blob: 2c45a7218d045e6cf5ae67d0b8b6242b6a3c3933 [file] [log] [blame]
//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the Sparc instructions in TableGen format.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "SparcInstrFormats.td"
//===----------------------------------------------------------------------===//
// Feature predicates.
//===----------------------------------------------------------------------===//
// True when generating 32-bit code.
def Is32Bit : Predicate<"!Subtarget->is64Bit()">;
// True when generating 64-bit code. This also implies HasV9.
def Is64Bit : Predicate<"Subtarget->is64Bit()">;
def UseSoftMulDiv : Predicate<"Subtarget->useSoftMulDiv()">,
AssemblerPredicate<(all_of FeatureSoftMulDiv)>;
// HasV9 - This predicate is true when the target processor supports V9
// instructions. Note that the machine may be running in 32-bit mode.
def HasV9 : Predicate<"Subtarget->isV9()">,
AssemblerPredicate<(all_of FeatureV9)>;
// HasNoV9 - This predicate is true when the target doesn't have V9
// instructions. Use of this is just a hack for the isel not having proper
// costs for V8 instructions that are more expensive than their V9 ones.
def HasNoV9 : Predicate<"!Subtarget->isV9()">;
// HasVIS - This is true when the target processor has VIS extensions.
def HasVIS : Predicate<"Subtarget->isVIS()">,
AssemblerPredicate<(all_of FeatureVIS)>;
def HasVIS2 : Predicate<"Subtarget->isVIS2()">,
AssemblerPredicate<(all_of FeatureVIS2)>;
def HasVIS3 : Predicate<"Subtarget->isVIS3()">,
AssemblerPredicate<(all_of FeatureVIS3)>;
// HasHardQuad - This is true when the target processor supports quad floating
// point instructions.
def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">;
// HasLeonCASA - This is true when the target processor supports the CASA
// instruction
def HasLeonCASA : Predicate<"Subtarget->hasLeonCasa()">;
// HasPWRPSR - This is true when the target processor supports partial
// writes to the PSR register that only affects the ET field.
def HasPWRPSR : Predicate<"Subtarget->hasPWRPSR()">,
AssemblerPredicate<(all_of FeaturePWRPSR)>;
// HasUMAC_SMAC - This is true when the target processor supports the
// UMAC and SMAC instructions
def HasUMAC_SMAC : Predicate<"Subtarget->hasUmacSmac()">;
def HasNoFdivSqrtFix : Predicate<"!Subtarget->fixAllFDIVSQRT()">;
def HasFMULS : Predicate<"!Subtarget->hasNoFMULS()">;
def HasFSMULD : Predicate<"!Subtarget->hasNoFSMULD()">;
// UseDeprecatedInsts - This predicate is true when the target processor is a
// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
// to use when appropriate. In either of these cases, the instruction selector
// will pick deprecated instructions.
def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">;
//===----------------------------------------------------------------------===//
// Instruction Pattern Stuff
//===----------------------------------------------------------------------===//
def simm10 : PatLeaf<(imm), [{ return isInt<10>(N->getSExtValue()); }]>;
def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
def LO10 : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, SDLoc(N),
MVT::i32);
}]>;
def HI22 : SDNodeXForm<imm, [{
// Transformation function: shift the immediate value down into the low bits.
return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, SDLoc(N),
MVT::i32);
}]>;
// Return the complement of a HI22 immediate value.
def HI22_not : SDNodeXForm<imm, [{
return CurDAG->getTargetConstant(~(unsigned)N->getZExtValue() >> 10, SDLoc(N),
MVT::i32);
}]>;
def SETHIimm : PatLeaf<(imm), [{
return isShiftedUInt<22, 10>(N->getZExtValue());
}], HI22>;
// The N->hasOneUse() prevents the immediate from being instantiated in both
// normal and complement form.
def SETHIimm_not : PatLeaf<(i32 imm), [{
return N->hasOneUse() && isShiftedUInt<22, 10>(~(unsigned)N->getZExtValue());
}], HI22_not>;
// Addressing modes.
def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
// Constrained operands for the shift operations.
class ShiftAmtImmAsmOperand<int Bits> : AsmOperandClass {
let Name = "ShiftAmtImm" # Bits;
let ParserMethod = "parseShiftAmtImm<" # Bits # ">";
}
def shift_imm5 : Operand<i32> {
let ParserMatchClass = ShiftAmtImmAsmOperand<5>;
}
def shift_imm6 : Operand<i32> {
let ParserMatchClass = ShiftAmtImmAsmOperand<6>;
}
// Address operands
def SparcMEMrrAsmOperand : AsmOperandClass {
let Name = "MEMrr";
let ParserMethod = "parseMEMOperand";
}
def SparcMEMriAsmOperand : AsmOperandClass {
let Name = "MEMri";
let ParserMethod = "parseMEMOperand";
}
def MEMrr : Operand<iPTR> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops ptr_rc, ptr_rc);
let ParserMatchClass = SparcMEMrrAsmOperand;
}
def MEMri : Operand<iPTR> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops ptr_rc, i32imm);
let ParserMatchClass = SparcMEMriAsmOperand;
}
// Represents a tail relocation operand for instructions such as add, ld, call.
class SparcTailRelocSymAsmOperand<string Kind> : AsmOperandClass {
let Name = "TailRelocSym" # Kind;
let RenderMethod = "addTailRelocSymOperands";
let PredicateMethod = "isTailRelocSym";
let ParserMethod = "parseTailRelocSym<TailRelocKind::" # Kind # ">";
}
def TailRelocSymGOTLoad : Operand<iPTR> {
let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_GOT">;
}
def TailRelocSymTLSAdd : Operand<iPTR> {
let ParserMatchClass = SparcTailRelocSymAsmOperand<"Add_TLS">;
}
def TailRelocSymTLSLoad : Operand<iPTR> {
let ParserMatchClass = SparcTailRelocSymAsmOperand<"Load_TLS">;
}
def TailRelocSymTLSCall : Operand<iPTR> {
let ParserMatchClass = SparcTailRelocSymAsmOperand<"Call_TLS">;
}
def SparcMembarTagAsmOperand : AsmOperandClass {
let Name = "MembarTag";
let ParserMethod = "parseMembarTag";
}
def MembarTag : Operand<i32> {
let PrintMethod = "printMembarTag";
let ParserMatchClass = SparcMembarTagAsmOperand;
}
// Branch targets have OtherVT type.
def brtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
}
def bprtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchPredTargetOpValue";
}
def bprtarget16 : Operand<OtherVT> {
let EncoderMethod = "getBranchOnRegTargetOpValue";
}
def SparcCallTargetAsmOperand : AsmOperandClass {
let Name = "CallTarget";
let ParserMethod = "parseCallTarget";
}
def calltarget : Operand<i32> {
let EncoderMethod = "getCallTargetOpValue";
let DecoderMethod = "DecodeCall";
let ParserMatchClass = SparcCallTargetAsmOperand;
}
def simm13Op : Operand<i32> {
let DecoderMethod = "DecodeSIMM13";
let EncoderMethod = "getSImm13OpValue";
}
// Operand for printing out a condition code.
let PrintMethod = "printCCOperand" in {
def CCOp : Operand<i32>;
def RegCCOp : Operand<i32>;
}
def SDTSPcmpicc :
SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
def SDTSPcmpfcc :
SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
def SDTSPbrcc :
SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
def SDTSPselectcc :
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
def SDTSPselectreg :
SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>, SDTCisVT<4, i64>]>;
def SDTSPFTOI :
SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
def SDTSPITOF :
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
def SDTSPFTOX :
SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
def SDTSPXTOF :
SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
def SDTSPtlsadd :
SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
def SDTSPtlsld :
SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
def SDTSPloadgdop :
SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
def SPcmpfccv9 : SDNode<"SPISD::CMPFCC_V9", SDTSPcmpfcc, [SDNPOutGlue]>;
def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPbpicc : SDNode<"SPISD::BPICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPbpxcc : SDNode<"SPISD::BPXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPbrfccv9 : SDNode<"SPISD::BRFCC_V9", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
def SPftox : SDNode<"SPISD::FTOX", SDTSPFTOX>;
def SPxtof : SDNode<"SPISD::XTOF", SDTSPXTOF>;
def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
def SPselectreg : SDNode<"SPISD::SELECT_REG", SDTSPselectreg, [SDNPInGlue]>;
// These are target-independent nodes, but have target-specific formats.
def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
SDTCisVT<1, i32> ]>;
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
def call : SDNode<"SPISD::CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def tailcall : SDNode<"SPISD::TAIL_CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def flushw : SDNode<"SPISD::FLUSHW", SDTNone,
[SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
def tlsadd : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
def tlsld : SDNode<"SPISD::TLS_LD", SDTSPtlsld>;
def tlscall : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
SDNPVariadic]>;
def load_gdop : SDNode<"SPISD::LOAD_GDOP", SDTSPloadgdop>;
def getPCX : Operand<iPTR> {
let PrintMethod = "printGetPCX";
}
//===----------------------------------------------------------------------===//
// SPARC Flag Conditions
//===----------------------------------------------------------------------===//
// Note that these values must be kept in sync with the CCOp::CondCode enum
// values.
class ICC_VAL<int N> : PatLeaf<(i32 N)>;
def ICC_NE : ICC_VAL< 9>; // Not Equal
def ICC_E : ICC_VAL< 1>; // Equal
def ICC_G : ICC_VAL<10>; // Greater
def ICC_LE : ICC_VAL< 2>; // Less or Equal
def ICC_GE : ICC_VAL<11>; // Greater or Equal
def ICC_L : ICC_VAL< 3>; // Less
def ICC_GU : ICC_VAL<12>; // Greater Unsigned
def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
def ICC_POS : ICC_VAL<14>; // Positive
def ICC_NEG : ICC_VAL< 6>; // Negative
def ICC_VC : ICC_VAL<15>; // Overflow Clear
def ICC_VS : ICC_VAL< 7>; // Overflow Set
class FCC_VAL<int N> : PatLeaf<(i32 N)>;
def FCC_U : FCC_VAL<23>; // Unordered
def FCC_G : FCC_VAL<22>; // Greater
def FCC_UG : FCC_VAL<21>; // Unordered or Greater
def FCC_L : FCC_VAL<20>; // Less
def FCC_UL : FCC_VAL<19>; // Unordered or Less
def FCC_LG : FCC_VAL<18>; // Less or Greater
def FCC_NE : FCC_VAL<17>; // Not Equal
def FCC_E : FCC_VAL<25>; // Equal
def FCC_UE : FCC_VAL<26>; // Unordered or Equal
def FCC_GE : FCC_VAL<27>; // Greater or Equal
def FCC_UGE : FCC_VAL<28>; // Unordered or Greater or Equal
def FCC_LE : FCC_VAL<29>; // Less or Equal
def FCC_ULE : FCC_VAL<30>; // Unordered or Less or Equal
def FCC_O : FCC_VAL<31>; // Ordered
class CPCC_VAL<int N> : PatLeaf<(i32 N)>;
def CPCC_3 : CPCC_VAL<39>; // 3
def CPCC_2 : CPCC_VAL<38>; // 2
def CPCC_23 : CPCC_VAL<37>; // 2 or 3
def CPCC_1 : CPCC_VAL<36>; // 1
def CPCC_13 : CPCC_VAL<35>; // 1 or 3
def CPCC_12 : CPCC_VAL<34>; // 1 or 2
def CPCC_123 : CPCC_VAL<33>; // 1 or 2 or 3
def CPCC_0 : CPCC_VAL<41>; // 0
def CPCC_03 : CPCC_VAL<42>; // 0 or 3
def CPCC_02 : CPCC_VAL<43>; // 0 or 2
def CPCC_023 : CPCC_VAL<44>; // 0 or 2 or 3
def CPCC_01 : CPCC_VAL<45>; // 0 or 1
def CPCC_013 : CPCC_VAL<46>; // 0 or 1 or 3
def CPCC_012 : CPCC_VAL<47>; // 0 or 1 or 2
class RegCC_VAL<int N> : PatLeaf<(i32 N)>;
def RegCC_Z : RegCC_VAL<49>; // Zero
def RegCC_LEZ : RegCC_VAL<50>; // Lees or equal than zero
def RegCC_LZ : RegCC_VAL<51>; // Less than zero
def RegCC_NZ : RegCC_VAL<53>; // Not zero
def RegCC_GZ : RegCC_VAL<54>; // Greater than zero
def RegCC_GEZ : RegCC_VAL<55>; // Greater or equal to zero
//===----------------------------------------------------------------------===//
// Instruction Class Templates
//===----------------------------------------------------------------------===//
/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode,
RegisterClass RC, ValueType Ty, Operand immOp,
InstrItinClass itin = IIC_iu_instr> {
def rr : F3_1<2, Op3Val,
(outs RC:$rd), (ins RC:$rs1, RC:$rs2),
!strconcat(OpcStr, " $rs1, $rs2, $rd"),
[(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))],
itin>;
def ri : F3_2<2, Op3Val,
(outs RC:$rd), (ins RC:$rs1, immOp:$simm13),
!strconcat(OpcStr, " $rs1, $simm13, $rd"),
[(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))],
itin>;
}
/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
/// pattern.
multiclass F3_12np<string OpcStr, bits<6> Op3Val, InstrItinClass itin = IIC_iu_instr> {
def rr : F3_1<2, Op3Val,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
!strconcat(OpcStr, " $rs1, $rs2, $rd"), [],
itin>;
def ri : F3_2<2, Op3Val,
(outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
!strconcat(OpcStr, " $rs1, $simm13, $rd"), [],
itin>;
}
// Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_iu_instr> {
def rr : F3_1<3, Op3Val,
(outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr),
!strconcat(OpcStr, " [$addr], $rd"),
[(set Ty:$rd, (OpNode ADDRrr:$addr))],
itin>;
def ri : F3_2<3, Op3Val,
(outs RC:$rd), (ins (MEMri $rs1, $simm13):$addr),
!strconcat(OpcStr, " [$addr], $rd"),
[(set Ty:$rd, (OpNode ADDRri:$addr))],
itin>;
}
// TODO: Instructions of the LoadASI class are currently asm only; hooking up
// CodeGen's address spaces to use these is a future task.
class LoadASI<string OpcStr, bits<6> Op3Val, RegisterClass RC> :
F3_1_asi<3, Op3Val, (outs RC:$rd), (ins (MEMrr $rs1, $rs2):$addr, i8imm:$asi),
!strconcat(OpcStr, "a [$addr] $asi, $rd"),
[]>;
// LoadA multiclass - As above, but also define alternate address space variant
multiclass LoadA<string OpcStr, bits<6> Op3Val, bits<6> LoadAOp3Val,
SDPatternOperator OpNode, RegisterClass RC, ValueType Ty,
InstrItinClass itin = NoItinerary> :
Load<OpcStr, Op3Val, OpNode, RC, Ty, itin> {
def Arr : LoadASI<OpcStr, LoadAOp3Val, RC>;
}
// The LDSTUB instruction is supported for asm only.
// It is unlikely that general-purpose code could make use of it.
// CAS is preferred for sparc v9.
def LDSTUBrr : F3_1<3, 0b001101, (outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr),
"ldstub [$addr], $rd", []>;
def LDSTUBri : F3_2<3, 0b001101, (outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr),
"ldstub [$addr], $rd", []>;
def LDSTUBArr : F3_1_asi<3, 0b011101, (outs IntRegs:$rd),
(ins (MEMrr $rs1, $rs2):$addr, i8imm:$asi),
"ldstuba [$addr] $asi, $rd", []>;
// Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot.
multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode,
RegisterClass RC, ValueType Ty, InstrItinClass itin = IIC_st> {
def rr : F3_1<3, Op3Val,
(outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd),
!strconcat(OpcStr, " $rd, [$addr]"),
[(OpNode Ty:$rd, ADDRrr:$addr)],
itin>;
def ri : F3_2<3, Op3Val,
(outs), (ins (MEMri $rs1, $simm13):$addr, RC:$rd),
!strconcat(OpcStr, " $rd, [$addr]"),
[(OpNode Ty:$rd, ADDRri:$addr)],
itin>;
}
// TODO: Instructions of the StoreASI class are currently asm only; hooking up
// CodeGen's address spaces to use these is a future task.
class StoreASI<string OpcStr, bits<6> Op3Val, RegisterClass RC,
InstrItinClass itin = IIC_st> :
F3_1_asi<3, Op3Val, (outs), (ins (MEMrr $rs1, $rs2):$addr, RC:$rd, i8imm:$asi),
!strconcat(OpcStr, "a $rd, [$addr] $asi"),
[],
itin>;
multiclass StoreA<string OpcStr, bits<6> Op3Val, bits<6> StoreAOp3Val,
SDPatternOperator OpNode, RegisterClass RC, ValueType Ty> :
Store<OpcStr, Op3Val, OpNode, RC, Ty> {
def Arr : StoreASI<OpcStr, StoreAOp3Val, RC>;
}
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
// Pseudo instructions.
class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSP<outs, ins, asmstr, pattern> {
let isCodeGenOnly = 1;
let isPseudo = 1;
}
// GETPCX for PIC
let Defs = [O7] in {
def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
}
let Defs = [O6], Uses = [O6] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"!ADJCALLSTACKDOWN $amt1, $amt2",
[(callseq_start timm:$amt1, timm:$amt2)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
"!ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
let hasSideEffects = 1, mayStore = 1 in {
let rd = 0, rs1 = 0, rs2 = 0 in
def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
"flushw",
[(flushw)]>, Requires<[HasV9]>;
let rd = 8, rs1 = 0, simm13 = 3 in
def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
"ta 3",
[(flushw)]>;
}
// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
// instruction selection into a branch sequence. This has to handle all
// permutations of selection between i32/f32/f64 on ICC and FCC.
// Expanded after instruction selection.
let Uses = [ICC], usesCustomInserter = 1 in {
def SELECT_CC_Int_ICC
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_ICC PSEUDO!",
[(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
def SELECT_CC_FP_ICC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_ICC PSEUDO!",
[(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
def SELECT_CC_DFP_ICC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_ICC PSEUDO!",
[(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
def SELECT_CC_QFP_ICC
: Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_QFP_ICC PSEUDO!",
[(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
}
let Uses = [ICC], usesCustomInserter = 1 in {
def SELECT_CC_Int_XCC
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_XCC PSEUDO!",
[(set i32:$dst, (SPselectxcc i32:$T, i32:$F, imm:$Cond))]>;
def SELECT_CC_FP_XCC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_XCC PSEUDO!",
[(set f32:$dst, (SPselectxcc f32:$T, f32:$F, imm:$Cond))]>;
def SELECT_CC_DFP_XCC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_XCC PSEUDO!",
[(set f64:$dst, (SPselectxcc f64:$T, f64:$F, imm:$Cond))]>;
def SELECT_CC_QFP_XCC
: Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_QFP_XCC PSEUDO!",
[(set f128:$dst, (SPselectxcc f128:$T, f128:$F, imm:$Cond))]>;
}
let usesCustomInserter = 1, Uses = [FCC0] in {
def SELECT_CC_Int_FCC
: Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
"; SELECT_CC_Int_FCC PSEUDO!",
[(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
def SELECT_CC_FP_FCC
: Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
"; SELECT_CC_FP_FCC PSEUDO!",
[(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
def SELECT_CC_DFP_FCC
: Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_DFP_FCC PSEUDO!",
[(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
def SELECT_CC_QFP_FCC
: Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
"; SELECT_CC_QFP_FCC PSEUDO!",
[(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
}
// Section B.1 - Load Integer Instructions, p. 90
defm LDSB : LoadA<"ldsb", 0b001001, 0b011001, sextloadi8, IntRegs, i32>;
defm LDSH : LoadA<"ldsh", 0b001010, 0b011010, sextloadi16, IntRegs, i32>;
defm LDUB : LoadA<"ldub", 0b000001, 0b010001, zextloadi8, IntRegs, i32>;
defm LDUH : LoadA<"lduh", 0b000010, 0b010010, zextloadi16, IntRegs, i32>;
defm LD : LoadA<"ld", 0b000000, 0b010000, load, IntRegs, i32>;
defm LDD : LoadA<"ldd", 0b000011, 0b010011, load, IntPair, v2i32, IIC_ldd>;
// Section B.2 - Load Floating-point Instructions, p. 92
defm LDF : Load<"ld", 0b100000, load, FPRegs, f32, IIC_iu_or_fpu_instr>;
def LDFArr : LoadASI<"ld", 0b110000, FPRegs>,
Requires<[HasV9]>;
defm LDDF : Load<"ldd", 0b100011, load, DFPRegs, f64, IIC_ldd>;
def LDDFArr : LoadASI<"ldd", 0b110011, DFPRegs>,
Requires<[HasV9]>;
defm LDQF : LoadA<"ldq", 0b100010, 0b110010, load, QFPRegs, f128>,
Requires<[HasV9, HasHardQuad]>;
defm LDC : Load<"ld", 0b110000, load, CoprocRegs, i32>;
defm LDDC : Load<"ldd", 0b110011, load, CoprocPair, v2i32, IIC_ldd>;
let Defs = [CPSR] in {
let rd = 0 in {
def LDCSRrr : F3_1<3, 0b110001, (outs), (ins (MEMrr $rs1, $rs2):$addr),
"ld [$addr], %csr", []>;
def LDCSRri : F3_2<3, 0b110001, (outs), (ins (MEMri $rs1, $simm13):$addr),
"ld [$addr], %csr", []>;
}
}
let Defs = [FSR] in {
let rd = 0 in {
def LDFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr),
"ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
def LDFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr),
"ld [$addr], %fsr", [], IIC_iu_or_fpu_instr>;
}
let rd = 1 in {
def LDXFSRrr : F3_1<3, 0b100001, (outs), (ins (MEMrr $rs1, $rs2):$addr),
"ldx [$addr], %fsr", []>, Requires<[HasV9]>;
def LDXFSRri : F3_2<3, 0b100001, (outs), (ins (MEMri $rs1, $simm13):$addr),
"ldx [$addr], %fsr", []>, Requires<[HasV9]>;
}
}
let mayLoad = 1, isAsmParserOnly = 1 in {
def GDOP_LDrr : F3_1<3, 0b000000,
(outs IntRegs:$rd),
(ins (MEMrr $rs1, $rs2):$addr, TailRelocSymGOTLoad:$sym),
"ld [$addr], $rd, $sym",
[(set i32:$rd,
(load_gdop ADDRrr:$addr, tglobaladdr:$sym))]>;
}
// Section B.4 - Store Integer Instructions, p. 95
defm STB : StoreA<"stb", 0b000101, 0b010101, truncstorei8, IntRegs, i32>;
defm STH : StoreA<"sth", 0b000110, 0b010110, truncstorei16, IntRegs, i32>;
defm ST : StoreA<"st", 0b000100, 0b010100, store, IntRegs, i32>;
defm STD : StoreA<"std", 0b000111, 0b010111, store, IntPair, v2i32>;
// Section B.5 - Store Floating-point Instructions, p. 97
defm STF : Store<"st", 0b100100, store, FPRegs, f32>;
def STFArr : StoreASI<"st", 0b110100, FPRegs>,
Requires<[HasV9]>;
defm STDF : Store<"std", 0b100111, store, DFPRegs, f64, IIC_std>;
def STDFArr : StoreASI<"std", 0b110111, DFPRegs>,
Requires<[HasV9]>;
defm STQF : StoreA<"stq", 0b100110, 0b110110, store, QFPRegs, f128>,
Requires<[HasV9, HasHardQuad]>;
defm STC : Store<"st", 0b110100, store, CoprocRegs, i32>;
defm STDC : Store<"std", 0b110111, store, CoprocPair, v2i32, IIC_std>;
let rd = 0 in {
let Defs = [CPSR] in {
def STCSRrr : F3_1<3, 0b110101, (outs (MEMrr $rs1, $rs2):$addr), (ins),
"st %csr, [$addr]", [], IIC_st>;
def STCSRri : F3_2<3, 0b110101, (outs (MEMri $rs1, $simm13):$addr), (ins),
"st %csr, [$addr]", [], IIC_st>;
}
let Defs = [CPQ] in {
def STDCQrr : F3_1<3, 0b110110, (outs (MEMrr $rs1, $rs2):$addr), (ins),
"std %cq, [$addr]", [], IIC_std>;
def STDCQri : F3_2<3, 0b110110, (outs (MEMri $rs1, $simm13):$addr), (ins),
"std %cq, [$addr]", [], IIC_std>;
}
}
let rd = 0 in {
let Defs = [FSR] in {
def STFSRrr : F3_1<3, 0b100101, (outs (MEMrr $rs1, $rs2):$addr), (ins),
"st %fsr, [$addr]", [], IIC_st>;
def STFSRri : F3_2<3, 0b100101, (outs (MEMri $rs1, $simm13):$addr), (ins),
"st %fsr, [$addr]", [], IIC_st>;
}
let Defs = [FQ] in {
def STDFQrr : F3_1<3, 0b100110, (outs (MEMrr $rs1, $rs2):$addr), (ins),
"std %fq, [$addr]", [], IIC_std>;
def STDFQri : F3_2<3, 0b100110, (outs (MEMri $rs1, $simm13):$addr), (ins),
"std %fq, [$addr]", [], IIC_std>;
}
}
let rd = 1, Defs = [FSR] in {
def STXFSRrr : F3_1<3, 0b100101, (outs (MEMrr $rs1, $rs2):$addr), (ins),
"stx %fsr, [$addr]", []>, Requires<[HasV9]>;
def STXFSRri : F3_2<3, 0b100101, (outs (MEMri $rs1, $simm13):$addr), (ins),
"stx %fsr, [$addr]", []>, Requires<[HasV9]>;
}
// Section B.8 - SWAP Register with Memory Instruction
// (Atomic swap)
let Constraints = "$val = $rd" in {
def SWAPrr : F3_1<3, 0b001111,
(outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, IntRegs:$val),
"swap [$addr], $rd",
[(set i32:$rd, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>;
def SWAPri : F3_2<3, 0b001111,
(outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr, IntRegs:$val),
"swap [$addr], $rd",
[(set i32:$rd, (atomic_swap_32 ADDRri:$addr, i32:$val))]>;
def SWAPArr : F3_1_asi<3, 0b011111,
(outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr, i8imm:$asi, IntRegs:$val),
"swapa [$addr] $asi, $rd",
[/*FIXME: pattern?*/]>;
}
// Section B.9 - SETHI Instruction, p. 104
def SETHIi: F2_1<0b100,
(outs IntRegs:$rd), (ins i32imm:$imm22),
"sethi $imm22, $rd",
[(set i32:$rd, SETHIimm:$imm22)],
IIC_iu_instr>;
// Section B.10 - NOP Instruction, p. 105
// (It's a special case of SETHI)
let rd = 0, imm22 = 0 in
def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
// Section B.11 - Logical Instructions, p. 106
defm AND : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>;
def ANDNrr : F3_1<2, 0b000101,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
"andn $rs1, $rs2, $rd",
[(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>;
def ANDNri : F3_2<2, 0b000101,
(outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
"andn $rs1, $simm13, $rd", []>;
defm OR : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>;
def ORNrr : F3_1<2, 0b000110,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
"orn $rs1, $rs2, $rd",
[(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>;
def ORNri : F3_2<2, 0b000110,
(outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
"orn $rs1, $simm13, $rd", []>;
defm XOR : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>;
def XNORrr : F3_1<2, 0b000111,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
"xnor $rs1, $rs2, $rd",
[(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>;
def XNORri : F3_2<2, 0b000111,
(outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
"xnor $rs1, $simm13, $rd", []>;
def : Pat<(and IntRegs:$rs1, SETHIimm_not:$rs2),
(ANDNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>;
def : Pat<(or IntRegs:$rs1, SETHIimm_not:$rs2),
(ORNrr i32:$rs1, (SETHIi SETHIimm_not:$rs2))>;
let Defs = [ICC] in {
defm ANDCC : F3_12np<"andcc", 0b010001>;
defm ANDNCC : F3_12np<"andncc", 0b010101>;
defm ORCC : F3_12np<"orcc", 0b010010>;
defm ORNCC : F3_12np<"orncc", 0b010110>;
defm XORCC : F3_12np<"xorcc", 0b010011>;
defm XNORCC : F3_12np<"xnorcc", 0b010111>;
}
// Section B.12 - Shift Instructions, p. 107
defm SLL : F3_S<"sll", 0b100101, 0, shl, i32, shift_imm5, IntRegs>;
defm SRL : F3_S<"srl", 0b100110, 0, srl, i32, shift_imm5, IntRegs>;
defm SRA : F3_S<"sra", 0b100111, 0, sra, i32, shift_imm5, IntRegs>;
// Section B.13 - Add Instructions, p. 108
defm ADD : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>;
// "LEA" forms of add (patterns to make tblgen happy)
let Predicates = [Is32Bit], isCodeGenOnly = 1 in
def LEA_ADDri : F3_2<2, 0b000000,
(outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr),
"add ${addr:arith}, $rd",
[(set iPTR:$rd, ADDRri:$addr)]>;
let Defs = [ICC] in
defm ADDCC : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>;
let Uses = [ICC] in
defm ADDC : F3_12np<"addx", 0b001000>;
let Uses = [ICC], Defs = [ICC] in
defm ADDE : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>;
// Section B.15 - Subtract Instructions, p. 110
defm SUB : F3_12 <"sub" , 0b000100, sub, IntRegs, i32, simm13Op>;
let Uses = [ICC], Defs = [ICC] in
defm SUBE : F3_12 <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>;
let Defs = [ICC] in
defm SUBCC : F3_12 <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>;
let Uses = [ICC] in
defm SUBC : F3_12np <"subx", 0b001100>;
// cmp (from Section A.3) is a specialized alias for subcc
let Defs = [ICC], rd = 0 in {
def CMPrr : F3_1<2, 0b010100,
(outs), (ins IntRegs:$rs1, IntRegs:$rs2),
"cmp $rs1, $rs2",
[(SPcmpicc i32:$rs1, i32:$rs2)]>;
def CMPri : F3_2<2, 0b010100,
(outs), (ins IntRegs:$rs1, simm13Op:$simm13),
"cmp $rs1, $simm13",
[(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>;
}
// Section B.18 - Multiply Instructions, p. 113
let Defs = [Y] in {
defm UMUL : F3_12<"umul", 0b001010, umullohi, IntRegs, i32, simm13Op, IIC_iu_umul>;
defm SMUL : F3_12<"smul", 0b001011, smullohi, IntRegs, i32, simm13Op, IIC_iu_smul>;
}
let Defs = [Y, ICC] in {
defm UMULCC : F3_12np<"umulcc", 0b011010, IIC_iu_umul>;
defm SMULCC : F3_12np<"smulcc", 0b011011, IIC_iu_smul>;
}
let Defs = [Y, ICC], Uses = [Y, ICC] in {
defm MULSCC : F3_12np<"mulscc", 0b100100>;
}
// Section B.19 - Divide Instructions, p. 115
let Uses = [Y], Defs = [Y] in {
defm UDIV : F3_12np<"udiv", 0b001110, IIC_iu_div>;
defm SDIV : F3_12np<"sdiv", 0b001111, IIC_iu_div>;
}
let Uses = [Y], Defs = [Y, ICC] in {
defm UDIVCC : F3_12np<"udivcc", 0b011110, IIC_iu_div>;
defm SDIVCC : F3_12np<"sdivcc", 0b011111, IIC_iu_div>;
}
// Section B.20 - SAVE and RESTORE, p. 117
defm SAVE : F3_12np<"save" , 0b111100>;
defm RESTORE : F3_12np<"restore", 0b111101>;
// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
// Section A.7 - Branch on Integer Condition Codes with Prediction (SPARC v9)
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
// unconditional branch class.
class BranchAlways<dag ins, string asmstr, list<dag> pattern>
: F2_2<0b010, 0, (outs), ins, asmstr, pattern>;
// Same as BranchAlways but uses the new v9 encoding
class BranchPredictAlways<dag ins, string asmstr, list<dag> pattern>
: F2_3<0b001, 0, 1, (outs), ins, asmstr, pattern>;
}
let cond = 8 in {
// If we're compiling for v9, prefer BPA rather than BA
// TODO: Disallow BA emission when FeatureV8Deprecated isn't enabled
let Predicates = [HasV9], cc = 0b00 in
def BPA : BranchPredictAlways<(ins bprtarget:$imm19),
"ba %icc, $imm19", [(br bb:$imm19)]>;
def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
}
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
// conditional branch class:
class BranchSP<dag ins, string asmstr, list<dag> pattern>
: F2_2<0b010, 0, (outs), ins, asmstr, pattern, IIC_iu_instr>;
// conditional branch with annul class:
class BranchSPA<dag ins, string asmstr, list<dag> pattern>
: F2_2<0b010, 1, (outs), ins, asmstr, pattern, IIC_iu_instr>;
// Conditional branch class on %icc|%xcc with predication:
multiclass IPredBranch<string regstr, list<dag> CCPattern> {
def CC : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
!strconcat("b$cond ", !strconcat(regstr, ", $imm19")),
CCPattern,
IIC_iu_instr>;
def CCA : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond),
!strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")),
[],
IIC_iu_instr>;
def CCNT : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
!strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")),
[],
IIC_iu_instr>;
def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond),
!strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")),
[],
IIC_iu_instr>;
}
} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
// Indirect branch instructions.
let isTerminator = 1, isBarrier = 1, hasDelaySlot = 1, isBranch =1,
isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in {
def BINDrr : F3_1<2, 0b111000,
(outs), (ins (MEMrr $rs1, $rs2):$addr),
"jmp $addr",
[(brind ADDRrr:$addr)]>;
def BINDri : F3_2<2, 0b111000,
(outs), (ins (MEMri $rs1, $simm13):$addr),
"jmp $addr",
[(brind ADDRri:$addr)]>;
}
let Uses = [ICC] in {
def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
"b$cond $imm22",
[(SPbricc bb:$imm22, imm:$cond)]>;
def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond),
"b$cond,a $imm22", []>;
let Predicates = [HasV9], cc = 0b00 in
defm BPI : IPredBranch<"%icc", [(SPbpicc bb:$imm19, imm:$cond)]>;
}
// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
// floating-point conditional branch class:
class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
: F2_2<0b110, 0, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
// floating-point conditional branch with annul class:
class FPBranchSPA<dag ins, string asmstr, list<dag> pattern>
: F2_2<0b110, 1, (outs), ins, asmstr, pattern, IIC_fpu_normal_instr>;
// Conditional branch class on %fcc0-%fcc3 with predication:
multiclass FPredBranch {
def CC : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
FCCRegs:$cc),
"fb$cond $cc, $imm19", [], IIC_fpu_normal_instr>;
def CCA : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond,
FCCRegs:$cc),
"fb$cond,a $cc, $imm19", [], IIC_fpu_normal_instr>;
def CCNT : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
FCCRegs:$cc),
"fb$cond,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond,
FCCRegs:$cc),
"fb$cond,a,pn $cc, $imm19", [], IIC_fpu_normal_instr>;
}
} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
let Uses = [FCC0] in {
def FBCOND : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
"fb$cond $imm22",
[(SPbrfcc bb:$imm22, imm:$cond)]>;
def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
"fb$cond,a $imm22", []>;
}
// Variants of FBCOND that uses V9 opcode
let Predicates = [HasV9], Uses = [FCC0], cc = 0,
isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
def FBCOND_V9 : F2_3<0b101, 0, 1, (outs),
(ins bprtarget:$imm19, CCOp:$cond),
"fb$cond %fcc0, $imm19",
[(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>;
def FBCONDA_V9 : F2_3<0b101, 1, 1, (outs),
(ins bprtarget:$imm19, CCOp:$cond),
"fb$cond,a %fcc0, $imm19",
[(SPbrfccv9 bb:$imm19, imm:$cond)], IIC_fpu_normal_instr>;
}
let Predicates = [HasV9] in
defm BPF : FPredBranch;
// Section B.22 - Branch on Co-processor Condition Codes Instructions, p. 123
let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in {
// co-processor conditional branch class:
class CPBranchSP<dag ins, string asmstr, list<dag> pattern>
: F2_2<0b111, 0, (outs), ins, asmstr, pattern>;
// co-processor conditional branch with annul class:
class CPBranchSPA<dag ins, string asmstr, list<dag> pattern>
: F2_2<0b111, 1, (outs), ins, asmstr, pattern>;
} // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1
def CBCOND : CPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
"cb$cond $imm22",
[(SPbrfcc bb:$imm22, imm:$cond)]>;
def CBCONDA : CPBranchSPA<(ins brtarget:$imm22, CCOp:$cond),
"cb$cond,a $imm22", []>;
// Section B.24 - Call and Link Instruction, p. 125
// This is the only Format 1 instruction
let Uses = [O6],
hasDelaySlot = 1, isCall = 1 in {
def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
"call $disp",
[],
IIC_jmp_or_call> {
bits<30> disp;
let op = 1;
let Inst{29-0} = disp;
}
// indirect calls: special cases of JMPL.
let isCodeGenOnly = 1, rd = 15 in {
def CALLrr : F3_1<2, 0b111000,
(outs), (ins (MEMrr $rs1, $rs2):$addr, variable_ops),
"call $addr",
[(call ADDRrr:$addr)],
IIC_jmp_or_call>;
def CALLri : F3_2<2, 0b111000,
(outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops),
"call $addr",
[(call ADDRri:$addr)],
IIC_jmp_or_call>;
}
}
// Section B.25 - Jump and Link Instruction
// JMPL Instruction.
let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
def JMPLrr: F3_1<2, 0b111000,
(outs IntRegs:$rd), (ins (MEMrr $rs1, $rs2):$addr),
"jmpl $addr, $rd",
[],
IIC_jmp_or_call>;
def JMPLri: F3_2<2, 0b111000,
(outs IntRegs:$rd), (ins (MEMri $rs1, $simm13):$addr),
"jmpl $addr, $rd",
[],
IIC_jmp_or_call>;
}
// Section A.3 - Synthetic Instructions, p. 85
// special cases of JMPL:
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1,
isCodeGenOnly = 1 in {
let rd = 0, rs1 = 15 in
def RETL: F3_2<2, 0b111000,
(outs), (ins i32imm:$simm13),
"jmp %o7+$simm13",
[(retflag simm13:$simm13)],
IIC_jmp_or_call>;
let rd = 0, rs1 = 31 in
def RET: F3_2<2, 0b111000,
(outs), (ins i32imm:$simm13),
"jmp %i7+$simm13",
[],
IIC_jmp_or_call>;
}
// Section B.26 - Return from Trap Instruction
let isReturn = 1, isTerminator = 1, hasDelaySlot = 1,
isBarrier = 1, rd = 0 in {
def RETTrr : F3_1<2, 0b111001,
(outs), (ins (MEMrr $rs1, $rs2):$addr),
"rett $addr",
[],
IIC_jmp_or_call>;
def RETTri : F3_2<2, 0b111001,
(outs), (ins (MEMri $rs1, $simm13):$addr),
"rett $addr",
[],
IIC_jmp_or_call>;
}
// Section B.27 - Trap on Integer Condition Codes Instruction
// conditional branch class:
let DecoderNamespace = "SparcV8", hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
{
def TRAPrr : TRAPSPrr<0b111010,
(outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
"t$cond $rs1 + $rs2",
[]>;
def TRAPri : TRAPSPri<0b111010,
(outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
"t$cond $rs1 + $imm",
[]>;
}
multiclass TRAP<string regStr> {
def rr : TRAPSPrr<0b111010,
(outs), (ins IntRegs:$rs1, IntRegs:$rs2, CCOp:$cond),
!strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"),
[]>;
def ri : TRAPSPri<0b111010,
(outs), (ins IntRegs:$rs1, i32imm:$imm, CCOp:$cond),
!strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"),
[]>;
}
let DecoderNamespace = "SparcV9", Predicates = [HasV9], hasSideEffects = 1, Uses = [ICC], cc = 0b00 in
defm TICC : TRAP<"%icc">;
let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in
def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>;
let hasSideEffects = 1, rd = 0b01000, rs1 = 0, simm13 = 1 in
def TA1 : F3_2<0b10, 0b111010, (outs), (ins), "ta 1", [(debugtrap)]>;
// Section B.28 - Read State Register Instructions
let rs2 = 0 in
def RDASR : F3_1<2, 0b101000,
(outs IntRegs:$rd), (ins ASRRegs:$rs1),
"rd $rs1, $rd", []>;
// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
let Predicates = [HasNoV9] in {
let rs2 = 0, rs1 = 0, Uses=[PSR] in
def RDPSR : F3_1<2, 0b101001,
(outs IntRegs:$rd), (ins),
"rd %psr, $rd", []>;
let rs2 = 0, rs1 = 0, Uses=[WIM] in
def RDWIM : F3_1<2, 0b101010,
(outs IntRegs:$rd), (ins),
"rd %wim, $rd", []>;
let rs2 = 0, rs1 = 0, Uses=[TBR] in
def RDTBR : F3_1<2, 0b101011,
(outs IntRegs:$rd), (ins),
"rd %tbr, $rd", []>;
}
// PC don't exist on the SparcV8, only the V9.
let Predicates = [HasV9] in {
let rs2 = 0, rs1 = 5 in
def RDPC : F3_1<2, 0b101000,
(outs IntRegs:$rd), (ins),
"rd %pc, $rd", []>;
}
// Section B.29 - Write State Register Instructions
def WRASRrr : F3_1<2, 0b110000,
(outs ASRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
"wr $rs1, $rs2, $rd", []>;
def WRASRri : F3_2<2, 0b110000,
(outs ASRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
"wr $rs1, $simm13, $rd", []>;
// PSR, WIM, and TBR don't exist on the SparcV9, only the V8.
let Predicates = [HasNoV9] in {
let Defs = [PSR], rd=0 in {
def WRPSRrr : F3_1<2, 0b110001,
(outs), (ins IntRegs:$rs1, IntRegs:$rs2),
"wr $rs1, $rs2, %psr", []>;
def WRPSRri : F3_2<2, 0b110001,
(outs), (ins IntRegs:$rs1, simm13Op:$simm13),
"wr $rs1, $simm13, %psr", []>;
}
let Defs = [WIM], rd=0 in {
def WRWIMrr : F3_1<2, 0b110010,
(outs), (ins IntRegs:$rs1, IntRegs:$rs2),
"wr $rs1, $rs2, %wim", []>;
def WRWIMri : F3_2<2, 0b110010,
(outs), (ins IntRegs:$rs1, simm13Op:$simm13),
"wr $rs1, $simm13, %wim", []>;
}
let Defs = [TBR], rd=0 in {
def WRTBRrr : F3_1<2, 0b110011,
(outs), (ins IntRegs:$rs1, IntRegs:$rs2),
"wr $rs1, $rs2, %tbr", []>;
def WRTBRri : F3_2<2, 0b110011,
(outs), (ins IntRegs:$rs1, simm13Op:$simm13),
"wr $rs1, $simm13, %tbr", []>;
}
}
// Section B.30 - STBAR Instruction
let hasSideEffects = 1, rd = 0, rs1 = 0b01111, rs2 = 0 in
def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>;
// Section B.31 - Unimplemented Instruction
let rd = 0 in
def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22),
"unimp $imm22", []>;
// Section B.32 - Flush Instruction Memory
let rd = 0 in {
def FLUSHrr : F3_1<2, 0b111011, (outs), (ins (MEMrr $rs1, $rs2):$addr),
"flush $addr", []>;
def FLUSHri : F3_2<2, 0b111011, (outs), (ins (MEMri $rs1, $simm13):$addr),
"flush $addr", []>;
// The no-arg FLUSH is only here for the benefit of the InstAlias
// "flush", which cannot seem to use FLUSHrr, due to the inability
// to construct a MEMrr with fixed G0 registers.
let rs1 = 0, rs2 = 0 in
def FLUSH : F3_1<2, 0b111011, (outs), (ins), "flush %g0", []>;
}
// Section B.33 - Floating-point Operate (FPop) Instructions
// Convert Integer to Floating-point Instructions, p. 141
def FITOS : F3_3u<2, 0b110100, 0b011000100,
(outs FPRegs:$rd), (ins FPRegs:$rs2),
"fitos $rs2, $rd",
[(set FPRegs:$rd, (SPitof FPRegs:$rs2))],
IIC_fpu_fast_instr>;
def FITOD : F3_3u<2, 0b110100, 0b011001000,
(outs DFPRegs:$rd), (ins FPRegs:$rs2),
"fitod $rs2, $rd",
[(set DFPRegs:$rd, (SPitof FPRegs:$rs2))],
IIC_fpu_fast_instr>;
def FITOQ : F3_3u<2, 0b110100, 0b011001100,
(outs QFPRegs:$rd), (ins FPRegs:$rs2),
"fitoq $rs2, $rd",
[(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>,
Requires<[HasHardQuad]>;
// Convert Floating-point to Integer Instructions, p. 142
def FSTOI : F3_3u<2, 0b110100, 0b011010001,
(outs FPRegs:$rd), (ins FPRegs:$rs2),
"fstoi $rs2, $rd",
[(set FPRegs:$rd, (SPftoi FPRegs:$rs2))],
IIC_fpu_fast_instr>;
def FDTOI : F3_3u<2, 0b110100, 0b011010010,
(outs FPRegs:$rd), (ins DFPRegs:$rs2),
"fdtoi $rs2, $rd",
[(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))],
IIC_fpu_fast_instr>;
def FQTOI : F3_3u<2, 0b110100, 0b011010011,
(outs FPRegs:$rd), (ins QFPRegs:$rs2),
"fqtoi $rs2, $rd",
[(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>,
Requires<[HasHardQuad]>;
// Convert between Floating-point Formats Instructions, p. 143
def FSTOD : F3_3u<2, 0b110100, 0b011001001,
(outs DFPRegs:$rd), (ins FPRegs:$rs2),
"fstod $rs2, $rd",
[(set f64:$rd, (fpextend f32:$rs2))],
IIC_fpu_stod>;
def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
(outs QFPRegs:$rd), (ins FPRegs:$rs2),
"fstoq $rs2, $rd",
[(set f128:$rd, (fpextend f32:$rs2))]>,
Requires<[HasHardQuad]>;
def FDTOS : F3_3u<2, 0b110100, 0b011000110,
(outs FPRegs:$rd), (ins DFPRegs:$rs2),
"fdtos $rs2, $rd",
[(set f32:$rd, (fpround f64:$rs2))],
IIC_fpu_fast_instr>;
def FDTOQ : F3_3u<2, 0b110100, 0b011001110,
(outs QFPRegs:$rd), (ins DFPRegs:$rs2),
"fdtoq $rs2, $rd",
[(set f128:$rd, (fpextend f64:$rs2))]>,
Requires<[HasHardQuad]>;
def FQTOS : F3_3u<2, 0b110100, 0b011000111,
(outs FPRegs:$rd), (ins QFPRegs:$rs2),
"fqtos $rs2, $rd",
[(set f32:$rd, (fpround f128:$rs2))]>,
Requires<[HasHardQuad]>;
def FQTOD : F3_3u<2, 0b110100, 0b011001011,
(outs DFPRegs:$rd), (ins QFPRegs:$rs2),
"fqtod $rs2, $rd",
[(set f64:$rd, (fpround f128:$rs2))]>,
Requires<[HasHardQuad]>;
// Floating-point Move Instructions, p. 144
def FMOVS : F3_3u<2, 0b110100, 0b000000001,
(outs FPRegs:$rd), (ins FPRegs:$rs2),
"fmovs $rs2, $rd", []>;
def FNEGS : F3_3u<2, 0b110100, 0b000000101,
(outs FPRegs:$rd), (ins FPRegs:$rs2),
"fnegs $rs2, $rd",
[(set f32:$rd, (fneg f32:$rs2))],
IIC_fpu_negs>;
def FABSS : F3_3u<2, 0b110100, 0b000001001,
(outs FPRegs:$rd), (ins FPRegs:$rs2),
"fabss $rs2, $rd",
[(set f32:$rd, (fabs f32:$rs2))],
IIC_fpu_abs>;
// Floating-point Square Root Instructions, p.145
// FSQRTS generates an erratum on LEON processors, so by disabling this instruction
// this will be promoted to use FSQRTD with doubles instead.
let Predicates = [HasNoFdivSqrtFix] in
def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
(outs FPRegs:$rd), (ins FPRegs:$rs2),
"fsqrts $rs2, $rd",
[(set f32:$rd, (fsqrt f32:$rs2))],
IIC_fpu_sqrts>;
def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
(outs DFPRegs:$rd), (ins DFPRegs:$rs2),
"fsqrtd $rs2, $rd",
[(set f64:$rd, (fsqrt f64:$rs2))],
IIC_fpu_sqrtd>;
def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
(outs QFPRegs:$rd), (ins QFPRegs:$rs2),
"fsqrtq $rs2, $rd",
[(set f128:$rd, (fsqrt f128:$rs2))]>,
Requires<[HasHardQuad]>;
// Floating-point Add and Subtract Instructions, p. 146
def FADDS : F3_3<2, 0b110100, 0b001000001,
(outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
"fadds $rs1, $rs2, $rd",
[(set f32:$rd, (fadd f32:$rs1, f32:$rs2))],
IIC_fpu_fast_instr>;
def FADDD : F3_3<2, 0b110100, 0b001000010,
(outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"faddd $rs1, $rs2, $rd",
[(set f64:$rd, (fadd f64:$rs1, f64:$rs2))],
IIC_fpu_fast_instr>;
def FADDQ : F3_3<2, 0b110100, 0b001000011,
(outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
"faddq $rs1, $rs2, $rd",
[(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>,
Requires<[HasHardQuad]>;
def FSUBS : F3_3<2, 0b110100, 0b001000101,
(outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
"fsubs $rs1, $rs2, $rd",
[(set f32:$rd, (fsub f32:$rs1, f32:$rs2))],
IIC_fpu_fast_instr>;
def FSUBD : F3_3<2, 0b110100, 0b001000110,
(outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"fsubd $rs1, $rs2, $rd",
[(set f64:$rd, (fsub f64:$rs1, f64:$rs2))],
IIC_fpu_fast_instr>;
def FSUBQ : F3_3<2, 0b110100, 0b001000111,
(outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
"fsubq $rs1, $rs2, $rd",
[(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>,
Requires<[HasHardQuad]>;
// Floating-point Multiply and Divide Instructions, p. 147
def FMULS : F3_3<2, 0b110100, 0b001001001,
(outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
"fmuls $rs1, $rs2, $rd",
[(set f32:$rd, (fmul f32:$rs1, f32:$rs2))],
IIC_fpu_muls>,
Requires<[HasFMULS]>;
def FMULD : F3_3<2, 0b110100, 0b001001010,
(outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"fmuld $rs1, $rs2, $rd",
[(set f64:$rd, (fmul f64:$rs1, f64:$rs2))],
IIC_fpu_muld>;
def FMULQ : F3_3<2, 0b110100, 0b001001011,
(outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
"fmulq $rs1, $rs2, $rd",
[(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>,
Requires<[HasHardQuad]>;
def FSMULD : F3_3<2, 0b110100, 0b001101001,
(outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
"fsmuld $rs1, $rs2, $rd",
[(set f64:$rd, (fmul (fpextend f32:$rs1),
(fpextend f32:$rs2)))],
IIC_fpu_muld>,
Requires<[HasFSMULD]>;
def FDMULQ : F3_3<2, 0b110100, 0b001101110,
(outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"fdmulq $rs1, $rs2, $rd",
[(set f128:$rd, (fmul (fpextend f64:$rs1),
(fpextend f64:$rs2)))]>,
Requires<[HasHardQuad]>;
// FDIVS generates an erratum on LEON processors, so by disabling this instruction
// this will be promoted to use FDIVD with doubles instead.
def FDIVS : F3_3<2, 0b110100, 0b001001101,
(outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
"fdivs $rs1, $rs2, $rd",
[(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))],
IIC_fpu_divs>;
def FDIVD : F3_3<2, 0b110100, 0b001001110,
(outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"fdivd $rs1, $rs2, $rd",
[(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))],
IIC_fpu_divd>;
def FDIVQ : F3_3<2, 0b110100, 0b001001111,
(outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
"fdivq $rs1, $rs2, $rd",
[(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>,
Requires<[HasHardQuad]>;
// Floating-point Compare Instructions, p. 148
// Note: the 2nd template arg is different for these guys.
// Note 2: the result of a FCMP is not available until the 2nd cycle
// after the instr is retired, but there is no interlock in Sparc V8.
// This behavior is modeled with a forced noop after the instruction in
// DelaySlotFiller.
let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
def FCMPS : F3_3c<2, 0b110101, 0b001010001,
(outs), (ins FPRegs:$rs1, FPRegs:$rs2),
"fcmps $rs1, $rs2",
[(SPcmpfcc f32:$rs1, f32:$rs2)],
IIC_fpu_fast_instr>;
def FCMPD : F3_3c<2, 0b110101, 0b001010010,
(outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"fcmpd $rs1, $rs2",
[(SPcmpfcc f64:$rs1, f64:$rs2)],
IIC_fpu_fast_instr>;
def FCMPQ : F3_3c<2, 0b110101, 0b001010011,
(outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
"fcmpq $rs1, $rs2",
[(SPcmpfcc f128:$rs1, f128:$rs2)]>,
Requires<[HasHardQuad]>;
}
// A.13 Floating-Point Compare (SPARC v9)
// Note that these always write to %fcc0 instead of having its destination
// allocated automatically.
// This avoids complications with the scheduler sometimes wanting to spill
// the contents of an FCC, since SPARC v9 doesn't have facilities to spill
// an individual FCC.
let Predicates = [HasV9], Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in {
def FCMPS_V9 : F3_3c<2, 0b110101, 0b001010001,
(outs), (ins FPRegs:$rs1, FPRegs:$rs2),
"fcmps %fcc0, $rs1, $rs2",
[(SPcmpfccv9 f32:$rs1, f32:$rs2)],
IIC_fpu_fast_instr>;
def FCMPD_V9 : F3_3c<2, 0b110101, 0b001010010,
(outs), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"fcmpd %fcc0, $rs1, $rs2",
[(SPcmpfccv9 f64:$rs1, f64:$rs2)],
IIC_fpu_fast_instr>;
def FCMPQ_V9 : F3_3c<2, 0b110101, 0b001010011,
(outs), (ins QFPRegs:$rs1, QFPRegs:$rs2),
"fcmpq %fcc0, $rs1, $rs2",
[(SPcmpfccv9 f128:$rs1, f128:$rs2)]>,
Requires<[HasHardQuad]>;
}
//===----------------------------------------------------------------------===//
// Instructions for Thread Local Storage(TLS).
//===----------------------------------------------------------------------===//
let isAsmParserOnly = 1 in {
def TLS_ADDrr : F3_1<2, 0b000000,
(outs IntRegs:$rd),
(ins IntRegs:$rs1, IntRegs:$rs2, TailRelocSymTLSAdd:$sym),
"add $rs1, $rs2, $rd, $sym",
[(set i32:$rd,
(tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
let mayLoad = 1 in {
def TLS_LDrr : F3_1<3, 0b000000,
(outs IntRegs:$rd),
(ins (MEMrr $rs1, $rs2):$addr, TailRelocSymTLSLoad:$sym),
"ld [$addr], $rd, $sym",
[(set i32:$rd,
(tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
}
let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
def TLS_CALL : InstSP<(outs),
(ins calltarget:$disp, TailRelocSymTLSCall:$sym,
variable_ops),
"call $disp, $sym",
[(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)],
IIC_jmp_or_call> {
bits<30> disp;
let op = 1;
let Inst{29-0} = disp;
}
}
//===----------------------------------------------------------------------===//
// Instructions for tail calls.
//===----------------------------------------------------------------------===//
let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1,
isTerminator = 1, isBarrier = 1 in {
def TAIL_CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops),
"call $disp",
[(tailcall tglobaladdr:$disp)]> {
bits<30> disp;
let op = 1;
let Inst{29-0} = disp;
}
}
def : Pat<(tailcall (iPTR texternalsym:$dst)),
(TAIL_CALL texternalsym:$dst)>;
let isCodeGenOnly = 1, isReturn = 1, hasDelaySlot = 1, isTerminator = 1,
isBarrier = 1, rd = 0 in {
def TAIL_CALLri : F3_2<2, 0b111000,
(outs), (ins (MEMri $rs1, $simm13):$addr, variable_ops),
"jmp $addr",
[(tailcall ADDRri:$addr)]>;
}
//===----------------------------------------------------------------------===//
// V9 Instructions
//===----------------------------------------------------------------------===//
// V9 Conditional Moves.
let Predicates = [HasV9], Constraints = "$f = $rd" in {
// Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
let Uses = [ICC], intcc = 1, cc = 0b00 in {
def MOVICCrr
: F4_1<0b101100, (outs IntRegs:$rd),
(ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
"mov$cond %icc, $rs2, $rd",
[(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
def MOVICCri
: F4_2<0b101100, (outs IntRegs:$rd),
(ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
"mov$cond %icc, $simm11, $rd",
[(set i32:$rd,
(SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
}
let Uses = [FCC0], intcc = 0, cc = 0b00 in {
def MOVFCCrr
: F4_1<0b101100, (outs IntRegs:$rd),
(ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
"mov$cond %fcc0, $rs2, $rd",
[(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
def MOVFCCri
: F4_2<0b101100, (outs IntRegs:$rd),
(ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
"mov$cond %fcc0, $simm11, $rd",
[(set i32:$rd,
(SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
}
let Uses = [ICC], intcc = 1, opf_cc = 0b00 in {
def FMOVS_ICC
: F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
(ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
"fmovs$cond %icc, $rs2, $rd",
[(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
def FMOVD_ICC
: F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
(ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
"fmovd$cond %icc, $rs2, $rd",
[(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
let Predicates = [HasV9, HasHardQuad] in
def FMOVQ_ICC
: F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
(ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
"fmovq$cond %icc, $rs2, $rd",
[(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>;
}
let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in {
def FMOVS_FCC
: F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
(ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
"fmovs$cond %fcc0, $rs2, $rd",
[(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
def FMOVD_FCC
: F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
(ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
"fmovd$cond %fcc0, $rs2, $rd",
[(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
let Predicates = [HasV9, HasHardQuad] in
def FMOVQ_FCC
: F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
(ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
"fmovq$cond %fcc0, $rs2, $rd",
[(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>;
}
}
// Floating-Point Move Instructions, p. 164 of the V9 manual.
let Predicates = [HasV9] in {
def FMOVD : F3_3u<2, 0b110100, 0b000000010,
(outs DFPRegs:$rd), (ins DFPRegs:$rs2),
"fmovd $rs2, $rd", []>;
let Predicates = [HasV9, HasHardQuad] in
def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
(outs QFPRegs:$rd), (ins QFPRegs:$rs2),
"fmovq $rs2, $rd", []>;
def FNEGD : F3_3u<2, 0b110100, 0b000000110,
(outs DFPRegs:$rd), (ins DFPRegs:$rs2),
"fnegd $rs2, $rd",
[(set f64:$rd, (fneg f64:$rs2))]>;
let Predicates = [HasV9, HasHardQuad] in
def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
(outs QFPRegs:$rd), (ins QFPRegs:$rs2),
"fnegq $rs2, $rd",
[(set f128:$rd, (fneg f128:$rs2))]>;
def FABSD : F3_3u<2, 0b110100, 0b000001010,
(outs DFPRegs:$rd), (ins DFPRegs:$rs2),
"fabsd $rs2, $rd",
[(set f64:$rd, (fabs f64:$rs2))]>;
let Predicates = [HasV9, HasHardQuad] in
def FABSQ : F3_3u<2, 0b110100, 0b000001011,
(outs QFPRegs:$rd), (ins QFPRegs:$rs2),
"fabsq $rs2, $rd",
[(set f128:$rd, (fabs f128:$rs2))]>;
}
// Floating-point compare instruction with %fcc0-%fcc3.
def V9FCMPS : F3_3c<2, 0b110101, 0b001010001,
(outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
"fcmps $rd, $rs1, $rs2", []>;
def V9FCMPD : F3_3c<2, 0b110101, 0b001010010,
(outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"fcmpd $rd, $rs1, $rs2", []>;
def V9FCMPQ : F3_3c<2, 0b110101, 0b001010011,
(outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
"fcmpq $rd, $rs1, $rs2", []>,
Requires<[HasHardQuad]>;
let hasSideEffects = 1 in {
def V9FCMPES : F3_3c<2, 0b110101, 0b001010101,
(outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2),
"fcmpes $rd, $rs1, $rs2", []>;
def V9FCMPED : F3_3c<2, 0b110101, 0b001010110,
(outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2),
"fcmped $rd, $rs1, $rs2", []>;
def V9FCMPEQ : F3_3c<2, 0b110101, 0b001010111,
(outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2),
"fcmpeq $rd, $rs1, $rs2", []>,
Requires<[HasHardQuad]>;
}
// Floating point conditional move instrucitons with %fcc0-%fcc3.
let Predicates = [HasV9] in {
let Constraints = "$f = $rd", intcc = 0 in {
def V9MOVFCCrr
: F4_1<0b101100, (outs IntRegs:$rd),
(ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
"mov$cond $cc, $rs2, $rd", []>;
def V9MOVFCCri
: F4_2<0b101100, (outs IntRegs:$rd),
(ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond),
"mov$cond $cc, $simm11, $rd", []>;
def V9FMOVS_FCC
: F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
(ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
"fmovs$cond $opf_cc, $rs2, $rd", []>;
def V9FMOVD_FCC
: F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
(ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
"fmovd$cond $opf_cc, $rs2, $rd", []>;
let Predicates = [HasV9, HasHardQuad] in
def V9FMOVQ_FCC
: F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
(ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
"fmovq$cond $opf_cc, $rs2, $rd", []>;
} // Constraints = "$f = $rd", ...
} // let Predicates = [hasV9]
// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
// the top 32-bits before using it. To do this clearing, we use a SRLri X,0.
let rs1 = 0 in
def POPCrr : F3_1<2, 0b101110,
(outs IntRegs:$rd), (ins IntRegs:$rs2),
"popc $rs2, $rd", []>, Requires<[HasV9]>;
def : Pat<(i32 (ctpop i32:$src)),
(POPCrr (SRLri $src, 0))>;
let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in
def MEMBARi : F3_2<2, 0b101000, (outs), (ins MembarTag:$simm13),
"membar $simm13", []>;
let Predicates = [HasV9], rd = 15, rs1 = 0b00000 in
def SIR: F3_2<2, 0b110000, (outs),
(ins simm13Op:$simm13),
"sir $simm13", []>;
// The CAS instruction, unlike other instructions, only comes in a
// form which requires an ASI be provided. The ASI value hardcoded
// here is ASI_PRIMARY, the default unprivileged ASI for SparcV9.
let Predicates = [HasV9], Constraints = "$swap = $rd", asi = 0b10000000 in
def CASrr: F3_1_asi<3, 0b111100,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
IntRegs:$swap),
"cas [$rs1], $rs2, $rd",
[(set i32:$rd,
(atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
// CASA is supported as an instruction on some LEON3 and all LEON4 processors.
// This version can be automatically lowered from C code, selecting ASI 10
let Predicates = [HasLeonCASA], Constraints = "$swap = $rd", asi = 0b00001010 in
def CASAasi10: F3_1_asi<3, 0b111100,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
IntRegs:$swap),
"casa [$rs1] 10, $rs2, $rd",
[(set i32:$rd,
(atomic_cmp_swap_32 iPTR:$rs1, i32:$rs2, i32:$swap))]>;
// CASA supported on some LEON3 and all LEON4 processors. Same pattern as
// CASrr, above, but with a different ASI. This version is supported for
// inline assembly lowering only.
let Predicates = [HasLeonCASA], Constraints = "$swap = $rd" in
def CASArr: F3_1_asi<3, 0b111100,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2,
IntRegs:$swap, i8imm:$asi),
"casa [$rs1] $asi, $rs2, $rd", []>;
// TODO: Add DAG sequence to lower these instructions. Currently, only provided
// as inline assembler-supported instructions.
let Predicates = [HasUMAC_SMAC], Defs = [Y, ASR18], Uses = [Y, ASR18] in {
def SMACrr : F3_1<2, 0b111111,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
"smac $rs1, $rs2, $rd",
[], IIC_smac_umac>;
def SMACri : F3_2<2, 0b111111,
(outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
"smac $rs1, $simm13, $rd",
[], IIC_smac_umac>;
def UMACrr : F3_1<2, 0b111110,
(outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, ASRRegs:$asr18),
"umac $rs1, $rs2, $rd",
[], IIC_smac_umac>;
def UMACri : F3_2<2, 0b111110,
(outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13, ASRRegs:$asr18),
"umac $rs1, $simm13, $rd",
[], IIC_smac_umac>;
}
// The partial write WRPSR instruction has a non-zero destination
// register value to separate it from the standard instruction.
let Predicates = [HasPWRPSR], Defs = [PSR], rd=1 in {
def PWRPSRrr : F3_1<2, 0b110001,
(outs), (ins IntRegs:$rs1, IntRegs:$rs2),
"pwr $rs1, $rs2, %psr", []>;
def PWRPSRri : F3_2<2, 0b110001,
(outs), (ins IntRegs:$rs1, simm13Op:$simm13),
"pwr $rs1, $simm13, %psr", []>;
}
let Defs = [ICC] in {
defm TADDCC : F3_12np<"taddcc", 0b100000>;
defm TSUBCC : F3_12np<"tsubcc", 0b100001>;
let hasSideEffects = 1 in {
defm TADDCCTV : F3_12np<"taddcctv", 0b100010>;
defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>;
}
}
// Section A.42 - Prefetch Data
let Predicates = [HasV9] in {
def PREFETCHr : F3_1<3, 0b101101,
(outs), (ins (MEMrr $rs1, $rs2):$addr, shift_imm5:$rd),
"prefetch [$addr], $rd", []>;
def PREFETCHi : F3_2<3, 0b101101,
(outs), (ins (MEMri $rs1, $simm13):$addr, shift_imm5:$rd),
"prefetch [$addr], $rd", []>;
}
// Section A.43 - Read Privileged Register Instructions
let Predicates = [HasV9] in {
let rs2 = 0 in
def RDPR : F3_1<2, 0b101010,
(outs IntRegs:$rd), (ins PRRegs:$rs1),
"rdpr $rs1, $rd", []>;
}
// Section A.62 - Write Privileged Register Instructions
let Predicates = [HasV9] in {
def WRPRrr : F3_1<2, 0b110010,
(outs PRRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2),
"wrpr $rs1, $rs2, $rd", []>;
def WRPRri : F3_2<2, 0b110010,
(outs PRRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13),
"wrpr $rs1, $simm13, $rd", []>;
}
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// Zero immediate.
def : Pat<(i32 0), (COPY (i32 G0))>;
// Small immediates.
def : Pat<(i32 simm13:$val),
(ORri (i32 G0), imm:$val)>;
// Arbitrary immediates.
def : Pat<(i32 imm:$val),
(ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
// Global addresses, constant pool entries
let Predicates = [Is32Bit] in {
def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
// GlobalTLS addresses
def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
(ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
(XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
// Blockaddress
def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
// Add reg, lo. This is used when taking the addr of a global/constpool entry.
def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDri $r, tconstpool:$in)>;
def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
(ADDri $r, tblockaddress:$in)>;
}
// Calls:
def : Pat<(call tglobaladdr:$dst),
(CALL tglobaladdr:$dst)>;
def : Pat<(call texternalsym:$dst),
(CALL texternalsym:$dst)>;
// Map integer extload's to zextloads.
def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
// zextload bool -> zextload byte
def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
// store 0, addr -> store %g0, addr
def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
// store bar for all atomic_fence in V8.
let Predicates = [HasNoV9] in
def : Pat<(atomic_fence timm, timm), (STBAR)>;
let Predicates = [HasV9] in
def : Pat<(atomic_fence timm, timm), (MEMBARi 0xf)>;
// atomic_load addr -> load addr
def : Pat<(i32 (atomic_load_8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
def : Pat<(i32 (atomic_load_8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
def : Pat<(i32 (atomic_load_16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
def : Pat<(i32 (atomic_load_16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
def : Pat<(i32 (atomic_load_32 ADDRrr:$src)), (LDrr ADDRrr:$src)>;
def : Pat<(i32 (atomic_load_32 ADDRri:$src)), (LDri ADDRri:$src)>;
// atomic_store val, addr -> store val, addr
def : Pat<(atomic_store_8 ADDRrr:$dst, i32:$val), (STBrr ADDRrr:$dst, $val)>;
def : Pat<(atomic_store_8 ADDRri:$dst, i32:$val), (STBri ADDRri:$dst, $val)>;
def : Pat<(atomic_store_16 ADDRrr:$dst, i32:$val), (STHrr ADDRrr:$dst, $val)>;
def : Pat<(atomic_store_16 ADDRri:$dst, i32:$val), (STHri ADDRri:$dst, $val)>;
def : Pat<(atomic_store_32 ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>;
def : Pat<(atomic_store_32 ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>;
// A register pair with zero upper half.
// The upper part is done with ORrr instead of `COPY G0`
// or a normal register copy, since `COPY G0`s in that place
// will be converted into `COPY G0_G1` later on, which is not
// what we want in this case.
def : Pat<(build_vector (i32 0), (i32 IntRegs:$a2)),
(INSERT_SUBREG (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
(ORrr (i32 G0), (i32 G0)), sub_even),
(i32 IntRegs:$a2), sub_odd)>;
// extract_vector
def : Pat<(extractelt (v2i32 IntPair:$Rn), 0),
(i32 (EXTRACT_SUBREG IntPair:$Rn, sub_even))>;
def : Pat<(extractelt (v2i32 IntPair:$Rn), 1),
(i32 (EXTRACT_SUBREG IntPair:$Rn, sub_odd))>;
// build_vector
def : Pat<(build_vector (i32 IntRegs:$a1), (i32 IntRegs:$a2)),
(INSERT_SUBREG
(INSERT_SUBREG (v2i32 (IMPLICIT_DEF)), (i32 IntRegs:$a1), sub_even),
(i32 IntRegs:$a2), sub_odd)>;
include "SparcInstr64Bit.td"
include "SparcInstrVIS.td"
include "SparcInstrAliases.td"