm::Type::getInt1Ty(*jit->context); |
| auto i8Ty = llvm::Type::getInt8Ty(*jit->context); |
| auto i32Ty = llvm::Type::getInt32Ty(*jit->context); |
| auto i8PtrTy = llvm::Type::getInt8PtrTy(*jit->context); |
| auto promiseTy = jit->coroutine.yieldType; |
| auto promisePtrTy = promiseTy->getPointerTo(); |
| |
| // LLVM intrinsics |
| auto coro_id = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_id); |
| auto coro_size = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_size, { i32Ty }); |
| auto coro_begin = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_begin); |
| auto coro_resume = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_resume); |
| auto coro_end = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_end); |
| auto coro_free = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_free); |
| auto coro_destroy = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_destroy); |
| auto coro_promise = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_promise); |
| auto coro_done = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_done); |
| auto coro_suspend = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_suspend); |
| |
| auto allocFrameTy = llvm::FunctionType::get(i8PtrTy, { i32Ty }, false); |
| auto allocFrame = jit->module->getOrInsertFunction("coroutine_alloc_frame", allocFrameTy); |
| auto freeFrameTy = llvm::FunctionType::get(voidTy, { i8PtrTy }, false); |
| auto freeFrame = jit->module->getOrInsertFunction("coroutine_free_frame", freeFrameTy); |
| |
| auto oldInsertionPoint = jit->builder->saveIP(); |
| |
| // Build the coroutine_await() function: |
| // |
| // bool coroutine_await(CoroutineHandle* handle, YieldType* out) |
| // { |
| // if(llvm.coro.done(handle)) |
| // { |
| // return false; |
| // } |
| // else |
| // { |
| // *value = (T*)llvm.coro.promise(handle); |
| // llvm.coro.resume(handle); |
| // return true; |
| // } |
| // } |
| // |
| { |
| auto args = jit->coroutine.await->arg_begin(); |
| auto handle = args++; |
| auto outPtr = args++; |
| jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "co_await", jit->coroutine.await)); |
| auto doneBlock = llvm::BasicBlock::Create(*jit->context, "done", jit->coroutine.await); |
| auto resumeBlock = llvm::BasicBlock::Create(*jit->context, "resume", jit->coroutine.await); |
| |
| auto done = jit->builder->CreateCall(coro_done, { handle }, "done"); |
| jit->builder->CreateCondBr(done, doneBlock, resumeBlock); |
| |
| jit->builder->SetInsertPoint(doneBlock); |
| jit->builder->CreateRet(llvm::ConstantInt::getFalse(i1Ty)); |
| |
| jit->builder->SetInsertPoint(resumeBlock); |
| auto promiseAlignment = llvm::ConstantInt::get(i32Ty, 4); // TODO: Get correct alignment. |
| auto promisePtr = jit->builder->CreateCall(coro_promise, { handle, promiseAlignment, llvm::ConstantInt::get(i1Ty, 0) }); |
| auto promise = jit->builder->CreateLoad(jit->builder->CreatePointerCast(promisePtr, promisePtrTy)); |
| jit->builder->CreateStore(promise, outPtr); |
| jit->builder->CreateCall(coro_resume, { handle }); |
| jit->builder->CreateRet(llvm::ConstantInt::getTrue(i1Ty)); |
| } |
| |
| // Build the coroutine_destroy() function: |
| // |
| // void coroutine_destroy(CoroutineHandle* handle) |
| // { |
| // llvm.coro.destroy(handle); |
| // } |
| // |
| { |
| auto handle = jit->coroutine.destroy->arg_begin(); |
| jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "", jit->coroutine.destroy)); |
| jit->builder->CreateCall(coro_destroy, { handle }); |
| jit->builder->CreateRetVoid(); |
| } |
| |
| // Begin building the main coroutine_begin() function. |
| // |
| // CoroutineHandle* coroutine_begin(<Arguments>) |
| // { |
| // YieldType promise; |
| // auto id = llvm.coro.id(0, &promise, nullptr, nullptr); |
| // void* frame = coroutine_alloc_frame(llvm.coro.size.i32()); |
| // CoroutineHandle *handle = llvm.coro.begin(id, frame); |
| // |
| // ... <REACTOR CODE> ... |
| // |
| // end: |
| // SuspendAction action = llvm.coro.suspend(none, true /* final */); // <-- RESUME POINT |
| // switch(action) |
| // { |
| // case SuspendActionResume: |
| // UNREACHABLE(); // Illegal to resume after final suspend. |
| // case SuspendActionDestroy: |
| // goto destroy; |
| // default: // (SuspendActionSuspend) |
| // goto suspend; |
| // } |
| // |
| // destroy: |
| // coroutine_free_frame(llvm.coro.free(id, handle)); |
| // goto suspend; |
| // |
| // suspend: |
| // llvm.coro.end(handle, false); |
| // return handle; |
| // } |
| // |
| |
| #ifdef ENABLE_RR_DEBUG_INFO |
| jit->debugInfo = std::make_unique<rr::DebugInfo>(jit->builder.get(), jit->context.get(), jit->module.get(), jit->function); |
| #endif // ENABLE_RR_DEBUG_INFO |
| |
| jit->coroutine.suspendBlock = llvm::BasicBlock::Create(*jit->context, "suspend", jit->function); |
| jit->coroutine.endBlock = llvm::BasicBlock::Create(*jit->context, "end", jit->function); |
| jit->coroutine.destroyBlock = llvm::BasicBlock::Create(*jit->context, "destroy", jit->function); |
| |
| jit->builder->SetInsertPoint(jit->coroutine.entryBlock, jit->coroutine.entryBlock->begin()); |
| jit->coroutine.promise = jit->builder->CreateAlloca(promiseTy, nullptr, "promise"); |
| jit->coroutine.id = jit->builder->CreateCall(coro_id, { |
| llvm::ConstantInt::get(i32Ty, 0), |
| jit->builder->CreatePointerCast(jit->coroutine.promise, i8PtrTy), |
| llvm::ConstantPointerNull::get(i8PtrTy), |
| llvm::ConstantPointerNull::get(i8PtrTy), |
| }); |
| auto size = jit->builder->CreateCall(coro_size, {}); |
| auto frame = jit->builder->CreateCall(allocFrame, { size }); |
| jit->coroutine.handle = jit->builder->CreateCall(coro_begin, { jit->coroutine.id, frame }); |
| |
| // Build the suspend block |
| jit->builder->SetInsertPoint(jit->coroutine.suspendBlock); |
| jit->builder->CreateCall(coro_end, { jit->coroutine.handle, llvm::ConstantInt::get(i1Ty, 0) }); |
| jit->builder->CreateRet(jit->coroutine.handle); |
| |
| // Build the end block |
| jit->builder->SetInsertPoint(jit->coroutine.endBlock); |
| auto action = jit->builder->CreateCall(coro_suspend, { |
| llvm::ConstantTokenNone::get(*jit->context), |
| llvm::ConstantInt::get(i1Ty, 1), // final: true |
| }); |
| auto switch_ = jit->builder->CreateSwitch(action, jit->coroutine.suspendBlock, 3); |
| // switch_->addCase(llvm::ConstantInt::get(i8Ty, SuspendActionResume), trapBlock); // TODO: Trap attempting to resume after final suspend |
| switch_->addCase(llvm::ConstantInt::get(i8Ty, SuspendActionDestroy), jit->coroutine.destroyBlock); |
| |
| // Build the destroy block |
| jit->builder->SetInsertPoint(jit->coroutine.destroyBlock); |
| auto memory = jit->builder->CreateCall(coro_free, { jit->coroutine.id, jit->coroutine.handle }); |
| jit->builder->CreateCall(freeFrame, { memory }); |
| jit->builder->CreateBr(jit->coroutine.suspendBlock); |
| |
| // Switch back to original insert point to continue building the coroutine. |
| jit->builder->restoreIP(oldInsertionPoint); |
| } |
| |
| } // anonymous namespace |
| |
| namespace rr { |
| |
| void Nucleus::createCoroutine(Type *YieldType, const std::vector<Type *> &Params) |
| { |
| // Coroutines are initially created as a regular function. |
| // Upon the first call to Yield(), the function is promoted to a true |
| // coroutine. |
| auto voidTy = llvm::Type::getVoidTy(*jit->context); |
| auto i1Ty = llvm::Type::getInt1Ty(*jit->context); |
| auto i8PtrTy = llvm::Type::getInt8PtrTy(*jit->context); |
| auto handleTy = i8PtrTy; |
| auto boolTy = i1Ty; |
| auto promiseTy = T(YieldType); |
| auto promisePtrTy = promiseTy->getPointerTo(); |
| |
| jit->function = rr::createFunction("coroutine_begin", handleTy, T(Params)); |
| jit->coroutine.await = rr::createFunction("coroutine_await", boolTy, { handleTy, promisePtrTy }); |
| jit->coroutine.destroy = rr::createFunction("coroutine_destroy", voidTy, { handleTy }); |
| jit->coroutine.yieldType = promiseTy; |
| jit->coroutine.entryBlock = llvm::BasicBlock::Create(*jit->context, "function", jit->function); |
| |
| jit->builder->SetInsertPoint(jit->coroutine.entryBlock); |
| } |
| |
| void Nucleus::yield(Value *val) |
| { |
| if(jit->coroutine.id == nullptr) |
| { |
| // First call to yield(). |
| // Promote the function to a full coroutine. |
| promoteFunctionToCoroutine(); |
| ASSERT(jit->coroutine.id != nullptr); |
| } |
| |
| // promise = val; |
| // |
| // auto action = llvm.coro.suspend(none, false /* final */); // <-- RESUME POINT |
| // switch(action) |
| // { |
| // case SuspendActionResume: |
| // goto resume; |
| // case SuspendActionDestroy: |
| // goto destroy; |
| // default: // (SuspendActionSuspend) |
| // goto suspend; |
| // } |
| // resume: |
| // |
| |
| RR_DEBUG_INFO_UPDATE_LOC(); |
| Variable::materializeAll(); |
| |
| // Types |
| auto i1Ty = llvm::Type::getInt1Ty(*jit->context); |
| auto i8Ty = llvm::Type::getInt8Ty(*jit->context); |
| |
| // Intrinsics |
| auto coro_suspend = llvm::Intrinsic::getDeclaration(jit->module.get(), llvm::Intrinsic::coro_suspend); |
| |
| // Create a block to resume execution. |
| auto resumeBlock = llvm::BasicBlock::Create(*jit->context, "resume", jit->function); |
| |
| // Store the promise (yield value) |
| jit->builder->CreateStore(V(val), jit->coroutine.promise); |
| auto action = jit->builder->CreateCall(coro_suspend, { |
| llvm::ConstantTokenNone::get(*jit->context), |
| llvm::ConstantInt::get(i1Ty, 0), // final: true |
| }); |
| auto switch_ = jit->builder->CreateSwitch(action, jit->coroutine.suspendBlock, 3); |
| switch_->addCase(llvm::ConstantInt::get(i8Ty, SuspendActionResume), resumeBlock); |
| switch_->addCase(llvm::ConstantInt::get(i8Ty, SuspendActionDestroy), jit->coroutine.destroyBlock); |
| |
| // Continue building in the resume block. |
| jit->builder->SetInsertPoint(resumeBlock); |
| } |
| |
| std::shared_ptr<Routine> Nucleus::acquireCoroutine(const char *name, const Config::Edit &cfgEdit /* = Config::Edit::None */) |
| { |
| bool isCoroutine = jit->coroutine.id != nullptr; |
| if(isCoroutine) |
| { |
| jit->builder->CreateBr(jit->coroutine.endBlock); |
| } |
| else |
| { |
| // Coroutine without a Yield acts as a regular function. |
| // The 'coroutine_begin' function returns a nullptr for the coroutine |
| // handle. |
| jit->builder->CreateRet(llvm::Constant::getNullValue(jit->function->getReturnType())); |
| // The 'coroutine_await' function always returns false (coroutine done). |
| jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "", jit->coroutine.await)); |
| jit->builder->CreateRet(llvm::Constant::getNullValue(jit->coroutine.await->getReturnType())); |
| // The 'coroutine_destroy' does nothing, returns void. |
| jit->builder->SetInsertPoint(llvm::BasicBlock::Create(*jit->context, "", jit->coroutine.destroy)); |
| jit->builder->CreateRetVoid(); |
| } |
| |
| #ifdef ENABLE_RR_DEBUG_INFO |
| if(jit->debugInfo != nullptr) |
| { |
| jit->debugInfo->Finalize(); |
| } |
| #endif // ENABLE_RR_DEBUG_INFO |
| |
| if(false) |
| { |
| std::error_code error; |
| llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-unopt.txt", error); |
| jit->module->print(file, 0); |
| } |
| |
| if(isCoroutine) |
| { |
| // Run manadory coroutine transforms. |
| llvm::legacy::PassManager pm; |
| |
| pm.add(llvm::createCoroEarlyLegacyPass()); |
| pm.add(llvm::createCoroSplitLegacyPass()); |
| pm.add(llvm::createCoroElideLegacyPass()); |
| pm.add(llvm::createBarrierNoopPass()); |
| pm.add(llvm::createCoroCleanupLegacyPass()); |
| |
| pm.run(*jit->module); |
| } |
| |
| #if defined(ENABLE_RR_LLVM_IR_VERIFICATION) || !defined(NDEBUG) |
| { |
| llvm::legacy::PassManager pm; |
| pm.add(llvm::createVerifierPass()); |
| pm.run(*jit->module); |
| } |
| #endif // defined(ENABLE_RR_LLVM_IR_VERIFICATION) || !defined(NDEBUG) |
| |
| auto cfg = cfgEdit.apply(jit->config); |
| jit->optimize(cfg); |
| |
| if(false) |
| { |
| std::error_code error; |
| llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-opt.txt", error); |
| jit->module->print(file, 0); |
| } |
| |
| llvm::Function *funcs[Nucleus::CoroutineEntryCount]; |
| funcs[Nucleus::CoroutineEntryBegin] = jit->function; |
| funcs[Nucleus::CoroutineEntryAwait] = jit->coroutine.await; |
| funcs[Nucleus::CoroutineEntryDestroy] = jit->coroutine.destroy; |
| |
| auto routine = jit->acquireRoutine(name, funcs, Nucleus::CoroutineEntryCount, cfg); |
| |
| delete jit; |
| jit = nullptr; |
| |
| return routine; |
| } |
| |
| Nucleus::CoroutineHandle Nucleus::invokeCoroutineBegin(Routine &routine, std::function<Nucleus::CoroutineHandle()> func) |
| { |
| return func(); |
| } |
| |
| } // namespace rr |