|  | // Copyright 2019 The SwiftShader Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //    http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include "SpirvShader.hpp" | 
|  |  | 
|  | #include "SamplerCore.hpp"  // TODO: Figure out what's needed. | 
|  | #include "Device/Config.hpp" | 
|  | #include "System/Debug.hpp" | 
|  | #include "System/Math.hpp" | 
|  | #include "Vulkan/VkDescriptorSetLayout.hpp" | 
|  | #include "Vulkan/VkDevice.hpp" | 
|  | #include "Vulkan/VkImageView.hpp" | 
|  | #include "Vulkan/VkSampler.hpp" | 
|  |  | 
|  | #include <spirv/unified1/spirv.hpp> | 
|  |  | 
|  | #include <climits> | 
|  | #include <mutex> | 
|  |  | 
|  | namespace sw { | 
|  |  | 
|  | SpirvShader::ImageSampler *SpirvShader::getImageSampler(const vk::Device *device, uint32_t signature, uint32_t samplerId, uint32_t imageViewId) | 
|  | { | 
|  | ImageInstructionSignature instruction(signature); | 
|  | ASSERT(imageViewId != 0 && (samplerId != 0 || instruction.samplerMethod == Fetch)); | 
|  | ASSERT(device); | 
|  |  | 
|  | vk::Device::SamplingRoutineCache::Key key = { signature, samplerId, imageViewId }; | 
|  |  | 
|  | auto createSamplingRoutine = [&device](const vk::Device::SamplingRoutineCache::Key &key) { | 
|  | ImageInstructionSignature instruction(key.instruction); | 
|  | const vk::Identifier::State imageViewState = vk::Identifier(key.imageView).getState(); | 
|  | const vk::SamplerState *vkSamplerState = (key.sampler != 0) ? device->findSampler(key.sampler) : nullptr; | 
|  |  | 
|  | auto type = imageViewState.imageViewType; | 
|  | auto samplerMethod = static_cast<SamplerMethod>(instruction.samplerMethod); | 
|  |  | 
|  | Sampler samplerState = {}; | 
|  | samplerState.textureType = type; | 
|  | ASSERT(instruction.coordinates >= samplerState.dimensionality());  // "It may be a vector larger than needed, but all unused components appear after all used components." | 
|  | samplerState.textureFormat = imageViewState.format; | 
|  |  | 
|  | samplerState.addressingModeU = convertAddressingMode(0, vkSamplerState, type); | 
|  | samplerState.addressingModeV = convertAddressingMode(1, vkSamplerState, type); | 
|  | samplerState.addressingModeW = convertAddressingMode(2, vkSamplerState, type); | 
|  |  | 
|  | samplerState.mipmapFilter = convertMipmapMode(vkSamplerState); | 
|  | samplerState.swizzle = imageViewState.mapping; | 
|  | samplerState.gatherComponent = instruction.gatherComponent; | 
|  |  | 
|  | if(vkSamplerState) | 
|  | { | 
|  | samplerState.textureFilter = convertFilterMode(vkSamplerState, type, samplerMethod); | 
|  | samplerState.border = vkSamplerState->borderColor; | 
|  | samplerState.customBorder = vkSamplerState->customBorderColor; | 
|  |  | 
|  | samplerState.mipmapFilter = convertMipmapMode(vkSamplerState); | 
|  | samplerState.highPrecisionFiltering = (vkSamplerState->filteringPrecision == VK_SAMPLER_FILTERING_PRECISION_MODE_HIGH_GOOGLE); | 
|  |  | 
|  | samplerState.compareEnable = (vkSamplerState->compareEnable != VK_FALSE); | 
|  | samplerState.compareOp = vkSamplerState->compareOp; | 
|  | samplerState.unnormalizedCoordinates = (vkSamplerState->unnormalizedCoordinates != VK_FALSE); | 
|  |  | 
|  | samplerState.ycbcrModel = vkSamplerState->ycbcrModel; | 
|  | samplerState.studioSwing = vkSamplerState->studioSwing; | 
|  | samplerState.swappedChroma = vkSamplerState->swappedChroma; | 
|  |  | 
|  | samplerState.mipLodBias = vkSamplerState->mipLodBias; | 
|  | samplerState.maxAnisotropy = vkSamplerState->maxAnisotropy; | 
|  | samplerState.minLod = vkSamplerState->minLod; | 
|  | samplerState.maxLod = vkSamplerState->maxLod; | 
|  |  | 
|  | // If there's a single mip level and filtering doesn't depend on the LOD level, | 
|  | // the sampler will need to compute the LOD to produce the proper result. | 
|  | // Otherwise, it can be ignored. | 
|  | // We can skip the LOD computation for all modes, except LOD query, | 
|  | // where we have to return the proper value even if nothing else requires it. | 
|  | if(imageViewState.singleMipLevel && | 
|  | (samplerState.textureFilter != FILTER_MIN_POINT_MAG_LINEAR) && | 
|  | (samplerState.textureFilter != FILTER_MIN_LINEAR_MAG_POINT) && | 
|  | (samplerMethod != Query)) | 
|  | { | 
|  | samplerState.minLod = 0.0f; | 
|  | samplerState.maxLod = 0.0f; | 
|  | } | 
|  | } | 
|  | else  // Fetch | 
|  | { | 
|  | ASSERT(samplerMethod == Fetch); | 
|  |  | 
|  | // OpImageFetch does not take a sampler descriptor, but for VK_EXT_image_robustness | 
|  | // requires replacing invalid texels with zero. | 
|  | // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. | 
|  | samplerState.border = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK; | 
|  |  | 
|  | // If there's a single mip level we can skip LOD computation. | 
|  | if(imageViewState.singleMipLevel) | 
|  | { | 
|  | samplerState.minLod = 0.0f; | 
|  | samplerState.maxLod = 0.0f; | 
|  | } | 
|  | } | 
|  |  | 
|  | return emitSamplerRoutine(instruction, samplerState); | 
|  | }; | 
|  |  | 
|  | vk::Device::SamplingRoutineCache *cache = device->getSamplingRoutineCache(); | 
|  | auto routine = cache->getOrCreate(key, createSamplingRoutine); | 
|  |  | 
|  | return (ImageSampler *)(routine->getEntry()); | 
|  | } | 
|  |  | 
|  | std::shared_ptr<rr::Routine> SpirvShader::emitSamplerRoutine(ImageInstructionSignature instruction, const Sampler &samplerState) | 
|  | { | 
|  | // TODO(b/129523279): Hold a separate mutex lock for the sampler being built. | 
|  | rr::Function<Void(Pointer<Byte>, Pointer<SIMD::Float>, Pointer<SIMD::Float>, Pointer<Byte>)> function; | 
|  | { | 
|  | Pointer<Byte> texture = function.Arg<0>(); | 
|  | Pointer<SIMD::Float> in = function.Arg<1>(); | 
|  | Pointer<SIMD::Float> out = function.Arg<2>(); | 
|  | Pointer<Byte> constants = function.Arg<3>(); | 
|  |  | 
|  | SIMD::Float uvwa[4]; | 
|  | SIMD::Float dRef; | 
|  | SIMD::Float lodOrBias;  // Explicit level-of-detail, or bias added to the implicit level-of-detail (depending on samplerMethod). | 
|  | Vector4f dsx; | 
|  | Vector4f dsy; | 
|  | Vector4i offset; | 
|  | SIMD::Int sampleId; | 
|  | SamplerFunction samplerFunction = instruction.getSamplerFunction(); | 
|  |  | 
|  | uint32_t i = 0; | 
|  | for(; i < instruction.coordinates; i++) | 
|  | { | 
|  | uvwa[i] = in[i]; | 
|  | } | 
|  |  | 
|  | if(instruction.isDref()) | 
|  | { | 
|  | dRef = in[i]; | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if(instruction.samplerMethod == Lod || instruction.samplerMethod == Bias || instruction.samplerMethod == Fetch) | 
|  | { | 
|  | lodOrBias = in[i]; | 
|  | i++; | 
|  | } | 
|  | else if(instruction.samplerMethod == Grad) | 
|  | { | 
|  | for(uint32_t j = 0; j < instruction.grad; j++, i++) | 
|  | { | 
|  | dsx[j] = in[i]; | 
|  | } | 
|  |  | 
|  | for(uint32_t j = 0; j < instruction.grad; j++, i++) | 
|  | { | 
|  | dsy[j] = in[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | for(uint32_t j = 0; j < instruction.offset; j++, i++) | 
|  | { | 
|  | offset[j] = As<SIMD::Int>(in[i]); | 
|  | } | 
|  |  | 
|  | if(instruction.sample) | 
|  | { | 
|  | sampleId = As<SIMD::Int>(in[i]); | 
|  | } | 
|  |  | 
|  | SamplerCore s(constants, samplerState); | 
|  |  | 
|  | // For explicit-lod instructions the LOD can be different per SIMD lane. SamplerCore currently assumes | 
|  | // a single LOD per four elements, so we sample the image again for each LOD separately. | 
|  | // TODO(b/133868964) Pass down 4 component lodOrBias, dsx, and dsy to sampleTexture | 
|  | if(samplerFunction.method == Lod || samplerFunction.method == Grad || | 
|  | samplerFunction.method == Bias || samplerFunction.method == Fetch) | 
|  | { | 
|  | // Only perform per-lane sampling if LOD diverges or we're doing Grad sampling. | 
|  | Bool perLaneSampling = samplerFunction.method == Grad || lodOrBias.x != lodOrBias.y || | 
|  | lodOrBias.x != lodOrBias.z || lodOrBias.x != lodOrBias.w; | 
|  | auto lod = Pointer<Float>(&lodOrBias); | 
|  | Int i = 0; | 
|  | Do | 
|  | { | 
|  | SIMD::Float dPdx; | 
|  | SIMD::Float dPdy; | 
|  | dPdx.x = Pointer<Float>(&dsx.x)[i]; | 
|  | dPdx.y = Pointer<Float>(&dsx.y)[i]; | 
|  | dPdx.z = Pointer<Float>(&dsx.z)[i]; | 
|  |  | 
|  | dPdy.x = Pointer<Float>(&dsy.x)[i]; | 
|  | dPdy.y = Pointer<Float>(&dsy.y)[i]; | 
|  | dPdy.z = Pointer<Float>(&dsy.z)[i]; | 
|  |  | 
|  | Vector4f sample = s.sampleTexture(texture, uvwa, dRef, lod[i], dPdx, dPdy, offset, sampleId, samplerFunction); | 
|  |  | 
|  | If(perLaneSampling) | 
|  | { | 
|  | Pointer<Float> rgba = out; | 
|  | rgba[0 * SIMD::Width + i] = Pointer<Float>(&sample.x)[i]; | 
|  | rgba[1 * SIMD::Width + i] = Pointer<Float>(&sample.y)[i]; | 
|  | rgba[2 * SIMD::Width + i] = Pointer<Float>(&sample.z)[i]; | 
|  | rgba[3 * SIMD::Width + i] = Pointer<Float>(&sample.w)[i]; | 
|  | i++; | 
|  | } | 
|  | Else | 
|  | { | 
|  | Pointer<SIMD::Float> rgba = out; | 
|  | rgba[0] = sample.x; | 
|  | rgba[1] = sample.y; | 
|  | rgba[2] = sample.z; | 
|  | rgba[3] = sample.w; | 
|  | i = SIMD::Width; | 
|  | } | 
|  | } | 
|  | Until(i == SIMD::Width); | 
|  | } | 
|  | else | 
|  | { | 
|  | Vector4f sample = s.sampleTexture(texture, uvwa, dRef, lodOrBias.x, (dsx.x), (dsy.x), offset, sampleId, samplerFunction); | 
|  |  | 
|  | Pointer<SIMD::Float> rgba = out; | 
|  | rgba[0] = sample.x; | 
|  | rgba[1] = sample.y; | 
|  | rgba[2] = sample.z; | 
|  | rgba[3] = sample.w; | 
|  | } | 
|  | } | 
|  |  | 
|  | return function("sampler"); | 
|  | } | 
|  |  | 
|  | sw::FilterType SpirvShader::convertFilterMode(const vk::SamplerState *samplerState, VkImageViewType imageViewType, SamplerMethod samplerMethod) | 
|  | { | 
|  | if(samplerMethod == Gather) | 
|  | { | 
|  | return FILTER_GATHER; | 
|  | } | 
|  |  | 
|  | if(samplerMethod == Fetch) | 
|  | { | 
|  | return FILTER_POINT; | 
|  | } | 
|  |  | 
|  | if(samplerState->anisotropyEnable != VK_FALSE) | 
|  | { | 
|  | if(imageViewType == VK_IMAGE_VIEW_TYPE_2D || imageViewType == VK_IMAGE_VIEW_TYPE_2D_ARRAY) | 
|  | { | 
|  | if(samplerMethod != Lod)  // TODO(b/162926129): Support anisotropic filtering with explicit LOD. | 
|  | { | 
|  | return FILTER_ANISOTROPIC; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | switch(samplerState->magFilter) | 
|  | { | 
|  | case VK_FILTER_NEAREST: | 
|  | switch(samplerState->minFilter) | 
|  | { | 
|  | case VK_FILTER_NEAREST: return FILTER_POINT; | 
|  | case VK_FILTER_LINEAR: return FILTER_MIN_LINEAR_MAG_POINT; | 
|  | default: | 
|  | UNSUPPORTED("minFilter %d", samplerState->minFilter); | 
|  | return FILTER_POINT; | 
|  | } | 
|  | break; | 
|  | case VK_FILTER_LINEAR: | 
|  | switch(samplerState->minFilter) | 
|  | { | 
|  | case VK_FILTER_NEAREST: return FILTER_MIN_POINT_MAG_LINEAR; | 
|  | case VK_FILTER_LINEAR: return FILTER_LINEAR; | 
|  | default: | 
|  | UNSUPPORTED("minFilter %d", samplerState->minFilter); | 
|  | return FILTER_POINT; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | UNSUPPORTED("magFilter %d", samplerState->magFilter); | 
|  | return FILTER_POINT; | 
|  | } | 
|  |  | 
|  | sw::MipmapType SpirvShader::convertMipmapMode(const vk::SamplerState *samplerState) | 
|  | { | 
|  | if(!samplerState) | 
|  | { | 
|  | return MIPMAP_POINT;  // Samplerless operations (OpImageFetch) can take an integer Lod operand. | 
|  | } | 
|  |  | 
|  | if(samplerState->ycbcrModel != VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY) | 
|  | { | 
|  | // TODO(b/151263485): Check image view level count instead. | 
|  | return MIPMAP_NONE; | 
|  | } | 
|  |  | 
|  | switch(samplerState->mipmapMode) | 
|  | { | 
|  | case VK_SAMPLER_MIPMAP_MODE_NEAREST: return MIPMAP_POINT; | 
|  | case VK_SAMPLER_MIPMAP_MODE_LINEAR: return MIPMAP_LINEAR; | 
|  | default: | 
|  | UNSUPPORTED("mipmapMode %d", samplerState->mipmapMode); | 
|  | return MIPMAP_POINT; | 
|  | } | 
|  | } | 
|  |  | 
|  | sw::AddressingMode SpirvShader::convertAddressingMode(int coordinateIndex, const vk::SamplerState *samplerState, VkImageViewType imageViewType) | 
|  | { | 
|  | switch(imageViewType) | 
|  | { | 
|  | case VK_IMAGE_VIEW_TYPE_1D: | 
|  | case VK_IMAGE_VIEW_TYPE_1D_ARRAY: | 
|  | if(coordinateIndex >= 1) | 
|  | { | 
|  | return ADDRESSING_UNUSED; | 
|  | } | 
|  | break; | 
|  | case VK_IMAGE_VIEW_TYPE_2D: | 
|  | case VK_IMAGE_VIEW_TYPE_2D_ARRAY: | 
|  | if(coordinateIndex == 2) | 
|  | { | 
|  | return ADDRESSING_UNUSED; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case VK_IMAGE_VIEW_TYPE_3D: | 
|  | break; | 
|  |  | 
|  | case VK_IMAGE_VIEW_TYPE_CUBE: | 
|  | case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: | 
|  | if(coordinateIndex <= 1)  // Cube faces themselves are addressed as 2D images. | 
|  | { | 
|  | // Vulkan 1.1 spec: | 
|  | // "Cube images ignore the wrap modes specified in the sampler. Instead, if VK_FILTER_NEAREST is used within a mip level then | 
|  | //  VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if VK_FILTER_LINEAR is used within a mip level then sampling at the edges | 
|  | //  is performed as described earlier in the Cube map edge handling section." | 
|  | // This corresponds with our 'SEAMLESS' addressing mode. | 
|  | return ADDRESSING_SEAMLESS; | 
|  | } | 
|  | else  // coordinateIndex == 2 | 
|  | { | 
|  | // The cube face is an index into 2D array layers. | 
|  | return ADDRESSING_CUBEFACE; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | UNSUPPORTED("imageViewType %d", imageViewType); | 
|  | return ADDRESSING_WRAP; | 
|  | } | 
|  |  | 
|  | if(!samplerState) | 
|  | { | 
|  | // OpImageFetch does not take a sampler descriptor, but still needs a valid | 
|  | // addressing mode that prevents out-of-bounds accesses: | 
|  | // "The value returned by a read of an invalid texel is undefined, unless that | 
|  | //  read operation is from a buffer resource and the robustBufferAccess feature | 
|  | //  is enabled. In that case, an invalid texel is replaced as described by the | 
|  | //  robustBufferAccess feature." - Vulkan 1.1 | 
|  |  | 
|  | // VK_EXT_image_robustness requires nullifying out-of-bounds accesses. | 
|  | // ADDRESSING_BORDER causes texel replacement to be performed. | 
|  | // TODO(b/162327166): Only perform bounds checks when VK_EXT_image_robustness is enabled. | 
|  | return ADDRESSING_BORDER; | 
|  | } | 
|  |  | 
|  | VkSamplerAddressMode addressMode = VK_SAMPLER_ADDRESS_MODE_REPEAT; | 
|  | switch(coordinateIndex) | 
|  | { | 
|  | case 0: addressMode = samplerState->addressModeU; break; | 
|  | case 1: addressMode = samplerState->addressModeV; break; | 
|  | case 2: addressMode = samplerState->addressModeW; break; | 
|  | default: UNSUPPORTED("coordinateIndex: %d", coordinateIndex); | 
|  | } | 
|  |  | 
|  | switch(addressMode) | 
|  | { | 
|  | case VK_SAMPLER_ADDRESS_MODE_REPEAT: return ADDRESSING_WRAP; | 
|  | case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: return ADDRESSING_MIRROR; | 
|  | case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: return ADDRESSING_CLAMP; | 
|  | case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: return ADDRESSING_BORDER; | 
|  | case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: return ADDRESSING_MIRRORONCE; | 
|  | default: | 
|  | UNSUPPORTED("addressMode %d", addressMode); | 
|  | return ADDRESSING_WRAP; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace sw |