| //===-- FunctionLoweringInfo.cpp ------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements routines for translating functions from LLVM IR into |
| // Machine IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/WasmEHFuncInfo.h" |
| #include "llvm/CodeGen/WinEHFuncInfo.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "function-lowering-info" |
| |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by |
| /// PHI nodes or outside of the basic block that defines it, or used by a |
| /// switch or atomic instruction, which may expand to multiple basic blocks. |
| static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { |
| if (I->use_empty()) return false; |
| if (isa<PHINode>(I)) return true; |
| const BasicBlock *BB = I->getParent(); |
| for (const User *U : I->users()) |
| if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U)) |
| return true; |
| |
| return false; |
| } |
| |
| static ISD::NodeType getPreferredExtendForValue(const Instruction *I) { |
| // For the users of the source value being used for compare instruction, if |
| // the number of signed predicate is greater than unsigned predicate, we |
| // prefer to use SIGN_EXTEND. |
| // |
| // With this optimization, we would be able to reduce some redundant sign or |
| // zero extension instruction, and eventually more machine CSE opportunities |
| // can be exposed. |
| ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
| unsigned NumOfSigned = 0, NumOfUnsigned = 0; |
| for (const User *U : I->users()) { |
| if (const auto *CI = dyn_cast<CmpInst>(U)) { |
| NumOfSigned += CI->isSigned(); |
| NumOfUnsigned += CI->isUnsigned(); |
| } |
| } |
| if (NumOfSigned > NumOfUnsigned) |
| ExtendKind = ISD::SIGN_EXTEND; |
| |
| return ExtendKind; |
| } |
| |
| void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, |
| SelectionDAG *DAG) { |
| Fn = &fn; |
| MF = &mf; |
| TLI = MF->getSubtarget().getTargetLowering(); |
| RegInfo = &MF->getRegInfo(); |
| const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); |
| DA = DAG->getDivergenceAnalysis(); |
| |
| // Check whether the function can return without sret-demotion. |
| SmallVector<ISD::OutputArg, 4> Outs; |
| CallingConv::ID CC = Fn->getCallingConv(); |
| |
| GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI, |
| mf.getDataLayout()); |
| CanLowerReturn = |
| TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); |
| |
| // If this personality uses funclets, we need to do a bit more work. |
| DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; |
| EHPersonality Personality = classifyEHPersonality( |
| Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); |
| if (isFuncletEHPersonality(Personality)) { |
| // Calculate state numbers if we haven't already. |
| WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); |
| if (Personality == EHPersonality::MSVC_CXX) |
| calculateWinCXXEHStateNumbers(&fn, EHInfo); |
| else if (isAsynchronousEHPersonality(Personality)) |
| calculateSEHStateNumbers(&fn, EHInfo); |
| else if (Personality == EHPersonality::CoreCLR) |
| calculateClrEHStateNumbers(&fn, EHInfo); |
| |
| // Map all BB references in the WinEH data to MBBs. |
| for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { |
| for (WinEHHandlerType &H : TBME.HandlerArray) { |
| if (const AllocaInst *AI = H.CatchObj.Alloca) |
| CatchObjects.insert({AI, {}}).first->second.push_back( |
| &H.CatchObj.FrameIndex); |
| else |
| H.CatchObj.FrameIndex = INT_MAX; |
| } |
| } |
| } |
| |
| // Initialize the mapping of values to registers. This is only set up for |
| // instruction values that are used outside of the block that defines |
| // them. |
| const Align StackAlign = TFI->getStackAlign(); |
| for (const BasicBlock &BB : *Fn) { |
| for (const Instruction &I : BB) { |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { |
| Type *Ty = AI->getAllocatedType(); |
| Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty); |
| // The "specified" alignment is the alignment written on the alloca, |
| // or the preferred alignment of the type if none is specified. |
| // |
| // (Unspecified alignment on allocas will be going away soon.) |
| Align SpecifiedAlign = AI->getAlign(); |
| |
| // If the preferred alignment of the type is higher than the specified |
| // alignment of the alloca, promote the alignment, as long as it doesn't |
| // require realigning the stack. |
| // |
| // FIXME: Do we really want to second-guess the IR in isel? |
| Align Alignment = |
| std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign); |
| |
| // Static allocas can be folded into the initial stack frame |
| // adjustment. For targets that don't realign the stack, don't |
| // do this if there is an extra alignment requirement. |
| if (AI->isStaticAlloca() && |
| (TFI->isStackRealignable() || (Alignment <= StackAlign))) { |
| const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize()); |
| uint64_t TySize = |
| MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue(); |
| |
| TySize *= CUI->getZExtValue(); // Get total allocated size. |
| if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. |
| int FrameIndex = INT_MAX; |
| auto Iter = CatchObjects.find(AI); |
| if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { |
| FrameIndex = MF->getFrameInfo().CreateFixedObject( |
| TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true); |
| MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment); |
| } else { |
| FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment, |
| false, AI); |
| } |
| |
| // Scalable vectors may need a special StackID to distinguish |
| // them from other (fixed size) stack objects. |
| if (isa<ScalableVectorType>(Ty)) |
| MF->getFrameInfo().setStackID(FrameIndex, |
| TFI->getStackIDForScalableVectors()); |
| |
| StaticAllocaMap[AI] = FrameIndex; |
| // Update the catch handler information. |
| if (Iter != CatchObjects.end()) { |
| for (int *CatchObjPtr : Iter->second) |
| *CatchObjPtr = FrameIndex; |
| } |
| } else { |
| // FIXME: Overaligned static allocas should be grouped into |
| // a single dynamic allocation instead of using a separate |
| // stack allocation for each one. |
| // Inform the Frame Information that we have variable-sized objects. |
| MF->getFrameInfo().CreateVariableSizedObject( |
| Alignment <= StackAlign ? Align(1) : Alignment, AI); |
| } |
| } else if (auto *Call = dyn_cast<CallBase>(&I)) { |
| // Look for inline asm that clobbers the SP register. |
| if (Call->isInlineAsm()) { |
| Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
| const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
| std::vector<TargetLowering::AsmOperandInfo> Ops = |
| TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, |
| *Call); |
| for (TargetLowering::AsmOperandInfo &Op : Ops) { |
| if (Op.Type == InlineAsm::isClobber) { |
| // Clobbers don't have SDValue operands, hence SDValue(). |
| TLI->ComputeConstraintToUse(Op, SDValue(), DAG); |
| std::pair<unsigned, const TargetRegisterClass *> PhysReg = |
| TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode, |
| Op.ConstraintVT); |
| if (PhysReg.first == SP) |
| MF->getFrameInfo().setHasOpaqueSPAdjustment(true); |
| } |
| } |
| } |
| // Look for calls to the @llvm.va_start intrinsic. We can omit some |
| // prologue boilerplate for variadic functions that don't examine their |
| // arguments. |
| if (const auto *II = dyn_cast<IntrinsicInst>(&I)) { |
| if (II->getIntrinsicID() == Intrinsic::vastart) |
| MF->getFrameInfo().setHasVAStart(true); |
| } |
| |
| // If we have a musttail call in a variadic function, we need to ensure |
| // we forward implicit register parameters. |
| if (const auto *CI = dyn_cast<CallInst>(&I)) { |
| if (CI->isMustTailCall() && Fn->isVarArg()) |
| MF->getFrameInfo().setHasMustTailInVarArgFunc(true); |
| } |
| } |
| |
| // Mark values used outside their block as exported, by allocating |
| // a virtual register for them. |
| if (isUsedOutsideOfDefiningBlock(&I)) |
| if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I))) |
| InitializeRegForValue(&I); |
| |
| // Decide the preferred extend type for a value. |
| PreferredExtendType[&I] = getPreferredExtendForValue(&I); |
| } |
| } |
| |
| // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This |
| // also creates the initial PHI MachineInstrs, though none of the input |
| // operands are populated. |
| for (const BasicBlock &BB : *Fn) { |
| // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks |
| // are really data, and no instructions can live here. |
| if (BB.isEHPad()) { |
| const Instruction *PadInst = BB.getFirstNonPHI(); |
| // If this is a non-landingpad EH pad, mark this function as using |
| // funclets. |
| // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid |
| // setting this in such cases in order to improve frame layout. |
| if (!isa<LandingPadInst>(PadInst)) { |
| MF->setHasEHScopes(true); |
| MF->setHasEHFunclets(true); |
| MF->getFrameInfo().setHasOpaqueSPAdjustment(true); |
| } |
| if (isa<CatchSwitchInst>(PadInst)) { |
| assert(&*BB.begin() == PadInst && |
| "WinEHPrepare failed to remove PHIs from imaginary BBs"); |
| continue; |
| } |
| if (isa<FuncletPadInst>(PadInst)) |
| assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs"); |
| } |
| |
| MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB); |
| MBBMap[&BB] = MBB; |
| MF->push_back(MBB); |
| |
| // Transfer the address-taken flag. This is necessary because there could |
| // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only |
| // the first one should be marked. |
| if (BB.hasAddressTaken()) |
| MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); |
| |
| // Mark landing pad blocks. |
| if (BB.isEHPad()) |
| MBB->setIsEHPad(); |
| |
| // Create Machine PHI nodes for LLVM PHI nodes, lowering them as |
| // appropriate. |
| for (const PHINode &PN : BB.phis()) { |
| if (PN.use_empty()) |
| continue; |
| |
| // Skip empty types |
| if (PN.getType()->isEmptyTy()) |
| continue; |
| |
| DebugLoc DL = PN.getDebugLoc(); |
| unsigned PHIReg = ValueMap[&PN]; |
| assert(PHIReg && "PHI node does not have an assigned virtual register!"); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs); |
| for (EVT VT : ValueVTs) { |
| unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| for (unsigned i = 0; i != NumRegisters; ++i) |
| BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); |
| PHIReg += NumRegisters; |
| } |
| } |
| } |
| |
| if (isFuncletEHPersonality(Personality)) { |
| WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); |
| |
| // Map all BB references in the WinEH data to MBBs. |
| for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { |
| for (WinEHHandlerType &H : TBME.HandlerArray) { |
| if (H.Handler) |
| H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()]; |
| } |
| } |
| for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) |
| if (UME.Cleanup) |
| UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()]; |
| for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { |
| const auto *BB = UME.Handler.get<const BasicBlock *>(); |
| UME.Handler = MBBMap[BB]; |
| } |
| for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { |
| const auto *BB = CME.Handler.get<const BasicBlock *>(); |
| CME.Handler = MBBMap[BB]; |
| } |
| } else if (Personality == EHPersonality::Wasm_CXX) { |
| WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); |
| calculateWasmEHInfo(&fn, EHInfo); |
| |
| // Map all BB references in the Wasm EH data to MBBs. |
| DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest; |
| for (auto &KV : EHInfo.SrcToUnwindDest) { |
| const auto *Src = KV.first.get<const BasicBlock *>(); |
| const auto *Dest = KV.second.get<const BasicBlock *>(); |
| SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest]; |
| } |
| EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest); |
| DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs; |
| for (auto &KV : EHInfo.UnwindDestToSrcs) { |
| const auto *Dest = KV.first.get<const BasicBlock *>(); |
| UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>(); |
| for (const auto P : KV.second) |
| UnwindDestToSrcs[MBBMap[Dest]].insert( |
| MBBMap[P.get<const BasicBlock *>()]); |
| } |
| EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs); |
| } |
| } |
| |
| /// clear - Clear out all the function-specific state. This returns this |
| /// FunctionLoweringInfo to an empty state, ready to be used for a |
| /// different function. |
| void FunctionLoweringInfo::clear() { |
| MBBMap.clear(); |
| ValueMap.clear(); |
| VirtReg2Value.clear(); |
| StaticAllocaMap.clear(); |
| LiveOutRegInfo.clear(); |
| VisitedBBs.clear(); |
| ArgDbgValues.clear(); |
| DescribedArgs.clear(); |
| ByValArgFrameIndexMap.clear(); |
| RegFixups.clear(); |
| RegsWithFixups.clear(); |
| StatepointStackSlots.clear(); |
| StatepointRelocationMaps.clear(); |
| PreferredExtendType.clear(); |
| } |
| |
| /// CreateReg - Allocate a single virtual register for the given type. |
| Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) { |
| return RegInfo->createVirtualRegister(TLI->getRegClassFor(VT, isDivergent)); |
| } |
| |
| /// CreateRegs - Allocate the appropriate number of virtual registers of |
| /// the correctly promoted or expanded types. Assign these registers |
| /// consecutive vreg numbers and return the first assigned number. |
| /// |
| /// In the case that the given value has struct or array type, this function |
| /// will assign registers for each member or element. |
| /// |
| Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); |
| |
| Register FirstReg; |
| for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| EVT ValueVT = ValueVTs[Value]; |
| MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT); |
| |
| unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| Register R = CreateReg(RegisterVT, isDivergent); |
| if (!FirstReg) FirstReg = R; |
| } |
| } |
| return FirstReg; |
| } |
| |
| Register FunctionLoweringInfo::CreateRegs(const Value *V) { |
| return CreateRegs(V->getType(), DA && DA->isDivergent(V) && |
| !TLI->requiresUniformRegister(*MF, V)); |
| } |
| |
| /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the |
| /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If |
| /// the register's LiveOutInfo is for a smaller bit width, it is extended to |
| /// the larger bit width by zero extension. The bit width must be no smaller |
| /// than the LiveOutInfo's existing bit width. |
| const FunctionLoweringInfo::LiveOutInfo * |
| FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) { |
| if (!LiveOutRegInfo.inBounds(Reg)) |
| return nullptr; |
| |
| LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; |
| if (!LOI->IsValid) |
| return nullptr; |
| |
| if (BitWidth > LOI->Known.getBitWidth()) { |
| LOI->NumSignBits = 1; |
| LOI->Known = LOI->Known.anyext(BitWidth); |
| } |
| |
| return LOI; |
| } |
| |
| /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination |
| /// register based on the LiveOutInfo of its operands. |
| void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { |
| Type *Ty = PN->getType(); |
| if (!Ty->isIntegerTy() || Ty->isVectorTy()) |
| return; |
| |
| SmallVector<EVT, 1> ValueVTs; |
| ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs); |
| assert(ValueVTs.size() == 1 && |
| "PHIs with non-vector integer types should have a single VT."); |
| EVT IntVT = ValueVTs[0]; |
| |
| if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1) |
| return; |
| IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT); |
| unsigned BitWidth = IntVT.getSizeInBits(); |
| |
| auto It = ValueMap.find(PN); |
| if (It == ValueMap.end()) |
| return; |
| |
| Register DestReg = It->second; |
| if (DestReg == 0) |
| return; |
| assert(DestReg.isVirtual() && "Expected a virtual reg"); |
| LiveOutRegInfo.grow(DestReg); |
| LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; |
| |
| Value *V = PN->getIncomingValue(0); |
| if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { |
| DestLOI.NumSignBits = 1; |
| DestLOI.Known = KnownBits(BitWidth); |
| return; |
| } |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| APInt Val; |
| if (TLI->signExtendConstant(CI)) |
| Val = CI->getValue().sext(BitWidth); |
| else |
| Val = CI->getValue().zext(BitWidth); |
| DestLOI.NumSignBits = Val.getNumSignBits(); |
| DestLOI.Known = KnownBits::makeConstant(Val); |
| } else { |
| assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" |
| "CopyToReg node was created."); |
| Register SrcReg = ValueMap[V]; |
| if (!SrcReg.isVirtual()) { |
| DestLOI.IsValid = false; |
| return; |
| } |
| const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); |
| if (!SrcLOI) { |
| DestLOI.IsValid = false; |
| return; |
| } |
| DestLOI = *SrcLOI; |
| } |
| |
| assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && |
| DestLOI.Known.One.getBitWidth() == BitWidth && |
| "Masks should have the same bit width as the type."); |
| |
| for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = PN->getIncomingValue(i); |
| if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) { |
| DestLOI.NumSignBits = 1; |
| DestLOI.Known = KnownBits(BitWidth); |
| return; |
| } |
| |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| APInt Val; |
| if (TLI->signExtendConstant(CI)) |
| Val = CI->getValue().sext(BitWidth); |
| else |
| Val = CI->getValue().zext(BitWidth); |
| DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits()); |
| DestLOI.Known.Zero &= ~Val; |
| DestLOI.Known.One &= Val; |
| continue; |
| } |
| |
| assert(ValueMap.count(V) && "V should have been placed in ValueMap when " |
| "its CopyToReg node was created."); |
| Register SrcReg = ValueMap[V]; |
| if (!SrcReg.isVirtual()) { |
| DestLOI.IsValid = false; |
| return; |
| } |
| const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth); |
| if (!SrcLOI) { |
| DestLOI.IsValid = false; |
| return; |
| } |
| DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits); |
| DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known); |
| } |
| } |
| |
| /// setArgumentFrameIndex - Record frame index for the byval |
| /// argument. This overrides previous frame index entry for this argument, |
| /// if any. |
| void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, |
| int FI) { |
| ByValArgFrameIndexMap[A] = FI; |
| } |
| |
| /// getArgumentFrameIndex - Get frame index for the byval argument. |
| /// If the argument does not have any assigned frame index then 0 is |
| /// returned. |
| int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { |
| auto I = ByValArgFrameIndexMap.find(A); |
| if (I != ByValArgFrameIndexMap.end()) |
| return I->second; |
| LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n"); |
| return INT_MAX; |
| } |
| |
| Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg( |
| const Value *CPI, const TargetRegisterClass *RC) { |
| MachineRegisterInfo &MRI = MF->getRegInfo(); |
| auto I = CatchPadExceptionPointers.insert({CPI, 0}); |
| Register &VReg = I.first->second; |
| if (I.second) |
| VReg = MRI.createVirtualRegister(RC); |
| assert(VReg && "null vreg in exception pointer table!"); |
| return VReg; |
| } |
| |
| const Value * |
| FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) { |
| if (VirtReg2Value.empty()) { |
| SmallVector<EVT, 4> ValueVTs; |
| for (auto &P : ValueMap) { |
| ValueVTs.clear(); |
| ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(), |
| P.first->getType(), ValueVTs); |
| unsigned Reg = P.second; |
| for (EVT VT : ValueVTs) { |
| unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT); |
| for (unsigned i = 0, e = NumRegisters; i != e; ++i) |
| VirtReg2Value[Reg++] = P.first; |
| } |
| } |
| } |
| return VirtReg2Value.lookup(Vreg); |
| } |