| //===- SelectionDAGBuilder.h - Selection-DAG building -----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements routines for translating from LLVM IR into SelectionDAG IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H |
| #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H |
| |
| #include "StatepointLowering.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Statepoint.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| #include <vector> |
| |
| namespace llvm { |
| |
| class AllocaInst; |
| class AtomicCmpXchgInst; |
| class AtomicRMWInst; |
| class BasicBlock; |
| class BranchInst; |
| class CallInst; |
| class CatchPadInst; |
| class CatchReturnInst; |
| class CatchSwitchInst; |
| class CleanupPadInst; |
| class CleanupReturnInst; |
| class Constant; |
| class ConstantInt; |
| class ConstrainedFPIntrinsic; |
| class DbgValueInst; |
| class DataLayout; |
| class DIExpression; |
| class DILocalVariable; |
| class DILocation; |
| class FenceInst; |
| class FunctionLoweringInfo; |
| class GCFunctionInfo; |
| class GCRelocateInst; |
| class GCResultInst; |
| class IndirectBrInst; |
| class InvokeInst; |
| class LandingPadInst; |
| class LLVMContext; |
| class LoadInst; |
| class MachineBasicBlock; |
| class PHINode; |
| class ResumeInst; |
| class ReturnInst; |
| class SDDbgValue; |
| class StoreInst; |
| class SwitchInst; |
| class TargetLibraryInfo; |
| class TargetMachine; |
| class Type; |
| class VAArgInst; |
| class UnreachableInst; |
| class Use; |
| class User; |
| class Value; |
| |
| //===----------------------------------------------------------------------===// |
| /// SelectionDAGBuilder - This is the common target-independent lowering |
| /// implementation that is parameterized by a TargetLowering object. |
| /// |
| class SelectionDAGBuilder { |
| /// CurInst - The current instruction being visited |
| const Instruction *CurInst = nullptr; |
| |
| DenseMap<const Value*, SDValue> NodeMap; |
| |
| /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used |
| /// to preserve debug information for incoming arguments. |
| DenseMap<const Value*, SDValue> UnusedArgNodeMap; |
| |
| /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap. |
| class DanglingDebugInfo { |
| const DbgValueInst* DI = nullptr; |
| DebugLoc dl; |
| unsigned SDNodeOrder = 0; |
| |
| public: |
| DanglingDebugInfo() = default; |
| DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) |
| : DI(di), dl(std::move(DL)), SDNodeOrder(SDNO) {} |
| |
| const DbgValueInst* getDI() { return DI; } |
| DebugLoc getdl() { return dl; } |
| unsigned getSDNodeOrder() { return SDNodeOrder; } |
| }; |
| |
| /// DanglingDebugInfoVector - Helper type for DanglingDebugInfoMap. |
| typedef std::vector<DanglingDebugInfo> DanglingDebugInfoVector; |
| |
| /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not |
| /// yet seen the referent. We defer handling these until we do see it. |
| DenseMap<const Value*, DanglingDebugInfoVector> DanglingDebugInfoMap; |
| |
| public: |
| /// PendingLoads - Loads are not emitted to the program immediately. We bunch |
| /// them up and then emit token factor nodes when possible. This allows us to |
| /// get simple disambiguation between loads without worrying about alias |
| /// analysis. |
| SmallVector<SDValue, 8> PendingLoads; |
| |
| /// State used while lowering a statepoint sequence (gc_statepoint, |
| /// gc_relocate, and gc_result). See StatepointLowering.hpp/cpp for details. |
| StatepointLoweringState StatepointLowering; |
| |
| private: |
| /// PendingExports - CopyToReg nodes that copy values to virtual registers |
| /// for export to other blocks need to be emitted before any terminator |
| /// instruction, but they have no other ordering requirements. We bunch them |
| /// up and the emit a single tokenfactor for them just before terminator |
| /// instructions. |
| SmallVector<SDValue, 8> PendingExports; |
| |
| /// SDNodeOrder - A unique monotonically increasing number used to order the |
| /// SDNodes we create. |
| unsigned SDNodeOrder; |
| |
| enum CaseClusterKind { |
| /// A cluster of adjacent case labels with the same destination, or just one |
| /// case. |
| CC_Range, |
| /// A cluster of cases suitable for jump table lowering. |
| CC_JumpTable, |
| /// A cluster of cases suitable for bit test lowering. |
| CC_BitTests |
| }; |
| |
| /// A cluster of case labels. |
| struct CaseCluster { |
| CaseClusterKind Kind; |
| const ConstantInt *Low, *High; |
| union { |
| MachineBasicBlock *MBB; |
| unsigned JTCasesIndex; |
| unsigned BTCasesIndex; |
| }; |
| BranchProbability Prob; |
| |
| static CaseCluster range(const ConstantInt *Low, const ConstantInt *High, |
| MachineBasicBlock *MBB, BranchProbability Prob) { |
| CaseCluster C; |
| C.Kind = CC_Range; |
| C.Low = Low; |
| C.High = High; |
| C.MBB = MBB; |
| C.Prob = Prob; |
| return C; |
| } |
| |
| static CaseCluster jumpTable(const ConstantInt *Low, |
| const ConstantInt *High, unsigned JTCasesIndex, |
| BranchProbability Prob) { |
| CaseCluster C; |
| C.Kind = CC_JumpTable; |
| C.Low = Low; |
| C.High = High; |
| C.JTCasesIndex = JTCasesIndex; |
| C.Prob = Prob; |
| return C; |
| } |
| |
| static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High, |
| unsigned BTCasesIndex, BranchProbability Prob) { |
| CaseCluster C; |
| C.Kind = CC_BitTests; |
| C.Low = Low; |
| C.High = High; |
| C.BTCasesIndex = BTCasesIndex; |
| C.Prob = Prob; |
| return C; |
| } |
| }; |
| |
| using CaseClusterVector = std::vector<CaseCluster>; |
| using CaseClusterIt = CaseClusterVector::iterator; |
| |
| struct CaseBits { |
| uint64_t Mask = 0; |
| MachineBasicBlock* BB = nullptr; |
| unsigned Bits = 0; |
| BranchProbability ExtraProb; |
| |
| CaseBits() = default; |
| CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits, |
| BranchProbability Prob): |
| Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) {} |
| }; |
| |
| using CaseBitsVector = std::vector<CaseBits>; |
| |
| /// Sort Clusters and merge adjacent cases. |
| void sortAndRangeify(CaseClusterVector &Clusters); |
| |
| /// CaseBlock - This structure is used to communicate between |
| /// SelectionDAGBuilder and SDISel for the code generation of additional basic |
| /// blocks needed by multi-case switch statements. |
| struct CaseBlock { |
| // CC - the condition code to use for the case block's setcc node |
| ISD::CondCode CC; |
| |
| // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit. |
| // Emit by default LHS op RHS. MHS is used for range comparisons: |
| // If MHS is not null: (LHS <= MHS) and (MHS <= RHS). |
| const Value *CmpLHS, *CmpMHS, *CmpRHS; |
| |
| // TrueBB/FalseBB - the block to branch to if the setcc is true/false. |
| MachineBasicBlock *TrueBB, *FalseBB; |
| |
| // ThisBB - the block into which to emit the code for the setcc and branches |
| MachineBasicBlock *ThisBB; |
| |
| /// The debug location of the instruction this CaseBlock was |
| /// produced from. |
| SDLoc DL; |
| |
| // TrueProb/FalseProb - branch weights. |
| BranchProbability TrueProb, FalseProb; |
| |
| CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs, |
| const Value *cmpmiddle, MachineBasicBlock *truebb, |
| MachineBasicBlock *falsebb, MachineBasicBlock *me, |
| SDLoc dl, |
| BranchProbability trueprob = BranchProbability::getUnknown(), |
| BranchProbability falseprob = BranchProbability::getUnknown()) |
| : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs), |
| TrueBB(truebb), FalseBB(falsebb), ThisBB(me), DL(dl), |
| TrueProb(trueprob), FalseProb(falseprob) {} |
| }; |
| |
| struct JumpTable { |
| /// Reg - the virtual register containing the index of the jump table entry |
| //. to jump to. |
| unsigned Reg; |
| /// JTI - the JumpTableIndex for this jump table in the function. |
| unsigned JTI; |
| /// MBB - the MBB into which to emit the code for the indirect jump. |
| MachineBasicBlock *MBB; |
| /// Default - the MBB of the default bb, which is a successor of the range |
| /// check MBB. This is when updating PHI nodes in successors. |
| MachineBasicBlock *Default; |
| |
| JumpTable(unsigned R, unsigned J, MachineBasicBlock *M, |
| MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {} |
| }; |
| struct JumpTableHeader { |
| APInt First; |
| APInt Last; |
| const Value *SValue; |
| MachineBasicBlock *HeaderBB; |
| bool Emitted; |
| |
| JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H, |
| bool E = false) |
| : First(std::move(F)), Last(std::move(L)), SValue(SV), HeaderBB(H), |
| Emitted(E) {} |
| }; |
| using JumpTableBlock = std::pair<JumpTableHeader, JumpTable>; |
| |
| struct BitTestCase { |
| uint64_t Mask; |
| MachineBasicBlock *ThisBB; |
| MachineBasicBlock *TargetBB; |
| BranchProbability ExtraProb; |
| |
| BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr, |
| BranchProbability Prob): |
| Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) {} |
| }; |
| |
| using BitTestInfo = SmallVector<BitTestCase, 3>; |
| |
| struct BitTestBlock { |
| APInt First; |
| APInt Range; |
| const Value *SValue; |
| unsigned Reg; |
| MVT RegVT; |
| bool Emitted; |
| bool ContiguousRange; |
| MachineBasicBlock *Parent; |
| MachineBasicBlock *Default; |
| BitTestInfo Cases; |
| BranchProbability Prob; |
| BranchProbability DefaultProb; |
| |
| BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT, |
| bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D, |
| BitTestInfo C, BranchProbability Pr) |
| : First(std::move(F)), Range(std::move(R)), SValue(SV), Reg(Rg), |
| RegVT(RgVT), Emitted(E), ContiguousRange(CR), Parent(P), Default(D), |
| Cases(std::move(C)), Prob(Pr) {} |
| }; |
| |
| /// Return the range of value in [First..Last]. |
| uint64_t getJumpTableRange(const CaseClusterVector &Clusters, unsigned First, |
| unsigned Last) const; |
| |
| /// Return the number of cases in [First..Last]. |
| uint64_t getJumpTableNumCases(const SmallVectorImpl<unsigned> &TotalCases, |
| unsigned First, unsigned Last) const; |
| |
| /// Build a jump table cluster from Clusters[First..Last]. Returns false if it |
| /// decides it's not a good idea. |
| bool buildJumpTable(const CaseClusterVector &Clusters, unsigned First, |
| unsigned Last, const SwitchInst *SI, |
| MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster); |
| |
| /// Find clusters of cases suitable for jump table lowering. |
| void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI, |
| MachineBasicBlock *DefaultMBB); |
| |
| /// Build a bit test cluster from Clusters[First..Last]. Returns false if it |
| /// decides it's not a good idea. |
| bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last, |
| const SwitchInst *SI, CaseCluster &BTCluster); |
| |
| /// Find clusters of cases suitable for bit test lowering. |
| void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI); |
| |
| struct SwitchWorkListItem { |
| MachineBasicBlock *MBB; |
| CaseClusterIt FirstCluster; |
| CaseClusterIt LastCluster; |
| const ConstantInt *GE; |
| const ConstantInt *LT; |
| BranchProbability DefaultProb; |
| }; |
| using SwitchWorkList = SmallVector<SwitchWorkListItem, 4>; |
| |
| /// Determine the rank by weight of CC in [First,Last]. If CC has more weight |
| /// than each cluster in the range, its rank is 0. |
| static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First, |
| CaseClusterIt Last); |
| |
| /// Emit comparison and split W into two subtrees. |
| void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W, |
| Value *Cond, MachineBasicBlock *SwitchMBB); |
| |
| /// Lower W. |
| void lowerWorkItem(SwitchWorkListItem W, Value *Cond, |
| MachineBasicBlock *SwitchMBB, |
| MachineBasicBlock *DefaultMBB); |
| |
| /// Peel the top probability case if it exceeds the threshold |
| MachineBasicBlock *peelDominantCaseCluster(const SwitchInst &SI, |
| CaseClusterVector &Clusters, |
| BranchProbability &PeeledCaseProb); |
| |
| /// A class which encapsulates all of the information needed to generate a |
| /// stack protector check and signals to isel via its state being initialized |
| /// that a stack protector needs to be generated. |
| /// |
| /// *NOTE* The following is a high level documentation of SelectionDAG Stack |
| /// Protector Generation. The reason that it is placed here is for a lack of |
| /// other good places to stick it. |
| /// |
| /// High Level Overview of SelectionDAG Stack Protector Generation: |
| /// |
| /// Previously, generation of stack protectors was done exclusively in the |
| /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated |
| /// splitting basic blocks at the IR level to create the success/failure basic |
| /// blocks in the tail of the basic block in question. As a result of this, |
| /// calls that would have qualified for the sibling call optimization were no |
| /// longer eligible for optimization since said calls were no longer right in |
| /// the "tail position" (i.e. the immediate predecessor of a ReturnInst |
| /// instruction). |
| /// |
| /// Then it was noticed that since the sibling call optimization causes the |
| /// callee to reuse the caller's stack, if we could delay the generation of |
| /// the stack protector check until later in CodeGen after the sibling call |
| /// decision was made, we get both the tail call optimization and the stack |
| /// protector check! |
| /// |
| /// A few goals in solving this problem were: |
| /// |
| /// 1. Preserve the architecture independence of stack protector generation. |
| /// |
| /// 2. Preserve the normal IR level stack protector check for platforms like |
| /// OpenBSD for which we support platform-specific stack protector |
| /// generation. |
| /// |
| /// The main problem that guided the present solution is that one can not |
| /// solve this problem in an architecture independent manner at the IR level |
| /// only. This is because: |
| /// |
| /// 1. The decision on whether or not to perform a sibling call on certain |
| /// platforms (for instance i386) requires lower level information |
| /// related to available registers that can not be known at the IR level. |
| /// |
| /// 2. Even if the previous point were not true, the decision on whether to |
| /// perform a tail call is done in LowerCallTo in SelectionDAG which |
| /// occurs after the Stack Protector Pass. As a result, one would need to |
| /// put the relevant callinst into the stack protector check success |
| /// basic block (where the return inst is placed) and then move it back |
| /// later at SelectionDAG/MI time before the stack protector check if the |
| /// tail call optimization failed. The MI level option was nixed |
| /// immediately since it would require platform-specific pattern |
| /// matching. The SelectionDAG level option was nixed because |
| /// SelectionDAG only processes one IR level basic block at a time |
| /// implying one could not create a DAG Combine to move the callinst. |
| /// |
| /// To get around this problem a few things were realized: |
| /// |
| /// 1. While one can not handle multiple IR level basic blocks at the |
| /// SelectionDAG Level, one can generate multiple machine basic blocks |
| /// for one IR level basic block. This is how we handle bit tests and |
| /// switches. |
| /// |
| /// 2. At the MI level, tail calls are represented via a special return |
| /// MIInst called "tcreturn". Thus if we know the basic block in which we |
| /// wish to insert the stack protector check, we get the correct behavior |
| /// by always inserting the stack protector check right before the return |
| /// statement. This is a "magical transformation" since no matter where |
| /// the stack protector check intrinsic is, we always insert the stack |
| /// protector check code at the end of the BB. |
| /// |
| /// Given the aforementioned constraints, the following solution was devised: |
| /// |
| /// 1. On platforms that do not support SelectionDAG stack protector check |
| /// generation, allow for the normal IR level stack protector check |
| /// generation to continue. |
| /// |
| /// 2. On platforms that do support SelectionDAG stack protector check |
| /// generation: |
| /// |
| /// a. Use the IR level stack protector pass to decide if a stack |
| /// protector is required/which BB we insert the stack protector check |
| /// in by reusing the logic already therein. If we wish to generate a |
| /// stack protector check in a basic block, we place a special IR |
| /// intrinsic called llvm.stackprotectorcheck right before the BB's |
| /// returninst or if there is a callinst that could potentially be |
| /// sibling call optimized, before the call inst. |
| /// |
| /// b. Then when a BB with said intrinsic is processed, we codegen the BB |
| /// normally via SelectBasicBlock. In said process, when we visit the |
| /// stack protector check, we do not actually emit anything into the |
| /// BB. Instead, we just initialize the stack protector descriptor |
| /// class (which involves stashing information/creating the success |
| /// mbbb and the failure mbb if we have not created one for this |
| /// function yet) and export the guard variable that we are going to |
| /// compare. |
| /// |
| /// c. After we finish selecting the basic block, in FinishBasicBlock if |
| /// the StackProtectorDescriptor attached to the SelectionDAGBuilder is |
| /// initialized, we produce the validation code with one of these |
| /// techniques: |
| /// 1) with a call to a guard check function |
| /// 2) with inlined instrumentation |
| /// |
| /// 1) We insert a call to the check function before the terminator. |
| /// |
| /// 2) We first find a splice point in the parent basic block |
| /// before the terminator and then splice the terminator of said basic |
| /// block into the success basic block. Then we code-gen a new tail for |
| /// the parent basic block consisting of the two loads, the comparison, |
| /// and finally two branches to the success/failure basic blocks. We |
| /// conclude by code-gening the failure basic block if we have not |
| /// code-gened it already (all stack protector checks we generate in |
| /// the same function, use the same failure basic block). |
| class StackProtectorDescriptor { |
| public: |
| StackProtectorDescriptor() = default; |
| |
| /// Returns true if all fields of the stack protector descriptor are |
| /// initialized implying that we should/are ready to emit a stack protector. |
| bool shouldEmitStackProtector() const { |
| return ParentMBB && SuccessMBB && FailureMBB; |
| } |
| |
| bool shouldEmitFunctionBasedCheckStackProtector() const { |
| return ParentMBB && !SuccessMBB && !FailureMBB; |
| } |
| |
| /// Initialize the stack protector descriptor structure for a new basic |
| /// block. |
| void initialize(const BasicBlock *BB, MachineBasicBlock *MBB, |
| bool FunctionBasedInstrumentation) { |
| // Make sure we are not initialized yet. |
| assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is " |
| "already initialized!"); |
| ParentMBB = MBB; |
| if (!FunctionBasedInstrumentation) { |
| SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true); |
| FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB); |
| } |
| } |
| |
| /// Reset state that changes when we handle different basic blocks. |
| /// |
| /// This currently includes: |
| /// |
| /// 1. The specific basic block we are generating a |
| /// stack protector for (ParentMBB). |
| /// |
| /// 2. The successor machine basic block that will contain the tail of |
| /// parent mbb after we create the stack protector check (SuccessMBB). This |
| /// BB is visited only on stack protector check success. |
| void resetPerBBState() { |
| ParentMBB = nullptr; |
| SuccessMBB = nullptr; |
| } |
| |
| /// Reset state that only changes when we switch functions. |
| /// |
| /// This currently includes: |
| /// |
| /// 1. FailureMBB since we reuse the failure code path for all stack |
| /// protector checks created in an individual function. |
| /// |
| /// 2.The guard variable since the guard variable we are checking against is |
| /// always the same. |
| void resetPerFunctionState() { |
| FailureMBB = nullptr; |
| } |
| |
| MachineBasicBlock *getParentMBB() { return ParentMBB; } |
| MachineBasicBlock *getSuccessMBB() { return SuccessMBB; } |
| MachineBasicBlock *getFailureMBB() { return FailureMBB; } |
| |
| private: |
| /// The basic block for which we are generating the stack protector. |
| /// |
| /// As a result of stack protector generation, we will splice the |
| /// terminators of this basic block into the successor mbb SuccessMBB and |
| /// replace it with a compare/branch to the successor mbbs |
| /// SuccessMBB/FailureMBB depending on whether or not the stack protector |
| /// was violated. |
| MachineBasicBlock *ParentMBB = nullptr; |
| |
| /// A basic block visited on stack protector check success that contains the |
| /// terminators of ParentMBB. |
| MachineBasicBlock *SuccessMBB = nullptr; |
| |
| /// This basic block visited on stack protector check failure that will |
| /// contain a call to __stack_chk_fail(). |
| MachineBasicBlock *FailureMBB = nullptr; |
| |
| /// Add a successor machine basic block to ParentMBB. If the successor mbb |
| /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic |
| /// block will be created. Assign a large weight if IsLikely is true. |
| MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB, |
| MachineBasicBlock *ParentMBB, |
| bool IsLikely, |
| MachineBasicBlock *SuccMBB = nullptr); |
| }; |
| |
| private: |
| const TargetMachine &TM; |
| |
| public: |
| /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling |
| /// nodes without a corresponding SDNode. |
| static const unsigned LowestSDNodeOrder = 1; |
| |
| SelectionDAG &DAG; |
| const DataLayout *DL = nullptr; |
| AliasAnalysis *AA = nullptr; |
| const TargetLibraryInfo *LibInfo; |
| |
| /// SwitchCases - Vector of CaseBlock structures used to communicate |
| /// SwitchInst code generation information. |
| std::vector<CaseBlock> SwitchCases; |
| |
| /// JTCases - Vector of JumpTable structures used to communicate |
| /// SwitchInst code generation information. |
| std::vector<JumpTableBlock> JTCases; |
| |
| /// BitTestCases - Vector of BitTestBlock structures used to communicate |
| /// SwitchInst code generation information. |
| std::vector<BitTestBlock> BitTestCases; |
| |
| /// A StackProtectorDescriptor structure used to communicate stack protector |
| /// information in between SelectBasicBlock and FinishBasicBlock. |
| StackProtectorDescriptor SPDescriptor; |
| |
| // Emit PHI-node-operand constants only once even if used by multiple |
| // PHI nodes. |
| DenseMap<const Constant *, unsigned> ConstantsOut; |
| |
| /// FuncInfo - Information about the function as a whole. |
| /// |
| FunctionLoweringInfo &FuncInfo; |
| |
| /// GFI - Garbage collection metadata for the function. |
| GCFunctionInfo *GFI; |
| |
| /// LPadToCallSiteMap - Map a landing pad to the call site indexes. |
| DenseMap<MachineBasicBlock *, SmallVector<unsigned, 4>> LPadToCallSiteMap; |
| |
| /// HasTailCall - This is set to true if a call in the current |
| /// block has been translated as a tail call. In this case, |
| /// no subsequent DAG nodes should be created. |
| bool HasTailCall = false; |
| |
| LLVMContext *Context; |
| |
| SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo, |
| CodeGenOpt::Level ol) |
| : SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()), DAG(dag), |
| FuncInfo(funcinfo) {} |
| |
| void init(GCFunctionInfo *gfi, AliasAnalysis *AA, |
| const TargetLibraryInfo *li); |
| |
| /// Clear out the current SelectionDAG and the associated state and prepare |
| /// this SelectionDAGBuilder object to be used for a new block. This doesn't |
| /// clear out information about additional blocks that are needed to complete |
| /// switch lowering or PHI node updating; that information is cleared out as |
| /// it is consumed. |
| void clear(); |
| |
| /// Clear the dangling debug information map. This function is separated from |
| /// the clear so that debug information that is dangling in a basic block can |
| /// be properly resolved in a different basic block. This allows the |
| /// SelectionDAG to resolve dangling debug information attached to PHI nodes. |
| void clearDanglingDebugInfo(); |
| |
| /// Return the current virtual root of the Selection DAG, flushing any |
| /// PendingLoad items. This must be done before emitting a store or any other |
| /// node that may need to be ordered after any prior load instructions. |
| SDValue getRoot(); |
| |
| /// Similar to getRoot, but instead of flushing all the PendingLoad items, |
| /// flush all the PendingExports items. It is necessary to do this before |
| /// emitting a terminator instruction. |
| SDValue getControlRoot(); |
| |
| SDLoc getCurSDLoc() const { |
| return SDLoc(CurInst, SDNodeOrder); |
| } |
| |
| DebugLoc getCurDebugLoc() const { |
| return CurInst ? CurInst->getDebugLoc() : DebugLoc(); |
| } |
| |
| void CopyValueToVirtualRegister(const Value *V, unsigned Reg); |
| |
| void visit(const Instruction &I); |
| |
| void visit(unsigned Opcode, const User &I); |
| |
| /// getCopyFromRegs - If there was virtual register allocated for the value V |
| /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. |
| SDValue getCopyFromRegs(const Value *V, Type *Ty); |
| |
| /// If we have dangling debug info that describes \p Variable, or an |
| /// overlapping part of variable considering the \p Expr, then this method |
| /// weill drop that debug info as it isn't valid any longer. |
| void dropDanglingDebugInfo(const DILocalVariable *Variable, |
| const DIExpression *Expr); |
| |
| // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, |
| // generate the debug data structures now that we've seen its definition. |
| void resolveDanglingDebugInfo(const Value *V, SDValue Val); |
| |
| SDValue getValue(const Value *V); |
| bool findValue(const Value *V) const; |
| |
| /// Return the SDNode for the specified IR value if it exists. |
| SDNode *getNodeForIRValue(const Value *V) { |
| if (NodeMap.find(V) == NodeMap.end()) |
| return nullptr; |
| return NodeMap[V].getNode(); |
| } |
| |
| SDValue getNonRegisterValue(const Value *V); |
| SDValue getValueImpl(const Value *V); |
| |
| void setValue(const Value *V, SDValue NewN) { |
| SDValue &N = NodeMap[V]; |
| assert(!N.getNode() && "Already set a value for this node!"); |
| N = NewN; |
| } |
| |
| void setUnusedArgValue(const Value *V, SDValue NewN) { |
| SDValue &N = UnusedArgNodeMap[V]; |
| assert(!N.getNode() && "Already set a value for this node!"); |
| N = NewN; |
| } |
| |
| void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, MachineBasicBlock *CurBB, |
| MachineBasicBlock *SwitchBB, |
| Instruction::BinaryOps Opc, BranchProbability TProb, |
| BranchProbability FProb, bool InvertCond); |
| void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| MachineBasicBlock *CurBB, |
| MachineBasicBlock *SwitchBB, |
| BranchProbability TProb, BranchProbability FProb, |
| bool InvertCond); |
| bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases); |
| bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB); |
| void CopyToExportRegsIfNeeded(const Value *V); |
| void ExportFromCurrentBlock(const Value *V); |
| void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall, |
| const BasicBlock *EHPadBB = nullptr); |
| |
| // Lower range metadata from 0 to N to assert zext to an integer of nearest |
| // floor power of two. |
| SDValue lowerRangeToAssertZExt(SelectionDAG &DAG, const Instruction &I, |
| SDValue Op); |
| |
| void populateCallLoweringInfo(TargetLowering::CallLoweringInfo &CLI, |
| ImmutableCallSite CS, unsigned ArgIdx, |
| unsigned NumArgs, SDValue Callee, |
| Type *ReturnTy, bool IsPatchPoint); |
| |
| std::pair<SDValue, SDValue> |
| lowerInvokable(TargetLowering::CallLoweringInfo &CLI, |
| const BasicBlock *EHPadBB = nullptr); |
| |
| /// UpdateSplitBlock - When an MBB was split during scheduling, update the |
| /// references that need to refer to the last resulting block. |
| void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last); |
| |
| /// Describes a gc.statepoint or a gc.statepoint like thing for the purposes |
| /// of lowering into a STATEPOINT node. |
| struct StatepointLoweringInfo { |
| /// Bases[i] is the base pointer for Ptrs[i]. Together they denote the set |
| /// of gc pointers this STATEPOINT has to relocate. |
| SmallVector<const Value *, 16> Bases; |
| SmallVector<const Value *, 16> Ptrs; |
| |
| /// The set of gc.relocate calls associated with this gc.statepoint. |
| SmallVector<const GCRelocateInst *, 16> GCRelocates; |
| |
| /// The full list of gc arguments to the gc.statepoint being lowered. |
| ArrayRef<const Use> GCArgs; |
| |
| /// The gc.statepoint instruction. |
| const Instruction *StatepointInstr = nullptr; |
| |
| /// The list of gc transition arguments present in the gc.statepoint being |
| /// lowered. |
| ArrayRef<const Use> GCTransitionArgs; |
| |
| /// The ID that the resulting STATEPOINT instruction has to report. |
| unsigned ID = -1; |
| |
| /// Information regarding the underlying call instruction. |
| TargetLowering::CallLoweringInfo CLI; |
| |
| /// The deoptimization state associated with this gc.statepoint call, if |
| /// any. |
| ArrayRef<const Use> DeoptState; |
| |
| /// Flags associated with the meta arguments being lowered. |
| uint64_t StatepointFlags = -1; |
| |
| /// The number of patchable bytes the call needs to get lowered into. |
| unsigned NumPatchBytes = -1; |
| |
| /// The exception handling unwind destination, in case this represents an |
| /// invoke of gc.statepoint. |
| const BasicBlock *EHPadBB = nullptr; |
| |
| explicit StatepointLoweringInfo(SelectionDAG &DAG) : CLI(DAG) {} |
| }; |
| |
| /// Lower \p SLI into a STATEPOINT instruction. |
| SDValue LowerAsSTATEPOINT(StatepointLoweringInfo &SI); |
| |
| // This function is responsible for the whole statepoint lowering process. |
| // It uniformly handles invoke and call statepoints. |
| void LowerStatepoint(ImmutableStatepoint ISP, |
| const BasicBlock *EHPadBB = nullptr); |
| |
| void LowerCallSiteWithDeoptBundle(ImmutableCallSite CS, SDValue Callee, |
| const BasicBlock *EHPadBB); |
| |
| void LowerDeoptimizeCall(const CallInst *CI); |
| void LowerDeoptimizingReturn(); |
| |
| void LowerCallSiteWithDeoptBundleImpl(ImmutableCallSite CS, SDValue Callee, |
| const BasicBlock *EHPadBB, |
| bool VarArgDisallowed, |
| bool ForceVoidReturnTy); |
| |
| /// Returns the type of FrameIndex and TargetFrameIndex nodes. |
| MVT getFrameIndexTy() { |
| return DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout()); |
| } |
| |
| private: |
| // Terminator instructions. |
| void visitRet(const ReturnInst &I); |
| void visitBr(const BranchInst &I); |
| void visitSwitch(const SwitchInst &I); |
| void visitIndirectBr(const IndirectBrInst &I); |
| void visitUnreachable(const UnreachableInst &I); |
| void visitCleanupRet(const CleanupReturnInst &I); |
| void visitCatchSwitch(const CatchSwitchInst &I); |
| void visitCatchRet(const CatchReturnInst &I); |
| void visitCatchPad(const CatchPadInst &I); |
| void visitCleanupPad(const CleanupPadInst &CPI); |
| |
| BranchProbability getEdgeProbability(const MachineBasicBlock *Src, |
| const MachineBasicBlock *Dst) const; |
| void addSuccessorWithProb( |
| MachineBasicBlock *Src, MachineBasicBlock *Dst, |
| BranchProbability Prob = BranchProbability::getUnknown()); |
| |
| public: |
| void visitSwitchCase(CaseBlock &CB, |
| MachineBasicBlock *SwitchBB); |
| void visitSPDescriptorParent(StackProtectorDescriptor &SPD, |
| MachineBasicBlock *ParentBB); |
| void visitSPDescriptorFailure(StackProtectorDescriptor &SPD); |
| void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB); |
| void visitBitTestCase(BitTestBlock &BB, |
| MachineBasicBlock* NextMBB, |
| BranchProbability BranchProbToNext, |
| unsigned Reg, |
| BitTestCase &B, |
| MachineBasicBlock *SwitchBB); |
| void visitJumpTable(JumpTable &JT); |
| void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH, |
| MachineBasicBlock *SwitchBB); |
| |
| private: |
| // These all get lowered before this pass. |
| void visitInvoke(const InvokeInst &I); |
| void visitResume(const ResumeInst &I); |
| |
| void visitBinary(const User &I, unsigned Opcode); |
| void visitShift(const User &I, unsigned Opcode); |
| void visitAdd(const User &I) { visitBinary(I, ISD::ADD); } |
| void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); } |
| void visitSub(const User &I) { visitBinary(I, ISD::SUB); } |
| void visitFSub(const User &I); |
| void visitMul(const User &I) { visitBinary(I, ISD::MUL); } |
| void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); } |
| void visitURem(const User &I) { visitBinary(I, ISD::UREM); } |
| void visitSRem(const User &I) { visitBinary(I, ISD::SREM); } |
| void visitFRem(const User &I) { visitBinary(I, ISD::FREM); } |
| void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); } |
| void visitSDiv(const User &I); |
| void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); } |
| void visitAnd (const User &I) { visitBinary(I, ISD::AND); } |
| void visitOr (const User &I) { visitBinary(I, ISD::OR); } |
| void visitXor (const User &I) { visitBinary(I, ISD::XOR); } |
| void visitShl (const User &I) { visitShift(I, ISD::SHL); } |
| void visitLShr(const User &I) { visitShift(I, ISD::SRL); } |
| void visitAShr(const User &I) { visitShift(I, ISD::SRA); } |
| void visitICmp(const User &I); |
| void visitFCmp(const User &I); |
| // Visit the conversion instructions |
| void visitTrunc(const User &I); |
| void visitZExt(const User &I); |
| void visitSExt(const User &I); |
| void visitFPTrunc(const User &I); |
| void visitFPExt(const User &I); |
| void visitFPToUI(const User &I); |
| void visitFPToSI(const User &I); |
| void visitUIToFP(const User &I); |
| void visitSIToFP(const User &I); |
| void visitPtrToInt(const User &I); |
| void visitIntToPtr(const User &I); |
| void visitBitCast(const User &I); |
| void visitAddrSpaceCast(const User &I); |
| |
| void visitExtractElement(const User &I); |
| void visitInsertElement(const User &I); |
| void visitShuffleVector(const User &I); |
| |
| void visitExtractValue(const User &I); |
| void visitInsertValue(const User &I); |
| void visitLandingPad(const LandingPadInst &LP); |
| |
| void visitGetElementPtr(const User &I); |
| void visitSelect(const User &I); |
| |
| void visitAlloca(const AllocaInst &I); |
| void visitLoad(const LoadInst &I); |
| void visitStore(const StoreInst &I); |
| void visitMaskedLoad(const CallInst &I, bool IsExpanding = false); |
| void visitMaskedStore(const CallInst &I, bool IsCompressing = false); |
| void visitMaskedGather(const CallInst &I); |
| void visitMaskedScatter(const CallInst &I); |
| void visitAtomicCmpXchg(const AtomicCmpXchgInst &I); |
| void visitAtomicRMW(const AtomicRMWInst &I); |
| void visitFence(const FenceInst &I); |
| void visitPHI(const PHINode &I); |
| void visitCall(const CallInst &I); |
| bool visitMemCmpCall(const CallInst &I); |
| bool visitMemPCpyCall(const CallInst &I); |
| bool visitMemChrCall(const CallInst &I); |
| bool visitStrCpyCall(const CallInst &I, bool isStpcpy); |
| bool visitStrCmpCall(const CallInst &I); |
| bool visitStrLenCall(const CallInst &I); |
| bool visitStrNLenCall(const CallInst &I); |
| bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode); |
| bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode); |
| void visitAtomicLoad(const LoadInst &I); |
| void visitAtomicStore(const StoreInst &I); |
| void visitLoadFromSwiftError(const LoadInst &I); |
| void visitStoreToSwiftError(const StoreInst &I); |
| |
| void visitInlineAsm(ImmutableCallSite CS); |
| const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic); |
| void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic); |
| void visitConstrainedFPIntrinsic(const ConstrainedFPIntrinsic &FPI); |
| |
| void visitVAStart(const CallInst &I); |
| void visitVAArg(const VAArgInst &I); |
| void visitVAEnd(const CallInst &I); |
| void visitVACopy(const CallInst &I); |
| void visitStackmap(const CallInst &I); |
| void visitPatchpoint(ImmutableCallSite CS, |
| const BasicBlock *EHPadBB = nullptr); |
| |
| // These two are implemented in StatepointLowering.cpp |
| void visitGCRelocate(const GCRelocateInst &Relocate); |
| void visitGCResult(const GCResultInst &I); |
| |
| void visitVectorReduce(const CallInst &I, unsigned Intrinsic); |
| |
| void visitUserOp1(const Instruction &I) { |
| llvm_unreachable("UserOp1 should not exist at instruction selection time!"); |
| } |
| void visitUserOp2(const Instruction &I) { |
| llvm_unreachable("UserOp2 should not exist at instruction selection time!"); |
| } |
| |
| void processIntegerCallValue(const Instruction &I, |
| SDValue Value, bool IsSigned); |
| |
| void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB); |
| |
| void emitInlineAsmError(ImmutableCallSite CS, const Twine &Message); |
| |
| /// If V is an function argument then create corresponding DBG_VALUE machine |
| /// instruction for it now. At the end of instruction selection, they will be |
| /// inserted to the entry BB. |
| bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable, |
| DIExpression *Expr, DILocation *DL, |
| bool IsDbgDeclare, const SDValue &N); |
| |
| /// Return the next block after MBB, or nullptr if there is none. |
| MachineBasicBlock *NextBlock(MachineBasicBlock *MBB); |
| |
| /// Update the DAG and DAG builder with the relevant information after |
| /// a new root node has been created which could be a tail call. |
| void updateDAGForMaybeTailCall(SDValue MaybeTC); |
| |
| /// Return the appropriate SDDbgValue based on N. |
| SDDbgValue *getDbgValue(SDValue N, DILocalVariable *Variable, |
| DIExpression *Expr, const DebugLoc &dl, |
| unsigned DbgSDNodeOrder); |
| }; |
| |
| /// RegsForValue - This struct represents the registers (physical or virtual) |
| /// that a particular set of values is assigned, and the type information about |
| /// the value. The most common situation is to represent one value at a time, |
| /// but struct or array values are handled element-wise as multiple values. The |
| /// splitting of aggregates is performed recursively, so that we never have |
| /// aggregate-typed registers. The values at this point do not necessarily have |
| /// legal types, so each value may require one or more registers of some legal |
| /// type. |
| /// |
| struct RegsForValue { |
| /// The value types of the values, which may not be legal, and |
| /// may need be promoted or synthesized from one or more registers. |
| SmallVector<EVT, 4> ValueVTs; |
| |
| /// The value types of the registers. This is the same size as ValueVTs and it |
| /// records, for each value, what the type of the assigned register or |
| /// registers are. (Individual values are never synthesized from more than one |
| /// type of register.) |
| /// |
| /// With virtual registers, the contents of RegVTs is redundant with TLI's |
| /// getRegisterType member function, however when with physical registers |
| /// it is necessary to have a separate record of the types. |
| SmallVector<MVT, 4> RegVTs; |
| |
| /// This list holds the registers assigned to the values. |
| /// Each legal or promoted value requires one register, and each |
| /// expanded value requires multiple registers. |
| SmallVector<unsigned, 4> Regs; |
| |
| /// This list holds the number of registers for each value. |
| SmallVector<unsigned, 4> RegCount; |
| |
| /// Records if this value needs to be treated in an ABI dependant manner, |
| /// different to normal type legalization. |
| Optional<CallingConv::ID> CallConv; |
| |
| RegsForValue() = default; |
| RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, EVT valuevt, |
| Optional<CallingConv::ID> CC = None); |
| RegsForValue(LLVMContext &Context, const TargetLowering &TLI, |
| const DataLayout &DL, unsigned Reg, Type *Ty, |
| Optional<CallingConv::ID> CC); |
| |
| bool isABIMangled() const { |
| return CallConv.hasValue(); |
| } |
| |
| /// Add the specified values to this one. |
| void append(const RegsForValue &RHS) { |
| ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); |
| RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); |
| Regs.append(RHS.Regs.begin(), RHS.Regs.end()); |
| RegCount.push_back(RHS.Regs.size()); |
| } |
| |
| /// Emit a series of CopyFromReg nodes that copies from this value and returns |
| /// the result as a ValueVTs value. This uses Chain/Flag as the input and |
| /// updates them for the output Chain/Flag. If the Flag pointer is NULL, no |
| /// flag is used. |
| SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, |
| const SDLoc &dl, SDValue &Chain, SDValue *Flag, |
| const Value *V = nullptr) const; |
| |
| /// Emit a series of CopyToReg nodes that copies the specified value into the |
| /// registers specified by this object. This uses Chain/Flag as the input and |
| /// updates them for the output Chain/Flag. If the Flag pointer is nullptr, no |
| /// flag is used. If V is not nullptr, then it is used in printing better |
| /// diagnostic messages on error. |
| void getCopyToRegs(SDValue Val, SelectionDAG &DAG, const SDLoc &dl, |
| SDValue &Chain, SDValue *Flag, const Value *V = nullptr, |
| ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; |
| |
| /// Add this value to the specified inlineasm node operand list. This adds the |
| /// code marker, matching input operand index (if applicable), and includes |
| /// the number of values added into it. |
| void AddInlineAsmOperands(unsigned Code, bool HasMatching, |
| unsigned MatchingIdx, const SDLoc &dl, |
| SelectionDAG &DAG, std::vector<SDValue> &Ops) const; |
| |
| /// Check if the total RegCount is greater than one. |
| bool occupiesMultipleRegs() const { |
| return std::accumulate(RegCount.begin(), RegCount.end(), 0) > 1; |
| } |
| |
| /// Return a list of registers and their sizes. |
| SmallVector<std::pair<unsigned, unsigned>, 4> getRegsAndSizes() const; |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H |