| //===- SpillPlacement.cpp - Optimal Spill Code Placement ------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the spill code placement analysis. |
| // |
| // Each edge bundle corresponds to a node in a Hopfield network. Constraints on |
| // basic blocks are weighted by the block frequency and added to become the node |
| // bias. |
| // |
| // Transparent basic blocks have the variable live through, but don't care if it |
| // is spilled or in a register. These blocks become connections in the Hopfield |
| // network, again weighted by block frequency. |
| // |
| // The Hopfield network minimizes (possibly locally) its energy function: |
| // |
| // E = -sum_n V_n * ( B_n + sum_{n, m linked by b} V_m * F_b ) |
| // |
| // The energy function represents the expected spill code execution frequency, |
| // or the cost of spilling. This is a Lyapunov function which never increases |
| // when a node is updated. It is guaranteed to converge to a local minimum. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SpillPlacement.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/CodeGen/EdgeBundles.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/Pass.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "spill-code-placement" |
| |
| char SpillPlacement::ID = 0; |
| |
| char &llvm::SpillPlacementID = SpillPlacement::ID; |
| |
| INITIALIZE_PASS_BEGIN(SpillPlacement, DEBUG_TYPE, |
| "Spill Code Placement Analysis", true, true) |
| INITIALIZE_PASS_DEPENDENCY(EdgeBundles) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_END(SpillPlacement, DEBUG_TYPE, |
| "Spill Code Placement Analysis", true, true) |
| |
| void SpillPlacement::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| AU.addRequired<MachineBlockFrequencyInfo>(); |
| AU.addRequiredTransitive<EdgeBundles>(); |
| AU.addRequiredTransitive<MachineLoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| /// Node - Each edge bundle corresponds to a Hopfield node. |
| /// |
| /// The node contains precomputed frequency data that only depends on the CFG, |
| /// but Bias and Links are computed each time placeSpills is called. |
| /// |
| /// The node Value is positive when the variable should be in a register. The |
| /// value can change when linked nodes change, but convergence is very fast |
| /// because all weights are positive. |
| struct SpillPlacement::Node { |
| /// BiasN - Sum of blocks that prefer a spill. |
| BlockFrequency BiasN; |
| |
| /// BiasP - Sum of blocks that prefer a register. |
| BlockFrequency BiasP; |
| |
| /// Value - Output value of this node computed from the Bias and links. |
| /// This is always on of the values {-1, 0, 1}. A positive number means the |
| /// variable should go in a register through this bundle. |
| int Value; |
| |
| using LinkVector = SmallVector<std::pair<BlockFrequency, unsigned>, 4>; |
| |
| /// Links - (Weight, BundleNo) for all transparent blocks connecting to other |
| /// bundles. The weights are all positive block frequencies. |
| LinkVector Links; |
| |
| /// SumLinkWeights - Cached sum of the weights of all links + ThresHold. |
| BlockFrequency SumLinkWeights; |
| |
| /// preferReg - Return true when this node prefers to be in a register. |
| bool preferReg() const { |
| // Undecided nodes (Value==0) go on the stack. |
| return Value > 0; |
| } |
| |
| /// mustSpill - Return True if this node is so biased that it must spill. |
| bool mustSpill() const { |
| // We must spill if Bias < -sum(weights) or the MustSpill flag was set. |
| // BiasN is saturated when MustSpill is set, make sure this still returns |
| // true when the RHS saturates. Note that SumLinkWeights includes Threshold. |
| return BiasN >= BiasP + SumLinkWeights; |
| } |
| |
| /// clear - Reset per-query data, but preserve frequencies that only depend on |
| /// the CFG. |
| void clear(const BlockFrequency &Threshold) { |
| BiasN = BiasP = Value = 0; |
| SumLinkWeights = Threshold; |
| Links.clear(); |
| } |
| |
| /// addLink - Add a link to bundle b with weight w. |
| void addLink(unsigned b, BlockFrequency w) { |
| // Update cached sum. |
| SumLinkWeights += w; |
| |
| // There can be multiple links to the same bundle, add them up. |
| for (std::pair<BlockFrequency, unsigned> &L : Links) |
| if (L.second == b) { |
| L.first += w; |
| return; |
| } |
| // This must be the first link to b. |
| Links.push_back(std::make_pair(w, b)); |
| } |
| |
| /// addBias - Bias this node. |
| void addBias(BlockFrequency freq, BorderConstraint direction) { |
| switch (direction) { |
| default: |
| break; |
| case PrefReg: |
| BiasP += freq; |
| break; |
| case PrefSpill: |
| BiasN += freq; |
| break; |
| case MustSpill: |
| BiasN = BlockFrequency::getMaxFrequency(); |
| break; |
| } |
| } |
| |
| /// update - Recompute Value from Bias and Links. Return true when node |
| /// preference changes. |
| bool update(const Node nodes[], const BlockFrequency &Threshold) { |
| // Compute the weighted sum of inputs. |
| BlockFrequency SumN = BiasN; |
| BlockFrequency SumP = BiasP; |
| for (std::pair<BlockFrequency, unsigned> &L : Links) { |
| if (nodes[L.second].Value == -1) |
| SumN += L.first; |
| else if (nodes[L.second].Value == 1) |
| SumP += L.first; |
| } |
| |
| // Each weighted sum is going to be less than the total frequency of the |
| // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we |
| // will add a dead zone around 0 for two reasons: |
| // |
| // 1. It avoids arbitrary bias when all links are 0 as is possible during |
| // initial iterations. |
| // 2. It helps tame rounding errors when the links nominally sum to 0. |
| // |
| bool Before = preferReg(); |
| if (SumN >= SumP + Threshold) |
| Value = -1; |
| else if (SumP >= SumN + Threshold) |
| Value = 1; |
| else |
| Value = 0; |
| return Before != preferReg(); |
| } |
| |
| void getDissentingNeighbors(SparseSet<unsigned> &List, |
| const Node nodes[]) const { |
| for (const auto &Elt : Links) { |
| unsigned n = Elt.second; |
| // Neighbors that already have the same value are not going to |
| // change because of this node changing. |
| if (Value != nodes[n].Value) |
| List.insert(n); |
| } |
| } |
| }; |
| |
| bool SpillPlacement::runOnMachineFunction(MachineFunction &mf) { |
| MF = &mf; |
| bundles = &getAnalysis<EdgeBundles>(); |
| loops = &getAnalysis<MachineLoopInfo>(); |
| |
| assert(!nodes && "Leaking node array"); |
| nodes = new Node[bundles->getNumBundles()]; |
| TodoList.clear(); |
| TodoList.setUniverse(bundles->getNumBundles()); |
| |
| // Compute total ingoing and outgoing block frequencies for all bundles. |
| BlockFrequencies.resize(mf.getNumBlockIDs()); |
| MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); |
| setThreshold(MBFI->getEntryFreq()); |
| for (auto &I : mf) { |
| unsigned Num = I.getNumber(); |
| BlockFrequencies[Num] = MBFI->getBlockFreq(&I); |
| } |
| |
| // We never change the function. |
| return false; |
| } |
| |
| void SpillPlacement::releaseMemory() { |
| delete[] nodes; |
| nodes = nullptr; |
| TodoList.clear(); |
| } |
| |
| /// activate - mark node n as active if it wasn't already. |
| void SpillPlacement::activate(unsigned n) { |
| TodoList.insert(n); |
| if (ActiveNodes->test(n)) |
| return; |
| ActiveNodes->set(n); |
| nodes[n].clear(Threshold); |
| |
| // Very large bundles usually come from big switches, indirect branches, |
| // landing pads, or loops with many 'continue' statements. It is difficult to |
| // allocate registers when so many different blocks are involved. |
| // |
| // Give a small negative bias to large bundles such that a substantial |
| // fraction of the connected blocks need to be interested before we consider |
| // expanding the region through the bundle. This helps compile time by |
| // limiting the number of blocks visited and the number of links in the |
| // Hopfield network. |
| if (bundles->getBlocks(n).size() > 100) { |
| nodes[n].BiasP = 0; |
| nodes[n].BiasN = (MBFI->getEntryFreq() / 16); |
| } |
| } |
| |
| /// Set the threshold for a given entry frequency. |
| /// |
| /// Set the threshold relative to \c Entry. Since the threshold is used as a |
| /// bound on the open interval (-Threshold;Threshold), 1 is the minimum |
| /// threshold. |
| void SpillPlacement::setThreshold(const BlockFrequency &Entry) { |
| // Apparently 2 is a good threshold when Entry==2^14, but we need to scale |
| // it. Divide by 2^13, rounding as appropriate. |
| uint64_t Freq = Entry.getFrequency(); |
| uint64_t Scaled = (Freq >> 13) + bool(Freq & (1 << 12)); |
| Threshold = std::max(UINT64_C(1), Scaled); |
| } |
| |
| /// addConstraints - Compute node biases and weights from a set of constraints. |
| /// Set a bit in NodeMask for each active node. |
| void SpillPlacement::addConstraints(ArrayRef<BlockConstraint> LiveBlocks) { |
| for (const BlockConstraint &LB : LiveBlocks) { |
| BlockFrequency Freq = BlockFrequencies[LB.Number]; |
| |
| // Live-in to block? |
| if (LB.Entry != DontCare) { |
| unsigned ib = bundles->getBundle(LB.Number, false); |
| activate(ib); |
| nodes[ib].addBias(Freq, LB.Entry); |
| } |
| |
| // Live-out from block? |
| if (LB.Exit != DontCare) { |
| unsigned ob = bundles->getBundle(LB.Number, true); |
| activate(ob); |
| nodes[ob].addBias(Freq, LB.Exit); |
| } |
| } |
| } |
| |
| /// addPrefSpill - Same as addConstraints(PrefSpill) |
| void SpillPlacement::addPrefSpill(ArrayRef<unsigned> Blocks, bool Strong) { |
| for (unsigned B : Blocks) { |
| BlockFrequency Freq = BlockFrequencies[B]; |
| if (Strong) |
| Freq += Freq; |
| unsigned ib = bundles->getBundle(B, false); |
| unsigned ob = bundles->getBundle(B, true); |
| activate(ib); |
| activate(ob); |
| nodes[ib].addBias(Freq, PrefSpill); |
| nodes[ob].addBias(Freq, PrefSpill); |
| } |
| } |
| |
| void SpillPlacement::addLinks(ArrayRef<unsigned> Links) { |
| for (unsigned Number : Links) { |
| unsigned ib = bundles->getBundle(Number, false); |
| unsigned ob = bundles->getBundle(Number, true); |
| |
| // Ignore self-loops. |
| if (ib == ob) |
| continue; |
| activate(ib); |
| activate(ob); |
| BlockFrequency Freq = BlockFrequencies[Number]; |
| nodes[ib].addLink(ob, Freq); |
| nodes[ob].addLink(ib, Freq); |
| } |
| } |
| |
| bool SpillPlacement::scanActiveBundles() { |
| RecentPositive.clear(); |
| for (unsigned n : ActiveNodes->set_bits()) { |
| update(n); |
| // A node that must spill, or a node without any links is not going to |
| // change its value ever again, so exclude it from iterations. |
| if (nodes[n].mustSpill()) |
| continue; |
| if (nodes[n].preferReg()) |
| RecentPositive.push_back(n); |
| } |
| return !RecentPositive.empty(); |
| } |
| |
| bool SpillPlacement::update(unsigned n) { |
| if (!nodes[n].update(nodes, Threshold)) |
| return false; |
| nodes[n].getDissentingNeighbors(TodoList, nodes); |
| return true; |
| } |
| |
| /// iterate - Repeatedly update the Hopfield nodes until stability or the |
| /// maximum number of iterations is reached. |
| void SpillPlacement::iterate() { |
| // We do not need to push those node in the todolist. |
| // They are already been proceeded as part of the previous iteration. |
| RecentPositive.clear(); |
| |
| // Since the last iteration, the todolist have been augmented by calls |
| // to addConstraints, addLinks, and co. |
| // Update the network energy starting at this new frontier. |
| // The call to ::update will add the nodes that changed into the todolist. |
| unsigned Limit = bundles->getNumBundles() * 10; |
| while(Limit-- > 0 && !TodoList.empty()) { |
| unsigned n = TodoList.pop_back_val(); |
| if (!update(n)) |
| continue; |
| if (nodes[n].preferReg()) |
| RecentPositive.push_back(n); |
| } |
| } |
| |
| void SpillPlacement::prepare(BitVector &RegBundles) { |
| RecentPositive.clear(); |
| TodoList.clear(); |
| // Reuse RegBundles as our ActiveNodes vector. |
| ActiveNodes = &RegBundles; |
| ActiveNodes->clear(); |
| ActiveNodes->resize(bundles->getNumBundles()); |
| } |
| |
| bool |
| SpillPlacement::finish() { |
| assert(ActiveNodes && "Call prepare() first"); |
| |
| // Write preferences back to ActiveNodes. |
| bool Perfect = true; |
| for (unsigned n : ActiveNodes->set_bits()) |
| if (!nodes[n].preferReg()) { |
| ActiveNodes->reset(n); |
| Perfect = false; |
| } |
| ActiveNodes = nullptr; |
| return Perfect; |
| } |
| |
| void SpillPlacement::BlockConstraint::print(raw_ostream &OS) const { |
| auto toString = [](BorderConstraint C) -> StringRef { |
| switch(C) { |
| case DontCare: return "DontCare"; |
| case PrefReg: return "PrefReg"; |
| case PrefSpill: return "PrefSpill"; |
| case PrefBoth: return "PrefBoth"; |
| case MustSpill: return "MustSpill"; |
| }; |
| llvm_unreachable("uncovered switch"); |
| }; |
| |
| dbgs() << "{" << Number << ", " |
| << toString(Entry) << ", " |
| << toString(Exit) << ", " |
| << (ChangesValue ? "changes" : "no change") << "}"; |
| } |
| |
| void SpillPlacement::BlockConstraint::dump() const { |
| print(dbgs()); |
| dbgs() << "\n"; |
| } |