blob: 09c2d5161aba05dbe7afa7bb129c633e36048200 [file] [log] [blame]
//===-- CSKYISelDAGToDAG.cpp - A dag to dag inst selector for CSKY---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the CSKY target.
//
//===----------------------------------------------------------------------===//
#include "CSKY.h"
#include "CSKYSubtarget.h"
#include "CSKYTargetMachine.h"
#include "MCTargetDesc/CSKYMCTargetDesc.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
using namespace llvm;
#define DEBUG_TYPE "csky-isel"
#define PASS_NAME "CSKY DAG->DAG Pattern Instruction Selection"
namespace {
class CSKYDAGToDAGISel : public SelectionDAGISel {
const CSKYSubtarget *Subtarget;
public:
static char ID;
explicit CSKYDAGToDAGISel(CSKYTargetMachine &TM, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(ID, TM, OptLevel) {}
bool runOnMachineFunction(MachineFunction &MF) override {
// Reset the subtarget each time through.
Subtarget = &MF.getSubtarget<CSKYSubtarget>();
SelectionDAGISel::runOnMachineFunction(MF);
return true;
}
void Select(SDNode *N) override;
bool selectAddCarry(SDNode *N);
bool selectSubCarry(SDNode *N);
bool selectBITCAST_TO_LOHI(SDNode *N);
bool selectInlineAsm(SDNode *N);
SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
std::vector<SDValue> &OutOps) override;
#include "CSKYGenDAGISel.inc"
};
} // namespace
char CSKYDAGToDAGISel::ID = 0;
INITIALIZE_PASS(CSKYDAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
void CSKYDAGToDAGISel::Select(SDNode *N) {
// If we have a custom node, we have already selected
if (N->isMachineOpcode()) {
LLVM_DEBUG(dbgs() << "== "; N->dump(CurDAG); dbgs() << "\n");
N->setNodeId(-1);
return;
}
SDLoc Dl(N);
unsigned Opcode = N->getOpcode();
bool IsSelected = false;
switch (Opcode) {
default:
break;
case ISD::ADDCARRY:
IsSelected = selectAddCarry(N);
break;
case ISD::SUBCARRY:
IsSelected = selectSubCarry(N);
break;
case ISD::GLOBAL_OFFSET_TABLE: {
Register GP = Subtarget->getInstrInfo()->getGlobalBaseReg(*MF);
ReplaceNode(N, CurDAG->getRegister(GP, N->getValueType(0)).getNode());
IsSelected = true;
break;
}
case ISD::FrameIndex: {
SDValue Imm = CurDAG->getTargetConstant(0, Dl, MVT::i32);
int FI = cast<FrameIndexSDNode>(N)->getIndex();
SDValue TFI = CurDAG->getTargetFrameIndex(FI, MVT::i32);
ReplaceNode(N, CurDAG->getMachineNode(Subtarget->hasE2() ? CSKY::ADDI32
: CSKY::ADDI16XZ,
Dl, MVT::i32, TFI, Imm));
IsSelected = true;
break;
}
case CSKYISD::BITCAST_TO_LOHI:
IsSelected = selectBITCAST_TO_LOHI(N);
break;
case ISD::INLINEASM:
case ISD::INLINEASM_BR:
IsSelected = selectInlineAsm(N);
break;
}
if (IsSelected)
return;
// Select the default instruction.
SelectCode(N);
}
bool CSKYDAGToDAGISel::selectInlineAsm(SDNode *N) {
std::vector<SDValue> AsmNodeOperands;
unsigned Flag, Kind;
bool Changed = false;
unsigned NumOps = N->getNumOperands();
// Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
// However, some instructions (e.g. mula.s32) require GPR pair.
// Since there is no constraint to explicitly specify a
// reg pair, we use GPRPair reg class for "%r" for 64-bit data.
SDLoc dl(N);
SDValue Glue =
N->getGluedNode() ? N->getOperand(NumOps - 1) : SDValue(nullptr, 0);
SmallVector<bool, 8> OpChanged;
// Glue node will be appended late.
for (unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e;
++i) {
SDValue op = N->getOperand(i);
AsmNodeOperands.push_back(op);
if (i < InlineAsm::Op_FirstOperand)
continue;
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
Flag = C->getZExtValue();
Kind = InlineAsm::getKind(Flag);
} else
continue;
// Immediate operands to inline asm in the SelectionDAG are modeled with
// two operands. The first is a constant of value InlineAsm::Kind_Imm, and
// the second is a constant with the value of the immediate. If we get here
// and we have a Kind_Imm, skip the next operand, and continue.
if (Kind == InlineAsm::Kind_Imm) {
SDValue op = N->getOperand(++i);
AsmNodeOperands.push_back(op);
continue;
}
unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
if (NumRegs)
OpChanged.push_back(false);
unsigned DefIdx = 0;
bool IsTiedToChangedOp = false;
// If it's a use that is tied with a previous def, it has no
// reg class constraint.
if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
IsTiedToChangedOp = OpChanged[DefIdx];
// Memory operands to inline asm in the SelectionDAG are modeled with two
// operands: a constant of value InlineAsm::Kind_Mem followed by the input
// operand. If we get here and we have a Kind_Mem, skip the next operand (so
// it doesn't get misinterpreted), and continue. We do this here because
// it's important to update the OpChanged array correctly before moving on.
if (Kind == InlineAsm::Kind_Mem) {
SDValue op = N->getOperand(++i);
AsmNodeOperands.push_back(op);
continue;
}
if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef &&
Kind != InlineAsm::Kind_RegDefEarlyClobber)
continue;
unsigned RC;
bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
if ((!IsTiedToChangedOp && (!HasRC || RC != CSKY::GPRRegClassID)) ||
NumRegs != 2)
continue;
assert((i + 2 < NumOps) && "Invalid number of operands in inline asm");
SDValue V0 = N->getOperand(i + 1);
SDValue V1 = N->getOperand(i + 2);
unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
SDValue PairedReg;
MachineRegisterInfo &MRI = MF->getRegInfo();
if (Kind == InlineAsm::Kind_RegDef ||
Kind == InlineAsm::Kind_RegDefEarlyClobber) {
// Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
// the original GPRs.
Register GPVR = MRI.createVirtualRegister(&CSKY::GPRPairRegClass);
PairedReg = CurDAG->getRegister(GPVR, MVT::i64);
SDValue Chain = SDValue(N, 0);
SDNode *GU = N->getGluedUser();
SDValue RegCopy =
CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::i64, Chain.getValue(1));
// Extract values from a GPRPair reg and copy to the original GPR reg.
SDValue Sub0 =
CurDAG->getTargetExtractSubreg(CSKY::sub32_0, dl, MVT::i32, RegCopy);
SDValue Sub1 =
CurDAG->getTargetExtractSubreg(CSKY::sub32_32, dl, MVT::i32, RegCopy);
SDValue T0 =
CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0, RegCopy.getValue(1));
SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
// Update the original glue user.
std::vector<SDValue> Ops(GU->op_begin(), GU->op_end() - 1);
Ops.push_back(T1.getValue(1));
CurDAG->UpdateNodeOperands(GU, Ops);
} else {
// For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
// GPRPair and then pass the GPRPair to the inline asm.
SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
// As REG_SEQ doesn't take RegisterSDNode, we copy them first.
SDValue T0 =
CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32, Chain.getValue(1));
SDValue T1 =
CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32, T0.getValue(1));
SDValue Pair = SDValue(createGPRPairNode(MVT::i64, T0, T1), 0);
// Copy REG_SEQ into a GPRPair-typed VR and replace the original two
// i32 VRs of inline asm with it.
Register GPVR = MRI.createVirtualRegister(&CSKY::GPRPairRegClass);
PairedReg = CurDAG->getRegister(GPVR, MVT::i64);
Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
Glue = Chain.getValue(1);
}
Changed = true;
if (PairedReg.getNode()) {
OpChanged[OpChanged.size() - 1] = true;
Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
if (IsTiedToChangedOp)
Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
else
Flag = InlineAsm::getFlagWordForRegClass(Flag, CSKY::GPRPairRegClassID);
// Replace the current flag.
AsmNodeOperands[AsmNodeOperands.size() - 1] =
CurDAG->getTargetConstant(Flag, dl, MVT::i32);
// Add the new register node and skip the original two GPRs.
AsmNodeOperands.push_back(PairedReg);
// Skip the next two GPRs.
i += 2;
}
}
if (Glue.getNode())
AsmNodeOperands.push_back(Glue);
if (!Changed)
return false;
SDValue New = CurDAG->getNode(N->getOpcode(), SDLoc(N),
CurDAG->getVTList(MVT::Other, MVT::Glue),
AsmNodeOperands);
New->setNodeId(-1);
ReplaceNode(N, New.getNode());
return true;
}
bool CSKYDAGToDAGISel::selectBITCAST_TO_LOHI(SDNode *N) {
SDLoc Dl(N);
auto VT = N->getValueType(0);
auto V = N->getOperand(0);
if (!Subtarget->hasFPUv2DoubleFloat())
return false;
SDValue V1 = SDValue(CurDAG->getMachineNode(CSKY::FMFVRL_D, Dl, VT, V), 0);
SDValue V2 = SDValue(CurDAG->getMachineNode(CSKY::FMFVRH_D, Dl, VT, V), 0);
ReplaceUses(SDValue(N, 0), V1);
ReplaceUses(SDValue(N, 1), V2);
CurDAG->RemoveDeadNode(N);
return true;
}
bool CSKYDAGToDAGISel::selectAddCarry(SDNode *N) {
MachineSDNode *NewNode = nullptr;
auto Type0 = N->getValueType(0);
auto Type1 = N->getValueType(1);
auto Op0 = N->getOperand(0);
auto Op1 = N->getOperand(1);
auto Op2 = N->getOperand(2);
SDLoc Dl(N);
if (isNullConstant(Op2)) {
auto *CA = CurDAG->getMachineNode(
Subtarget->has2E3() ? CSKY::CLRC32 : CSKY::CLRC16, Dl, Type1);
NewNode = CurDAG->getMachineNode(
Subtarget->has2E3() ? CSKY::ADDC32 : CSKY::ADDC16, Dl, {Type0, Type1},
{Op0, Op1, SDValue(CA, 0)});
} else if (isOneConstant(Op2)) {
auto *CA = CurDAG->getMachineNode(
Subtarget->has2E3() ? CSKY::SETC32 : CSKY::SETC16, Dl, Type1);
NewNode = CurDAG->getMachineNode(
Subtarget->has2E3() ? CSKY::ADDC32 : CSKY::ADDC16, Dl, {Type0, Type1},
{Op0, Op1, SDValue(CA, 0)});
} else {
NewNode = CurDAG->getMachineNode(Subtarget->has2E3() ? CSKY::ADDC32
: CSKY::ADDC16,
Dl, {Type0, Type1}, {Op0, Op1, Op2});
}
ReplaceNode(N, NewNode);
return true;
}
static SDValue InvertCarryFlag(const CSKYSubtarget *Subtarget,
SelectionDAG *DAG, SDLoc Dl, SDValue OldCarry) {
auto NewCarryReg =
DAG->getMachineNode(Subtarget->has2E3() ? CSKY::MVCV32 : CSKY::MVCV16, Dl,
MVT::i32, OldCarry);
auto NewCarry =
DAG->getMachineNode(Subtarget->hasE2() ? CSKY::BTSTI32 : CSKY::BTSTI16,
Dl, OldCarry.getValueType(), SDValue(NewCarryReg, 0),
DAG->getTargetConstant(0, Dl, MVT::i32));
return SDValue(NewCarry, 0);
}
bool CSKYDAGToDAGISel::selectSubCarry(SDNode *N) {
MachineSDNode *NewNode = nullptr;
auto Type0 = N->getValueType(0);
auto Type1 = N->getValueType(1);
auto Op0 = N->getOperand(0);
auto Op1 = N->getOperand(1);
auto Op2 = N->getOperand(2);
SDLoc Dl(N);
if (isNullConstant(Op2)) {
auto *CA = CurDAG->getMachineNode(
Subtarget->has2E3() ? CSKY::SETC32 : CSKY::SETC16, Dl, Type1);
NewNode = CurDAG->getMachineNode(
Subtarget->has2E3() ? CSKY::SUBC32 : CSKY::SUBC16, Dl, {Type0, Type1},
{Op0, Op1, SDValue(CA, 0)});
} else if (isOneConstant(Op2)) {
auto *CA = CurDAG->getMachineNode(
Subtarget->has2E3() ? CSKY::CLRC32 : CSKY::CLRC16, Dl, Type1);
NewNode = CurDAG->getMachineNode(
Subtarget->has2E3() ? CSKY::SUBC32 : CSKY::SUBC16, Dl, {Type0, Type1},
{Op0, Op1, SDValue(CA, 0)});
} else {
auto CarryIn = InvertCarryFlag(Subtarget, CurDAG, Dl, Op2);
NewNode = CurDAG->getMachineNode(Subtarget->has2E3() ? CSKY::SUBC32
: CSKY::SUBC16,
Dl, {Type0, Type1}, {Op0, Op1, CarryIn});
}
auto CarryOut = InvertCarryFlag(Subtarget, CurDAG, Dl, SDValue(NewNode, 1));
ReplaceUses(SDValue(N, 0), SDValue(NewNode, 0));
ReplaceUses(SDValue(N, 1), CarryOut);
CurDAG->RemoveDeadNode(N);
return true;
}
SDNode *CSKYDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
SDLoc dl(V0.getNode());
SDValue RegClass =
CurDAG->getTargetConstant(CSKY::GPRPairRegClassID, dl, MVT::i32);
SDValue SubReg0 = CurDAG->getTargetConstant(CSKY::sub32_0, dl, MVT::i32);
SDValue SubReg1 = CurDAG->getTargetConstant(CSKY::sub32_32, dl, MVT::i32);
const SDValue Ops[] = {RegClass, V0, SubReg0, V1, SubReg1};
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
}
bool CSKYDAGToDAGISel::SelectInlineAsmMemoryOperand(
const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
switch (ConstraintID) {
case InlineAsm::Constraint_m:
// We just support simple memory operands that have a single address
// operand and need no special handling.
OutOps.push_back(Op);
return false;
default:
break;
}
return true;
}
FunctionPass *llvm::createCSKYISelDag(CSKYTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new CSKYDAGToDAGISel(TM, OptLevel);
}