| //===- InstCombineSimplifyDemanded.cpp ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains logic for simplifying instructions based on information |
| // about how they are used. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsX86.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/KnownBits.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| namespace { |
| |
| struct AMDGPUImageDMaskIntrinsic { |
| unsigned Intr; |
| }; |
| |
| #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL |
| #include "InstCombineTables.inc" |
| |
| } // end anonymous namespace |
| |
| /// Check to see if the specified operand of the specified instruction is a |
| /// constant integer. If so, check to see if there are any bits set in the |
| /// constant that are not demanded. If so, shrink the constant and return true. |
| static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo, |
| const APInt &Demanded) { |
| assert(I && "No instruction?"); |
| assert(OpNo < I->getNumOperands() && "Operand index too large"); |
| |
| // The operand must be a constant integer or splat integer. |
| Value *Op = I->getOperand(OpNo); |
| const APInt *C; |
| if (!match(Op, m_APInt(C))) |
| return false; |
| |
| // If there are no bits set that aren't demanded, nothing to do. |
| if (C->isSubsetOf(Demanded)) |
| return false; |
| |
| // This instruction is producing bits that are not demanded. Shrink the RHS. |
| I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded)); |
| |
| return true; |
| } |
| |
| |
| |
| /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if |
| /// the instruction has any properties that allow us to simplify its operands. |
| bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) { |
| unsigned BitWidth = Inst.getType()->getScalarSizeInBits(); |
| KnownBits Known(BitWidth); |
| APInt DemandedMask(APInt::getAllOnesValue(BitWidth)); |
| |
| Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known, |
| 0, &Inst); |
| if (!V) return false; |
| if (V == &Inst) return true; |
| replaceInstUsesWith(Inst, V); |
| return true; |
| } |
| |
| /// This form of SimplifyDemandedBits simplifies the specified instruction |
| /// operand if possible, updating it in place. It returns true if it made any |
| /// change and false otherwise. |
| bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo, |
| const APInt &DemandedMask, |
| KnownBits &Known, |
| unsigned Depth) { |
| Use &U = I->getOperandUse(OpNo); |
| Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known, |
| Depth, I); |
| if (!NewVal) return false; |
| U = NewVal; |
| return true; |
| } |
| |
| |
| /// This function attempts to replace V with a simpler value based on the |
| /// demanded bits. When this function is called, it is known that only the bits |
| /// set in DemandedMask of the result of V are ever used downstream. |
| /// Consequently, depending on the mask and V, it may be possible to replace V |
| /// with a constant or one of its operands. In such cases, this function does |
| /// the replacement and returns true. In all other cases, it returns false after |
| /// analyzing the expression and setting KnownOne and known to be one in the |
| /// expression. Known.Zero contains all the bits that are known to be zero in |
| /// the expression. These are provided to potentially allow the caller (which |
| /// might recursively be SimplifyDemandedBits itself) to simplify the |
| /// expression. |
| /// Known.One and Known.Zero always follow the invariant that: |
| /// Known.One & Known.Zero == 0. |
| /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and |
| /// Known.Zero may only be accurate for those bits set in DemandedMask. Note |
| /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all |
| /// be the same. |
| /// |
| /// This returns null if it did not change anything and it permits no |
| /// simplification. This returns V itself if it did some simplification of V's |
| /// operands based on the information about what bits are demanded. This returns |
| /// some other non-null value if it found out that V is equal to another value |
| /// in the context where the specified bits are demanded, but not for all users. |
| Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask, |
| KnownBits &Known, unsigned Depth, |
| Instruction *CxtI) { |
| assert(V != nullptr && "Null pointer of Value???"); |
| assert(Depth <= 6 && "Limit Search Depth"); |
| uint32_t BitWidth = DemandedMask.getBitWidth(); |
| Type *VTy = V->getType(); |
| assert( |
| (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) && |
| Known.getBitWidth() == BitWidth && |
| "Value *V, DemandedMask and Known must have same BitWidth"); |
| |
| if (isa<Constant>(V)) { |
| computeKnownBits(V, Known, Depth, CxtI); |
| return nullptr; |
| } |
| |
| Known.resetAll(); |
| if (DemandedMask.isNullValue()) // Not demanding any bits from V. |
| return UndefValue::get(VTy); |
| |
| if (Depth == 6) // Limit search depth. |
| return nullptr; |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) { |
| computeKnownBits(V, Known, Depth, CxtI); |
| return nullptr; // Only analyze instructions. |
| } |
| |
| // If there are multiple uses of this value and we aren't at the root, then |
| // we can't do any simplifications of the operands, because DemandedMask |
| // only reflects the bits demanded by *one* of the users. |
| if (Depth != 0 && !I->hasOneUse()) |
| return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI); |
| |
| KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth); |
| |
| // If this is the root being simplified, allow it to have multiple uses, |
| // just set the DemandedMask to all bits so that we can try to simplify the |
| // operands. This allows visitTruncInst (for example) to simplify the |
| // operand of a trunc without duplicating all the logic below. |
| if (Depth == 0 && !V->hasOneUse()) |
| DemandedMask.setAllBits(); |
| |
| switch (I->getOpcode()) { |
| default: |
| computeKnownBits(I, Known, Depth, CxtI); |
| break; |
| case Instruction::And: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown, |
| Depth + 1)) |
| return I; |
| assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| APInt IKnownOne = RHSKnown.One & LHSKnown.One; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) |
| return Constant::getIntegerValue(VTy, IKnownOne); |
| |
| // If all of the demanded bits are known 1 on one side, return the other. |
| // These bits cannot contribute to the result of the 'and'. |
| if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) |
| return I->getOperand(1); |
| |
| // If the RHS is a constant, see if we can simplify it. |
| if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero)) |
| return I; |
| |
| Known.Zero = std::move(IKnownZero); |
| Known.One = std::move(IKnownOne); |
| break; |
| } |
| case Instruction::Or: { |
| // If either the LHS or the RHS are One, the result is One. |
| if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown, |
| Depth + 1)) |
| return I; |
| assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; |
| // Output known-1 are known. to be set if s.et in either the LHS | RHS. |
| APInt IKnownOne = RHSKnown.One | LHSKnown.One; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) |
| return Constant::getIntegerValue(VTy, IKnownOne); |
| |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'or'. |
| if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| // If the RHS is a constant, see if we can simplify it. |
| if (ShrinkDemandedConstant(I, 1, DemandedMask)) |
| return I; |
| |
| Known.Zero = std::move(IKnownZero); |
| Known.One = std::move(IKnownOne); |
| break; |
| } |
| case Instruction::Xor: { |
| if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1)) |
| return I; |
| assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | |
| (RHSKnown.One & LHSKnown.One); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | |
| (RHSKnown.One & LHSKnown.Zero); |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) |
| return Constant::getIntegerValue(VTy, IKnownOne); |
| |
| // If all of the demanded bits are known zero on one side, return the other. |
| // These bits cannot contribute to the result of the 'xor'. |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| // If all of the demanded bits are known to be zero on one side or the |
| // other, turn this into an *inclusive* or. |
| // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) { |
| Instruction *Or = |
| BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1), |
| I->getName()); |
| return InsertNewInstWith(Or, *I); |
| } |
| |
| // If all of the demanded bits on one side are known, and all of the set |
| // bits on that side are also known to be set on the other side, turn this |
| // into an AND, as we know the bits will be cleared. |
| // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) && |
| RHSKnown.One.isSubsetOf(LHSKnown.One)) { |
| Constant *AndC = Constant::getIntegerValue(VTy, |
| ~RHSKnown.One & DemandedMask); |
| Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC); |
| return InsertNewInstWith(And, *I); |
| } |
| |
| // If the RHS is a constant, see if we can simplify it. |
| // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. |
| if (ShrinkDemandedConstant(I, 1, DemandedMask)) |
| return I; |
| |
| // If our LHS is an 'and' and if it has one use, and if any of the bits we |
| // are flipping are known to be set, then the xor is just resetting those |
| // bits to zero. We can just knock out bits from the 'and' and the 'xor', |
| // simplifying both of them. |
| if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0))) |
| if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() && |
| isa<ConstantInt>(I->getOperand(1)) && |
| isa<ConstantInt>(LHSInst->getOperand(1)) && |
| (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) { |
| ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1)); |
| ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1)); |
| APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask); |
| |
| Constant *AndC = |
| ConstantInt::get(I->getType(), NewMask & AndRHS->getValue()); |
| Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC); |
| InsertNewInstWith(NewAnd, *I); |
| |
| Constant *XorC = |
| ConstantInt::get(I->getType(), NewMask & XorRHS->getValue()); |
| Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC); |
| return InsertNewInstWith(NewXor, *I); |
| } |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| Known.Zero = std::move(IKnownZero); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| Known.One = std::move(IKnownOne); |
| break; |
| } |
| case Instruction::Select: { |
| Value *LHS, *RHS; |
| SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; |
| if (SPF == SPF_UMAX) { |
| // UMax(A, C) == A if ... |
| // The lowest non-zero bit of DemandMask is higher than the highest |
| // non-zero bit of C. |
| const APInt *C; |
| unsigned CTZ = DemandedMask.countTrailingZeros(); |
| if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits()) |
| return LHS; |
| } else if (SPF == SPF_UMIN) { |
| // UMin(A, C) == A if ... |
| // The lowest non-zero bit of DemandMask is higher than the highest |
| // non-one bit of C. |
| // This comes from using DeMorgans on the above umax example. |
| const APInt *C; |
| unsigned CTZ = DemandedMask.countTrailingZeros(); |
| if (match(RHS, m_APInt(C)) && |
| CTZ >= C->getBitWidth() - C->countLeadingOnes()) |
| return LHS; |
| } |
| |
| // If this is a select as part of any other min/max pattern, don't simplify |
| // any further in case we break the structure. |
| if (SPF != SPF_UNKNOWN) |
| return nullptr; |
| |
| if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1)) |
| return I; |
| assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?"); |
| |
| // If the operands are constants, see if we can simplify them. |
| // This is similar to ShrinkDemandedConstant, but for a select we want to |
| // try to keep the selected constants the same as icmp value constants, if |
| // we can. This helps not break apart (or helps put back together) |
| // canonical patterns like min and max. |
| auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo, |
| APInt DemandedMask) { |
| const APInt *SelC; |
| if (!match(I->getOperand(OpNo), m_APInt(SelC))) |
| return false; |
| |
| // Get the constant out of the ICmp, if there is one. |
| const APInt *CmpC; |
| ICmpInst::Predicate Pred; |
| if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) || |
| CmpC->getBitWidth() != SelC->getBitWidth()) |
| return ShrinkDemandedConstant(I, OpNo, DemandedMask); |
| |
| // If the constant is already the same as the ICmp, leave it as-is. |
| if (*CmpC == *SelC) |
| return false; |
| // If the constants are not already the same, but can be with the demand |
| // mask, use the constant value from the ICmp. |
| if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) { |
| I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC)); |
| return true; |
| } |
| return ShrinkDemandedConstant(I, OpNo, DemandedMask); |
| }; |
| if (CanonicalizeSelectConstant(I, 1, DemandedMask) || |
| CanonicalizeSelectConstant(I, 2, DemandedMask)) |
| return I; |
| |
| // Only known if known in both the LHS and RHS. |
| Known.One = RHSKnown.One & LHSKnown.One; |
| Known.Zero = RHSKnown.Zero & LHSKnown.Zero; |
| break; |
| } |
| case Instruction::ZExt: |
| case Instruction::Trunc: { |
| unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); |
| |
| APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth); |
| KnownBits InputKnown(SrcBitWidth); |
| if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1)) |
| return I; |
| assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?"); |
| Known = InputKnown.zextOrTrunc(BitWidth, |
| true /* ExtendedBitsAreKnownZero */); |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| } |
| case Instruction::BitCast: |
| if (!I->getOperand(0)->getType()->isIntOrIntVectorTy()) |
| return nullptr; // vector->int or fp->int? |
| |
| if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) { |
| if (VectorType *SrcVTy = |
| dyn_cast<VectorType>(I->getOperand(0)->getType())) { |
| if (DstVTy->getNumElements() != SrcVTy->getNumElements()) |
| // Don't touch a bitcast between vectors of different element counts. |
| return nullptr; |
| } else |
| // Don't touch a scalar-to-vector bitcast. |
| return nullptr; |
| } else if (I->getOperand(0)->getType()->isVectorTy()) |
| // Don't touch a vector-to-scalar bitcast. |
| return nullptr; |
| |
| if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1)) |
| return I; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| case Instruction::SExt: { |
| // Compute the bits in the result that are not present in the input. |
| unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); |
| |
| APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth); |
| |
| // If any of the sign extended bits are demanded, we know that the sign |
| // bit is demanded. |
| if (DemandedMask.getActiveBits() > SrcBitWidth) |
| InputDemandedBits.setBit(SrcBitWidth-1); |
| |
| KnownBits InputKnown(SrcBitWidth); |
| if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1)) |
| return I; |
| |
| // If the input sign bit is known zero, or if the NewBits are not demanded |
| // convert this into a zero extension. |
| if (InputKnown.isNonNegative() || |
| DemandedMask.getActiveBits() <= SrcBitWidth) { |
| // Convert to ZExt cast. |
| CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName()); |
| return InsertNewInstWith(NewCast, *I); |
| } |
| |
| // If the sign bit of the input is known set or clear, then we know the |
| // top bits of the result. |
| Known = InputKnown.sext(BitWidth); |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| } |
| case Instruction::Add: |
| case Instruction::Sub: { |
| /// If the high-bits of an ADD/SUB are not demanded, then we do not care |
| /// about the high bits of the operands. |
| unsigned NLZ = DemandedMask.countLeadingZeros(); |
| // Right fill the mask of bits for this ADD/SUB to demand the most |
| // significant bit and all those below it. |
| APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ)); |
| if (ShrinkDemandedConstant(I, 0, DemandedFromOps) || |
| SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) || |
| ShrinkDemandedConstant(I, 1, DemandedFromOps) || |
| SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) { |
| if (NLZ > 0) { |
| // Disable the nsw and nuw flags here: We can no longer guarantee that |
| // we won't wrap after simplification. Removing the nsw/nuw flags is |
| // legal here because the top bit is not demanded. |
| BinaryOperator &BinOP = *cast<BinaryOperator>(I); |
| BinOP.setHasNoSignedWrap(false); |
| BinOP.setHasNoUnsignedWrap(false); |
| } |
| return I; |
| } |
| |
| // If we are known to be adding/subtracting zeros to every bit below |
| // the highest demanded bit, we just return the other side. |
| if (DemandedFromOps.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| // We can't do this with the LHS for subtraction, unless we are only |
| // demanding the LSB. |
| if ((I->getOpcode() == Instruction::Add || |
| DemandedFromOps.isOneValue()) && |
| DemandedFromOps.isSubsetOf(LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| // Otherwise just compute the known bits of the result. |
| bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); |
| Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add, |
| NSW, LHSKnown, RHSKnown); |
| break; |
| } |
| case Instruction::Shl: { |
| const APInt *SA; |
| if (match(I->getOperand(1), m_APInt(SA))) { |
| const APInt *ShrAmt; |
| if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt)))) |
| if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0))) |
| if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA, |
| DemandedMask, Known)) |
| return R; |
| |
| uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
| APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt)); |
| |
| // If the shift is NUW/NSW, then it does demand the high bits. |
| ShlOperator *IOp = cast<ShlOperator>(I); |
| if (IOp->hasNoSignedWrap()) |
| DemandedMaskIn.setHighBits(ShiftAmt+1); |
| else if (IOp->hasNoUnsignedWrap()) |
| DemandedMaskIn.setHighBits(ShiftAmt); |
| |
| if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) |
| return I; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known.Zero <<= ShiftAmt; |
| Known.One <<= ShiftAmt; |
| // low bits known zero. |
| if (ShiftAmt) |
| Known.Zero.setLowBits(ShiftAmt); |
| } |
| break; |
| } |
| case Instruction::LShr: { |
| const APInt *SA; |
| if (match(I->getOperand(1), m_APInt(SA))) { |
| uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
| |
| // Unsigned shift right. |
| APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); |
| |
| // If the shift is exact, then it does demand the low bits (and knows that |
| // they are zero). |
| if (cast<LShrOperator>(I)->isExact()) |
| DemandedMaskIn.setLowBits(ShiftAmt); |
| |
| if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) |
| return I; |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| Known.Zero.lshrInPlace(ShiftAmt); |
| Known.One.lshrInPlace(ShiftAmt); |
| if (ShiftAmt) |
| Known.Zero.setHighBits(ShiftAmt); // high bits known zero. |
| } |
| break; |
| } |
| case Instruction::AShr: { |
| // If this is an arithmetic shift right and only the low-bit is set, we can |
| // always convert this into a logical shr, even if the shift amount is |
| // variable. The low bit of the shift cannot be an input sign bit unless |
| // the shift amount is >= the size of the datatype, which is undefined. |
| if (DemandedMask.isOneValue()) { |
| // Perform the logical shift right. |
| Instruction *NewVal = BinaryOperator::CreateLShr( |
| I->getOperand(0), I->getOperand(1), I->getName()); |
| return InsertNewInstWith(NewVal, *I); |
| } |
| |
| // If the sign bit is the only bit demanded by this ashr, then there is no |
| // need to do it, the shift doesn't change the high bit. |
| if (DemandedMask.isSignMask()) |
| return I->getOperand(0); |
| |
| const APInt *SA; |
| if (match(I->getOperand(1), m_APInt(SA))) { |
| uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1); |
| |
| // Signed shift right. |
| APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt)); |
| // If any of the high bits are demanded, we should set the sign bit as |
| // demanded. |
| if (DemandedMask.countLeadingZeros() <= ShiftAmt) |
| DemandedMaskIn.setSignBit(); |
| |
| // If the shift is exact, then it does demand the low bits (and knows that |
| // they are zero). |
| if (cast<AShrOperator>(I)->isExact()) |
| DemandedMaskIn.setLowBits(ShiftAmt); |
| |
| if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1)) |
| return I; |
| |
| unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI); |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| // Compute the new bits that are at the top now plus sign bits. |
| APInt HighBits(APInt::getHighBitsSet( |
| BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth))); |
| Known.Zero.lshrInPlace(ShiftAmt); |
| Known.One.lshrInPlace(ShiftAmt); |
| |
| // If the input sign bit is known to be zero, or if none of the top bits |
| // are demanded, turn this into an unsigned shift right. |
| assert(BitWidth > ShiftAmt && "Shift amount not saturated?"); |
| if (Known.Zero[BitWidth-ShiftAmt-1] || |
| !DemandedMask.intersects(HighBits)) { |
| BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0), |
| I->getOperand(1)); |
| LShr->setIsExact(cast<BinaryOperator>(I)->isExact()); |
| return InsertNewInstWith(LShr, *I); |
| } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one. |
| Known.One |= HighBits; |
| } |
| } |
| break; |
| } |
| case Instruction::UDiv: { |
| // UDiv doesn't demand low bits that are zero in the divisor. |
| const APInt *SA; |
| if (match(I->getOperand(1), m_APInt(SA))) { |
| // If the shift is exact, then it does demand the low bits. |
| if (cast<UDivOperator>(I)->isExact()) |
| break; |
| |
| // FIXME: Take the demanded mask of the result into account. |
| unsigned RHSTrailingZeros = SA->countTrailingZeros(); |
| APInt DemandedMaskIn = |
| APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros); |
| if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1)) |
| return I; |
| |
| // Propagate zero bits from the input. |
| Known.Zero.setHighBits(std::min( |
| BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros)); |
| } |
| break; |
| } |
| case Instruction::SRem: |
| if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| // X % -1 demands all the bits because we don't want to introduce |
| // INT_MIN % -1 (== undef) by accident. |
| if (Rem->isMinusOne()) |
| break; |
| APInt RA = Rem->getValue().abs(); |
| if (RA.isPowerOf2()) { |
| if (DemandedMask.ult(RA)) // srem won't affect demanded bits |
| return I->getOperand(0); |
| |
| APInt LowBits = RA - 1; |
| APInt Mask2 = LowBits | APInt::getSignMask(BitWidth); |
| if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1)) |
| return I; |
| |
| // The low bits of LHS are unchanged by the srem. |
| Known.Zero = LHSKnown.Zero & LowBits; |
| Known.One = LHSKnown.One & LowBits; |
| |
| // If LHS is non-negative or has all low bits zero, then the upper bits |
| // are all zero. |
| if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero)) |
| Known.Zero |= ~LowBits; |
| |
| // If LHS is negative and not all low bits are zero, then the upper bits |
| // are all one. |
| if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One)) |
| Known.One |= ~LowBits; |
| |
| assert(!Known.hasConflict() && "Bits known to be one AND zero?"); |
| break; |
| } |
| } |
| |
| // The sign bit is the LHS's sign bit, except when the result of the |
| // remainder is zero. |
| if (DemandedMask.isSignBitSet()) { |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI); |
| // If it's known zero, our sign bit is also zero. |
| if (LHSKnown.isNonNegative()) |
| Known.makeNonNegative(); |
| } |
| break; |
| case Instruction::URem: { |
| KnownBits Known2(BitWidth); |
| APInt AllOnes = APInt::getAllOnesValue(BitWidth); |
| if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) || |
| SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1)) |
| return I; |
| |
| unsigned Leaders = Known2.countMinLeadingZeros(); |
| Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask; |
| break; |
| } |
| case Instruction::Call: |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| switch (II->getIntrinsicID()) { |
| default: break; |
| case Intrinsic::bswap: { |
| // If the only bits demanded come from one byte of the bswap result, |
| // just shift the input byte into position to eliminate the bswap. |
| unsigned NLZ = DemandedMask.countLeadingZeros(); |
| unsigned NTZ = DemandedMask.countTrailingZeros(); |
| |
| // Round NTZ down to the next byte. If we have 11 trailing zeros, then |
| // we need all the bits down to bit 8. Likewise, round NLZ. If we |
| // have 14 leading zeros, round to 8. |
| NLZ &= ~7; |
| NTZ &= ~7; |
| // If we need exactly one byte, we can do this transformation. |
| if (BitWidth-NLZ-NTZ == 8) { |
| unsigned ResultBit = NTZ; |
| unsigned InputBit = BitWidth-NTZ-8; |
| |
| // Replace this with either a left or right shift to get the byte into |
| // the right place. |
| Instruction *NewVal; |
| if (InputBit > ResultBit) |
| NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0), |
| ConstantInt::get(I->getType(), InputBit-ResultBit)); |
| else |
| NewVal = BinaryOperator::CreateShl(II->getArgOperand(0), |
| ConstantInt::get(I->getType(), ResultBit-InputBit)); |
| NewVal->takeName(I); |
| return InsertNewInstWith(NewVal, *I); |
| } |
| |
| // TODO: Could compute known zero/one bits based on the input. |
| break; |
| } |
| case Intrinsic::fshr: |
| case Intrinsic::fshl: { |
| const APInt *SA; |
| if (!match(I->getOperand(2), m_APInt(SA))) |
| break; |
| |
| // Normalize to funnel shift left. APInt shifts of BitWidth are well- |
| // defined, so no need to special-case zero shifts here. |
| uint64_t ShiftAmt = SA->urem(BitWidth); |
| if (II->getIntrinsicID() == Intrinsic::fshr) |
| ShiftAmt = BitWidth - ShiftAmt; |
| |
| APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt)); |
| APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt)); |
| if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) || |
| SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1)) |
| return I; |
| |
| Known.Zero = LHSKnown.Zero.shl(ShiftAmt) | |
| RHSKnown.Zero.lshr(BitWidth - ShiftAmt); |
| Known.One = LHSKnown.One.shl(ShiftAmt) | |
| RHSKnown.One.lshr(BitWidth - ShiftAmt); |
| break; |
| } |
| case Intrinsic::x86_mmx_pmovmskb: |
| case Intrinsic::x86_sse_movmsk_ps: |
| case Intrinsic::x86_sse2_movmsk_pd: |
| case Intrinsic::x86_sse2_pmovmskb_128: |
| case Intrinsic::x86_avx_movmsk_ps_256: |
| case Intrinsic::x86_avx_movmsk_pd_256: |
| case Intrinsic::x86_avx2_pmovmskb: { |
| // MOVMSK copies the vector elements' sign bits to the low bits |
| // and zeros the high bits. |
| unsigned ArgWidth; |
| if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) { |
| ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>. |
| } else { |
| auto Arg = II->getArgOperand(0); |
| auto ArgType = cast<VectorType>(Arg->getType()); |
| ArgWidth = ArgType->getNumElements(); |
| } |
| |
| // If we don't need any of low bits then return zero, |
| // we know that DemandedMask is non-zero already. |
| APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth); |
| if (DemandedElts.isNullValue()) |
| return ConstantInt::getNullValue(VTy); |
| |
| // We know that the upper bits are set to zero. |
| Known.Zero.setBitsFrom(ArgWidth); |
| return nullptr; |
| } |
| case Intrinsic::x86_sse42_crc32_64_64: |
| Known.Zero.setBitsFrom(32); |
| return nullptr; |
| } |
| } |
| computeKnownBits(V, Known, Depth, CxtI); |
| break; |
| } |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) |
| return Constant::getIntegerValue(VTy, Known.One); |
| return nullptr; |
| } |
| |
| /// Helper routine of SimplifyDemandedUseBits. It computes Known |
| /// bits. It also tries to handle simplifications that can be done based on |
| /// DemandedMask, but without modifying the Instruction. |
| Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I, |
| const APInt &DemandedMask, |
| KnownBits &Known, |
| unsigned Depth, |
| Instruction *CxtI) { |
| unsigned BitWidth = DemandedMask.getBitWidth(); |
| Type *ITy = I->getType(); |
| |
| KnownBits LHSKnown(BitWidth); |
| KnownBits RHSKnown(BitWidth); |
| |
| // Despite the fact that we can't simplify this instruction in all User's |
| // context, we can at least compute the known bits, and we can |
| // do simplifications that apply to *just* the one user if we know that |
| // this instruction has a simpler value in that context. |
| switch (I->getOpcode()) { |
| case Instruction::And: { |
| // If either the LHS or the RHS are Zero, the result is zero. |
| computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, |
| CxtI); |
| |
| // Output known-0 are known to be clear if zero in either the LHS | RHS. |
| APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero; |
| // Output known-1 bits are only known if set in both the LHS & RHS. |
| APInt IKnownOne = RHSKnown.One & LHSKnown.One; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) |
| return Constant::getIntegerValue(ITy, IKnownOne); |
| |
| // If all of the demanded bits are known 1 on one side, return the other. |
| // These bits cannot contribute to the result of the 'and' in this |
| // context. |
| if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) |
| return I->getOperand(1); |
| |
| Known.Zero = std::move(IKnownZero); |
| Known.One = std::move(IKnownOne); |
| break; |
| } |
| case Instruction::Or: { |
| // We can simplify (X|Y) -> X or Y in the user's context if we know that |
| // only bits from X or Y are demanded. |
| |
| // If either the LHS or the RHS are One, the result is One. |
| computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, |
| CxtI); |
| |
| // Output known-0 bits are only known if clear in both the LHS & RHS. |
| APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero; |
| // Output known-1 are known to be set if set in either the LHS | RHS. |
| APInt IKnownOne = RHSKnown.One | LHSKnown.One; |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) |
| return Constant::getIntegerValue(ITy, IKnownOne); |
| |
| // If all of the demanded bits are known zero on one side, return the |
| // other. These bits cannot contribute to the result of the 'or' in this |
| // context. |
| if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| Known.Zero = std::move(IKnownZero); |
| Known.One = std::move(IKnownOne); |
| break; |
| } |
| case Instruction::Xor: { |
| // We can simplify (X^Y) -> X or Y in the user's context if we know that |
| // only bits from X or Y are demanded. |
| |
| computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI); |
| computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, |
| CxtI); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) | |
| (RHSKnown.One & LHSKnown.One); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) | |
| (RHSKnown.One & LHSKnown.Zero); |
| |
| // If the client is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne)) |
| return Constant::getIntegerValue(ITy, IKnownOne); |
| |
| // If all of the demanded bits are known zero on one side, return the |
| // other. |
| if (DemandedMask.isSubsetOf(RHSKnown.Zero)) |
| return I->getOperand(0); |
| if (DemandedMask.isSubsetOf(LHSKnown.Zero)) |
| return I->getOperand(1); |
| |
| // Output known-0 bits are known if clear or set in both the LHS & RHS. |
| Known.Zero = std::move(IKnownZero); |
| // Output known-1 are known to be set if set in only one of the LHS, RHS. |
| Known.One = std::move(IKnownOne); |
| break; |
| } |
| default: |
| // Compute the Known bits to simplify things downstream. |
| computeKnownBits(I, Known, Depth, CxtI); |
| |
| // If this user is only demanding bits that we know, return the known |
| // constant. |
| if (DemandedMask.isSubsetOf(Known.Zero|Known.One)) |
| return Constant::getIntegerValue(ITy, Known.One); |
| |
| break; |
| } |
| |
| return nullptr; |
| } |
| |
| |
| /// Helper routine of SimplifyDemandedUseBits. It tries to simplify |
| /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into |
| /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign |
| /// of "C2-C1". |
| /// |
| /// Suppose E1 and E2 are generally different in bits S={bm, bm+1, |
| /// ..., bn}, without considering the specific value X is holding. |
| /// This transformation is legal iff one of following conditions is hold: |
| /// 1) All the bit in S are 0, in this case E1 == E2. |
| /// 2) We don't care those bits in S, per the input DemandedMask. |
| /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the |
| /// rest bits. |
| /// |
| /// Currently we only test condition 2). |
| /// |
| /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was |
| /// not successful. |
| Value * |
| InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1, |
| Instruction *Shl, const APInt &ShlOp1, |
| const APInt &DemandedMask, |
| KnownBits &Known) { |
| if (!ShlOp1 || !ShrOp1) |
| return nullptr; // No-op. |
| |
| Value *VarX = Shr->getOperand(0); |
| Type *Ty = VarX->getType(); |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth)) |
| return nullptr; // Undef. |
| |
| unsigned ShlAmt = ShlOp1.getZExtValue(); |
| unsigned ShrAmt = ShrOp1.getZExtValue(); |
| |
| Known.One.clearAllBits(); |
| Known.Zero.setLowBits(ShlAmt - 1); |
| Known.Zero &= DemandedMask; |
| |
| APInt BitMask1(APInt::getAllOnesValue(BitWidth)); |
| APInt BitMask2(APInt::getAllOnesValue(BitWidth)); |
| |
| bool isLshr = (Shr->getOpcode() == Instruction::LShr); |
| BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) : |
| (BitMask1.ashr(ShrAmt) << ShlAmt); |
| |
| if (ShrAmt <= ShlAmt) { |
| BitMask2 <<= (ShlAmt - ShrAmt); |
| } else { |
| BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt): |
| BitMask2.ashr(ShrAmt - ShlAmt); |
| } |
| |
| // Check if condition-2 (see the comment to this function) is satified. |
| if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) { |
| if (ShrAmt == ShlAmt) |
| return VarX; |
| |
| if (!Shr->hasOneUse()) |
| return nullptr; |
| |
| BinaryOperator *New; |
| if (ShrAmt < ShlAmt) { |
| Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt); |
| New = BinaryOperator::CreateShl(VarX, Amt); |
| BinaryOperator *Orig = cast<BinaryOperator>(Shl); |
| New->setHasNoSignedWrap(Orig->hasNoSignedWrap()); |
| New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap()); |
| } else { |
| Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt); |
| New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) : |
| BinaryOperator::CreateAShr(VarX, Amt); |
| if (cast<BinaryOperator>(Shr)->isExact()) |
| New->setIsExact(true); |
| } |
| |
| return InsertNewInstWith(New, *Shl); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. |
| /// |
| /// Note: This only supports non-TFE/LWE image intrinsic calls; those have |
| /// struct returns. |
| Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II, |
| APInt DemandedElts, |
| int DMaskIdx) { |
| |
| // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported. |
| if (DMaskIdx < 0 && |
| II->getType()->getScalarSizeInBits() != 32 && |
| DemandedElts.getActiveBits() == 3) |
| return nullptr; |
| |
| unsigned VWidth = II->getType()->getVectorNumElements(); |
| if (VWidth == 1) |
| return nullptr; |
| |
| ConstantInt *NewDMask = nullptr; |
| |
| if (DMaskIdx < 0) { |
| // Pretend that a prefix of elements is demanded to simplify the code |
| // below. |
| DemandedElts = (1 << DemandedElts.getActiveBits()) - 1; |
| } else { |
| ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx)); |
| unsigned DMaskVal = DMask->getZExtValue() & 0xf; |
| |
| // Mask off values that are undefined because the dmask doesn't cover them |
| DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; |
| |
| unsigned NewDMaskVal = 0; |
| unsigned OrigLoadIdx = 0; |
| for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { |
| const unsigned Bit = 1 << SrcIdx; |
| if (!!(DMaskVal & Bit)) { |
| if (!!DemandedElts[OrigLoadIdx]) |
| NewDMaskVal |= Bit; |
| OrigLoadIdx++; |
| } |
| } |
| |
| if (DMaskVal != NewDMaskVal) |
| NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal); |
| } |
| |
| unsigned NewNumElts = DemandedElts.countPopulation(); |
| if (!NewNumElts) |
| return UndefValue::get(II->getType()); |
| |
| if (NewNumElts >= VWidth && DemandedElts.isMask()) { |
| if (NewDMask) |
| II->setArgOperand(DMaskIdx, NewDMask); |
| return nullptr; |
| } |
| |
| // Determine the overload types of the original intrinsic. |
| auto IID = II->getIntrinsicID(); |
| SmallVector<Intrinsic::IITDescriptor, 16> Table; |
| getIntrinsicInfoTableEntries(IID, Table); |
| ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; |
| |
| // Validate function argument and return types, extracting overloaded types |
| // along the way. |
| FunctionType *FTy = II->getCalledFunction()->getFunctionType(); |
| SmallVector<Type *, 6> OverloadTys; |
| Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys); |
| |
| Module *M = II->getParent()->getParent()->getParent(); |
| Type *EltTy = II->getType()->getVectorElementType(); |
| Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts); |
| |
| OverloadTys[0] = NewTy; |
| Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys); |
| |
| SmallVector<Value *, 16> Args; |
| for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I) |
| Args.push_back(II->getArgOperand(I)); |
| |
| if (NewDMask) |
| Args[DMaskIdx] = NewDMask; |
| |
| IRBuilderBase::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(II); |
| |
| CallInst *NewCall = Builder.CreateCall(NewIntrin, Args); |
| NewCall->takeName(II); |
| NewCall->copyMetadata(*II); |
| |
| if (NewNumElts == 1) { |
| return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall, |
| DemandedElts.countTrailingZeros()); |
| } |
| |
| SmallVector<uint32_t, 8> EltMask; |
| unsigned NewLoadIdx = 0; |
| for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { |
| if (!!DemandedElts[OrigLoadIdx]) |
| EltMask.push_back(NewLoadIdx++); |
| else |
| EltMask.push_back(NewNumElts); |
| } |
| |
| Value *Shuffle = |
| Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask); |
| |
| return Shuffle; |
| } |
| |
| /// The specified value produces a vector with any number of elements. |
| /// This method analyzes which elements of the operand are undef and returns |
| /// that information in UndefElts. |
| /// |
| /// DemandedElts contains the set of elements that are actually used by the |
| /// caller, and by default (AllowMultipleUsers equals false) the value is |
| /// simplified only if it has a single caller. If AllowMultipleUsers is set |
| /// to true, DemandedElts refers to the union of sets of elements that are |
| /// used by all callers. |
| /// |
| /// If the information about demanded elements can be used to simplify the |
| /// operation, the operation is simplified, then the resultant value is |
| /// returned. This returns null if no change was made. |
| Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, |
| APInt &UndefElts, |
| unsigned Depth, |
| bool AllowMultipleUsers) { |
| unsigned VWidth = V->getType()->getVectorNumElements(); |
| APInt EltMask(APInt::getAllOnesValue(VWidth)); |
| assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!"); |
| |
| if (isa<UndefValue>(V)) { |
| // If the entire vector is undefined, just return this info. |
| UndefElts = EltMask; |
| return nullptr; |
| } |
| |
| if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef. |
| UndefElts = EltMask; |
| return UndefValue::get(V->getType()); |
| } |
| |
| UndefElts = 0; |
| |
| if (auto *C = dyn_cast<Constant>(V)) { |
| // Check if this is identity. If so, return 0 since we are not simplifying |
| // anything. |
| if (DemandedElts.isAllOnesValue()) |
| return nullptr; |
| |
| Type *EltTy = cast<VectorType>(V->getType())->getElementType(); |
| Constant *Undef = UndefValue::get(EltTy); |
| SmallVector<Constant*, 16> Elts; |
| for (unsigned i = 0; i != VWidth; ++i) { |
| if (!DemandedElts[i]) { // If not demanded, set to undef. |
| Elts.push_back(Undef); |
| UndefElts.setBit(i); |
| continue; |
| } |
| |
| Constant *Elt = C->getAggregateElement(i); |
| if (!Elt) return nullptr; |
| |
| if (isa<UndefValue>(Elt)) { // Already undef. |
| Elts.push_back(Undef); |
| UndefElts.setBit(i); |
| } else { // Otherwise, defined. |
| Elts.push_back(Elt); |
| } |
| } |
| |
| // If we changed the constant, return it. |
| Constant *NewCV = ConstantVector::get(Elts); |
| return NewCV != C ? NewCV : nullptr; |
| } |
| |
| // Limit search depth. |
| if (Depth == 10) |
| return nullptr; |
| |
| if (!AllowMultipleUsers) { |
| // If multiple users are using the root value, proceed with |
| // simplification conservatively assuming that all elements |
| // are needed. |
| if (!V->hasOneUse()) { |
| // Quit if we find multiple users of a non-root value though. |
| // They'll be handled when it's their turn to be visited by |
| // the main instcombine process. |
| if (Depth != 0) |
| // TODO: Just compute the UndefElts information recursively. |
| return nullptr; |
| |
| // Conservatively assume that all elements are needed. |
| DemandedElts = EltMask; |
| } |
| } |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) return nullptr; // Only analyze instructions. |
| |
| bool MadeChange = false; |
| auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum, |
| APInt Demanded, APInt &Undef) { |
| auto *II = dyn_cast<IntrinsicInst>(Inst); |
| Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum); |
| if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) { |
| if (II) |
| II->setArgOperand(OpNum, V); |
| else |
| Inst->setOperand(OpNum, V); |
| MadeChange = true; |
| } |
| }; |
| |
| APInt UndefElts2(VWidth, 0); |
| APInt UndefElts3(VWidth, 0); |
| switch (I->getOpcode()) { |
| default: break; |
| |
| case Instruction::GetElementPtr: { |
| // The LangRef requires that struct geps have all constant indices. As |
| // such, we can't convert any operand to partial undef. |
| auto mayIndexStructType = [](GetElementPtrInst &GEP) { |
| for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP); |
| I != E; I++) |
| if (I.isStruct()) |
| return true;; |
| return false; |
| }; |
| if (mayIndexStructType(cast<GetElementPtrInst>(*I))) |
| break; |
| |
| // Conservatively track the demanded elements back through any vector |
| // operands we may have. We know there must be at least one, or we |
| // wouldn't have a vector result to get here. Note that we intentionally |
| // merge the undef bits here since gepping with either an undef base or |
| // index results in undef. |
| for (unsigned i = 0; i < I->getNumOperands(); i++) { |
| if (isa<UndefValue>(I->getOperand(i))) { |
| // If the entire vector is undefined, just return this info. |
| UndefElts = EltMask; |
| return nullptr; |
| } |
| if (I->getOperand(i)->getType()->isVectorTy()) { |
| APInt UndefEltsOp(VWidth, 0); |
| simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp); |
| UndefElts |= UndefEltsOp; |
| } |
| } |
| |
| break; |
| } |
| case Instruction::InsertElement: { |
| // If this is a variable index, we don't know which element it overwrites. |
| // demand exactly the same input as we produce. |
| ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2)); |
| if (!Idx) { |
| // Note that we can't propagate undef elt info, because we don't know |
| // which elt is getting updated. |
| simplifyAndSetOp(I, 0, DemandedElts, UndefElts2); |
| break; |
| } |
| |
| // The element inserted overwrites whatever was there, so the input demanded |
| // set is simpler than the output set. |
| unsigned IdxNo = Idx->getZExtValue(); |
| APInt PreInsertDemandedElts = DemandedElts; |
| if (IdxNo < VWidth) |
| PreInsertDemandedElts.clearBit(IdxNo); |
| |
| simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts); |
| |
| // If this is inserting an element that isn't demanded, remove this |
| // insertelement. |
| if (IdxNo >= VWidth || !DemandedElts[IdxNo]) { |
| Worklist.Add(I); |
| return I->getOperand(0); |
| } |
| |
| // The inserted element is defined. |
| UndefElts.clearBit(IdxNo); |
| break; |
| } |
| case Instruction::ShuffleVector: { |
| auto *Shuffle = cast<ShuffleVectorInst>(I); |
| assert(Shuffle->getOperand(0)->getType() == |
| Shuffle->getOperand(1)->getType() && |
| "Expected shuffle operands to have same type"); |
| unsigned OpWidth = |
| Shuffle->getOperand(0)->getType()->getVectorNumElements(); |
| APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0); |
| for (unsigned i = 0; i < VWidth; i++) { |
| if (DemandedElts[i]) { |
| unsigned MaskVal = Shuffle->getMaskValue(i); |
| if (MaskVal != -1u) { |
| assert(MaskVal < OpWidth * 2 && |
| "shufflevector mask index out of range!"); |
| if (MaskVal < OpWidth) |
| LeftDemanded.setBit(MaskVal); |
| else |
| RightDemanded.setBit(MaskVal - OpWidth); |
| } |
| } |
| } |
| |
| APInt LHSUndefElts(OpWidth, 0); |
| simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts); |
| |
| APInt RHSUndefElts(OpWidth, 0); |
| simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts); |
| |
| // If this shuffle does not change the vector length and the elements |
| // demanded by this shuffle are an identity mask, then this shuffle is |
| // unnecessary. |
| // |
| // We are assuming canonical form for the mask, so the source vector is |
| // operand 0 and operand 1 is not used. |
| // |
| // Note that if an element is demanded and this shuffle mask is undefined |
| // for that element, then the shuffle is not considered an identity |
| // operation. The shuffle prevents poison from the operand vector from |
| // leaking to the result by replacing poison with an undefined value. |
| if (VWidth == OpWidth) { |
| bool IsIdentityShuffle = true; |
| for (unsigned i = 0; i < VWidth; i++) { |
| unsigned MaskVal = Shuffle->getMaskValue(i); |
| if (DemandedElts[i] && i != MaskVal) { |
| IsIdentityShuffle = false; |
| break; |
| } |
| } |
| if (IsIdentityShuffle) |
| return Shuffle->getOperand(0); |
| } |
| |
| bool NewUndefElts = false; |
| unsigned LHSIdx = -1u, LHSValIdx = -1u; |
| unsigned RHSIdx = -1u, RHSValIdx = -1u; |
| bool LHSUniform = true; |
| bool RHSUniform = true; |
| for (unsigned i = 0; i < VWidth; i++) { |
| unsigned MaskVal = Shuffle->getMaskValue(i); |
| if (MaskVal == -1u) { |
| UndefElts.setBit(i); |
| } else if (!DemandedElts[i]) { |
| NewUndefElts = true; |
| UndefElts.setBit(i); |
| } else if (MaskVal < OpWidth) { |
| if (LHSUndefElts[MaskVal]) { |
| NewUndefElts = true; |
| UndefElts.setBit(i); |
| } else { |
| LHSIdx = LHSIdx == -1u ? i : OpWidth; |
| LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth; |
| LHSUniform = LHSUniform && (MaskVal == i); |
| } |
| } else { |
| if (RHSUndefElts[MaskVal - OpWidth]) { |
| NewUndefElts = true; |
| UndefElts.setBit(i); |
| } else { |
| RHSIdx = RHSIdx == -1u ? i : OpWidth; |
| RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth; |
| RHSUniform = RHSUniform && (MaskVal - OpWidth == i); |
| } |
| } |
| } |
| |
| // Try to transform shuffle with constant vector and single element from |
| // this constant vector to single insertelement instruction. |
| // shufflevector V, C, <v1, v2, .., ci, .., vm> -> |
| // insertelement V, C[ci], ci-n |
| if (OpWidth == Shuffle->getType()->getNumElements()) { |
| Value *Op = nullptr; |
| Constant *Value = nullptr; |
| unsigned Idx = -1u; |
| |
| // Find constant vector with the single element in shuffle (LHS or RHS). |
| if (LHSIdx < OpWidth && RHSUniform) { |
| if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) { |
| Op = Shuffle->getOperand(1); |
| Value = CV->getOperand(LHSValIdx); |
| Idx = LHSIdx; |
| } |
| } |
| if (RHSIdx < OpWidth && LHSUniform) { |
| if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) { |
| Op = Shuffle->getOperand(0); |
| Value = CV->getOperand(RHSValIdx); |
| Idx = RHSIdx; |
| } |
| } |
| // Found constant vector with single element - convert to insertelement. |
| if (Op && Value) { |
| Instruction *New = InsertElementInst::Create( |
| Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx), |
| Shuffle->getName()); |
| InsertNewInstWith(New, *Shuffle); |
| return New; |
| } |
| } |
| if (NewUndefElts) { |
| // Add additional discovered undefs. |
| SmallVector<Constant*, 16> Elts; |
| for (unsigned i = 0; i < VWidth; ++i) { |
| if (UndefElts[i]) |
| Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext()))); |
| else |
| Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()), |
| Shuffle->getMaskValue(i))); |
| } |
| I->setOperand(2, ConstantVector::get(Elts)); |
| MadeChange = true; |
| } |
| break; |
| } |
| case Instruction::Select: { |
| // If this is a vector select, try to transform the select condition based |
| // on the current demanded elements. |
| SelectInst *Sel = cast<SelectInst>(I); |
| if (Sel->getCondition()->getType()->isVectorTy()) { |
| // TODO: We are not doing anything with UndefElts based on this call. |
| // It is overwritten below based on the other select operands. If an |
| // element of the select condition is known undef, then we are free to |
| // choose the output value from either arm of the select. If we know that |
| // one of those values is undef, then the output can be undef. |
| simplifyAndSetOp(I, 0, DemandedElts, UndefElts); |
| } |
| |
| // Next, see if we can transform the arms of the select. |
| APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts); |
| if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) { |
| for (unsigned i = 0; i < VWidth; i++) { |
| // isNullValue() always returns false when called on a ConstantExpr. |
| // Skip constant expressions to avoid propagating incorrect information. |
| Constant *CElt = CV->getAggregateElement(i); |
| if (isa<ConstantExpr>(CElt)) |
| continue; |
| // TODO: If a select condition element is undef, we can demand from |
| // either side. If one side is known undef, choosing that side would |
| // propagate undef. |
| if (CElt->isNullValue()) |
| DemandedLHS.clearBit(i); |
| else |
| DemandedRHS.clearBit(i); |
| } |
| } |
| |
| simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2); |
| simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3); |
| |
| // Output elements are undefined if the element from each arm is undefined. |
| // TODO: This can be improved. See comment in select condition handling. |
| UndefElts = UndefElts2 & UndefElts3; |
| break; |
| } |
| case Instruction::BitCast: { |
| // Vector->vector casts only. |
| VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType()); |
| if (!VTy) break; |
| unsigned InVWidth = VTy->getNumElements(); |
| APInt InputDemandedElts(InVWidth, 0); |
| UndefElts2 = APInt(InVWidth, 0); |
| unsigned Ratio; |
| |
| if (VWidth == InVWidth) { |
| // If we are converting from <4 x i32> -> <4 x f32>, we demand the same |
| // elements as are demanded of us. |
| Ratio = 1; |
| InputDemandedElts = DemandedElts; |
| } else if ((VWidth % InVWidth) == 0) { |
| // If the number of elements in the output is a multiple of the number of |
| // elements in the input then an input element is live if any of the |
| // corresponding output elements are live. |
| Ratio = VWidth / InVWidth; |
| for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) |
| if (DemandedElts[OutIdx]) |
| InputDemandedElts.setBit(OutIdx / Ratio); |
| } else if ((InVWidth % VWidth) == 0) { |
| // If the number of elements in the input is a multiple of the number of |
| // elements in the output then an input element is live if the |
| // corresponding output element is live. |
| Ratio = InVWidth / VWidth; |
| for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx) |
| if (DemandedElts[InIdx / Ratio]) |
| InputDemandedElts.setBit(InIdx); |
| } else { |
| // Unsupported so far. |
| break; |
| } |
| |
| simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2); |
| |
| if (VWidth == InVWidth) { |
| UndefElts = UndefElts2; |
| } else if ((VWidth % InVWidth) == 0) { |
| // If the number of elements in the output is a multiple of the number of |
| // elements in the input then an output element is undef if the |
| // corresponding input element is undef. |
| for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) |
| if (UndefElts2[OutIdx / Ratio]) |
| UndefElts.setBit(OutIdx); |
| } else if ((InVWidth % VWidth) == 0) { |
| // If the number of elements in the input is a multiple of the number of |
| // elements in the output then an output element is undef if all of the |
| // corresponding input elements are undef. |
| for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) { |
| APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio); |
| if (SubUndef.countPopulation() == Ratio) |
| UndefElts.setBit(OutIdx); |
| } |
| } else { |
| llvm_unreachable("Unimp"); |
| } |
| break; |
| } |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| simplifyAndSetOp(I, 0, DemandedElts, UndefElts); |
| break; |
| |
| case Instruction::Call: { |
| IntrinsicInst *II = dyn_cast<IntrinsicInst>(I); |
| if (!II) break; |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::masked_gather: // fallthrough |
| case Intrinsic::masked_load: { |
| // Subtlety: If we load from a pointer, the pointer must be valid |
| // regardless of whether the element is demanded. Doing otherwise risks |
| // segfaults which didn't exist in the original program. |
| APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)), |
| DemandedPassThrough(DemandedElts); |
| if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2))) |
| for (unsigned i = 0; i < VWidth; i++) { |
| Constant *CElt = CV->getAggregateElement(i); |
| if (CElt->isNullValue()) |
| DemandedPtrs.clearBit(i); |
| else if (CElt->isAllOnesValue()) |
| DemandedPassThrough.clearBit(i); |
| } |
| if (II->getIntrinsicID() == Intrinsic::masked_gather) |
| simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2); |
| simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3); |
| |
| // Output elements are undefined if the element from both sources are. |
| // TODO: can strengthen via mask as well. |
| UndefElts = UndefElts2 & UndefElts3; |
| break; |
| } |
| case Intrinsic::x86_xop_vfrcz_ss: |
| case Intrinsic::x86_xop_vfrcz_sd: |
| // The instructions for these intrinsics are speced to zero upper bits not |
| // pass them through like other scalar intrinsics. So we shouldn't just |
| // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics. |
| // Instead we should return a zero vector. |
| if (!DemandedElts[0]) { |
| Worklist.Add(II); |
| return ConstantAggregateZero::get(II->getType()); |
| } |
| |
| // Only the lower element is used. |
| DemandedElts = 1; |
| simplifyAndSetOp(II, 0, DemandedElts, UndefElts); |
| |
| // Only the lower element is undefined. The high elements are zero. |
| UndefElts = UndefElts[0]; |
| break; |
| |
| // Unary scalar-as-vector operations that work column-wise. |
| case Intrinsic::x86_sse_rcp_ss: |
| case Intrinsic::x86_sse_rsqrt_ss: |
| simplifyAndSetOp(II, 0, DemandedElts, UndefElts); |
| |
| // If lowest element of a scalar op isn't used then use Arg0. |
| if (!DemandedElts[0]) { |
| Worklist.Add(II); |
| return II->getArgOperand(0); |
| } |
| // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions |
| // checks). |
| break; |
| |
| // Binary scalar-as-vector operations that work column-wise. The high |
| // elements come from operand 0. The low element is a function of both |
| // operands. |
| case Intrinsic::x86_sse_min_ss: |
| case Intrinsic::x86_sse_max_ss: |
| case Intrinsic::x86_sse_cmp_ss: |
| case Intrinsic::x86_sse2_min_sd: |
| case Intrinsic::x86_sse2_max_sd: |
| case Intrinsic::x86_sse2_cmp_sd: { |
| simplifyAndSetOp(II, 0, DemandedElts, UndefElts); |
| |
| // If lowest element of a scalar op isn't used then use Arg0. |
| if (!DemandedElts[0]) { |
| Worklist.Add(II); |
| return II->getArgOperand(0); |
| } |
| |
| // Only lower element is used for operand 1. |
| DemandedElts = 1; |
| simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); |
| |
| // Lower element is undefined if both lower elements are undefined. |
| // Consider things like undef&0. The result is known zero, not undef. |
| if (!UndefElts2[0]) |
| UndefElts.clearBit(0); |
| |
| break; |
| } |
| |
| // Binary scalar-as-vector operations that work column-wise. The high |
| // elements come from operand 0 and the low element comes from operand 1. |
| case Intrinsic::x86_sse41_round_ss: |
| case Intrinsic::x86_sse41_round_sd: { |
| // Don't use the low element of operand 0. |
| APInt DemandedElts2 = DemandedElts; |
| DemandedElts2.clearBit(0); |
| simplifyAndSetOp(II, 0, DemandedElts2, UndefElts); |
| |
| // If lowest element of a scalar op isn't used then use Arg0. |
| if (!DemandedElts[0]) { |
| Worklist.Add(II); |
| return II->getArgOperand(0); |
| } |
| |
| // Only lower element is used for operand 1. |
| DemandedElts = 1; |
| simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); |
| |
| // Take the high undef elements from operand 0 and take the lower element |
| // from operand 1. |
| UndefElts.clearBit(0); |
| UndefElts |= UndefElts2[0]; |
| break; |
| } |
| |
| // Three input scalar-as-vector operations that work column-wise. The high |
| // elements come from operand 0 and the low element is a function of all |
| // three inputs. |
| case Intrinsic::x86_avx512_mask_add_ss_round: |
| case Intrinsic::x86_avx512_mask_div_ss_round: |
| case Intrinsic::x86_avx512_mask_mul_ss_round: |
| case Intrinsic::x86_avx512_mask_sub_ss_round: |
| case Intrinsic::x86_avx512_mask_max_ss_round: |
| case Intrinsic::x86_avx512_mask_min_ss_round: |
| case Intrinsic::x86_avx512_mask_add_sd_round: |
| case Intrinsic::x86_avx512_mask_div_sd_round: |
| case Intrinsic::x86_avx512_mask_mul_sd_round: |
| case Intrinsic::x86_avx512_mask_sub_sd_round: |
| case Intrinsic::x86_avx512_mask_max_sd_round: |
| case Intrinsic::x86_avx512_mask_min_sd_round: |
| simplifyAndSetOp(II, 0, DemandedElts, UndefElts); |
| |
| // If lowest element of a scalar op isn't used then use Arg0. |
| if (!DemandedElts[0]) { |
| Worklist.Add(II); |
| return II->getArgOperand(0); |
| } |
| |
| // Only lower element is used for operand 1 and 2. |
| DemandedElts = 1; |
| simplifyAndSetOp(II, 1, DemandedElts, UndefElts2); |
| simplifyAndSetOp(II, 2, DemandedElts, UndefElts3); |
| |
| // Lower element is undefined if all three lower elements are undefined. |
| // Consider things like undef&0. The result is known zero, not undef. |
| if (!UndefElts2[0] || !UndefElts3[0]) |
| UndefElts.clearBit(0); |
| |
| break; |
| |
| case Intrinsic::x86_sse2_packssdw_128: |
| case Intrinsic::x86_sse2_packsswb_128: |
| case Intrinsic::x86_sse2_packuswb_128: |
| case Intrinsic::x86_sse41_packusdw: |
| case Intrinsic::x86_avx2_packssdw: |
| case Intrinsic::x86_avx2_packsswb: |
| case Intrinsic::x86_avx2_packusdw: |
| case Intrinsic::x86_avx2_packuswb: |
| case Intrinsic::x86_avx512_packssdw_512: |
| case Intrinsic::x86_avx512_packsswb_512: |
| case Intrinsic::x86_avx512_packusdw_512: |
| case Intrinsic::x86_avx512_packuswb_512: { |
| auto *Ty0 = II->getArgOperand(0)->getType(); |
| unsigned InnerVWidth = Ty0->getVectorNumElements(); |
| assert(VWidth == (InnerVWidth * 2) && "Unexpected input size"); |
| |
| unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128; |
| unsigned VWidthPerLane = VWidth / NumLanes; |
| unsigned InnerVWidthPerLane = InnerVWidth / NumLanes; |
| |
| // Per lane, pack the elements of the first input and then the second. |
| // e.g. |
| // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3]) |
| // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15]) |
| for (int OpNum = 0; OpNum != 2; ++OpNum) { |
| APInt OpDemandedElts(InnerVWidth, 0); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| unsigned LaneIdx = Lane * VWidthPerLane; |
| for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) { |
| unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum; |
| if (DemandedElts[Idx]) |
| OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt); |
| } |
| } |
| |
| // Demand elements from the operand. |
| APInt OpUndefElts(InnerVWidth, 0); |
| simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts); |
| |
| // Pack the operand's UNDEF elements, one lane at a time. |
| OpUndefElts = OpUndefElts.zext(VWidth); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane); |
| LaneElts = LaneElts.getLoBits(InnerVWidthPerLane); |
| LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum); |
| UndefElts |= LaneElts; |
| } |
| } |
| break; |
| } |
| |
| // PSHUFB |
| case Intrinsic::x86_ssse3_pshuf_b_128: |
| case Intrinsic::x86_avx2_pshuf_b: |
| case Intrinsic::x86_avx512_pshuf_b_512: |
| // PERMILVAR |
| case Intrinsic::x86_avx_vpermilvar_ps: |
| case Intrinsic::x86_avx_vpermilvar_ps_256: |
| case Intrinsic::x86_avx512_vpermilvar_ps_512: |
| case Intrinsic::x86_avx_vpermilvar_pd: |
| case Intrinsic::x86_avx_vpermilvar_pd_256: |
| case Intrinsic::x86_avx512_vpermilvar_pd_512: |
| // PERMV |
| case Intrinsic::x86_avx2_permd: |
| case Intrinsic::x86_avx2_permps: { |
| simplifyAndSetOp(II, 1, DemandedElts, UndefElts); |
| break; |
| } |
| |
| // SSE4A instructions leave the upper 64-bits of the 128-bit result |
| // in an undefined state. |
| case Intrinsic::x86_sse4a_extrq: |
| case Intrinsic::x86_sse4a_extrqi: |
| case Intrinsic::x86_sse4a_insertq: |
| case Intrinsic::x86_sse4a_insertqi: |
| UndefElts.setHighBits(VWidth / 2); |
| break; |
| case Intrinsic::amdgcn_buffer_load: |
| case Intrinsic::amdgcn_buffer_load_format: |
| case Intrinsic::amdgcn_raw_buffer_load: |
| case Intrinsic::amdgcn_raw_buffer_load_format: |
| case Intrinsic::amdgcn_raw_tbuffer_load: |
| case Intrinsic::amdgcn_struct_buffer_load: |
| case Intrinsic::amdgcn_struct_buffer_load_format: |
| case Intrinsic::amdgcn_struct_tbuffer_load: |
| case Intrinsic::amdgcn_tbuffer_load: |
| return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts); |
| default: { |
| if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID())) |
| return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0); |
| |
| break; |
| } |
| } // switch on IntrinsicID |
| break; |
| } // case Call |
| } // switch on Opcode |
| |
| // TODO: We bail completely on integer div/rem and shifts because they have |
| // UB/poison potential, but that should be refined. |
| BinaryOperator *BO; |
| if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) { |
| simplifyAndSetOp(I, 0, DemandedElts, UndefElts); |
| simplifyAndSetOp(I, 1, DemandedElts, UndefElts2); |
| |
| // Any change to an instruction with potential poison must clear those flags |
| // because we can not guarantee those constraints now. Other analysis may |
| // determine that it is safe to re-apply the flags. |
| if (MadeChange) |
| BO->dropPoisonGeneratingFlags(); |
| |
| // Output elements are undefined if both are undefined. Consider things |
| // like undef & 0. The result is known zero, not undef. |
| UndefElts &= UndefElts2; |
| } |
| |
| // If we've proven all of the lanes undef, return an undef value. |
| // TODO: Intersect w/demanded lanes |
| if (UndefElts.isAllOnesValue()) |
| return UndefValue::get(I->getType());; |
| |
| return MadeChange ? I : nullptr; |
| } |