blob: 5d1fbb7a3afe1d8efca2efd10509217b3d5f01b4 [file] [log] [blame]
//===- NaClBitstreamReader.h -----------------------------------*- C++ -*-===//
// Low-level bitstream reader interface
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This header defines the BitstreamReader class. This class can be used to
// read an arbitrary bitstream, regardless of its contents.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_BITCODE_NACL_NACLBITSTREAMREADER_H
#define LLVM_BITCODE_NACL_NACLBITSTREAMREADER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/Bitcode/NaCl/NaClBitcodeHeader.h"
#include "llvm/Bitcode/NaCl/NaClLLVMBitCodes.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/StreamingMemoryObject.h"
#include <atomic>
#include <climits>
#include <mutex>
#include <unordered_map>
#include <vector>
namespace llvm {
class Deserializer;
class NaClBitstreamCursor;
namespace naclbitc {
/// Returns the Bit as a Byte:BitInByte string.
std::string getBitAddress(uint64_t Bit);
/// Severity levels for reporting errors.
enum ErrorLevel { Warning, Error, Fatal };
// Basic printing routine to generate the beginning of an error
// message. BitPosition is the bit position the error was found.
// Level is the severity of the error.
raw_ostream &ErrorAt(raw_ostream &Out, ErrorLevel Level, uint64_t BitPosition);
} // End namespace naclbitc.
/// This class is used to read from a NaCl bitcode wire format stream,
/// maintaining information that is global to decoding the entire file.
/// While a file is being read, multiple cursors can be independently
/// advanced or skipped around within the file. These are represented by
/// the NaClBitstreamCursor class.
class NaClBitstreamReader {
public:
// Models a raw list of abbreviations.
static const size_t DefaultAbbrevListSize = 12;
using AbbrevListVector =
SmallVector<NaClBitCodeAbbrev *, DefaultAbbrevListSize>;
// Models and maintains a list of abbreviations. In particular, it maintains
// updating reference counts of abbreviation operators within the abbreviation
// list.
class AbbrevList {
public:
AbbrevList() = default;
explicit AbbrevList(const AbbrevList &NewAbbrevs) {
appendList(NewAbbrevs);
}
AbbrevList &operator=(const AbbrevList &Rhs) {
clear();
appendList(Rhs);
return *this;
}
// Creates a new (empty) abbreviation, appends it to this, and then returns
// the new abbreviation.
NaClBitCodeAbbrev *appendCreate() {
NaClBitCodeAbbrev *Abbv = new NaClBitCodeAbbrev();
Abbrevs.push_back(Abbv);
return Abbv;
}
// Appends the given abbreviation to this.
void append(NaClBitCodeAbbrev *Abbrv) {
Abbrv->addRef();
Abbrevs.push_back(Abbrv);
}
// Appends the contents of NewAbbrevs to this.
void appendList(const AbbrevList &NewAbbrevs) {
for (NaClBitCodeAbbrev *Abbrv : NewAbbrevs.Abbrevs)
append(Abbrv);
}
// Returns last abbreviation on list.
NaClBitCodeAbbrev *last() { return Abbrevs.back(); }
// Removes the last element of the list.
void popLast() {
Abbrevs.back()->dropRef();
Abbrevs.pop_back();
}
// Empties abbreviation list.
void clear() {
while (!Abbrevs.empty())
popLast();
}
// Allow read access to vector defining list.
const AbbrevListVector &getVector() const { return Abbrevs; }
~AbbrevList() { clear(); }
private:
AbbrevListVector Abbrevs;
};
/// This contains information about abbreviations in blocks defined in the
/// BLOCKINFO_BLOCK block. These describe global abbreviations that apply to
/// all succeeding blocks of the specified ID.
class BlockInfo {
BlockInfo &operator=(const BlockInfo &) = delete;
public:
BlockInfo() = default;
explicit BlockInfo(unsigned BlockID) : BlockID(BlockID), Abbrevs() {}
BlockInfo(const BlockInfo &) = default;
unsigned getBlockID() const { return BlockID; }
void setBlockID(unsigned ID) { BlockID = ID; }
AbbrevList &getAbbrevs() { return Abbrevs; }
~BlockInfo() {}
private:
unsigned BlockID;
AbbrevList Abbrevs;
};
class BlockInfoRecordsMap;
using SharedBlockInfoMap = std::shared_ptr<BlockInfoRecordsMap>;
// Holds the global abbreviations in the BlockInfo block of the bitcode file.
// Sharing is used to allow parallel parses. Share by using std::share_ptr's
// and std::shared_from_this().
//
// Note: The BlockInfo block must be parsed before sharing of the
// BlockInfoRecordsMap. Therefore, before changing to a parallel parse, the
// BlockInfoRecordsMap must be frozen. Failure to do so, can lead to
// unexpected behaviour.
//
// In practice, this means that only function blocks can be parsed in
// parallel.
class BlockInfoRecordsMap
: public std::enable_shared_from_this<BlockInfoRecordsMap> {
friend class NaClBitstreamReader;
BlockInfoRecordsMap(const BlockInfoRecordsMap &) = delete;
BlockInfoRecordsMap &operator=(const BlockInfoRecordsMap &) = delete;
public:
using InfosMap = std::unordered_map<unsigned, std::unique_ptr<BlockInfo>>;
static SharedBlockInfoMap create() {
return SharedBlockInfoMap(new BlockInfoRecordsMap());
}
~BlockInfoRecordsMap() = default;
bool isFrozen() const { return IsFrozen.load(); }
// Returns true if already frozen.
bool freeze() { return IsFrozen.exchange(true); }
BlockInfo *getBlockInfo(unsigned BlockID) {
auto Pos = KnownInfos.find(BlockID);
if (Pos != KnownInfos.end())
return Pos->second.get();
return getOrCreateUnknownBlockInfo(BlockID);
}
// Locks the BlockInfoRecordsMap for the lifetime of the UpdateLock. Used
// to allow the parsing of a BlockInfo block, and install global
// abbreviations.
//
// Verifies that the BlockInfoRecordsMap didn't get frozen during the
// instance's lifetime as a safety precaution. That is, it checks that no
// bitstream reader was created to share the global abbreviations before the
// global abbreviations are defined.
class UpdateLock {
UpdateLock() = delete;
UpdateLock(const UpdateLock &) = delete;
UpdateLock &operator=(const UpdateLock &) = delete;
public:
explicit UpdateLock(BlockInfoRecordsMap &BlockInfoRecords);
~UpdateLock();
private:
// The BlockInfoRecordsMap to update.
BlockInfoRecordsMap &BlockInfoRecords;
// The locked mutex from BlockInfoRecordsMap;
std::unique_lock<std::mutex> Lock;
};
private:
// The set of known BlockInfo's. This map is prepopulated so that fast
// lookup can be performed thread safe (i.e. without using a lock).
InfosMap KnownInfos;
// The set of unknown BlockInfo's. This map is to handle unknown (and hence,
// invalid) PNaCl bitcode files. This map is updated incrementally, and uses
// UnknownBlockInfoLock to make it thread safe.
InfosMap UnknownInfos;
// True if the known BlockInfo blocks are frozen (i.e. the bitstream reader
// will ignore the BlockInfo block).
std::atomic_bool IsFrozen;
// Lock to use to update this data structure.
std::mutex UpdateRecordsLock;
// Lock to get/create an unknonw block info.
std::mutex UnknownBlockInfoLock;
BlockInfoRecordsMap();
BlockInfo *getOrCreateUnknownBlockInfo(unsigned BlockID);
};
private:
friend class NaClBitstreamCursor;
std::unique_ptr<MemoryObject> BitcodeBytes;
SharedBlockInfoMap BlockInfoRecords;
/// \brief Holds the offset of the first byte after the header.
size_t InitialAddress;
// Holds the number of bytes to add to the bitcode position, when reporting
// errors. Useful when using parallel parses of function blocks.
size_t ErrorOffset = 0;
// True if filler should be added to byte align records.
bool AlignBitcodeRecords = false;
NaClBitstreamReader(const NaClBitstreamReader &) = delete;
void operator=(const NaClBitstreamReader &) = delete;
void initFromHeader(NaClBitcodeHeader &Header) {
InitialAddress = Header.getHeaderSize();
AlignBitcodeRecords = Header.getAlignBitcodeRecords();
}
public:
/// Read stream from sequence of bytes [Start .. End) after parsing
/// the given bitcode header.
NaClBitstreamReader(const unsigned char *Start, const unsigned char *End,
NaClBitcodeHeader &Header)
: BitcodeBytes(getNonStreamedMemoryObject(Start, End)),
BlockInfoRecords(BlockInfoRecordsMap::create()) {
initFromHeader(Header);
}
/// Read stream from Bytes, after parsing the given bitcode header.
NaClBitstreamReader(MemoryObject *Bytes, NaClBitcodeHeader &Header)
: BitcodeBytes(Bytes), BlockInfoRecords(BlockInfoRecordsMap::create()) {
initFromHeader(Header);
}
/// Read stream from bytes, starting at the given initial address.
/// Provides simple API for unit testing.
NaClBitstreamReader(MemoryObject *Bytes, size_t InitialAddress)
: BitcodeBytes(Bytes), BlockInfoRecords(BlockInfoRecordsMap::create()),
InitialAddress(InitialAddress) {}
/// Read stream from sequence of bytes [Start .. End), using the global
/// abbreviations of the given bitstream reader. Assumes that [Start .. End)
/// is copied from Reader's memory object.
NaClBitstreamReader(size_t StartAddress, const unsigned char *Start,
const unsigned char *End, NaClBitstreamReader *Reader)
: BitcodeBytes(getNonStreamedMemoryObject(Start, End)),
BlockInfoRecords(Reader->BlockInfoRecords), InitialAddress(0),
ErrorOffset(StartAddress) {
BlockInfoRecords->freeze();
}
// Returns the memory object that is being read.
MemoryObject &getBitcodeBytes() { return *BitcodeBytes; }
~NaClBitstreamReader() {}
/// \brief Returns the initial address (after the header) of the input stream.
size_t getInitialAddress() const { return InitialAddress; }
/// Returns the byte address of the first byte in the bitstream. Used
/// for error reporting.
size_t getErrorOffset() const { return ErrorOffset; }
//===--------------------------------------------------------------------===//
// Block Manipulation
//===--------------------------------------------------------------------===//
BlockInfo *getBlockInfo(unsigned BlockID) {
return BlockInfoRecords->getBlockInfo(BlockID);
}
};
/// When advancing through a bitstream cursor, each advance can discover a few
/// different kinds of entries:
struct NaClBitstreamEntry {
enum {
Error, // Malformed bitcode was found.
EndBlock, // We've reached the end of the current block, (or the end of the
// file, which is treated like a series of EndBlock records.
SubBlock, // This is the start of a new subblock of a specific ID.
Record // This is a record with a specific AbbrevID.
} Kind;
unsigned ID;
static NaClBitstreamEntry getError() {
NaClBitstreamEntry E;
E.Kind = Error;
return E;
}
static NaClBitstreamEntry getEndBlock() {
NaClBitstreamEntry E;
E.Kind = EndBlock;
return E;
}
static NaClBitstreamEntry getSubBlock(unsigned ID) {
NaClBitstreamEntry E;
E.Kind = SubBlock;
E.ID = ID;
return E;
}
static NaClBitstreamEntry getRecord(unsigned AbbrevID) {
NaClBitstreamEntry E;
E.Kind = Record;
E.ID = AbbrevID;
return E;
}
};
/// Models default view of a bitcode record.
typedef SmallVector<uint64_t, 8> NaClBitcodeRecordVector;
/// Class NaClAbbrevListener is used to allow instances of class
/// NaClBitcodeParser to listen to record details when processing
/// abbreviations. The major reason for using a listener is that the
/// NaCl bitcode reader would require a major rewrite (including the
/// introduction of more overhead) if we were to lift abbreviations up
/// to the bitcode reader. That is, not only would we have to lift the
/// block processing up into the readers (i.e. many blocks in
/// NaClBitcodeReader and NaClBitcodeParser), but add many new API's
/// to allow the readers to update internals of the bit stream reader
/// appropriately.
class NaClAbbrevListener {
NaClAbbrevListener(const NaClAbbrevListener &) = delete;
void operator=(const NaClAbbrevListener &) = delete;
public:
NaClAbbrevListener() {}
virtual ~NaClAbbrevListener() {}
/// Called to process the read abbreviation.
virtual void ProcessAbbreviation(NaClBitCodeAbbrev *Abbrv, bool IsLocal) = 0;
/// Called after entering block. NumWords is the number of words
/// in the block.
virtual void BeginBlockInfoBlock(unsigned NumWords) = 0;
/// Called if a naclbitc::BLOCKINFO_CODE_SETBID record is found in
/// NaClBitstreamCursor::ReadBlockInfoBlock.
virtual void SetBID() = 0;
/// Called just before an EndBlock record is processed by
/// NaClBitstreamCursor::ReadBlockInfoBlock
virtual void EndBlockInfoBlock() = 0;
/// The values of the bitcode record associated with the called
/// virtual function.
NaClBitcodeRecordVector Values;
/// Start bit for current record being processed in
/// NaClBitstreamCursor::ReadBlockInfoBlock.
uint64_t StartBit;
};
/// This represents a position within a bitcode file. There may be multiple
/// independent cursors reading within one bitstream, each maintaining their
/// own local state.
///
/// Unlike iterators, NaClBitstreamCursors are heavy-weight objects
/// that should not be passed by value.
class NaClBitstreamCursor {
public:
/// This class handles errors in the bitstream reader. Redirects
/// fatal error messages to virtual method Fatal.
class ErrorHandler {
ErrorHandler(const ErrorHandler &) = delete;
ErrorHandler &operator=(const ErrorHandler &) = delete;
public:
explicit ErrorHandler(NaClBitstreamCursor &Cursor) : Cursor(Cursor) {}
LLVM_ATTRIBUTE_NORETURN
virtual void Fatal(const std::string &ErrorMessage) const;
virtual ~ErrorHandler() {}
uint64_t getCurrentBitNo() const { return Cursor.GetCurrentBitNo(); }
private:
NaClBitstreamCursor &Cursor;
};
private:
friend class Deserializer;
NaClBitstreamReader *BitStream;
size_t NextChar;
// The current error handler for the bitstream reader.
std::unique_ptr<ErrorHandler> ErrHandler;
// The size of the bitcode. 0 if we don't know it yet.
size_t Size;
/// This is the current data we have pulled from the stream but have not
/// returned to the client. This is specifically and intentionally defined to
/// follow the word size of the host machine for efficiency. We use word_t in
/// places that are aware of this to make it perfectly explicit what is going
/// on.
typedef size_t word_t;
word_t CurWord;
/// This is the number of bits in CurWord that are valid. This
/// is always from [0...bits_of(word_t)-1] inclusive.
unsigned BitsInCurWord;
// Data specific to a block being scanned.
class Block {
public:
Block() = delete;
Block &operator=(const Block &Rhs) {
GlobalAbbrevs = Rhs.GlobalAbbrevs;
NumGlobalAbbrevs = Rhs.NumGlobalAbbrevs;
LocalAbbrevs = Rhs.LocalAbbrevs;
CodeAbbrev = Rhs.CodeAbbrev;
return *this;
}
Block(NaClBitstreamReader::BlockInfo *GlobalAbbrevs,
NaClBitcodeSelectorAbbrev &CodeAbbrev)
: GlobalAbbrevs(GlobalAbbrevs),
NumGlobalAbbrevs(GlobalAbbrevs->getAbbrevs().getVector().size()),
LocalAbbrevs(), CodeAbbrev(CodeAbbrev) {}
Block(NaClBitstreamReader::BlockInfo *GlobalAbbrevs)
: GlobalAbbrevs(GlobalAbbrevs),
NumGlobalAbbrevs(GlobalAbbrevs->getAbbrevs().getVector().size()),
LocalAbbrevs(), CodeAbbrev() {}
~Block() = default;
const NaClBitstreamReader::AbbrevList &getGlobalAbbrevs() const {
return GlobalAbbrevs->getAbbrevs();
}
unsigned getNumGlobalAbbrevs() const { return NumGlobalAbbrevs; }
const NaClBitstreamReader::AbbrevList &getLocalAbbrevs() const {
return LocalAbbrevs;
}
const NaClBitcodeSelectorAbbrev &getCodeAbbrev() const {
return CodeAbbrev;
}
void setCodeAbbrev(NaClBitcodeSelectorAbbrev &Abbrev) {
CodeAbbrev = Abbrev;
}
NaClBitCodeAbbrev *appendLocalCreate() {
return LocalAbbrevs.appendCreate();
}
void moveLocalAbbrevToAbbrevList(NaClBitstreamReader::AbbrevList *List) {
if (List != &LocalAbbrevs) {
NaClBitCodeAbbrev *Abbv = LocalAbbrevs.last();
List->append(Abbv);
LocalAbbrevs.popLast();
}
}
private:
friend class NaClBitstreamCursor;
// The global abbreviations associated with this scope.
NaClBitstreamReader::BlockInfo *GlobalAbbrevs;
// Number of abbreviations when block was entered. Used to limit scope of
// CurBlockInfo, since any abbreviation added inside a BlockInfo block
// (within this block) must not effect global abbreviations.
unsigned NumGlobalAbbrevs;
NaClBitstreamReader::AbbrevList LocalAbbrevs;
// This is the declared size of code values used for the current block, in
// bits.
NaClBitcodeSelectorAbbrev CodeAbbrev;
};
/// This tracks the Block-specific information for each nested block.
SmallVector<Block, 8> BlockScope;
NaClBitstreamCursor(const NaClBitstreamCursor &) = delete;
NaClBitstreamCursor &operator=(const NaClBitstreamCursor &) = delete;
public:
NaClBitstreamCursor() : ErrHandler(new ErrorHandler(*this)) { init(nullptr); }
explicit NaClBitstreamCursor(NaClBitstreamReader &R)
: ErrHandler(new ErrorHandler(*this)) {
init(&R);
}
void init(NaClBitstreamReader *R) {
freeState();
BitStream = R;
NextChar = (BitStream == nullptr) ? 0 : BitStream->getInitialAddress();
Size = 0;
BitsInCurWord = 0;
if (BitStream) {
BlockScope.push_back(
Block(BitStream->getBlockInfo(naclbitc::TOP_LEVEL_BLOCKID)));
}
}
~NaClBitstreamCursor() { freeState(); }
void freeState() {
while (!BlockScope.empty())
BlockScope.pop_back();
}
// Replaces the current bitstream error handler with the new
// handler. Takes ownership of the new handler and deletes it when
// it is no longer needed.
void setErrorHandler(std::unique_ptr<ErrorHandler> &NewHandler) {
ErrHandler = std::move(NewHandler);
}
bool canSkipToPos(size_t pos) const {
// pos can be skipped to if it is a valid address or one byte past the end.
return pos == 0 || BitStream->getBitcodeBytes().isValidAddress(
static_cast<uint64_t>(pos - 1));
}
bool AtEndOfStream() {
if (BitsInCurWord != 0)
return false;
if (Size != 0)
return Size == NextChar;
fillCurWord();
return BitsInCurWord == 0;
}
/// Return the number of bits used to encode an abbrev #.
unsigned getAbbrevIDWidth() const {
return BlockScope.back().getCodeAbbrev().NumBits;
}
/// Return the bit # of the bit we are reading.
uint64_t GetCurrentBitNo() const {
return NextChar * CHAR_BIT - BitsInCurWord;
}
/// Converts the given position into the corresponding Error position.
uint64_t getErrorBitNo(uint64_t Position) const {
return BitStream->getErrorOffset() * CHAR_BIT + Position;
}
/// Returns the current bit address for reporting errors.
uint64_t getErrorBitNo() const { return getErrorBitNo(GetCurrentBitNo()); }
NaClBitstreamReader *getBitStreamReader() { return BitStream; }
const NaClBitstreamReader *getBitStreamReader() const { return BitStream; }
/// Returns the current bit address (string) of the bit cursor.
std::string getCurrentBitAddress() const {
return naclbitc::getBitAddress(GetCurrentBitNo());
}
/// Flags that modify the behavior of advance().
enum {
/// If this flag is used, the advance() method does not automatically pop
/// the block scope when the end of a block is reached.
AF_DontPopBlockAtEnd = 1,
/// If this flag is used, abbrev entries are returned just like normal
/// records.
AF_DontAutoprocessAbbrevs = 2
};
/// Advance the current bitstream, returning the next entry in the stream.
/// Use the given abbreviation listener (if provided).
NaClBitstreamEntry advance(unsigned Flags, NaClAbbrevListener *Listener) {
while (1) {
unsigned Code = ReadCode();
if (Code == naclbitc::END_BLOCK) {
// Pop the end of the block unless Flags tells us not to.
if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd())
return NaClBitstreamEntry::getError();
return NaClBitstreamEntry::getEndBlock();
}
if (Code == naclbitc::ENTER_SUBBLOCK)
return NaClBitstreamEntry::getSubBlock(ReadSubBlockID());
if (Code == naclbitc::DEFINE_ABBREV &&
!(Flags & AF_DontAutoprocessAbbrevs)) {
// We read and accumulate abbrev's, the client can't do anything with
// them anyway.
ReadAbbrevRecord(true, Listener);
continue;
}
return NaClBitstreamEntry::getRecord(Code);
}
}
/// This is a convenience function for clients that don't expect any
/// subblocks. This just skips over them automatically.
NaClBitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) {
while (1) {
// If we found a normal entry, return it.
NaClBitstreamEntry Entry = advance(Flags, 0);
if (Entry.Kind != NaClBitstreamEntry::SubBlock)
return Entry;
// If we found a sub-block, just skip over it and check the next entry.
if (SkipBlock())
return NaClBitstreamEntry::getError();
}
}
/// Returns the starting byte of the word containing BitNo.
uintptr_t getStartWordByteForBit(uint64_t BitNo) const {
return uintptr_t(BitNo / CHAR_BIT) & ~(sizeof(word_t) - 1);
}
/// Returns the index of BitNo within the word it appears in.
unsigned getWordBitNo(uint64_t BitNo) const {
return unsigned(BitNo & (sizeof(word_t) * CHAR_BIT - 1));
}
/// Returns the ending byte of the word containing BitNo.
uintptr_t getEndWordByteForBit(uint64_t BitNo) const {
return getStartWordByteForBit(BitNo) +
(getWordBitNo(BitNo) ? sizeof(word_t) : 0);
}
/// Fills Buffer[Size] using bytes at Address (in the memory object being
/// read). Returns number of bytes filled (less than Size if at end of memory
/// object).
uint64_t fillBuffer(uint8_t *Buffer, size_t Size, size_t Address) const {
return BitStream->getBitcodeBytes().readBytes(Buffer, Size, Address);
}
/// Reset the stream to the specified bit number.
void JumpToBit(uint64_t BitNo) {
const uintptr_t ByteNo = getStartWordByteForBit(BitNo);
const unsigned WordBitNo = getWordBitNo(BitNo);
if (!canSkipToPos(ByteNo))
reportInvalidJumpToBit(BitNo);
// Move the cursor to the right word.
NextChar = ByteNo;
BitsInCurWord = 0;
// Skip over any bits that are already consumed.
if (WordBitNo)
Read(WordBitNo);
}
void fillCurWord() {
assert(Size == 0 || NextChar < (unsigned)Size);
// Read the next word from the stream.
uint8_t Array[sizeof(word_t)] = {0};
uint64_t BytesRead = fillBuffer(Array, sizeof(Array), NextChar);
// If we run out of data, stop at the end of the stream.
if (BytesRead == 0) {
Size = NextChar;
return;
}
CurWord =
support::endian::read<word_t, support::little, support::unaligned>(
Array);
NextChar += BytesRead;
BitsInCurWord = BytesRead * CHAR_BIT;
}
word_t Read(unsigned NumBits) {
static const unsigned BitsInWord = sizeof(word_t) * CHAR_BIT;
assert(NumBits && NumBits <= BitsInWord &&
"Cannot return zero or more than BitsInWord bits!");
static const unsigned Mask = sizeof(word_t) > 4 ? 0x3f : 0x1f;
// If the field is fully contained by CurWord, return it quickly.
if (BitsInCurWord >= NumBits) {
word_t R = CurWord & (~word_t(0) >> (BitsInWord - NumBits));
// Use a mask to avoid undefined behavior.
CurWord >>= (NumBits & Mask);
BitsInCurWord -= NumBits;
return R;
}
word_t R = BitsInCurWord ? CurWord : 0;
unsigned BitsLeft = NumBits - BitsInCurWord;
fillCurWord();
// If we run out of data, stop at the end of the stream.
if (BitsLeft > BitsInCurWord)
return 0;
word_t R2 = CurWord & (~word_t(0) >> (BitsInWord - BitsLeft));
// Use a mask to avoid undefined behavior.
CurWord >>= (BitsLeft & Mask);
BitsInCurWord -= BitsLeft;
R |= R2 << (NumBits - BitsLeft);
return R;
}
uint32_t ReadVBR(unsigned NumBits) {
uint32_t Piece = Read(NumBits);
if ((Piece & (1U << (NumBits - 1))) == 0)
return Piece;
uint32_t Result = 0;
unsigned NextBit = 0;
while (1) {
Result |= (Piece & ((1U << (NumBits - 1)) - 1)) << NextBit;
if ((Piece & (1U << (NumBits - 1))) == 0)
return Result;
NextBit += NumBits - 1;
Piece = Read(NumBits);
}
}
// Read a VBR that may have a value up to 64-bits in size. The chunk size of
// the VBR must still be <= 32 bits though.
uint64_t ReadVBR64(unsigned NumBits) {
uint32_t Piece = Read(NumBits);
if ((Piece & (1U << (NumBits - 1))) == 0)
return uint64_t(Piece);
uint64_t Result = 0;
unsigned NextBit = 0;
while (1) {
Result |= uint64_t(Piece & ((1U << (NumBits - 1)) - 1)) << NextBit;
if ((Piece & (1U << (NumBits - 1))) == 0)
return Result;
NextBit += NumBits - 1;
Piece = Read(NumBits);
}
}
private:
void SkipToByteBoundary() {
unsigned BitsToSkip = BitsInCurWord % CHAR_BIT;
if (BitsToSkip) {
CurWord >>= BitsToSkip;
BitsInCurWord -= BitsToSkip;
}
}
void SkipToByteBoundaryIfAligned() {
if (BitStream->AlignBitcodeRecords)
SkipToByteBoundary();
}
void SkipToFourByteBoundary() {
// If word_t is 64-bits and if we've read less than 32 bits, just dump
// the bits we have up to the next 32-bit boundary.
if (sizeof(word_t) > 4 && BitsInCurWord >= 32) {
CurWord >>= BitsInCurWord - 32;
BitsInCurWord = 32;
return;
}
BitsInCurWord = 0;
}
public:
unsigned ReadCode() {
const NaClBitcodeSelectorAbbrev &CodeAbbrev =
BlockScope.back().getCodeAbbrev();
return CodeAbbrev.IsFixed ? Read(CodeAbbrev.NumBits)
: ReadVBR(CodeAbbrev.NumBits);
}
// Block header:
// [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
/// Having read the ENTER_SUBBLOCK code, read the BlockID for the block.
unsigned ReadSubBlockID() { return ReadVBR(naclbitc::BlockIDWidth); }
/// Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip over the body
/// of this block. If the block record is malformed, return true.
bool SkipBlock() {
// Read and ignore the codelen value. Since we are skipping this block, we
// don't care what code widths are used inside of it.
ReadVBR(naclbitc::CodeLenWidth);
SkipToFourByteBoundary();
unsigned NumFourBytes = Read(naclbitc::BlockSizeWidth);
// Check that the block wasn't partially defined, and that the offset isn't
// bogus.
size_t SkipTo = GetCurrentBitNo() + NumFourBytes * 4 * CHAR_BIT;
if (AtEndOfStream() || !canSkipToPos(SkipTo / CHAR_BIT))
return true;
JumpToBit(SkipTo);
return false;
}
/// Having read the ENTER_SUBBLOCK abbrevid, enter the block, and return true
/// if the block has an error.
bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr);
bool ReadBlockEnd() {
if (BlockScope.empty())
return true;
// Block tail:
// [END_BLOCK, <align4bytes>]
SkipToFourByteBoundary();
BlockScope.pop_back();
return false;
}
private:
//===--------------------------------------------------------------------===//
// Record Processing
//===--------------------------------------------------------------------===//
private:
// Returns abbreviation encoding associated with Value.
NaClBitCodeAbbrevOp::Encoding getEncoding(uint64_t Value);
void skipAbbreviatedField(const NaClBitCodeAbbrevOp &Op);
// Reads the next Value using the abbreviation Op. Returns true only
// if Op is an array (and sets Value to the number of elements in the
// array).
inline bool readRecordAbbrevField(const NaClBitCodeAbbrevOp &Op,
uint64_t &Value);
// Reads and returns the next value using the abbreviation Op,
// assuming Op appears after an array abbreviation.
inline uint64_t readArrayAbbreviatedField(const NaClBitCodeAbbrevOp &Op);
// Reads the array abbreviation Op, NumArrayElements times, putting
// the read values in Vals.
inline void readArrayAbbrev(const NaClBitCodeAbbrevOp &Op,
unsigned NumArrayElements,
SmallVectorImpl<uint64_t> &Vals);
// Reports that that abbreviation Index is not valid.
void reportInvalidAbbrevNumber(unsigned Index) const;
// Reports that jumping to Bit is not valid.
void reportInvalidJumpToBit(uint64_t Bit) const;
public:
/// Return the abbreviation for the specified AbbrevId.
const NaClBitCodeAbbrev *getAbbrev(unsigned AbbrevID) const {
unsigned AbbrevNo = AbbrevID - naclbitc::FIRST_APPLICATION_ABBREV;
const Block &CurBlock = BlockScope.back();
const unsigned NumGlobalAbbrevs = CurBlock.getNumGlobalAbbrevs();
if (AbbrevNo < NumGlobalAbbrevs)
return CurBlock.getGlobalAbbrevs().getVector()[AbbrevNo];
unsigned LocalAbbrevNo = AbbrevNo - NumGlobalAbbrevs;
NaClBitstreamReader::AbbrevListVector LocalAbbrevs =
CurBlock.getLocalAbbrevs().getVector();
if (LocalAbbrevNo >= LocalAbbrevs.size())
reportInvalidAbbrevNumber(AbbrevID);
return LocalAbbrevs[LocalAbbrevNo];
}
/// Read the current record and discard it.
void skipRecord(unsigned AbbrevID);
unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals);
//===--------------------------------------------------------------------===//
// Abbrev Processing
//===--------------------------------------------------------------------===//
// IsLocal indicates where the abbreviation occurs. If it is in the
// BlockInfo block, IsLocal is false. In all other cases, IsLocal is
// true.
void ReadAbbrevRecord(bool IsLocal, NaClAbbrevListener *Listener);
// Skips over an abbreviation record. Duplicates code of ReadAbbrevRecord,
// except that no abbreviation is built.
void SkipAbbrevRecord();
bool ReadBlockInfoBlock(NaClAbbrevListener *Listener);
};
} // namespace llvm
#endif