| ; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s -check-prefix=LAA | 
 | ; RUN: opt -passes='require<aa>,require<scalar-evolution>,require<aa>,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s  2>&1 | FileCheck %s --check-prefix=LAA | 
 | ; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV | 
 |  | 
 | target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" | 
 |  | 
 | ; For this loop: | 
 | ;   unsigned index = 0; | 
 | ;   for (int i = 0; i < n; i++) { | 
 | ;    A[2 * index] = A[2 * index] + B[i]; | 
 | ;    index++; | 
 | ;   } | 
 | ; | 
 | ; SCEV is unable to prove that A[2 * i] does not overflow. | 
 | ; | 
 | ; Analyzing the IR does not help us because the GEPs are not | 
 | ; affine AddRecExprs. However, we can turn them into AddRecExprs | 
 | ; using SCEV Predicates. | 
 | ; | 
 | ; Once we have an affine expression we need to add an additional NUSW | 
 | ; to check that the pointers don't wrap since the GEPs are not | 
 | ; inbound. | 
 |  | 
 | ; LAA-LABEL: f1 | 
 | ; LAA: Memory dependences are safe{{$}} | 
 | ; LAA: SCEV assumptions: | 
 | ; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw> | 
 | ; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> | 
 |  | 
 | ; The expression for %mul_ext as analyzed by SCEV is | 
 | ;    (zext i32 {0,+,2}<%for.body> to i64) | 
 | ; We have added the nusw flag to turn this expression into the SCEV expression: | 
 | ;    i64 {0,+,2}<%for.body> | 
 |  | 
 | ; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: | 
 | ; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64))<nuw><nsw> + %a) | 
 | ; LAA-NEXT: --> {%a,+,4}<%for.body> | 
 |  | 
 |  | 
 | ; LV-LABEL: f1 | 
 | ; LV-LABEL: for.body.lver.check | 
 |  | 
 | ; LV:      [[BETrunc:%[^ ]*]] = trunc i64 [[BE:%[^ ]*]] to i32 | 
 | ; LV-NEXT: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc]]) | 
 | ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 | 
 | ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]] | 
 | ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]] | 
 | ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], 0 | 
 | ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], 0 | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]] | 
 | ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 | 
 | ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] | 
 | ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] | 
 |  | 
 | ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] | 
 |  | 
 | ; LV-NEXT: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]]) | 
 | ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 | 
 | ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]] | 
 | ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]] | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]] | 
 | ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] | 
 |  | 
 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] | 
 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph | 
 | define void @f1(i16* noalias %a, | 
 |                 i16* noalias %b, i64 %N) { | 
 | entry: | 
 |   br label %for.body | 
 |  | 
 | for.body:                                         ; preds = %for.body, %entry | 
 |   %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] | 
 |   %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] | 
 |  | 
 |   %mul = mul i32 %ind1, 2 | 
 |   %mul_ext = zext i32 %mul to i64 | 
 |  | 
 |   %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext | 
 |   %loadA = load i16, i16* %arrayidxA, align 2 | 
 |  | 
 |   %arrayidxB = getelementptr i16, i16* %b, i64 %ind | 
 |   %loadB = load i16, i16* %arrayidxB, align 2 | 
 |  | 
 |   %add = mul i16 %loadA, %loadB | 
 |  | 
 |   store i16 %add, i16* %arrayidxA, align 2 | 
 |  | 
 |   %inc = add nuw nsw i64 %ind, 1 | 
 |   %inc1 = add i32 %ind1, 1 | 
 |  | 
 |   %exitcond = icmp eq i64 %inc, %N | 
 |   br i1 %exitcond, label %for.end, label %for.body | 
 |  | 
 | for.end:                                          ; preds = %for.body | 
 |   ret void | 
 | } | 
 |  | 
 | ; For this loop: | 
 | ;   unsigned index = n; | 
 | ;   for (int i = 0; i < n; i++) { | 
 | ;    A[2 * index] = A[2 * index] + B[i]; | 
 | ;    index--; | 
 | ;   } | 
 | ; | 
 | ; the SCEV expression for 2 * index is not an AddRecExpr | 
 | ; (and implictly not affine). However, we are able to make assumptions | 
 | ; that will turn the expression into an affine one and continue the | 
 | ; analysis. | 
 | ; | 
 | ; Once we have an affine expression we need to add an additional NUSW | 
 | ; to check that the pointers don't wrap since the GEPs are not | 
 | ; inbounds. | 
 | ; | 
 | ; This loop has a negative stride for A, and the nusw flag is required in | 
 | ; order to properly extend the increment from i32 -4 to i64 -4. | 
 |  | 
 | ; LAA-LABEL: f2 | 
 | ; LAA: Memory dependences are safe{{$}} | 
 | ; LAA: SCEV assumptions: | 
 | ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw> | 
 | ; LAA-NEXT: {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> | 
 |  | 
 | ; The expression for %mul_ext as analyzed by SCEV is | 
 | ;     (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) | 
 | ; We have added the nusw flag to turn this expression into the following SCEV: | 
 | ;     i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> | 
 |  | 
 | ; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: | 
 | ; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nuw><nsw> + %a) | 
 | ; LAA-NEXT: --> {((4 * (zext i31 (trunc i64 %N to i31) to i64)) + %a),+,-4}<%for.body> | 
 |  | 
 | ; LV-LABEL: f2 | 
 | ; LV-LABEL: for.body.lver.check | 
 |  | 
 | ; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) | 
 | ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 | 
 | ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] | 
 | ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] | 
 | ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], [[Start]] | 
 | ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], [[Start]] | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] | 
 | ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 | 
 | ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] | 
 | ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] | 
 |  | 
 | ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] | 
 |  | 
 | ; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]]) | 
 | ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 | 
 | ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] | 
 | ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] | 
 | ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] | 
 |  | 
 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] | 
 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph | 
 | define void @f2(i16* noalias %a, | 
 |                 i16* noalias %b, i64 %N) { | 
 | entry: | 
 |   %TruncN = trunc i64 %N to i32 | 
 |   br label %for.body | 
 |  | 
 | for.body:                                         ; preds = %for.body, %entry | 
 |   %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] | 
 |   %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] | 
 |  | 
 |   %mul = mul i32 %ind1, 2 | 
 |   %mul_ext = zext i32 %mul to i64 | 
 |  | 
 |   %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext | 
 |   %loadA = load i16, i16* %arrayidxA, align 2 | 
 |  | 
 |   %arrayidxB = getelementptr i16, i16* %b, i64 %ind | 
 |   %loadB = load i16, i16* %arrayidxB, align 2 | 
 |  | 
 |   %add = mul i16 %loadA, %loadB | 
 |  | 
 |   store i16 %add, i16* %arrayidxA, align 2 | 
 |  | 
 |   %inc = add nuw nsw i64 %ind, 1 | 
 |   %dec = sub i32 %ind1, 1 | 
 |  | 
 |   %exitcond = icmp eq i64 %inc, %N | 
 |   br i1 %exitcond, label %for.end, label %for.body | 
 |  | 
 | for.end:                                          ; preds = %for.body | 
 |   ret void | 
 | } | 
 |  | 
 | ; We replicate the tests above, but this time sign extend 2 * index instead | 
 | ; of zero extending it. | 
 |  | 
 | ; LAA-LABEL: f3 | 
 | ; LAA: Memory dependences are safe{{$}} | 
 | ; LAA: SCEV assumptions: | 
 | ; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw> | 
 | ; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> | 
 |  | 
 | ; The expression for %mul_ext as analyzed by SCEV is | 
 | ;     i64 (sext i32 {0,+,2}<%for.body> to i64) | 
 | ; We have added the nssw flag to turn this expression into the following SCEV: | 
 | ;     i64 {0,+,2}<%for.body> | 
 |  | 
 | ; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: | 
 | ; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64))<nsw> + %a) | 
 | ; LAA-NEXT: --> {%a,+,4}<%for.body> | 
 |  | 
 | ; LV-LABEL: f3 | 
 | ; LV-LABEL: for.body.lver.check | 
 |  | 
 | ; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) | 
 | ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 | 
 | ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]] | 
 | ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]] | 
 | ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], 0 | 
 | ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], 0 | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]] | 
 | ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 | 
 | ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] | 
 | ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] | 
 |  | 
 | ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] | 
 |  | 
 | ; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) | 
 | ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 | 
 | ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[A0:%[^ ]*]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[A0]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[A0]] | 
 | ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[A0]] | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]] | 
 | ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] | 
 |  | 
 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] | 
 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph | 
 | define void @f3(i16* noalias %a, | 
 |                 i16* noalias %b, i64 %N) { | 
 | entry: | 
 |   br label %for.body | 
 |  | 
 | for.body:                                         ; preds = %for.body, %entry | 
 |   %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] | 
 |   %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] | 
 |  | 
 |   %mul = mul i32 %ind1, 2 | 
 |   %mul_ext = sext i32 %mul to i64 | 
 |  | 
 |   %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext | 
 |   %loadA = load i16, i16* %arrayidxA, align 2 | 
 |  | 
 |   %arrayidxB = getelementptr i16, i16* %b, i64 %ind | 
 |   %loadB = load i16, i16* %arrayidxB, align 2 | 
 |  | 
 |   %add = mul i16 %loadA, %loadB | 
 |  | 
 |   store i16 %add, i16* %arrayidxA, align 2 | 
 |  | 
 |   %inc = add nuw nsw i64 %ind, 1 | 
 |   %inc1 = add i32 %ind1, 1 | 
 |  | 
 |   %exitcond = icmp eq i64 %inc, %N | 
 |   br i1 %exitcond, label %for.end, label %for.body | 
 |  | 
 | for.end:                                          ; preds = %for.body | 
 |   ret void | 
 | } | 
 |  | 
 | ; LAA-LABEL: f4 | 
 | ; LAA: Memory dependences are safe{{$}} | 
 | ; LAA: SCEV assumptions: | 
 | ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> | 
 | ; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw> | 
 |  | 
 | ; The expression for %mul_ext as analyzed by SCEV is | 
 | ;     i64  (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) | 
 | ; We have added the nssw flag to turn this expression into the following SCEV: | 
 | ;     i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> | 
 |  | 
 | ; LAA: [PSE]  %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: | 
 | ; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a) | 
 | ; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> | 
 |  | 
 | ; LV-LABEL: f4 | 
 | ; LV-LABEL: for.body.lver.check | 
 |  | 
 | ; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) | 
 | ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 | 
 | ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] | 
 | ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] | 
 | ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]] | 
 | ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]] | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] | 
 | ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 | 
 | ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] | 
 | ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] | 
 |  | 
 | ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] | 
 |  | 
 | ; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) | 
 | ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 | 
 | ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] | 
 | ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] | 
 | ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] | 
 |  | 
 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] | 
 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph | 
 | define void @f4(i16* noalias %a, | 
 |                 i16* noalias %b, i64 %N) { | 
 | entry: | 
 |   %TruncN = trunc i64 %N to i32 | 
 |   br label %for.body | 
 |  | 
 | for.body:                                         ; preds = %for.body, %entry | 
 |   %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] | 
 |   %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] | 
 |  | 
 |   %mul = mul i32 %ind1, 2 | 
 |   %mul_ext = sext i32 %mul to i64 | 
 |  | 
 |   %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext | 
 |   %loadA = load i16, i16* %arrayidxA, align 2 | 
 |  | 
 |   %arrayidxB = getelementptr i16, i16* %b, i64 %ind | 
 |   %loadB = load i16, i16* %arrayidxB, align 2 | 
 |  | 
 |   %add = mul i16 %loadA, %loadB | 
 |  | 
 |   store i16 %add, i16* %arrayidxA, align 2 | 
 |  | 
 |   %inc = add nuw nsw i64 %ind, 1 | 
 |   %dec = sub i32 %ind1, 1 | 
 |  | 
 |   %exitcond = icmp eq i64 %inc, %N | 
 |   br i1 %exitcond, label %for.end, label %for.body | 
 |  | 
 | for.end:                                          ; preds = %for.body | 
 |   ret void | 
 | } | 
 |  | 
 | ; The following function is similar to the one above, but has the GEP | 
 | ; to pointer %A inbounds. The index %mul doesn't have the nsw flag. | 
 | ; This means that the SCEV expression for %mul can wrap and we need | 
 | ; a SCEV predicate to continue analysis. | 
 | ; | 
 | ; We can still analyze this by adding the required no wrap SCEV predicates. | 
 |  | 
 | ; LAA-LABEL: f5 | 
 | ; LAA: Memory dependences are safe{{$}} | 
 | ; LAA: SCEV assumptions: | 
 | ; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> | 
 | ; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> Added Flags: <nusw> | 
 |  | 
 | ; LAA: [PSE]  %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul: | 
 | ; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)<nsw> | 
 | ; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64))<nsw> + %a),+,-4}<%for.body> | 
 |  | 
 | ; LV-LABEL: f5 | 
 | ; LV-LABEL: for.body.lver.check | 
 | ; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) | 
 | ; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 | 
 | ; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] | 
 | ; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] | 
 | ; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]] | 
 | ; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]] | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] | 
 | ; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 | 
 | ; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] | 
 | ; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] | 
 |  | 
 | ; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] | 
 |  | 
 | ; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) | 
 | ; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 | 
 | ; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 | 
 | ; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] | 
 | ; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] | 
 | ; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] | 
 | ; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] | 
 | ; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] | 
 |  | 
 | ; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] | 
 | ; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph | 
 | define void @f5(i16* noalias %a, | 
 |                 i16* noalias %b, i64 %N) { | 
 | entry: | 
 |   %TruncN = trunc i64 %N to i32 | 
 |   br label %for.body | 
 |  | 
 | for.body:                                         ; preds = %for.body, %entry | 
 |   %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] | 
 |   %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] | 
 |  | 
 |   %mul = mul i32 %ind1, 2 | 
 |  | 
 |   %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul | 
 |   %loadA = load i16, i16* %arrayidxA, align 2 | 
 |  | 
 |   %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind | 
 |   %loadB = load i16, i16* %arrayidxB, align 2 | 
 |  | 
 |   %add = mul i16 %loadA, %loadB | 
 |  | 
 |   store i16 %add, i16* %arrayidxA, align 2 | 
 |  | 
 |   %inc = add nuw nsw i64 %ind, 1 | 
 |   %dec = sub i32 %ind1, 1 | 
 |  | 
 |   %exitcond = icmp eq i64 %inc, %N | 
 |   br i1 %exitcond, label %for.end, label %for.body | 
 |  | 
 | for.end:                                          ; preds = %for.body | 
 |   ret void | 
 | } |